
Combinatorial and Random Testing Effectiveness for a Grid Computer Simulator
D. Richard Kuhn1, Raghu Kacker1, Yu Lei2

1National Institute of Standards and Technology, 2University of Texas, Arlington,
kuhn@nist.gov, raghu.kacker@nist.gov, ylei@uta.edu

Abstract: This paper compares the effectiveness of random and t-way combinatorial testing,
where t = 2, 3, 4, for a grid computer network simulator. Previous investigations of random vs.
combinatorial testing have reached conflicting results, with some showing more effective fault
detection for combinatorial testing and others finding no significant difference between the two
methods. In this paper, these two methods are compared for deadlock detection on a simulator
with tests covering 2-way to 4-way combinations of configuration values, paired with an equal
number of randomly generated tests. Random testing provided better results than pairwise (2-
way) testing and there was no statistically significant difference between the methods for 3-way
testing, but 4-way combinatorial tests detected more deadlocks than the same number of random
tests. The paper reviews explanations for these results and implications for testing.

1 Background

Pairwise testing is a well-established practice in software assurance, and t-way/
combinatorial testing – using 3-way, 4-way, or higher strength combinations – is attracting
increasing attention. In pairwise, or all-pairs, testing, every possible pair of input parameters is
assigned every pairwise combination of input values at least once. Generalizing this approach to
t-way combinations for t > 2 is referred to as combinatorial or t-way testing. As with any test
methodology, it is important to measure the effectiveness of combinatorial testing, and to
compare it with other methods so that test engineers can make informed decisions.

Some studies have compared the effectiveness of combinatorial and random approaches to
testing, but have reached conflicting results. Schroeder et al. (2004) and Bach, Schroeder (2004)
found no significant difference between these two testing approaches, and Bryce et al. (2006)
found that combinatorial testing provided only a small improvement over random testing in
structural coverage, and no improvement in coverage for black box tests derived from
requirements. However Kobayashi et al. (2001), Bell, Vouk (2005), Pretschner et al. (2008) and
Ellims, Ince, Petre (2008) found t-way testing to be more effective for fault detection. In this
paper we compare the effectiveness of these two approaches in finding configurations that lead
to deadlock in a grid computer network simulation.

Evidence for the effectiveness of combinatorial testing includes extensive investigations of
pairwise testing (e.g., Burr and Young, 1998; Burroughs et al., 1994; Dohen et al., 1996; Dunietz
et al., 1997; Williams and Probert, 1996), some studies using interaction strengths above
pairwise (Schroeder et al., 2004; Kuhn and Okun, 2006), and empirical data on the number of
faults at different interaction strengths (Wallace and Kuhn, 2001; Kuhn et al., 2004; Bell, 2006).
These previous studies covered a variety of application domains. The effectiveness of pairwise
and other combinatorial test methods rests on the observation that a significant number of events
in software are triggered only by the interaction of two or more variable values. By including
tests for all 2-way, 3-way, etc., interactions, the test set should be able to detect faults that occur
only with complex interactions.

The key enabler in combinatorial testing is a covering array that covers all t-way
combinations of parameter values, for the desired strength t. Covering arrays are combinatorial

objects that represent interaction test suites. A covering array, (; , ,)CA N t k v , is an N x k array,
where k is the number of variables, and v is the number of possible values for each variable such
that in every N x t subarray, each t-tuple occurs at least once, then t is the strength of the
coverage of interactions, Each row of the covering array represents a test, with one column for
each parameter that is varied in testing. Collectively, the rows of the array include every t-way
combination of parameter values at least once. For example, Figure 1 shows a covering array
that includes all 3-way combinations of binary values for 10 parameters. Each row corresponds
to one test, and each column gives the values for a particular parameter. It can be seen that any
three columns in any order contain all eight possible combinations (000, 001, 010, 011, 100, 101,
110, 111) of the parameter values. Collectively, this set of tests will exercise all 3-way
combinations of input values in only 13 tests, as compared with 1,024 for exhaustive coverage.

The primary goal in simulation is to study the behavior of the system with different input
configurations. For example, a production line simulation may study the effects of changing line
speed, interconnection between workstations, and buffer size on the number of items that can be
produced per hour. A network simulation may investigate the effect of configurations on packet
rate, delay, or potential for deadlock in the network.

