
Combinatorial
Software Testing

D evelopers of la rge
data-intensive soft-
ware often notice an
interesting—though

not surprising—phenomenon: When
usage of an application jumps dra-
matically, components that have
operated for months without trouble
suddenly develop previously unde-
tected errors. For example, newly
added customers may have account
records with an oddball combination
of values that have not been seen
before. Some of these rare combina-
tions trigger faults that have escaped
previous testing and extensive use.
Alternatively, the application may
have been installed on a different
OS-hardware-DBMS-networking
platform.

Combinatorial testing can help
detect problems like this early in
the testing life cycle. The key insight
underlying t-way combinatorial
testing is that not every parameter

contributes to every fault and many
faults are caused by interactions
between a relatively small number
of parameters.

PAIRWISE TESTING
 Suppose we want to demonstrate

that a new software application
works correctly on PCs that use the
Windows or Linux operating systems,
Intel or AMD processors, and the IPv4
or IPv6 protocols. This is a total of
2 × 2 × 2 = 8 possibilities but, as
Table 1 shows, only four tests are
required to test every component
interacting with every other compo-
nent at least once. In this most basic
combinatorial method, known as
pairwise testing, at least one of the
four tests covers all possible pairs
(t = 2) of values among the three
parameters.

Note that while the set of four test
cases tests for all pairs of possible
values—for example, OS = Linux and
protocol = IPv4—several combina-
tions of three specific values are not
tested—for example, OS = Windows,
CPU = Intel, and protocol = IPv6.

Even though pairwise testing is not
exhaustive, it is useful because it can
check for simple, potentially problem-
atic interactions with relatively few
tests. The reduction in test set size
from eight to four shown in Table 1

is not that impressive, but consider
a larger example: a manufacturing
automation system that has 20 con-
trols, each with 10 possible settings—a
total of 1020 combinations, which is
far more than a software tester would
be able to test in a lifetime. Surpris-
ingly, we can check all pairs of these
values with only 180 tests if they are
carefully constructed.

Figure 1 shows the results of a
10-project empirical study conducted
recently by Justin Hunter that com-
pared the effectiveness of pairwise
testing with manual test case selec-
tion methods.

The projects were conducted at
six companies and tested commer-
cial applications in development;
in each project, two small teams of
testers were asked to test the same
application at the same time using dif-
ferent methods. One group of testers
selected tests manually; they relied
on “business as usual” methods such
as developing tests based on func-
tional and technical requirements
and potential use cases mapped out
on whiteboards. The other group
used a combinatorial testing tool to
identify pairwise tests.

Test execution productivity was
significantly higher in all of the
projects for the testers using combi-
natorial methods, with test execution

 Rick Kuhn and Raghu Kacker, National Institute
 of Standards and Technology

 Yu Lei, University of Texas at Arlington
 Justin Hunter, Hexawise

Combinatorial testing can detect hard-to-find software faults
more efficiently than manual test case selection methods.

computer 94

SOF T WARE TECHNOLOGIES

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

table 1. pairwise test configurations.

Test
case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

95AuGuSt 2009

by three-, four-, five,- and six-way
interactions. Figure 2 summarizes
these results. Thus far, a fault trig-
gered by a seven-way interaction has
not appeared.

With the Web server application,
for example, roughly 40 percent of
the failures were caused by a single
value, such as a file name exceeding
a certain length; another 30 percent
were triggered by the interaction of
two parameters; and a cumulative
total of almost 90 percent were trig-
gered by three or fewer parameters.
While not conclusive, these results
suggest that combinatorial methods
can achieve a high level of thorough-
ness in software testing.

because it only guarantees that all
pairs of parameter values will be
tested. A particular four-way com-
bination of values is statistically
unlikely to occur in a test set that only
ensures two-way combination cover-
age; to ensure thorough testing of
complex applications, it is necessary
to generate test suites for four-way or
higher-degree interactions.

Investigations of other applica-
tions found similar distributions of
fault-triggering conditions. Many
faults were caused by a single
parameter, a sma l ler propor-
tion resulted from an interaction
between two parameter values, and
progressively fewer were triggered

productivity more than doubling on
average and more than tripling in
three projects. The groups using pair-
wise testing also achieved the same
or higher quality in all 10 projects;
all of the defects identified by the
teams using manual test case selec-
tion methods were identified by the
teams using combinatorial methods.
In five projects, the combinatorial
teams found additional defects that
had not been identified by the teams
using manual methods.

These proof-of-concept projects
successfully demonstrated to the
teams involved that manual meth-
ods of test case selection were not
nearly as effective as pairwise com-
binatorial methods for finding the
largest number of defects in the least
amount of time.

TESTING HIGHER-DEGREE
INTERACTIONS

Other empirical investigations
have concluded that from 50 to 97
percent of software faults could be
identified by pairwise combinato-
rial testing. However, what about the
remaining faults? How many failures
could be triggered only by an unusual
interaction involving more than two
parameters?

