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COMBINATORIAL COVERAGE MEASUREMENT 
 
Abstract.  Combinatorial testing applies factor covering arrays [6, 7] to test all t-way combinations of 
input or configuration state space.  In some testing situations, it is not practical to use covering arrays, but 
any set of tests with n parameters covers at least some proportion of t-way combinations up to t ≤ n. This 
report describes measures of combinatorial coverage that can be used in evaluating the degree of t-way 
coverage of any test suite, regardless of whether it was initially constructed for combinatorial coverage.   
 
Keywords- combinatorial testing; factor covering array; state-space coverage; verification and 
validation (V&V); t-way testing; configuration model; component interaction failure 

1 Introduction 

Because testing all possible combinations of input values is nearly always intractable, 
combinatorial testing using factor covering arrays is a reasonable alternative [8, 9, 10]. But it is not 
always practical to re-design an organization’s testing procedures to use tests based on covering arrays.  
Testing procedures often develop over time, and employees have extensive experience with a particular 
approach.  Units of the organization may be structured around established, documented test procedures.  
This is particularly true in organizations that must test according to contractual requirements, or relevant 
standards.  And because much software assurance involves testing applications that have been modified to 
meet new specifications, an extensive library of legacy tests may exist.  The organization can save time 
and money by re-using existing tests, which may not have been developed as factor covering arrays.  
 

Short of creating new test suites from scratch, one approach to obtaining the advantages of 
combinatorial testing is to measure the combinatorial coverage of existing tests, then supplement as 
needed.  Depending on the budget and criticality of the software, 2-way through 5-way or 6-way testing 
may be appropriate.  Building covering arrays for some specified level of t is one way to provide t-way 
coverage.  However, many large test suites naturally cover a high percentage of t-way combinations.  If 
an existing test suite covers almost all 3-way combinations, for example, then it may be sufficient for the 
level of assurance that is required.  Determining the level of input or configuration state space coverage 
can also help in understanding the degree of risk that remains after testing.  If 90% - 100% of the relevant 
state space has been covered, then risk is likely to be smaller than would remain after testing that covers a 
much smaller portion of the state space.  This report describes measures of combinatorial coverage that 
can be helpful in evaluating the degree of t-way coverage of any test suite, regardless of whether it was 
initially constructed for combinatorial coverage.   

2 Software Test Coverage 

Test coverage is one of the most important topics in software assurance.  Users would like some 
quantitative measure to judge the risk associated with less than effectively exhaustive testing.  A variety 
of measures have been developed to gauge the degree of test coverage [2].  The following are some of the 
better-known coverage metrics: 
 
• Statement coverage:  This is the simplest of coverage criteria – the percentage of statements 
exercised by the test set.   
 
• Decision or branch coverage:  The percentage of branches that have been evaluated to both true 
and false by a test set.   
• Condition coverage:  The percentage of conditions within decision expressions that have been 
evaluated to both true and false. Note that 100% condition coverage does not guarantee 100% decision 



 

coverage.  For example, “if (A || B) {do something} else {do something else}”  is tested 
with [0 1], [1 0], then A and B will both have been evaluated to 0 and 1, but the else branch will not be 
taken because neither test leaves both A and B false.  
 
• Modified condition decision coverage (MCDC):  This is a strong coverage criterion that is 
required by the US Federal Aviation Administration for Level A (catastrophic failure consequence) 
software; i.e., software whose failure could lead to loss of function necessary for safe operation.   It 
requires that every condition in a decision in the program has taken on all possible outcomes at least once, 
and each condition has been shown to independently affect the decision outcome, and that each entry and 
exit point have been invoked at least once [4]. 

3 Combinatorial Coverage 

Note that the coverage measures discussed above depend on access to program source code.  
Combinatorial testing, in contrast, is a black box technique.  Inputs are specified and expected results for 
assessment are determined from some form of specification.  The program is then treated as simply a 
processor that accepts inputs and produces outputs.    
 
Suppose we have a program that accepts two inputs, x and y, with 10 values each.  Then the input state 
space consists of the 102 = 100 pairs of x and y values, which can be pictured as a checkerboard square of 
10 rows by 10 columns.  With three inputs, x, y, and z, we would have a cube with 103 = 1,000 points in 
its input state space, and so on. Exhaustive testing would require inputs of all 10n combinations, but 
combinatorial testing could be used to reduce the size of the test set while ensuring that all t-way 
combinations for some specified level of t are covered.   
 
