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Abstract:  This paper compares the effectiveness of random and t-way combinatorial testing, 
where t = 2, 3, 4, for a grid computer network simulator.  Previous investigations of random vs. 
combinatorial testing have reached conflicting results, with some showing more effective fault 
detection for combinatorial testing and others finding no significant difference between the two 
methods.  In this paper, these two methods are compared for deadlock detection on a simulator 
with tests covering 2-way to 4-way combinations of configuration values, paired with an equal 
number of randomly generated tests.  Random testing provided better results than pairwise (2-
way) testing and there was no statistically significant difference between the methods for 3-way 
testing, but 4-way combinatorial tests detected more deadlocks than the same number of random 
tests.  The paper reviews explanations for these results and implications for testing.  
 
 
1 Background  
 

Pairwise testing is a well-established practice in software assurance, and t-way/ 
combinatorial testing – using 3-way, 4-way, or higher strength combinations – is attracting 
increasing attention.  In pairwise, or all-pairs, testing, every possible pair of input parameters is 
assigned every pairwise combination of input values at least once.  Generalizing this approach to 
t-way combinations for t > 2 is referred to as combinatorial or t-way testing.  As with any test 
methodology, it is important to measure the effectiveness of combinatorial testing, and to 
compare it with other methods so that test engineers can make informed decisions.   

Some studies have compared the effectiveness of combinatorial and random approaches to 
testing, but have reached conflicting results.  Schroeder et al. (2004) and Bach, Schroeder (2004) 
found no significant difference between these two testing approaches, and Bryce et al. (2006) 
found that combinatorial testing provided only a small improvement over random testing in 
structural coverage, and no improvement in coverage for black box tests derived from 
requirements. However Kobayashi et al. (2001), Bell, Vouk (2005),  Pretschner et al. (2008) and 
Ellims, Ince, Petre (2008)  found t-way testing to be more effective for fault detection.   In this 
paper we compare the effectiveness of these two approaches in finding configurations that lead 
to deadlock in a grid computer network simulation. 

Evidence for the effectiveness of combinatorial testing includes extensive investigations of 
pairwise testing (e.g., Burr and Young, 1998; Burroughs et al., 1994; Dohen et al., 1996; Dunietz 
et al., 1997; Williams and Probert, 1996), some studies using interaction strengths above 
pairwise (Schroeder et al., 2004; Kuhn and Okun, 2006), and empirical data on the number of 
faults at different interaction strengths (Wallace and Kuhn, 2001; Kuhn et al., 2004; Bell, 2006).   
These previous studies covered a variety of application domains.  The effectiveness of pairwise 
and other combinatorial test methods rests on the observation that a significant number of events 
in software are triggered only by the interaction of two or more variable values.  By including 
tests for all 2-way, 3-way, etc., interactions, the test set should be able to detect faults that occur 
only with complex interactions.   

The key enabler in combinatorial testing is a covering array that covers all t-way 
combinations of parameter values, for the desired strength t.  Covering arrays are combinatorial 



objects that represent interaction test suites.  A covering array, ( ; , , )CA N t k v , is an N x k array, 
where k is the number of variables, and v is the number of possible values for each variable such 
that in every N x t subarray, each t-tuple occurs at least once, then t is the strength of the 
coverage of interactions,  Each row of the covering array represents a test, with one column for 
each parameter that is varied in testing.  Collectively, the rows of the array include every t-way 
combination of parameter values at least once.  For example, Figure 1 shows a covering array 
that includes all 3-way combinations of binary values for 10 parameters.  Each row corresponds 
to one test, and each column gives the values for a particular parameter. It can be seen that any 
three columns in any order contain all eight possible combinations (000, 001, 010, 011, 100, 101, 
110, 111) of the parameter values.  Collectively, this set of tests will exercise all 3-way 
combinations of input values in only 13 tests, as compared with 1,024 for exhaustive coverage.   