 Parameters

Tests 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 0 1 0 0 0 0 1
4 1 0 1 1 0 1 0 1 0 0
5 1 0 0 0 1 1 1 0 0 0
6 0 1 1 0 0 1 0 0 1 0
7 0 0 1 0 1 0 1 0 1 0
8 1 1 0 1 0 0 1 0 1 0
9 0 0 0 1 1 1 0 0 1 1

10 0 0 1 1 0 0 1 0 0 1
11 0 1 0 1 1 0 0 1 0 0
12 1 0 0 0 0 0 0 1 1 1
13 0 1 0 0 0 1 1 1 0 1

Figure 1. 3-way covering array for 10 parameters with 2 values each.

In this study we compare random and combinatorial testing of a network simulator, to
determine if these two test approaches produce significantly different deadlock detection in the
simulation. Using deadlocks as events of interest makes evaluating program responses
straightforward and unambiguous. Numerical results such as packet rates or delays are not
considered, but could be the subject of a future investigation. The two test modes – random or
combinatorial – are compared using a standard two-tailed t-test for statistical significance.

2 Experimental Evaluation

This work investigates the hypothesis that combinatorial test suites will detect significantly

more deadlocks than random test suites of the same size, for interaction strengths of t = 2, 3, 4.

Independent and Dependent Variables: The independent variable in this study is the type of
testing used, either t-way combinatorial or random. The dependent variable is the number of
deadlocks detected.

Subject Application and Test Suites: Software under test for the experiment was Simured
(Pardo, 2005), a multicomputer network simulator developed at the University of Valencia. The
software is available in C++ and Java versions, for both Linux and Windows. The core
command line code (not including user interface or graphical display) consists of 2,131 lines of
C++. Simured provides a simulation of the switching and routing layers for a multicomputer,
allowing the user to study grid computer configurations to investigate the effect of topologies
and configurable parameters on routing, timing, and other variables of interest. We used the
C++ command line version of this software, compiled with gcc and run on 64-bit processors
under Red Hat Enterprise Linux V4. No seeded faults or other modifications were made to the
Simured software.

Simured provides a set of 14 parameters that can be set to a variety of values in a
configuration file that is read by the simulator. Parameters and values used are shown in Table
1. Larger values are possible for a number of parameters, but would require extensive run time
on a large system.

Parameter Values
1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false

10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

Table 1. Simured configuration parameters and test values used.

Evaluation Metrics: Test suites were evaluated according to the number of deadlocks detected.
We also compare the percentage of t-way combinations covered for the random test suites of
equal size, and determine the number of random tests needed to provide 100% coverage of the
respective t-way combinations. (By definition, a covering array provides 100% coverage of t-
way combinations.)

Threats to Validity: Clearly there is a limitation on the extent to which these results can be
generalized to other applications. While previous comparisons of combinatorial and random
testing focused on fault detection, this study evaluates these methods with respect to deadlock
detection in a simulation. Some implications of this difference are discussed in the analysis of
results, in Section 4.2. A second difference is the nature of the software under test. Simured is a
small but complex program that is not assumed to have characteristics similar to other
application domains. Network simulation requires extensive calculations for statistics such as
packet transmission rates and delays, and is not directly comparable to other types of software.

While the issues raised above should be considered in evaluating results, we believe that the

experiment has identified a number of factors that can be usefully considered when deciding
whether to use random or combinatorial testing for a particular problem.

3 Testing Procedure

Covering arrays that include all t-way combinations for t = 2, 3, and 4 were generated using
the IPOG algorithm (Lei et al., 2007), which produces compact test suites. Test suites for the
configuration shown in Table 1 included 28, 161, and 752 tests for t = 2, 3, and 4 respectively.
Random test suites matching the sizes of the 2, 3, and 4-way combinatorial test suites were
produced using the standard C library rand() function, producing one test at a time with a call to
rand() for each variable value. In generating random test sets, the rand() function was initialized
with a call to srand() to seed the pseudo-random number generator from the system clock. From
these tests, configuration files were generated for Simured and the command line version of
Simured invoked with each configuration file.

Each test set was executed for 500, 1000, 2000, 4000, and 8000-packet simulation runs. For

combinatorial testing, one test suite run was conducted for each of the five packet counts and
three interaction levels (28, 161, and 752 tests, for a total of 4,705 simulations). Random
generation produces a different test set with each test generation run. For random testing, eight
runs at each combination of packet count and interaction level were conducted (37,640
simulations), and the average deadlock detection calculated.

