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I. GENERATING SOFTWARE TESTS

Most software developers consider formal methods too hard
and tedious to use in practice. Instead of using formal methods,
developers test software. Model checking is a “light-weight”
formal method to check the truth (or falsity) of statements.
We use the SMV model checker as part of a highly automated
test generation tool, which we hope will motivate practitioners
to use formal methods more. For instance, an organization is
more likely to expend the considerable effort to develop a
formal specification if, with a little extra effort, it can also get
tests. In this paper we present some approaches to use model
checkers to generate tests.

Model checking is being applied to test generation and
coverage evaluation [3], [4], [7]. In both uses, one first decides
on a notion of what properties of a design must be exercised
to constitute thorough testing. This notion leads to test criteria.

One applies the chosen test criteria to the specification to
derive test requirements, i.e., a set of individual properties
to be tested, represented as temporal logic formulas [2]. To
generate tests, the requirements must be negative requirements,
that is, they are considered satisfied if the corresponding
formulas are inconsistent with the state machine. They must
also be of a form that a single counterexample demonstrates
the inconsistency (exhaustive enumeration is needed to show
inconsistency of an existential requirement). For instance, if
the criterion is state coverage, the negative requirements are
that the machine is never in state 1, never in state 2, etc.

When the model checker finds an inconsistent formula,
it produces a counterexample. Again, for state coverage, a
counterexample gives stimulus to put the machine in state
1 (if it is reachable), another to put the machine in state 2,
etc. Counterexamples are automatically turned into executable
tests.

An alternative approach is developing a special tool, based
on an existing model checker, to generate counterexamples that
have properties, such as fault visibility (Section V), especially
useful for test generation. This tool could benefit from most
of the technology of existing model checkers. We are not yet
pursuing this line of research due to lack of resources.

II. ABSTRACTION FOR TESTING

Since complete detailed designs are typically too big to
check, abstractions, or reductions, are used. Abstractions for
test generation can use a different soundness rule [1] than
for property checking. Informally, counterexamples generated
from the reduced specification must be valid traces in the

original specification. Of course, reduction details must be kept
to turn counterexamples into tests. Different test requirements
may call for different reductions.

One such sound reduction, called “finite focus” [1], reduces
a large or infinite domain to a small subset of values. These
values can be indicated by an analyst according to their testing
importance. This reduction mechanically modifies both the
state machine and test requirements.

In addition to using abstractions, we often start with a high-
level design.

III. HIGHER LEVEL SPECIFICATIONS

SMV’s description language is too low level for wide-spread
use. A popular system must get state machines from higher
level descriptions such as MATLAB stateflows, SCR, HOL,
or UML state diagrams.

Theorem provers and model checkers complement each
other in description and analysis tasks. Static (or functional)
aspects of a system are best described and analyzed with
a theorem prover, while a model checker is well suited for
dealing with dynamic (or behavioral) parts.

HOL provides a higher level of language constructs than
does SMV. A proposed test generation framework [8] starts
with a system model in HOL, mechanically converts a part of
the model to SMV, generates test cases for the static (HOL)
and dynamic (SMV) parts separately, and integrates the tests.

Portions of an HOL specification of a secure operating
system model were converted to SMV using a prototype
translator tool [8]. We also generated tests from the SMV
model automatically. In the future, we hope to generate test
cases from HOL specifications and integrate the test sets from
HOL and SMV.

IV. DERIVING LOGIC CONSTRAINTS

Mutation adequacy [5] is a test criterion that naturally
yields negative requirements. The specification-based mutation
criterion [2] requires tests to distinguish between the original
state machine description and its mutants, that is, ones that
differ from the original by exactly one syntactic change.
Consider the following fragment of a state machine description
in SMV.

next(state) := case
state = ready & req : busy;
...

esac;



One possible mutation is negating a boolean variable, as in

state = ready & !req : busy;

The specification-based mutation scheme in [2] expresses
the state machine in temporal logic, then systematically applies
small changes to the temporal logic expressions yielding a set
of mutant expressions. The model checker then finds coun-
terexamples that detect inconsistent mutants. The mechanical
process of deriving temporal logic formulas from the state
machine description is called reflection. A possible reflection
for the above SMV fragment is

AG (state=ready & req -> AX state=busy)

This form of reflection, called direct reflection, is straight-
forward to derive. Suppose the SMV state machine description
has the following case statement:

next(x) := case ... bi : vi; ... esac;

bi and vi are called guard and target, respectively.
If the guards are a partition and the targets are pairwise

disjoint, a tighter reflection is possible:

AG ((bi → AX (x in vi)) & (!bi → AX !(x in vi)))

For instance, if the mutation is to bi to form bi’, the mutant
formula is

AG ((bi’ → AX (x in vi)) & (!bi’ → AX !(x in vi)))

Moreover, as shown in [2], when the resulting counterex-
ample includes an additional step, the clause

AG (bi ↔ bi’)

is a satisfactory implementation for mutations to bi.
There are transformations to recast the guards to be a

partition and ways to cope with targets that are not pairwise
disjoint.

V. FAULT VISIBILITY

To detect an implementation error, a test case must cause
an internal fault to propagate to a visible output. Consider the
following fragment of a state machine description

next(t) := case ... f(i) : v; ... esac;
next(o) := case ... g(t) : w; ... esac;

In the example, i is an input variable, t is an intermediate
variable, o is an output variable. Suppose that mutation
replaced the formula f(i) with f’(i). In the case of direct
reflection, the corresponding mutant formula is

AG (f’(i) -> t = v)

Often, the model checker will find a counterexample that
will show inconsistency in the intermediate variable t but not
in the output variable o. Such a test is of little value.

We proposed two methods [6] to guarantee that tests cause
detectable output failures. The first method, in-line expansion,
uses only the reflections of the transition relation involving
output variables. In these temporal logic formulas, any internal
variable is replaced in-line with a copy of its transition relation.
This substitution is repeated until the formulas are comprised

exclusively of input and output variables, hence the model
checker finds counterexamples that affect the outputs. For the
above example, the mutant formula is

AG (f’(i) -> AX (g(v) -> AX o = w))

Since only input and output appear, the model checker finds
counterexamples that affect the output. The method may lead
to an exponential increase in the number or size of logical
formulas.

The second method, state machine duplication, duplicates
the state machine and combines the two machines ensuring
that the duplicate always takes the same transitions as the
original. The next step is to mutate the duplicate, then assert
that the visible outputs of the original and the mutant are
identical over the combined state machine. If the mutant
has an observable fault, the model checker will produce a
counterexample leading to the state where the original and
the mutant differ in an output value.

Of course, duplication of the state machine increases the
size of the state space. Dependency analysis by slicing is one
way to improve scalability. Our experiments suggest that both
in-line expansion and state machine duplication methods are
very effective for generating black-box tests.

VI. CONCLUSIONS

We believe that there are benefits of applying model check-
ing to software testing. While some issues raised in this
paper are specific to test generation, others have much in
common with the more mainstream uses of model checkers.
The opportunities for future work include devising new ab-
straction techniques geared toward test generation, integration
with higher-level languages, and developing a counterexample
generator that guarantees propagation of faults to the visible
outputs.
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