The primary goal in simulation is to study the behavior of the system with different input 
configurations.  For example, a production line simulation may study the effects of changing line 
speed, interconnection between workstations, and buffer size on the number of items that can be 
produced per hour.  A network simulation may investigate the effect of configurations on packet 
rate, delay, or potential for deadlock in the network.   

 
 Parameters 

Tests 1 2 3 4 5 6 7 8 9 10 
1 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 0 1 0 0 0 0 1 
4 1 0 1 1 0 1 0 1 0 0 
5 1 0 0 0 1 1 1 0 0 0 
6 0 1 1 0 0 1 0 0 1 0 
7 0 0 1 0 1 0 1 0 1 0 
8 1 1 0 1 0 0 1 0 1 0 
9 0 0 0 1 1 1 0 0 1 1 

10 0 0 1 1 0 0 1 0 0 1 
11 0 1 0 1 1 0 0 1 0 0 
12 1 0 0 0 0 0 0 1 1 1 
13 0 1 0 0 0 1 1 1 0 1 

Figure 1.  3-way covering array for 10 parameters with 2 values each. 
 

In this study we compare random and combinatorial testing of a network simulator, to 
determine if these two test approaches produce significantly different deadlock detection in the 
simulation.  Using deadlocks as events of interest makes evaluating program responses 
straightforward and unambiguous.  Numerical results such as packet rates or delays are not 
considered, but could be the subject of a future investigation.   The two test modes – random or 
combinatorial – are compared using a standard two-tailed t-test for statistical significance. 
 
2 Experimental Evaluation 

 
This work investigates the hypothesis that combinatorial test suites will detect significantly 

more deadlocks than random test suites of the same size, for interaction strengths of t = 2, 3, 4. 
 



Independent and Dependent Variables:  The independent variable in this study is the type of 
testing used, either t-way combinatorial or random.  The dependent variable is the number of 
deadlocks detected.   
 
Subject Application and Test Suites:  Software under test for the experiment was Simured 
(Pardo, 2005), a multicomputer network simulator developed at the University of Valencia.  The 
software is available in C++ and Java versions, for both Linux and Windows.  The core 
command line code (not including user interface or graphical display) consists of 2,131 lines of 
C++.  Simured provides a simulation of the switching and routing layers for a multicomputer, 
allowing the user to study grid computer configurations to investigate the effect of topologies 
and configurable parameters on routing, timing, and other variables of interest.   We used the 
C++ command line version of this software, compiled with gcc and run on 64-bit processors 
under Red Hat Enterprise Linux V4.  No seeded faults or other modifications were made to the 
Simured software. 

Simured provides a set of 14 parameters that can be set to a variety of values in a 
configuration file that is read by the simulator.  Parameters and values used are shown in Table 
1.  Larger values are possible for a number of parameters, but would require extensive run time 
on a large system.   
 

Parameter Values 
1  DIMENSIONS  1,2,4,6,8 
2  NODOSDIM  2,4,6 
3  NUMVIRT  1,2,3,8 
4  NUMVIRTINJ  1,2,3,8 
5   NUMVIRTEJE   1,2,3,8 
6   LONBUFFER   1,2,4,6 
7  NUMDIR  1,2 
8   FORWARDING   0,1 
9  PHYSICAL  true, false 

10  ROUTING  0,1,2,3 
11   DELFIFO    1,2,4,6 
12   DELCROSS    1,2,4,6 
13   DELCHANNEL    1,2,4,6 
14  DELSWITCH  1,2,4,6 

Table 1. Simured configuration parameters and test values used. 
 
Evaluation Metrics:  Test suites were evaluated according to the number of deadlocks detected.  
We also compare the percentage of t-way combinations covered for the random test suites of 
equal size, and determine the number of random tests needed to provide 100% coverage of the 
respective t-way combinations.  (By definition, a covering array provides 100% coverage of t-
way combinations.) 
 