4 Results and Analysis

4.1 Test Results
Results for the two test modes were compared with a standard t-test for paired samples.

Table 2 shows the number of deadlocks detected using tests produced from IPOG versus the
average number of deadlocks detected with an equal number of randomly generated tests.
Values for random test detection represent the average of eight runs with randomly generated
tests at each combination of interaction level and packet count. Table 3 gives the two-tailed
probability of a difference between the number of deadlocks detected by combinatorial and that
by random testing.

For pairwise testing (t = 2), combinatorial testing detected slightly fewer deadlocks than an
equal number of random tests, and the difference is statistically significant. At interaction
strength t = 3 the difference between the two test methods is not statistically significant. At t = 4,
however, the covering arrays produced by IPOG detected significantly more deadlocks than an
equal number of random tests (see Table 3). In the next section we consider some possible
reasons for the variation in effectiveness of these two test methods.

Deadlocks Detected – IPOG

t Tests 500 pkts 1000 pkts 2000 pkts 4000 pkts 8000 pkts
2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected – random
t Tests 500 pkts 1000 pkts 2000 pkts 4000 pkts 8000 pkts
2 28 0.63 0.25 0.75 0. 50 0. 75
3 161 3.00 3.00 3.00 3.00 3.00
4 752 10.13 11.75 10.38 13.00 13.25

Table 2. Deadlock detection, IPOG vs. random

Interaction
strength

2-tailed
probability

2 .0035
3 .1778
4 .0235

Table 3. t-test results for difference between random and IPOG generated tests

4.2 Analysis of Results
In considering explanations for the results, we first note that there can be a number of

differences between the simulations conducted in this work and software testing in other
application domains. In many applications, such as databases or web applications, different
parameter values may result in different execution paths within the application, but the amount
and complexity of processing is often similar for many different inputs. Network simulation, by
contrast, may exhibit wide variations in processing depending on whether the input configuration
is a small network of simple topology, or a large, complex one. This difference was observed in
widely varying run times (not reported in this paper), and may also contribute to the distribution
of deadlocks detected at the three interaction levels. Previous work (see Section 1) has found
that increasing values of t detect progressively fewer faults, even in cases where combinatorial
testing performed no better than random tests. Pairwise testing (t=2) often detected 70% to more
than 90% of faults, while 3-way tests found roughly 10% to 20% of more faults, and 4-way to 6-
way tests typically detected less than 5% more faults. This distribution is essentially reversed for
the Simured testing (see Table 2), with 0%, 18%, and 82% of deadlocks detected at t=2, 3, and 4
respectively. This result is not unexpected. Faults can be triggered by combinations of any of
the variables in a program. Even though a large set of variables may be directly or indirectly
involved in triggering deadlocks, the set can be expected to be much smaller than the total
number of variables in a program. With deadlocks occurring in roughly 2% of simulation runs,
larger test sets would be expected to locate more deadlocks. Another significant difference
between the simulation results and conventional testing is that a program can in most cases be
expected to have a finite number of bugs. In conventional program testing, it is not surprising
that increasing the number of tests applied against a fixed program with a fixed number of bugs
can result in diminishing returns. Each new test is targeting an ever-decreasing number of
undiscovered faults. With Simured however, configuration parameters make it possible to
generate a nearly unlimited number of network configurations, so the ways in which deadlock
can occur are similarly almost unlimited. Each new test has a high probability of generating a

previously untested configuration, so it is possible for the number of deadlocks to increase with
larger test sets.

In addition to the “reverse” relationship between deadlock detection and interaction strength,

another interesting finding was that pairwise tests detected slightly fewer deadlocks than the
same number of random tests. Careful analysis shows that there is in fact a combinatorial
explanation for this result, which we discuss in the remainder of this section.