Looking closely at the nature of combinatorial testing leads to several measures of state space that are 
useful.  We begin by introducing what will be called a variable-value configuration.   
 
Definition. Variable-value configuration:  For a set of t variables, a variable-value configuration is a 
set of t valid values, one for each of the variables.     
 
Example.  Given four binary variables a, b, c, and d, for a selection of three variables a, c, and d the set 
a=0, c=1, d=0 is a variable-value configuration, and a=1, c=1, d=0 is a different variable-value 
configuration.  
 
3.1  Simple t-way combination coverage 
  
Of the total number of t-way combinations for a given collection of variables, what percentage will be 
covered by the test set?  If the test set is a covering array, then coverage is 100%, by definition, but many 
test sets not based on covering arrays may still provide significant t-way coverage.  If the test set is large, 
but not designed as a covering array, it is possible that it provides 2-way coverage or better.  For example, 
random input generation may have been used to produce the tests, and good branch or condition coverage 
may have been achieved.  In addition to the structural coverage figure, for software assurance it would be 
helpful to know what percentage of 2-way, 3-way, etc. coverage has been obtained.  
 
Definition. Simple t-way combination coverage:  For a given test set for n variables, simple t-way 
combination coverage is the proportion of t-way combinations of n variables for which all variable-
values configurations are fully covered.    
 
 



 

Example.  Figure 1 shows an example with four binary variables, a, b, c, and d, where each row 
represents a test.  Of the six possible 2-way variable combinations, ab, ac, ad, bc, bd, cd, only bd and cd 
have all four binary values covered, so simple 2-way coverage for the four tests in Figure 1 is 1/3 = 
33.3%.  There are four 3-way variable combinations, abc, abd, acd, bcd, each with eight possible 
configurations:  000, 001, 010, 011, 100, 101, 110, 111.  Of the four combinations, none has all eight 
configurations covered, so simple 3-way coverage for this test set is 0%. 
 

a b c d 
0 0 0 0 
0 1 1 0 
1 0 0 1 
0 1 1 1 

Figure 1. An example test array for a system with four binary components 
 
3.2 (t + k)-way combination coverage   
 
A test set that provides full combinatorial coverage for t-way combinations will also provide some degree 
of coverage for (t+1)-way combinations, (t+2)-way combinations, etc.  This statistic may be useful for 
comparing two combinatorial test sets.  For example, different algorithms may be used to generate 3-way 
covering arrays.  They both achieve 100% 3-way coverage, but if one provides better 4-way and 5-way 
coverage, then it can be considered to provide more software testing assurance.   
 
Definition. (t + k)-way combination coverage:  For a given test set that provides 100% t-way 
coverage for n variables, (t+k)-way combination coverage is the proportion of (t+k)-way combinations of 
n variables for which all variable-values configurations are fully covered.   
 
Example.  Suppose the test set in Figure 1 is extended as shown in Figure 2 then all four combinations of 
pairs of variables are covered, so 2-way coverage is 100%. Out of the four 3-way combinations abc, abd, 
acd, bcd only the combination bcd has all 8 variable value combinations  so (2+1)-way = 3-way coverage 
is 25%.    

a b c d 
0 0 0 0 
0 1 1 0 
1 0 0 1 
0 1 1 1 
0 1 0 1 
1 0 1 1 
1 0 1 0 
0 1 0 0 

Figure 2. Eight tests for four binary variables. 
 
 
3.3 Measures of Variable-Value Configuration coverage     
 
So far we have only considered measures of the proportion of combinations of variables for which all 
configurations of t variables are fully covered.  But when t variables with v values each are considered, 
each t-tuple has vt possible variable-value configurations.  For example, in pairwise (2-way) coverage of 
binary variables, every 2-way combination has four configurations:  00, 01, 10, 11. We define two 
measures with respect to such variable-value configurations: 
 
 
 



 

Definition. Variable-value configuration coverage:  For a given combination of t variables, variable-
value configuration coverage is the proportion of variable-value configurations that are covered by at 
least one test case in a test set.    
 