Threats to Validity:  Clearly there is a limitation on the extent to which these results can be 
generalized to other applications.  While previous comparisons of combinatorial and random 
testing focused on fault detection, this study evaluates these methods with respect to deadlock 
detection in a simulation.  Some implications of this difference are discussed in the analysis of 
results, in Section 4.2.  A second difference is the nature of the software under test.  Simured is a 
small but complex program that is not assumed to have characteristics similar to other 
application domains.   Network simulation requires extensive calculations for statistics such as 
packet transmission rates and delays, and is not directly comparable to other types of software.   



 
While the issues raised above should be considered in evaluating results, we believe that the 

experiment has identified a number of factors that can be usefully considered when deciding 
whether to use random or combinatorial testing for a particular problem.  

 
3 Testing Procedure 
 

Covering arrays that include all t-way combinations for t = 2, 3, and 4 were generated using 
the IPOG algorithm (Lei et al., 2007), which produces compact test suites.  Test suites for the 
configuration shown in Table 1 included 28, 161, and 752 tests for t = 2, 3, and 4 respectively.  
Random test suites matching the sizes of the 2, 3, and 4-way combinatorial test suites were 
produced using the standard C library rand() function, producing one test at a time with a call to 
rand() for each variable value.  In generating random test sets, the rand() function was initialized 
with a call to srand() to seed the pseudo-random number generator from the system clock.  From 
these tests, configuration files were generated for Simured and the command line version of 
Simured invoked with each configuration file.   

 
Each test set was executed for 500, 1000, 2000, 4000, and 8000-packet simulation runs.  For 

combinatorial testing, one test suite run was conducted for each of the five packet counts and 
three interaction levels (28, 161, and 752 tests, for a total of 4,705 simulations).  Random 
generation produces a different test set with each test generation run. For random testing, eight 
runs at each combination of packet count and interaction level were conducted (37,640 
simulations), and the average deadlock detection calculated.   

 
4 Results and Analysis 

4.1 Test Results 
Results for the two test modes were compared with a standard t-test for paired samples.   

Table 2 shows the number of deadlocks detected using tests produced from IPOG versus the 
average number of deadlocks detected with an equal number of randomly generated tests.  
Values for random test detection represent the average of eight runs with randomly generated 
tests at each combination of interaction level and packet count.  Table 3 gives the two-tailed 
probability of a difference between the number of deadlocks detected by combinatorial and that 
by random testing.   

For pairwise testing (t = 2), combinatorial testing detected slightly fewer deadlocks than an 
equal number of random tests, and the difference is statistically significant.  At interaction 
strength t = 3 the difference between the two test methods is not statistically significant.  At t = 4, 
however, the covering arrays produced by IPOG detected significantly more deadlocks than an 
equal number of random tests (see Table 3).  In the next section we consider some possible 
reasons for the variation in effectiveness of these two test methods.   

 
 
 
 
 
 
 



 
Deadlocks Detected – IPOG 

t Tests 500 pkts 1000 pkts 2000 pkts 4000 pkts 8000 pkts 
2 28 0 0 0 0 0 
3 161 2 3 2 3 3 
4 752 14 14 14 14 14 
 

Average Deadlocks Detected – random 
t Tests 500 pkts 1000 pkts 2000 pkts 4000 pkts 8000 pkts 
2 28 0.63 0.25 0.75 0. 50 0. 75 
3 161 3.00 3.00 3.00 3.00 3.00 
4 752 10.13 11.75 10.38 13.00 13.25 