Because a significant percentage of events can only be triggered by the interaction of two or
more variables, one consideration in comparing random and combinatorial testing is the degree
to which random testing covers particular t-way combinations. Any test set will also cover a
certain proportion of possible t+1, t+2, etc. combinations as well. Table 4 gives the average
percentage of t-way combinations covered by 100 randomly generated test sets of the same size
as a t-way covering array generated by IPOG, for various combinations of k = number of
variables and v = number of values per variable. Figures 2 through 6 summarize the coverage
for arrays with variables of 2 to 10 values. As seen in the figures, the coverage provided by a
covering array versus a random test suite of the same size varies considerably with different
configurations. An important practical consideration in comparing combinatorial with random
testing is the effectiveness of the covering array generator. Algorithms have a wide range in the
size of covering arrays they produce, but all are designed to produce the smallest array possible
that covers all t-way combinations. It is not uncommon for the better algorithms to produce
arrays that are more than 50% smaller than other algorithms. We have found in comparisons
with other tools that there is no uniformly “best” algorithm (Lei et al., 2007b). Algorithms vary
greatly in the size of combinatorial test suites they produce, so the comparable random test suites
will also vary in the number of tests. Random testing may produce results similar to
combinatorial tests produced by an algorithm that generates a larger, sub-optimal covering array,
because the correspondingly larger random test set has a greater probability of covering the t-
way combinations.

 A covering array algorithm that produces a compact array, i.e., with few tests, for t-way

combinations may also include fewer (t+1)-way combinations because there are fewer tests.
Tables 7 and 8 illustrate this phenomenon for the Simured experiment. Table 7 shows the
percentage of t+1 up to t+3 combination coverage provided by the IPOG tests and in Table 8 the
average coverage of an equivalent number of random tests. Although IPOG pairwise tests
provide better 3-way coverage than the random tests, at higher values of t, the random tests are
roughly the same or better in combination coverage than IPOG. Recall from Section 4.1 that
pairwise combinatorial tests detected slightly fewer deadlocks than the equivalent number of
random tests. One possible explanation may be that the superior 4-way and 5-way coverage
(Table 7) of the random tests allowed detection of more deadlocks. Almost paradoxically, an
algorithm that produces a larger, sub-optimal covering array may provide better fault detection
because the larger array is statistically more likely to include t+1, t+2, and higher degree
interaction tests as a byproduct of the test generation. This result demonstrates that the smallest
possible array is not necessarily best for testing purposes if higher strength interactions are not
also tested. It also suggests that covering array generation algorithms that fill “don’t care” values
(those for which all combinations have already been covered) with random values may provide
better test results by covering a larger number of t+1, t+2, and higher degree combinations.

Now consider the size of a random test set required to provide 100% combination coverage.
For most covering array algorithms, the difficulty of finding tests with high coverage increases
as tests are generated. Thus even if a randomly generated test set provides better than 99% of the
coverage of an equal sized covering array, it should not be concluded that only a few more tests
are needed for the random set to provide 100% coverage. Table 5 gives the sizes of randomly
generated test sets required for 100% combinatorial coverage at various configurations, and the
ratio of these sizes to covering arrays computed with IPOG. Although there is considerable
variation among configurations, note that the ratio of random to combinatorial test set size for
100% coverage exceeds 3 in most cases, with average ratios of 3.9, 3.8, and 3.2 at t = 2, 3, and 4
respectively. Thus combinatorial testing offers a significant advantage over random testing if
the goal is 100% combination coverage.

Vars
Values/
Variable

IPOG
2-way
tests

Random
2-way

coverage

IPOG
3-way
tests

Random
3-way

coverage

IPOG
4-way
tests

Random
4-way

coverage
10 2 10 94.1 20 94.3 42 93.2
10 4 30 84.6 151 90.6 657 92.3
10 6 66 85.6 532 91.6 3843 94.8
10 8 117 83.8 1214 90.6 12010 94.7
10 10 172 82.1 2367 90.6 29231 94.6
15 2 10 93.9 24 96.2 58 97.5
15 4 33 88.1 179 94.1 940 97.5
15 6 77 88.6 663 95.4 5243 98.2
15 8 125 86.1 1551 95.2 16554 98.2
15 10 199 86.4 3000 95.0 40233 98.2
20 2 12 96.5 27 97.3 66 98.6
20 4 37 90.9 209 96.2 1126 98.8
20 6 86 91.3 757 97.0 6291 99.2
20 8 142 91.3 1785 96.9 19882 99.2
20 10 215 88.4 3463 96.9 48374 99.2
25 2 12 95.9 30 98.5 74 99.2
25 4 39 92.1 233 97.5 1320 99.4
25 6 89 91.8 839 97.9 7126 99.6
25 8 148 90.3 1971 97.9 22529 99.6
25 10 229 90.0 3823 97.8 54856 99.6