For (t+k)-way coverage where k = 1, Chen and Zhang [3] have proposed the tuple density metric.   A 
special metric for (t+1)-way coverage is useful because  (1) the coverage of higher strength tuples for t’  > 
t+1 is much lower (because the number of  t-way combinations to be covered grows exponentially with t), 
(2) the coverage at t+1 provides some information for coverage at t’  > t+1 because (t+1)-way tuples are 
subsumed by higher strength tuples, and (3) the number of additional faults triggered by t-way 
combinations drops rapidly with t > 2 [10]. 
 
Definition. Tuple Density:  Sum of t and the fraction of the covered (t+1)-tuples out of all possible 
(t+1)-tuples [3]. 
 
Example.  As shown in the previous example, the test set in Figure 2 provides 100% coverage of 2-way 
combinations and 25% coverage of 3-way combinations, so the tuple density of this test set is 2.25.   
 
 
Definition. (p, t)-completeness:  For a given set of n variables, (p, t)-completeness is the proportion of 
the C(n, t) combinations that have configuration coverage of at least p [11].  
 
Example.  For Figure 1 above, there are C(4, 2) = 6 possible variable combinations and C(4, 2) × 22 = 24 
possible variable-value configurations.  Of these, 19 variable-value configurations are covered and the 
only ones missing are ab=11, ac=11, ad=10, bc=01, bc=10.  But only two, bd and cd, are covered with all 
4 value pairs.  So for the basic definition of simple t-way coverage, we have only 33% (2/6) coverage, 
but 79% (19/24) for the variable-value configuration coverage metric.  For a better understanding of this 
test set, we can compute the configuration coverage for each of the six variable combinations, as shown in 
Figure 3.  So for this test set, one of the combinations (bc) is covered at the 50% level, three (ab, ac, ad) 
are covered at the 75% level, and two (bd, cd) are covered at the 100% level.   And, as noted above, for 
the whole set of tests, 79% of variable-value configurations are covered.  All 2-way combinations have at 
least 50% configuration coverage, so (.50, 2)-completeness for this set of tests is 100%.   Although the 
example in Figure 1 uses variables with the same number of values, this is not essential for the 
measurement, and the same approach can be used to compute coverage for test sets in which parameters 
have differing numbers of values. 
 
 
 
 
 
 
 
 
 

total 2-way coverage = 19/24    = .79167 
(.50, 2)-completeness = 6/6        = 1.0 
(.75, 2)-completeness = 5/6        = 0.83333 
(1.0, 2)-completeness = 2/6        = 0.33333 

Figure 3. The test array covers all possible 2-way combinations  
of a, b, c, and d to different levels. 

 
 

Vars Configurations 
covered 

Config 
coverage a b 00, 01, 10                 .75 

a c 00, 01, 10          .75 

a d 00, 01, 11          .75 

b c 00, 11                .50 

b d 00, 01, 10, 11     1.0 

c d 00, 01, 10, 11      1.0 



 

The graph in Figure 4 shows a graphical display of the coverage data for the tests in Figure 3.  Coverage 
is given as the Y axis (ordinate), with the percentage of combinations reaching a particular coverage level 
as the X axis (abscissa).  Note from Fig. 1 that 100% of the combinations are covered to at least the .50 
level, 83% are covered to the .75 level or higher, and a third covered 100%.  Thus the rightmost 
horizontal line on the graph corresponds to the smallest coverage value from the test set, in this case 50%.  
Thus (.50, 2)-completeness = 100%.   

 
Figure 4. Graph of coverage from Figure 3 test data. 

 
Note that the total 2-way coverage is shown as 0.792.  This figure corresponds approximately to the area 
under the curve in Figure 4.  (The area is not exactly equal to the true figure of 0.792 because the curve is 
plotted in increments of 0.05.)    Additional tests can be added to provide greater coverage.  Suppose an 
additional test [1,1,0,1] is appended to figure 1  Coverage then increases as shown in Figure 5.  Now we 
can see immediately that all combinations are covered to at least the 75% level, as shown by the rightmost 
horizontal line (in this case there is only one horizontal line).  The leftmost vertical line reaches the 1.0 
level of coverage, showing that 50% of combinations are covered to the 100% level. 
 

 
Figure 5. Coverage after test [1,1,0,1] is appended.   