Table 2. Deadlock detection, IPOG vs. random  
 

Interaction  
strength 

2-tailed  
probability  

2 .0035 
3 .1778 
4 .0235 

Table 3. t-test results for difference between random and IPOG generated tests 

4.2 Analysis of Results 
In considering explanations for the results, we first note that there can be a number of 

differences between the simulations conducted in this work and software testing in other 
application domains.  In many applications, such as databases or web applications, different 
parameter values may result in different execution paths within the application, but the amount 
and complexity of processing is often similar for many different inputs.  Network simulation, by 
contrast, may exhibit wide variations in processing depending on whether the input configuration 
is a small network of simple topology, or a large, complex one.   This difference was observed in 
widely varying run times (not reported in this paper), and may also contribute to the distribution 
of deadlocks detected at the three interaction levels.  Previous work (see Section 1) has found 
that increasing values of t detect progressively fewer faults, even in cases where combinatorial 
testing performed no better than random tests.  Pairwise testing (t=2) often detected 70% to more 
than 90% of faults, while 3-way tests found roughly 10% to 20% of more faults, and 4-way to 6-
way tests typically detected less than 5% more faults.  This distribution is essentially reversed for 
the Simured testing (see Table 2), with 0%, 18%, and 82%  of deadlocks detected at t=2, 3, and 4 
respectively.  This result is not unexpected.  Faults can be triggered by combinations of any of 
the variables in a program.  Even though a large set of variables may be directly or indirectly 
involved in triggering deadlocks, the set can be expected to be much smaller than the total 
number of variables in a program.  With deadlocks occurring in roughly 2% of simulation runs, 
larger test sets would be expected to locate more deadlocks. Another significant difference 
between the simulation results and conventional testing is that a program can in most cases be 
expected to have a finite number of bugs.  In conventional program testing, it is not surprising 
that increasing the number of tests applied against a fixed program with a fixed number of bugs 
can result in diminishing returns.  Each new test is targeting an ever-decreasing number of 
undiscovered faults.   With Simured however, configuration parameters make it possible to 
generate a nearly unlimited number of network configurations, so the ways in which deadlock 
can occur are similarly almost unlimited.  Each new test has a high probability of generating a 



previously untested configuration, so it is possible for the number of deadlocks to increase with 
larger test sets.   

 
In addition to the “reverse” relationship between deadlock detection and interaction strength, 

another interesting finding was that pairwise tests detected slightly fewer deadlocks than the 
same number of random tests.  Careful analysis shows that there is in fact a combinatorial 
explanation for this result, which we discuss in the remainder of this section.   

Because a significant percentage of events can only be triggered by the interaction of two or 
more variables, one consideration in comparing random and combinatorial testing is the degree 
to which random testing covers particular t-way combinations.  Any test set will also cover a 
certain proportion of possible t+1, t+2, etc. combinations as well.  Table 4 gives the average 
percentage of t-way combinations covered by 100 randomly generated test sets of the same size 
as a t-way covering array generated by IPOG, for various combinations of k = number of 
variables and v = number of values per variable.  Figures 2 through 6 summarize the coverage 
for arrays with variables of 2 to 10 values.  As seen in the figures, the coverage provided by a 
covering array versus a random test suite of the same size varies considerably with different 
configurations.  An important practical consideration in comparing combinatorial with random 
testing is the effectiveness of the covering array generator.   Algorithms have a wide range in the 
size of covering arrays they produce, but all are designed to produce the smallest array possible 
that covers all t-way combinations.  It is not uncommon for the better algorithms to produce 
arrays that are more than 50% smaller than other algorithms.  We have found in comparisons 
with other tools that there is no uniformly “best” algorithm (Lei et al., 2007b).  Algorithms vary 
greatly in the size of combinatorial test suites they produce, so the comparable random test suites 
will also vary in the number of tests.   Random testing may produce results similar to 
combinatorial tests produced by an algorithm that generates a larger, sub-optimal covering array, 
because the correspondingly larger random test set has a greater probability of covering the t-
way combinations. 

 
     A covering array algorithm that produces a compact array, i.e., with few tests, for t-way 