Table 4. Average percent of t-way combinations covered by equal number of random tests

2-way Tests 3-way Tests 4-way Tests

Vars

Values

IPOG
Tests

Random
Tests Ratio

IPOG
Tests

Random
Tests Ratio

IPOG
Tests

Random
Tests Ratio

10 2 10 18 1.80 20 61 3.05 42 150 3.57
10 4 30 145 4.83 151 914 6.05 657 2256 3.43
10 6 66 383 5.80 532 1984 3.73 3843 13356 3.48
10 8 117 499 4.26 1214 5419 4.46 12010 52744 4.39
10 10 172 808 4.70 2367 11690 4.94 29231 137590 4.71
15 2 10 20 2.00 24 52 2.17 58 130 2.24
15 4 33 121 3.67 179 672 3.75 940 2568 2.73
15 6 77 294 3.82 663 2515 3.79 5243 17070 3.26
15 8 125 551 4.41 1551 6770 4.36 16554 60568 3.66
15 10 199 940 4.72 3000 15234 5.08 40233 159870 3.97
20 2 12 23 1.92 27 70 2.59 66 140 2.12
20 4 37 140 3.78 209 623 2.98 1126 3768 3.35
20 6 86 288 3.35 757 2563 3.39 6291 18798 2.99
20 8 142 630 4.44 1785 8450 4.73 19882 59592 3.00
20 10 215 1028 4.78 3463 14001 4.04 48374 157390 3.25
25 2 12 34 2.83 30 70 2.33 74 174 2.35
25 4 39 120 3.08 233 790 3.39 1320 3520 2.67
25 6 89 327 3.67 839 2890 3.44 7126 19632 2.75
25 8 148 845 5.71 1971 7402 3.76 22529 61184 2.72
25 10 229 1031 4.50 3823 16512 4.32 54856 191910 3.50

Ratio Average: 3.90 3.82 3.21

Table 5. Size of random test set required for 100% t-way combination coverage.

Values
per

 variable

Ratio,
2-way

Ratio,
3-way

Ratio,
4-way

2 2.14 2.54 2.57
4 3.84 4.04 3.04
6 4.16 3.59 3.12
8 4.70 4.33 3.44

10 4.68 4.59 3.86

Table 6. Average ratio of random/IPOG for covering arrays
by values per variable, variables = 10, 15, 20, 25

The comparisons between random and combinatorial testing detailed in Tables 4 – 6 suggest

a number of tentative conclusions:

• For binary variables (v=2), random tests compare reasonably well with covering arrays
(94% to 99% coverage) for all three values of t (Table 4, Figure 2). Thus random testing for
a system under test (SUT) with all or mostly binary variables may compare favorably with
combinatorial testing. This factor may explain results in previous studies in which
combinatorial testing performed no better than random testing. All variables of the
application used in (Bryce et al., 2006) were binary, and comparably sized random test suites
covered a high number of combinations. For one of the two applications studied in
(Schroeder, 2004), 16 of 18 variables were binary and 18 of 19 variables for the other were
either binary or 3-valued. The percentages of combinations covered by random test suites for

binary variables in Table 4 are similar to the coverage reported in (Schroeder, 2004), but are
somewhat higher than the coverage in (Bryce et al., 2006), probably as a result of different
covering array algorithms. Kobayashi et al. (2001) compared combinatorial and random
testing for logic testing (thus 2-valued variables) and found combinatorial testing superior on
average for 2-way, 3-way, and 4-way tests. However, for 2-way combinations nearly half of
the random test suites performed as well or better than the corresponding 2-way
combinatorial tests.

• Combination coverage provided by random generation of the equivalent number of
pairwise tests at (t = 2) decreases as the number of values per variable increases, and the
coverage provided by pairwise testing is significantly less than 100% (Table 4, Figures 2 - 6).
The effectiveness of random testing relative to pairwise testing should be expected to decline
as the average number of values per variable increases.

• For 4-way interactions, coverage provided by random test generation increases with the
number of variables (Table 4). Thus combinatorial testing should be significantly more
effective at fault detection for a module with approximately 10 variables than random testing,
while the difference between the two test methods should be less for modules with 20 or
more variables.