 
Note that the upper right corner includes roughly 25 squares, so the area under the curve is 175/200, or 
87.5%, matching the Total 2-way coverage figure.  Appending one more test, [1,0,1,1] results in the 
coverage shown in Figure 6.    



 

 
Figure 6. Coverage after test [1,0,1,1] is appended. 

 
If a test [1,0,1,0] is then appended, 100% coverage for all combinations is reached, as shown in Figure 7.  
The graph can thus be thought of as a “coverage strength meter”, where the red indicator line moves to 
the right as higher coverage levels are reached.  A covering array, which by definition covers 100% of 
variable-value configurations will always produce a figure as below, with full coverage for all 
combinations. 

 
Figure 7. Appending test [1,0,1,0] provides 100% coverage, i.e., a covering array. 

 
Consider the graph in Figure 8 corresponding to test set in figure 1.  The symbol Φ indicates the 
proportion of combinations with 100% variable-value coverage, and Μ indicates the minimum proportion 
of coverage for all t-way variable combinations.  In this case 33% (Φ) of the combinations have full 
variable-value coverage, and all variable combinations are covered to at least the 50% level (Μ).   So (1.0, 
2)-completeness = Φ and (Μ, 2)-completeness = 100%, but it is helpful to have more intuitive terms for 
the points Φ and Μ.  Note that Φ is the level of simple t-way coverage.   Since all combinations are 
covered to at least the level of Μ, we will refer to Μ as the “t-way minimum coverage”, keeping in mind 
that “coverage” refers to a proportion of variable-value configuration values.  Where the value of t is not 
clear from the context, these measures are designated Φt and Μt.  Using these terms we can analyze the 
relationship between total variable-value configuration coverage, t-way minimum coverage and simple t-
way coverage.  
 



 

 
Figure 8. Example coverage graph for t = 2. 

 
Let St  = total variable-value coverage, the proportion of variable-value configurations that are covered by 
at least one test.  If the area of the entire graph is 1(i.e., 100% of combinations), then  
 

St  ≥ 1 - (1- Φt)(1- Μt) 
St  ≥  Φt + Μt – Φt Μt         (1) 

 
If a test suite has only one test, then it covers C(n, t) combinations.  The total number of combinations 
that must be covered is C(n,t) × vt, so the coverage of one test is 1/vt.  Thus,  
 

t-way minimum coverage :  Μt ≥ 
tv

1
 >  0.     (2) 

 
Thus, for any non-empty test suite, t-way minimum coverage ≥ 1/vt.  This can be seen in Figure 9, which 
shows coverage for a single test with ten binary variables, where 2-way minimum coverage is 25%.  With 
only one test, 2-way full coverage is of course 0, and S = total variable-value coverage (denoted “Total t-
way” on the graph legend) is 25%.  
 

 
Figure 9. Coverage for one test, 10 binary variables.  

 
 
 



 

3.4 Example Application 
 
The methods described in this report were originally developed to analyze the state space coverage of 
spacecraft software [11].  A very thorough set of over 7,000 tests had been developed for each of three 
systems.  At that time combinatorial coverage was not the goal.  With such a large test suite, it seemed 
likely that a huge number of combinations had been covered, but how many?  Did these tests provide 2-
way, 3-way, or even higher degree coverage?  If an existing test suite is relatively thorough, it may be 
practical to supplement it with a few additional tests to bring coverage up to the desired level.    
                                                                                                         

 

 
Figure 10. Configuration coverage for 132754262  inputs. 

 
 The original test suites had been developed to verify correct system behavior in normal operation 
as well as a variety of fault scenarios, and performance tests were also included.  Careful analysis and 
engineering judgment were used to prepare the original tests, but the test suite was not designed according 
to criteria such as statement or branch coverage.  The system was relatively large, with the 82 variable 
configuration 132754262 (three 1-value, 72 binary, two 4-value, and two 6-value). Figure 10 shows 
combinatorial coverage for this system (red = 2-way, blue = 3-way, green = 4-way).  This particular test 
set was not a covering array, but pairwise coverage is still relatively good, with about 99% of the 2-way 
combinations having at least 75% of possible variable-value configurations covered (1), and 82% have 
100% of possible variable-value configurations covered (2).  
 
