

Combinatorial Coverage
Measurement Tool

User Guide

December 6, 2012

Text derived from NIST SP 800-142, Practical Combinatorial Testing, Oct. 2010.

Contact: Rick Kuhn; kuhn@nist.gov

Combinatorial Coverage Measurement 1

Combinatorial Coverage Measurement
Since it is nearly always intractable to test all possible combinations, combinatorial testing is a

reasonable alternative. For some value of t, testing all t-way interactions among n parameters will
detect nearly all errors. It is possible that t = n, but reviewing the empirical data on failures, we would
expect t to be relatively small. Determining the level of input or configuration state space coverage can
help in understanding the degree of risk that remains after testing. If 90% - 100% of the state space has
been covered, then presumably the risk is small, but if coverage is much smaller, then the risk may be
substantial. This tutorial describes some measures of combinatorial coverage that can be helpful in
estimating this risk.

Even in the absence of knowledge about a program’s inner structure, we can apply combinatorial
methods to produce precise and useful measures. In this case, we measure the state space of inputs.
Suppose we have a program that accepts two inputs, x and y, with 10 values each. Then the input state
space consists of the 102 = 100 pairs of x and y values, which can be pictured as a checkerboard square
of 10 rows by 10 columns. With three inputs, x, y, and z, we would have a cube with 103 = 1,000 points
in its input state space. Extending the example to n inputs we would have a (hard to visualize)
hypercube of n dimensions with 10n points. Exhaustive testing would require inputs of all 10n
combinations, but combinatorial testing could be used to reduce the size of the test set.

How should state space coverage be measured? Looking closely at the nature of combinatorial
testing leads to several measures that are useful. We begin by introducing what will be called a
variable-value configuration.

Definition. For a set of t variables, a variable-value configuration is a set of t valid values, one for each
of the variables.

Example. Given four binary variables, a, b, c, and d, a=0, c=1, d=0 is a variable-value configuration, and
a=1, c=1, d=0 is a different variable-value configuration for the same three variables a, c, and d.

 Simple t -way combination coverage
Of the total number of t-way combinations for a given collection of variables, what percentage

will be covered by the test set? If the test set is a covering array, then coverage is 100%, by definition,
but many test sets not based on covering arrays may still provide significant t-way coverage. If the test
set is large, but not designed as a covering array, it is very possible that it provides 2-way coverage or
better. For example, random input generation may have been used to produce the tests, and good
branch or condition coverage may have been achieved. In addition to the structural coverage figure, for
software assurance it would be helpful to know what percentage of 2-way, 3-way, etc. coverage has
been obtained.
Definition: For a given test set for n variables, simple t-way combination coverage is the proportion of t-
way combinations of n variables for which all variable-values configurations are fully covered.

Example. Figure 1 shows an example with four binary variables, a, b, c, and d, where each row
represents a test. Of the six 2-way combinations, ab, ac, ad, bc, bd, cd, only bd and cd have all four
binary values covered, so simple 2-way coverage for the four tests in Figure 1 is 1/3 = 33.3%. There are
four 3-way combinations, abc, abd, acd, bcd, each with eight possible configurations: 000, 001, 010,

2 Combinatorial Coverage Measurement

011, 100, 101, 110, 111. Of the four combinations, none has all eight configurations covered, so simple
3-way coverage for this test set is 0%.

a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1

Figure 1. An example test array for a
 system with four binary components

(t + k)-way combination coverage
A test set that provides full combinatorial coverage for t-way combinations will also provide some

degree of coverage for (t+1)-way combinations, (t+2)-way combinations, etc. This statistic may be
useful for comparing two combinatorial test sets. For example, different algorithms may be used to
generate 3-way covering arrays. They both achieve 100% 3-way coverage, but if one provides better 4-
way and 5-way coverage, then it can be considered to provide more software testing assurance.