• The combination coverage advantage of combinatorial testing relative to random testing
decreases at higher interaction levels (Table 4, Figures 2 – 6). For example, with 15
variables of 6 values each, random tests provide roughly 88% coverage of 2-way
combinations, increasing to 98% coverage for 4-way combinations. Note however that this
does not mean the random test set will be almost as effective as the combinatorial set. A
random test set must still be approximately 4 times the size of the corresponding
combinatorial set to provide 100% combination coverage (Table 5).

• For 100% combination coverage, the advantage of combinatorial testing varies directly
with the number of values per variable and inversely with the interaction strength t (Table 6).
Figure 7 illustrates how these factors (interaction strength t and values per variable v)
combine: the ratio of random/combinatorial coverage is highest for 10 variables with t = 2,
but declines for other pairings of t and v. Random testing cannot assure any pre-set level of
desired coverage while covering arrays by definition achieve 100% combination coverage.
Random testing is significantly less efficient than combinatorial testing, requiring 2 to nearly
5 times as many tests as a covering array to obtain complete coverage (Tables 6). Thus if
100% combination coverage is desired, combinatorial testing should be significantly less
expensive than random test generation.

Note also that the number of faults in the SUT can affect the degree to which random

testing approaches combinatorial testing effectiveness. For example, suppose the random
test set covers 99% of combinations for 4-way interactions, and the SUT contains only one 4-
way interaction fault. Then there is a 99% probability that the random tests will contain the
4-way interaction that triggers this fault. However, if the SUT contains m independent faults,
then the probability that combinations for all m faults are included in the random test set is
.99m. Hence with multiple faults, random testing may be significantly less effective, as its

probability of missing at least one the m combinations that detect these faults will be 1 – cm,
for c = percent coverage and m = number of independent faults.

t-way

2-way
coverage

3-way
coverage

4-way
coverage

5-way
coverage

Average
coverage

2 1.00 .758 .429 .217 0.601
3 1.00 1.00 .924 .709 0.908
4 1.00 1.00 1.00 .974 0.994

Table 7. Combination coverage of IPOG t-way tests

Same size
 as t-way

2-way
coverage

3-way
coverage

4-way
coverage

5-way
coverage

Average
coverage

2 .940 .735 .499 .306 0.620
3 1.00 .942 .917 .767 0.906
4 1.00 1.00 .965 .974 0.985

Table 8. Combination coverage of random tests

Figure 2. Random coverage of t-way
combinations for v=2.

Figure 3. Random coverage of t-way
combinations for v=4.

Figure 4. Random coverage of t-way
combinations for v=6.

Figure 5. Random coverage of t-way
combinations for v=8.

Figure 6. Random coverage of t-way
combinations for v=10

2w ay
3w ay

4w ay
nval=2

nval=4

nval=6
nval=8

nval=10

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Ratio

Interactions

V alues per
variable

4.50-5.00

4.00-4.50

3.50-4.00

3.00-3.50

2.50-3.00

2.00-2.50

1.50-2.00

1.00-1.50

0.50-1.00

0.00-0.50

Figure 7. Average ratio of random/IPOG for covering arrays by values per variable

5 Conclusions

For the simulation program tested in this study, pairwise tests detected slightly fewer
deadlocks than an equal number of random tests, but 4-way combinatorial testing produced
better results than an equal number of random tests. Analyzing the random test sets suggests a
number of reasons for these results. Although pairwise tests covered all 2-way combinations
and an equal number of random tests covered fewer, the random tests covered more 4-way and
5-way combinations, and thus had a greater probability of triggering deadlocks that depended
on 4-way or 5-way interactions. However, the 4-way combinatorial tests covered significantly
more 4-way combinations (100% vs. 96%) and also provided equal 5-way coverage compared
with the corresponding random test set, and found more deadlocks as well.

This result demonstrated that the smallest possible array is not necessarily best for testing

purposes if higher strength interactions are not also tested. When using t-way combinatorial
testing, it can be helpful to evaluate the test set for coverage of t+1 and higher interaction
strengths. Methods of combining combinatorial and random tests may also be effective, as
proposed in Bell (2006) and Bell, Vouk (2006). These results also suggest that covering array
algorithms may provide better test results by filling “don’t care” values with random (rather
than constant, sequential, or other non-random) values.

Disclaimer: Reference to commercial products or trademarks does not imply endorsement by
NIST or any other agency of the US Government, nor that such products are necessarily best
suited to any purpose.