3.5 Analysis of Test Strategies 
 
      These coverage metrics can be used to analyze various testing strategies by measuring the 
combinatorial coverage they provide.  To illustrate this type of analysis, some examples are discussed in 
this section.  
 
All-values:  Consider the t-way coverage from one of the most basic test criteria, all-values, also called 
“each-choice” [2].  This strategy requires that every parameter value be covered at least once.  If all 
parameters have the same number of values, v, then only v tests are needed to cover all. Test 1 has all 
parameters set to v1, Test 2 to v2, and so on.   If parameters have different numbers of values, where p1 .. 
pn have vi values each, the number of tests required is at least Maxi=1,n vi.   
 
Example:  If there are three values, 0, 1, and 2, for five parameters, then 0,0,0,0,0; 1,1,1,1,1; and 2,2,2,2,2 
will test all values once.  As shown above, each test covers 1/vt of the variable-value configurations, and 
no combination appears in more than one test, so with v values per parameter and thus v tests, we have 

(2)                            (1) 



 

    

Μt (all-values)  ≥  v tv

1
 = 

1

1
−tv        (3)  

   
 

 
Therefore, for the all-values criterion, where all values are covered at least once, minimum coverage Μ ≥ 
1/vt-1.  We can also reach this result by noting that each test covers C(n, t) combinations, so with v values 
the proportion of combinations covered is vC(n,t)/C(n,t)vt = 1/vt-1.  This relationship can be seen in Figure 
11, which shows coverage for two tests with ten binary variables; 2-way minimum coverage = .5, and 3-
way coverage = .25.  

 
Figure 11. t-way coverage for two tests with binary values.  

 
Base choice:  Base-choice testing [1] requires that every parameter value be covered at least once and in a 
test in which all the other values are held constant. Each parameter has one or more values designated as 
base choices. The base choices can be arbitrary, but can also be selected as “special interest” values, e.g., 
default values, or values that are used most often in operation.  If parameters have different numbers of 
values, where p1 .. pn have vi values each, the number of tests required is at least 1 + Σ i=1,n (vi -1), or where 
all n parameters have the same number of values v, the number of tests is 1+n(v-1).  An example is shown 
below in 0, with four binary parameters. 
 

 a b c d 
base: 0 0 0 0 
test 2 1 0 0 0 
test 3 0 1 0 0 
test 4 0 0 1 0 
test 5 0 0 0 1 

 
Figure 12. Base choice test suite for a 24 configuration 

 
The base choice strategy can be highly effective, despite its simplicity.  In one study of five programs 
seeded with 128 faults [8], it was found that “although the Base Choice strategy requires fewer test cases 
than Orthogonal Arrays and AETG, it found as many faults [8].”  In that study, AETG [5] was used to 
generate 2-way (pairwise) test arrays.  We can use combinatorial coverage measurement to help 
understand this finding.  For this example of analyzing base choice, we will consider n parameters with 2 
values each.  First, note that the base test in which each parameter takes its base choice covers C(n, t) 
combinations, so for pairwise testing this is C(n, 2) = n(n-1)/2.  Changing a single value of the base test to 
something else will cover n-1 new pairs (in our example, ab, ac, and ad have new values in test 2, while 



 

bc and bd are unchanged).  This must be done for each parameter, so we will have the original base test 
combinations plus n(n-1) additional combinations.  The total number of 2-way combinations is C(n, 2) × 
22, so for n binary parameters: 

Μt (2-way binary base-choice)  = 
22)2,(

)1(2/)1(

nC

nnnn −+−   

= 
22)2,(

)2,(2)2,(

nC

nCnC +  

=  3/4. 
 

 
Figure 13. Graph of 2-way coverage for test set in 0. 

 
This can be seen in the graph in Figure 13 of coverage for 0.  Note that the 75% coverage level is 
independent of n.   For v > 2, the analysis is a little more complicated.  The base choice test covers C(n, 2) 
combinations, and each new test covers n-1 new combinations, but we need v-1 additional tests beyond 
the base choice for v values.  So the proportion of 2-way combinations covered by the base choice 
strategy in general is: 

Μt (base-choice) = 
2)2,(

)2,(2)1()2,(
vnC

nCvnC −+  

= 
2

)1(21

v

v−+  

 
For example, with v = 3 values per parameter, we still cover 55.6% of combinations, and with v = 4, 
coverage is 43.75%.  This analysis helps explain why the base choice strategy can be effective even if it 
does not achieve full 2-way coverage.     
 