combinations may also include fewer (t+1)-way combinations because there are fewer tests.  
Tables 7 and 8 illustrate this phenomenon for the Simured experiment.  Table 7 shows the 
percentage of t+1 up to t+3 combination coverage provided by the IPOG tests and in Table 8 the 
average coverage of an equivalent number of random tests.  Although IPOG pairwise tests 
provide better 3-way coverage than the random tests, at higher values of t, the random tests are 
roughly the same or better in combination coverage than IPOG.  Recall from Section 4.1 that 
pairwise combinatorial tests detected slightly fewer deadlocks than the equivalent number of 
random tests.  One possible explanation may be that the superior 4-way and 5-way coverage 
(Table 7) of the random tests allowed detection of more deadlocks.  Almost paradoxically, an 
algorithm that produces a larger, sub-optimal covering array may provide better fault detection 
because the larger array is statistically more likely to include t+1, t+2, and higher degree 
interaction tests as a byproduct of the test generation.  This result demonstrates that the smallest 
possible array is not necessarily best for testing purposes if higher strength interactions are not 
also tested.  It also suggests that covering array generation algorithms that fill “don’t care” values 
(those for which all combinations have already been covered) with random values may provide 
better test results by covering a larger number of t+1, t+2, and higher degree combinations.  

 



Now consider the size of a random test set required to provide 100% combination coverage.  
For most covering array algorithms, the difficulty of finding tests with high coverage increases 
as tests are generated.  Thus even if a randomly generated test set provides better than 99% of the 
coverage of an equal sized covering array, it should not be concluded that only a few more tests 
are needed for the random set to provide 100% coverage.  Table 5 gives the sizes of randomly 
generated test sets required for 100% combinatorial coverage at various configurations, and the 
ratio of these sizes to covering arrays computed with IPOG.  Although there is considerable 
variation among configurations, note that the ratio of random to combinatorial test set size for 
100% coverage exceeds 3 in most cases, with average ratios of 3.9, 3.8, and 3.2 at t = 2, 3, and 4 
respectively.   Thus combinatorial testing offers a significant advantage over random testing if 
the goal is 100% combination coverage. 

 
 

Vars 
Values/  
Variable 

IPOG 
2-way  
tests 

Random  
2-way 

coverage  

IPOG 
3-way  
tests 

Random  
3-way 

coverage  

IPOG 
4-way  
tests 

Random  
4-way 

coverage  
10 2 10 94.1 20 94.3 42 93.2 
10 4 30 84.6 151 90.6 657 92.3 
10 6 66 85.6 532 91.6 3843 94.8 
10 8 117 83.8 1214 90.6 12010 94.7 
10 10 172 82.1 2367 90.6 29231 94.6 
15 2 10 93.9 24 96.2 58 97.5 
15 4 33 88.1 179 94.1 940 97.5 
15 6 77 88.6 663 95.4 5243 98.2 
15 8 125 86.1 1551 95.2 16554 98.2 
15 10 199 86.4 3000 95.0 40233 98.2 
20 2 12 96.5 27 97.3 66 98.6 
20 4 37 90.9 209 96.2 1126 98.8 
20 6 86 91.3 757 97.0 6291 99.2 
20 8 142 91.3 1785 96.9 19882 99.2 
20 10 215 88.4 3463 96.9 48374 99.2 
25 2 12 95.9 30 98.5 74 99.2 
25 4 39 92.1 233 97.5 1320 99.4 
25 6 89 91.8 839 97.9 7126 99.6 
25 8 148 90.3 1971 97.9 22529 99.6 
25 10 229 90.0 3823 97.8 54856 99.6 

Table 4. Average percent of t-way combinations covered by equal number of random tests 
 