Definition. For a given test set for n variables, (t+k)-way combination coverage is the proportion of
(t+k)-way combinations of n variables for which all variable-values configurations are fully covered.
(Note that this measure would normally be applied only to a t-way covering array, as a measure of
coverage beyond t).

Example. If the test set in Figure 1 is extended as shown in Figure 2, we can extend 3-way coverage. For
this test set, bcd is covered, out of the four 3-way combinations, so 2-way coverage is 100%, and (2+1)-
way = 3-way coverage is 25%.

a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1
1 1 0 1
1 0 1 1
1 0 1 0
0 1 0 0

Figure 2. Eight tests for four binary variables.
Variable-Value Configuration coverage

So far we have only considered measures of the proportion of combinations for which all
configurations of t variables are fully covered. But when t variables with v values each are considered,
each t-tuple has vt configurations. For example, in pairwise (2-way) coverage of binary variables, every
2-way combination has 22 = 4 configurations: 00, 01, 10, 11. We can define two measures with respect
to configurations:

Definition. For a given combination of t variables, variable-value configuration coverage is the
proportion of variable-value configurations that are covered.

Combinatorial Coverage Measurement 3

Definition. For a given set of n variables, (p, t)-completeness is the proportion of the C(n, t)
combinations that have configuration coverage of at least p.

Example. For Figure 1 above, there are C(4, 2) = 6 possible variable combinations and C(4,2)22 = 24
possible variable-value configurations. Of these, 19 variable-value configurations are covered and the
only ones missing are ab=11, ac=11, ad=10, bc=01, bc=10. But only two, bd and cd, are covered with all
4 value pairs. So for the basic definition of simple t-way coverage, we have only 33% (2/6) coverage,
but 79% (19/24) for the configuration coverage metric. For a better understanding of this test set, we
can compute the configuration coverage for each of the six variable combinations, as shown in Figure 3.
So for this test set, one of the combinations (bc) is covered at the 50% level, three (ab, ac, ad) are
covered at the 75% level, and two (bd, cd) are covered at the 100% level. And, as noted above, for the
whole set of tests, 79% of variable-value configurations are covered. All 2-way combinations have at
least 50% configuration coverage, so (.50, 2)-completeness for this set of tests is 100%.

 Although the example in Figure 1 uses variables with the same number of values, this is not
essential for the measurement. Later sections of this document show how to use the tool for
computing coverage of test sets where variables have different numbers of parameters.

• total 2-way coverage = 19/24 = .79167
• (.50, 2)-completeness = 6/6 = 1.0
• (.75, 2)-completeness = 5/6 = 0.83333
• (1.0, 2)-completeness = 2/6 = 0.33333

Figure 3. The test array covers all possible 2-way combinations of a, b, c,
 and d to different levels.

The graph below shows a graphical display of the coverage data for the tests in Figure 1. Coverage is
given as the Y axis, with the percentage of combinations reaching a particular coverage level as the X
axis. Note from Fig. 1 that 100% of the combinations are covered to at least the .50 level, 83% are
covered to the .75 level or higher, and a third covered 100%. Thus the rightmost horizontal line on the
graph corresponds to the smallest coverage value from the test set, in this case 50%.

Vars Configurations
covered

Config
coverage a b 00, 01, 10 .75

a c 00, 01, 10 .75
a d 00, 01, 11 .75
b c 00, 11 .50
b d 00, 01, 10, 11 1.0
c d 00, 01, 10, 11 1.0

4 Combinatorial Coverage Measurement

Additional tests can be added to provide greater coverage. Suppose an additonal test [1,1,0,1] is added.
Coverage then increases as shown below. Now we can see immediately that all combinations are
covered to at least the 75% level, as shown by the rightmost horizontal line (in this case there is only one
horizontal line). The lefmost vertical line reaches the 1.0 level of coverage, showing that 50% of
combinations are covered to the 100% level.

Combinatorial Coverage Measurement 5

Adding another test, [1,0,1,1] results in the coverage shown below.