In a 1999 study of faults arising
from rare conditions, the National
Institute of Standards and Technology
reviewed 15 years of medical device
recall data to determine what types of
testing could detect the reported faults
(D.R. Wallace and D.R. Kuhn, “Failure
Modes in Medical Device Software:
An Analysis of 15 Years of Recall
Data,” Int’l J. Reliability, Quality, and
Safety Eng., Dec. 2001, pp. 351-371).
The study found one case in which an
error involved a four-way interaction
among parameter values: demand
dose = administered, days elapsed
= 31, pump time = unchanged, and
battery status = charged.

Pairwise combinatorial testing
is unlikely to detect faults like this

Manual Pairwise

Testing method(a)

Defects
found

per hour

2.4X
higher

Manual Pairwise

Testing method(b)

Total
defects

found

13%
higher

Figure 1. Summary of results from 10 projects. Pairwise combinatorial test case
selection versus manual test case selection: (a) testing efficiency and (b) testing
quality.

 25

0

 50

 75

100

 1 2 3 4 5 6

Cu
m

ula
tiv

e p
er

ce
nt

Interactions

Medical devices
Browser
Web server
NASA distributed database

Figure 2. Cumulative error detection rate for fault-triggering conditions. Many faults
were caused by a single parameter value, a smaller proportion resulted from an
interaction between two parameter values, and progressively fewer were triggered
by three-, four-, five, and six -way interactions.

computer 96

SOF T WARE TECHNOLOGIES

The key ingredient for this kind
of testing is a covering array, a math-
ematical object that covers all t-way
combinations of parameter values at
least once. For the pairwise testing
example in Table 1, t = 2, and it is
relatively easy to generate tests that
cover all pairs of parameter values.
Generating covering arrays for com-
plex interactions is much harder, but
new algorithms make it possible to
generate covering arrays orders of mag-
nitude faster than previous algorithms,
making up to six-way covering arrays
tractable for many applications.

Figure 3 shows a covering array for
all three-way interactions of 10 binary
parameters in only 13 tests. Note that
any three columns, selected in any
order, contain all eight possible values
of three parameters: 000,001,010,011,
100,101,110,111.

Three-way interaction testing
detected roughly 90 percent of bugs
in all four of the empirical studies in
Figure 2, but exhaustive testing of all
possible combinations in Figure 3
would require 210 = 1,024 tests.

What are the pragmatic implica-
tions of being able to achieve 100
percent three-way coverage in 13 test
cases on real-world software testing
projects? Assuming that there are 10
defects in this hypothetical applica-
tion and that 9 are identified through
the 13 tests indicated, testing these
13 cases would find 71 times more
defects per test case [(9/13)/(10/1,024)]
than testing exhaustively and uncov-
ering all 10.

While the most basic form
of combinatorial test-
ing—pairwise—is well

established, and adoption by soft-
ware testing practitioners continues
to increase, industry usage of these
methods remains patchy at best.
However, the additional training
required is well worth the effort.

Teams seeking to maximize test-
ing thoroughness given tight time
or resource constraints, and which
currently rely on manual test case
selection methods, should consider
pairwise testing. When more time is

available or more thorough testing
is required, t-way testing for t > 2 is
better. Practitioners who require very
high quality software will find that
covering arrays for higher-strength
combinations can detect many hard-
to-find faults, and variability among
detection rates appears to decrease
as t increases.

Sophisticated new combinatorial
testing algorithms packaged in user-
friendly tools are now available to
enable thorough testing with a man-
ageable number of test cases and at
lower cost, and make it practical for
testers to develop empirical results
on applications of this promising test
method.

Rick Kuhn is a computer scientist in
the Computer Security Division of the
US National Institute of Standards
and Technology (NIST). Contact him
at kuhn@nist.gov.

Raghu Kacker is a mathematical
statistician in the Mathematical and
Computational Sciences Division of
NIST. Contact him at raghu.kacker@
nist.gov.

Yu Lei is an associate professor in the
Department of Computer Science and
Engineering at the University of Texas
at Arlington. Contact him at ylei@cse.
uta.edu.

Justin Hunter previously led combi-
natorial testing efforts at Accenture,
a global management consulting and
technology services firm, and is now
the founder and CEO of Hexawise, a
combinatorial testing consultancy
and tool vendor. Contact him at
justin.x.hunter@hexawise.com.

Identification of certain commercial
products in this article does not imply
recommendation by NIST or other
agencies of the US government, nor
does it imply that the products identi-
fied are necessarily the best available
for the purpose.

Figure 3. Three-way covering array for 10 parameters with two values each. Any three
columns, selected in any order, contain all eight possible values of three parameters:
000,001,010,011,100,101,110,111.

editor: mike Hinchey, Lero—the Irish
Software engineering research centre; mike.
hinchey@lero.ie

build your career
 IN COMPUTING

www.computer.org/buildyourcareer