 
2-way Tests 3-way Tests 4-way Tests 

Vars 
 
Values 

IPOG 
Tests 

Random  
Tests Ratio 

IPOG 
Tests 

Random  
Tests Ratio 

IPOG 
Tests 

Random  
Tests Ratio 

10 2 10 18 1.80 20 61 3.05 42 150 3.57 
10 4 30 145 4.83 151 914 6.05 657 2256 3.43 
10 6 66 383 5.80 532 1984 3.73 3843 13356 3.48 
10 8 117 499 4.26 1214 5419 4.46 12010 52744 4.39 
10 10 172 808 4.70 2367 11690 4.94 29231 137590 4.71 
15 2 10 20 2.00 24 52 2.17 58 130 2.24 
15 4 33 121 3.67 179 672 3.75 940 2568 2.73 
15 6 77 294 3.82 663 2515 3.79 5243 17070 3.26 
15 8 125 551 4.41 1551 6770 4.36 16554 60568 3.66 
15 10 199 940 4.72 3000 15234 5.08 40233 159870 3.97 
20 2 12 23 1.92 27 70 2.59 66 140 2.12 
20 4 37 140 3.78 209 623 2.98 1126 3768 3.35 
20 6 86 288 3.35 757 2563 3.39 6291 18798 2.99 
20 8 142 630 4.44 1785 8450 4.73 19882 59592 3.00 
20 10 215 1028 4.78 3463 14001 4.04 48374 157390 3.25 
25 2 12 34 2.83 30 70 2.33 74 174 2.35 
25 4 39 120 3.08 233 790 3.39 1320 3520 2.67 
25 6 89 327 3.67 839 2890 3.44 7126 19632 2.75 
25 8 148 845 5.71 1971 7402 3.76 22529 61184 2.72 
25 10 229 1031 4.50 3823 16512 4.32 54856 191910 3.50 

Ratio Average: 3.90 3.82 3.21 

Table 5. Size of random test set required for 100% t-way combination coverage. 
 
 
 

Values 
per 

 variable  

 
Ratio, 
2-way 

Ratio, 
3-way 

Ratio,  
4-way 

2  2.14 2.54 2.57 
4  3.84 4.04 3.04 
6  4.16 3.59 3.12 
8  4.70 4.33 3.44 

10  4.68 4.59 3.86 

Table 6. Average ratio of random/IPOG for covering arrays 
by values per variable, variables = 10, 15, 20, 25 

 
The comparisons between random and combinatorial testing detailed in Tables 4 – 6 suggest 

a number of tentative conclusions: 
 
• For binary variables (v=2), random tests compare reasonably well with covering arrays 
(94% to 99% coverage) for all three values of t (Table 4, Figure 2).  Thus random testing for 
a system under test (SUT) with all or mostly binary variables may compare favorably with 
combinatorial testing.  This factor may explain results in previous studies in which 
combinatorial testing performed no better than random testing.  All variables of the 
application used in (Bryce et al., 2006) were binary, and comparably sized random test suites 
covered a high number of combinations.   For one of the two applications studied in 
(Schroeder, 2004), 16 of 18 variables were binary and 18 of 19 variables for the other were 
either binary or 3-valued.  The percentages of combinations covered by random test suites for 



binary variables in Table 4 are similar to the coverage reported in (Schroeder, 2004), but are 
somewhat higher than the coverage in (Bryce et al., 2006), probably as a result of different 
covering array algorithms.   Kobayashi et al. (2001) compared combinatorial and random 
testing for logic testing (thus 2-valued variables) and found combinatorial testing superior on 
average for 2-way, 3-way, and 4-way tests.  However, for 2-way combinations nearly half of 
the random test suites performed as well or better than the corresponding 2-way 
combinatorial tests.   
 
• Combination coverage provided by random generation of the equivalent number of 
pairwise tests at (t = 2) decreases as the number of values per variable increases, and the 
coverage provided by pairwise testing is significantly less than 100% (Table 4, Figures 2 - 6).  
The effectiveness of random testing relative to pairwise testing should be expected to decline 
as the average number of values per variable increases.  

 
• For 4-way interactions, coverage provided by random test generation increases with the 
number of variables (Table 4).  Thus combinatorial testing should be significantly more 
effective at fault detection for a module with approximately 10 variables than random testing, 
while the difference between the two test methods should be less for modules with 20 or 
more variables.  

 
• The combination coverage advantage of combinatorial testing relative to random testing 
decreases at higher interaction levels (Table 4, Figures 2 – 6).  For example, with 15 
variables of 6 values each, random tests provide roughly 88% coverage of 2-way 
combinations, increasing to 98% coverage for 4-way combinations.  Note however that this 
does not mean the random test set will be almost as effective as the combinatorial set.  A 
random test set must still be approximately 4 times the size of the corresponding 
combinatorial set to provide 100% combination coverage (Table 5).  
 