If a test [1,0,1,0] is then added, 100% coverage for all combinations is reached:

The graph can thus be thought of as a “coverage strength meter”, where the red indicator line moves to
the right as higher coverage levels are reached. A covering array, which by definition covers 100% of
variable-value configurations will always produce a figure as above, with full coverage for all
combinations.

6 Combinatorial Coverage Measurement

Using Coverage Measurement Tool

The tool implements the coverage measures documented in Chapter 6 of NIST SP 800-142.

Input: The input file must be a comma-separated values (CSV) format file where each row represents a
test and each column represents a parameter. CSV files can be exported from any spreadsheet
program. Constraints can be specified at the beginning of the file, each line will be considered a
separated constraint. The image below shows an example of an input file with constraints:

The first two lines are the constraints; and the following are the tests, each column correspond to a
parameter.

Charts: Charts display coverage measurements as documented in Chapter 6 of SP 800-142. Charts
may be saved to an image file using “Save chart”.

Sections: The tool has these four sections: main, parameters, constraints and Invalid Combinations
they are described below.

Main
This screen contains the main controls to load the file containing the set test; it will show the result of
the measurement and charts.

Combinatorial Coverage Measurement 7

If all tests and parameters in the input file should be loaded, just click on “Load input file” and select the
test file to be analyzed. If just some tests or parameters are needed, before loading the input file, the
number of tests and parameters should be specified using the numeric fields above on the left and
pressing “Set number of tests and parameters”. Note that if all tests are to be loaded, it is not
necessary to set the number of tests and parameters, provided that parameters have values (no more
than as indicated by the “Max values per parameter” field). The tool will read in all tests and discover
parameter values that will be used in the measurement process. The tool can also process continuous-
valued parameters such as account balances, distances, or others with a large range of possible values.
See the “Specifying boundaries” discussion below.
After the file loads, coverage measures may be computed by clicking on the appropriate button.

Features and options

• Number of tests: to set number of rows (tests) in input file, if known.
• Number of parameters: this must also be set by the user when Number of tests is set.
• Number of constraints: Show the number of constraints specified.
• Max values per parameter: to set the max values per parameter.
• File loaded: show the name of the input file.
• Set number of tests and parameters – click this button after setting the number of tests and

parameters.

8 Combinatorial Coverage Measurement

• Load input file: opens a dialog for the user to select a file; after loading, the number of tests and
parameters are displayed in the box below this control.

• Show input file: displays the first 10 lines of the file after loading.
• Gen missing combinations: Generates the missing needed combinations to reach the coverage

specified in “Cov %”. When this option is checked the output name file is requested and it’ll be
shown in the textbox below.

• Append tests: the output file for missing combinations will contain the already specified
combinations besides the missing ones.

• Cov % : coverture to be reached with the missing combinations.
• N Tests: number of missing combinations requested.
• Report: reports, in a file, the missing combinations.
• 3-way heat map: To use this option the system must have Gnuplot installed. A file path browse

button is provided to specify the installation path:
• Compute 2-way, 3-way and 4-way coverage: calculates coverage.
• Tabs:

o Step line chart: shows a step line chart for each coverage calculated.
� Clear chart: removes any currently-displayed graph.
� Save chart: opens a dialog box to allow user to save the displayed graph as an

image file.
o Point chart: shows a point chart for 2-way coverage.
o Results: shows the results for each coverage.

Contains the option to print out the results, the next image is an example:

• Reset all: resets all the features to load a new input file.
• Exit: terminates the program.

Combinatorial Coverage Measurement 9

Parameters
The parameters and their values are shown; they can be modified specifying boundaries, and adding or
removing values. Clicking in a column will show the values below in order to be modified.

Features and options
• Value: Specified a value to be added.
• Add: The value above will be added to the parameter, it is shown in the right.
• Remove: Removes a value of the parameter, the value has to be selected in the right
• Remove all: remove all the parameter specified for the parameter.