This equation can be generalized to higher interaction strengths.  The base test covers C(n,t) 
combinations, and each new test covers C(n-1,t-1) new combinations, since the parameter value being 
varied can be combined with t-1 other parameters for each t-way combination.  Base choice testing 
requires n(v-1) additional tests beyond the initial one, so for any n, t with n ≥ t 
  

Μt (base-choice) = 
tvtnC

tnCvntnC

),(
)1,1()1(),( −−−+

 

=
tvtnC

tnCvttnC

),(
),()1(),( −+  



 

   = 
tv

vt )1(1 −+

       (4) 
 
3.6 Analysis of (t+1)-way Coverage 
 
A t-way covering array by definition provides 100% coverage at strength t, but it also covers some (t+1)-
way combinations (assuming n ≥ t+1).  Using the concepts introduced previously we can investigate 
minimal coverage levels for (t+1)-way combinations in covering arrays.  Given a t-way covering array, 
for any set of t+1 parameters, we know that any combination of t parameters is fully covered in some set 
of tests.   Joining any other parameter with any combination of t parameters in the tests will give a (t+1)-
way combination, which has vt+1 possible settings.  For any set of tests covering all t-way combinations, 
the proportion of (t+1)-way combinations covered is thus vt/vt+1, so if we designate (t+1)-way variable-
value configuration coverage as St+1, then  
 

St+1 ≥ 
v

1

 
for any t-way covering array with n ≥ t+1.   (5)

  
    

Note that variable-value configuration coverage is not the same as simple t-way coverage, which gives the 
proportion of t-way configurations that are 100% covered.  Clearly no set of (t+1)-way combinations will 
be fully covered with a t-way covering array if N < vt+1, where N = number of tests.  For most levels of t 
and v encountered in practical testing, this condition will hold.  For example, if v=3, then a 2-way 
covering array with less than 33=27 tests can be computed (using IPOG-F) for any test problem with less 
than 60 parameters. So the proportion of combinations with full variable-value coverage, designated Φ, 
will be zero for 3-way coverage for this example.  And in general, designating (t+1)-way full variable-
value configuration coverage as Φ t+1, if N < vt+1, then Φ t+1 = 0, for any t-way covering array with n ≥ t+1.  

 
As an additional illustration, we show that expression (5) can also be reached by noting that with a t-way 
covering array, unique (t+1)-way combinations can be identified as follows:  traversing the covering 
array, for the first appearance of each t-way combination, append each of the n-t parameters not contained 
in the t-way combination to create a (t+1)-way combination.  This procedure counts each (t+1)-way 
combination C(t+1, t) = t+1 times.  The covering array contains C(n,t)vt t-way combinations, so the 
proportion of (t+1)-way combinations, St+1 , in the t-way array is at least 
 

vvtnC

ttnvtnC
t

t 1
)1,(
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1

=
+

+−
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In most practical cases, the (t+1)-way coverage of a t-way array will be higher than 1/v .  
 
3.7 Summary 
 
1. Many coverage measures have been devised for code coverage, including statement, branch or 

decision, condition, and modified condition decision coverage.  These measures are based on aspects 
of source code and are not suitable for combinatorial coverage measurement.  
 

2. Combinatorial coverage measurements may be useful in understanding test set thoroughness and for 
analyzing test strategies.  Measures include simple t-way coverage, tuple density, variable-value 
configuration coverage, t-way minimum coverage, and (p,t)-completeness.  Test strategies differ in 
the level of coverage they provide as measured by these concepts.   

 



 

3. The following properties hold: 

Μt  ≥ 
tv

1
 >  0 

St  ≥  Φt + Μt – Φt Μt  

St+1 ≥ 
v

1

 
for any t-way covering array with n ≥ t+1 

if N < vt+1, then Φ t+1 = 0, for any t-way covering array with n ≥ t+1 
 
where  
      Μt  = minimum proportion of coverage for all t-way variable combinations; 
      Φt   = proportion of t-way combinations with 100% variable-value coverage; 
      St   = proportion of total t-way variable-value coverage; 
      N    = number of tests. 
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