References

J. Bach, P. Shroeder, Pairwise Testing - A Best Practice That Isn't. Proceedings of 22nd Pacific

Northwest Software Quality Conference, 2004, pp. 180-196
Kera Z. Bell and Mladen A. Vouk. On effectiveness of pairwise methodology for testing

network-centric software. Proceedings of the ITI Third IEEE International Conference on
Information & Communications Technology, pages 221–235, Cairo, Egypt, December 2005.

K.Z. Bell, Optimizing Effectiveness and Efficiency of Software Testing: a Hybrid
Approach, PhD Dissertation, North Carolina State University, 2006.

R. Bryce, A. Rajan, M.P.E. Heimdahl, Interaction Testing in Model Based Development: Effect
on Model Coverage, IEEE, 13th Asia Pacific Software Engineering Conference (APSEC'06)
 pp. 259-268.

K. Burr and W. Young, Combinatorial Test Techniques: Table-Based Automation, Test
Generation, and Test Coverage, International Conference on Software Testing, Analysis, and
Review (STAR), San Diego, CA, October, 1998

K. Burroughs, A. Jain, and R. L. Erickson. Improved quality of protocol testing through
techniques of experimental design. In Proceedings of the IEEE International Conference on
Communications (Supercomm/ICC'94), May 1-5, New Orleans, Louisiana, USA. IEEE, May
1994, pp. 745-752

D. M. Cohen, S. R. Dalal, J. Parelius, G. C. Patton The Combinatorial Design Approach to
Automatic Test Generation IEEE Software, Vol. 13, No. 5, pp. 83-87, September 1996

M. Ellims, D. Ince, M. Petre, The Effectiveness of T-Way Test Data Generation, SAFECOMP
2008, pp. 16-29, Springer Verlag.

I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, A. Iannino. Applying design of
experiments to software testing Proceedings of the Intl. Conf. on Software Engineering,
(ICSE ’97), 1997, pp. 205-215, New York

Kuhn, D. R., D. Wallace, and A. Gallo, “Software Fault Interactions and Implications for
Software Testing,” IEEE Transactions on Software Engineering, 30(6):418-421, 2004.

Kuhn, D. R. and V. Okun, “Pseudo-exhaustive Testing for Software,” Proceedings of 30th
NASA/IEEE Software Engineering Workshop, pp. 153-158, 2006.

D.R. Kuhn, M.J. Reilly, An Investigation of the Applicability of Design of Experiments to
Software Testing, 27th NASA/IEEE Software Engineering Workshop, NASA Goddard
Space Flight Center, 4-6 December, 2002 .

Lei, Y., R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, “IPOG/IPOG-D: Efficient Test
Generation for Multi-Way Combinatorial Testing”, Software Testing, Verification, and
Reliability. (Published Online: Nov 29 2007, DOI: 10.1002/stvr.381)

Y.Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, "IPOG - a General Strategy for t-way
Testing", IEEE Engineering of Computer Based Systems conference, 2007.

Kobayashi, N., T. Tsuchiya, T. Kikuno, “Applicability of Non-Specification Based Approaches
to Logic Testing for Software”, Proceedings of the 2001 International Conference on
Dependable Systems and Networks, IEEE, pp. 337 – 346.

F. Pardo, JSimured - Simulador de Redes de Multicomputadores Paralelo, University of
Valencia, May, 2005. http://simured.uv.es/doc/memoria.pdf

Alexander Pretschner, Tejeddine Mouelhi, Yves Le Traon. Model Based Tests for Access
Control Policies, 2008 International Conference on Software Testing, Verification, and
Validation pp. 338-347

Patrick J. Schroeder, Pankaj Bolaki, and Vijayram Gopu. Comparing the fault detection
effectiveness of n-way and random test suites. In Proceedings of the IEEE International
Symposium on Empirical Software Engineering, pages 49–59, 2004.

Wallace, D. R. and D. R. Kuhn, “Failure Modes in Medical Device Software: An Analysis of 15
Years of Recall Data,” International Journal of Reliability, Quality and Safety Engineering,
8(4):351-371, 2001.

A.W. Williams, R.L. Probert. A practical strategy for testing pair-wise coverage of network
interfaces The Seventh International Symposium on Software Reliability Engineering
(ISSRE '96) p. 246