• For 100% combination coverage, the advantage of combinatorial testing varies directly 
with the number of values per variable and inversely with the interaction strength t (Table 6).  
Figure 7 illustrates how these factors (interaction strength t and values per variable v) 
combine:  the ratio of random/combinatorial coverage is highest for 10 variables with t = 2, 
but declines for other pairings of t and v.  Random testing cannot assure any pre-set level of 
desired coverage while covering arrays by definition achieve 100% combination coverage. 
Random testing is significantly less efficient than combinatorial testing, requiring 2 to nearly 
5 times as many tests as a covering array to obtain complete coverage (Tables 6).  Thus if 
100% combination coverage is desired, combinatorial testing should be significantly less 
expensive than random test generation.    

 
Note also that the number of faults in the SUT can affect the degree to which random 

testing approaches combinatorial testing effectiveness.  For example, suppose the random 
test set covers 99% of combinations for 4-way interactions, and the SUT contains only one 4-
way interaction fault.   Then there is a 99% probability that the random tests will contain the 
4-way interaction that triggers this fault.  However, if the SUT contains m independent faults, 
then the probability that combinations for all m faults are included in the random test set is 
.99m.  Hence with multiple faults, random testing may be significantly less effective, as its 



probability of missing at least one the m combinations that detect these faults will be 1 – cm, 
for c = percent coverage and m = number of independent faults. 

 
 
 

 
t-way  
 

2-way 
coverage 

3-way 
coverage  

4-way 
coverage  

5-way 
coverage  

Average  
coverage  

2 1.00 .758 .429 .217 0.601 
3 1.00 1.00 .924 .709 0.908 
4 1.00 1.00 1.00 .974 0.994 

Table 7. Combination coverage of IPOG t-way tests 
 
 
 

 
Same size  
  as t-way   

2-way 
coverage  

3-way 
coverage  

4-way 
coverage  

5-way 
coverage  

Average  
coverage  

2 .940 .735 .499 .306 0.620 
3 1.00 .942 .917 .767 0.906 
4 1.00 1.00 .965 .974 0.985 

Table 8.  Combination coverage of random tests 



 
Figure 2.  Random coverage of t-way 
combinations for v=2. 
 

Figure 3.  Random coverage of t-way 
combinations for v=4. 
 

Figure 4.  Random coverage of t-way 
combinations for v=6. 
 

Figure 5.  Random coverage of t-way 
combinations for v=8. 
 

Figure 6.  Random coverage of t-way 
combinations for v=10
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Figure 7.  Average ratio of random/IPOG for covering arrays by values per variable 

 
 
5 Conclusions  
 

For the simulation program tested in this study, pairwise tests detected slightly fewer 
deadlocks than an equal number of random tests, but 4-way combinatorial testing produced 
better results than an equal number of random tests.   Analyzing the random test sets suggests a 
number of reasons for these results.  Although pairwise tests covered all 2-way combinations 
and an equal number of random tests covered fewer, the random tests covered more 4-way and 
5-way combinations, and thus had a greater probability of triggering deadlocks that depended 
on 4-way or 5-way interactions.  However, the 4-way combinatorial tests covered significantly 
more 4-way combinations (100% vs. 96%) and also provided equal 5-way coverage compared 
with the corresponding random test set, and found more deadlocks as well.   

 
This result demonstrated that the smallest possible array is not necessarily best for testing 

purposes if higher strength interactions are not also tested.  When using t-way combinatorial 
testing, it can be helpful to evaluate the test set for coverage of t+1 and higher interaction 
strengths.  Methods of combining combinatorial and random tests may also be effective, as 
proposed in Bell (2006) and Bell, Vouk (2006).  These results also suggest that covering array 
algorithms may provide better test results by filling “don’t care” values with random (rather 
than constant, sequential, or other non-random) values.  

 
 
Disclaimer:  Reference to commercial products or trademarks does not imply endorsement by 
NIST or any other agency of the US Government, nor that such products are necessarily best 
suited to any purpose. 
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