To reverse changes, values added can be removed and vice versa.

Specifying boundaries
For continuous-valued parameters, specify equivalence classes by indicating the number of value classes
and boundaries between the classes. Boundaries may include decimal values. Where the boundary
between two classes c1 and c2 is x, the system places input values < x into c1 and values ≥ x in c2.

10 Combinatorial Coverage Measurement

• Number of classes: Specify the number of classes, then click “Set” and the equivalence class
boundaries will be shown below.

• Value boundary column: The value boundary has to be specified.
• Load: the value boundaries will be specified to the parameter and they will be shown in the

right.

• Remove: remove the boundaries specified, returning the real values to the parameter.
• Reload Parameters: The parameters are reloaded in the table above and in the constraints

sections in order new values or boundaries are showed.

Combinatorial Coverage Measurement 11

Constraints
 The constraints are shown, if no constraints are specified, they can be added in this section.

Below is the formal syntax of the expressions that can be used to specify a constraint:

<Constraint>::=<Simple_Constraint>|<Constraint><Boolean_Op><Constraint> <Simple_Constraint> ::=
<Term><Relational_Op><Term> <Term>:=<Parameter>|<Parameter><Arithmetic_Op><Parameter>|
<Parameter><Arithmetic_Op> <Value> <Boolean_Op>:=“&&” |“||” |“=>”
<Relational_Op> := “=” |“!=” | “>” | “<” | “>=” | “<=” <Arithmetic_Op> := “+” | “-” | “*” | “/” | “%”

There are three types of operators:
1. Boolean operators (Boolean_Op), including &&, ||, =>
2. Relational operators (Relational_Op), including =, !=, >, <, >=, <=
3. Arithmetic operators (Arithmetic_OP), including +, -, *, /, %. Note that arithmetic operators can

appear in a term expression (<Term>) only if the parameters involved in the term expression are
of type Number or Range. Also, four of the relational operators, namely, >, <, >=, <=, can appear
in a simple constraint expression (Simple_Constraint) only if both of the terms involved in the
simple constraint are evaluated to a parameter value of type Number or Range.

12 Combinatorial Coverage Measurement

The following are examples of various constraints that can be specified:

Constraint 1: (P1 = “Windows”) => (P2 = “IE” || P2 = “FireFox” || P2 = “Netscape”), where P1 is a
parameter for OS and P2 is a parameter for Browser. This constraint specifies that if OS is Windows,
then Browser has to be IE, FireFox, or Netscape.

Constraint 2: (P1 > 100) || (P2 > 100), where P1 and P2 are two parameters of type Number or Range.
This constraint specifies that P1 or P2 must be greater than 100.

Constraint 3: (P1 > P2) => (P3 > P4), where P1, P2, P3, and P4 are parameters of type Number or Range.
This constraint specifies that if P1 is greater than P2, then P3 must be greater than P4.

All the parameters and their values are shown above.

Features and options

• Set parameter: Double click on column header.
• Set value-parameter: Double click on cell.
• Set operator: Click it in the tool bar

• Add a constraint: Click “>” button.
• Edit a constraint: Click “<” button. The constraint is showed in the edit box. The constraint is

removed until the user press “>” button.
• Clr: This option cleans the edit box.
• X: Remove the selected constraint.
• Remove all: remove all the constraints specified.
• Load from file: Load constrains in a file:

Invalid Combinations
The invalid combinations will be shown if there are constraints specified. If any coverage measurement
has been specified the invalid combinations will be generated.

Combinatorial Coverage Measurement 13

When all the invalid combinations have been generated they will be shown

The left marked combinations are the ones in the set test.

Features and options

14 Combinatorial Coverage Measurement

• Total invalid combinations: Number of all invalid combinations according to the constraints
specified and parameters in the set test.

• Invalid combinations in set test: Number of invalid combinations in set test.
• Save in file: Save the invalid combinations found in the set test.

