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Abstract— This paper applies methods for analyzing fault hierarchies 
to the analysis of relationships among vulnerabilities in 
misconfigured access control rule structures.  Hierarchies have been 
discovered previously for faults in arbitrary logic formulae 
[11,10,9,21],  such that a test for one class of fault is guaranteed to 
detect other fault classes subsumed by the one tested, but access 
control policies reveal more interesting hierarchies.  These policies 
are normally composed of a set of rules of the form “if [conditions] 
then [decision]”, where [conditions] may include one or more terms 
or relational expressions connected by logic operators, and [decision] 
is often 2-valued (“grant” or “deny”), but may be n-valued.  Rule sets 
configured for access control policies, while complex, often have 
regular structures or patterns that make it possible to identify generic 
vulnerability hierarchies for various rule structures such that an 
exploit for one class of configuration error is guaranteed to succeed 
for others downstream in the hierarchy.   
 
     A taxonomy of rule structures is introduced and detection 
conditions computed for nine classes of vulnerability:  added term, 
deleted term, replaced term, stuck-at-true condition, stuck-at-false 
condition, negated condition, deleted rule, replaced decision, negated 
decision.  For each configuration rule structure, detection conditions 
were analyzed for the existence of logical implication relations 
between detection conditions.  It is shown that hierarchies of 
detection conditions exist, and that hierarchies vary among rule 
structures in the taxonomy.  Using these results, tests may be 
designed to detect configuration errors, and resulting vulnerabilities, 
using fewer tests than would be required without knowledge of the 
hierarchical relationship among common errors.   In addition to 
practical applications, these results may help to improve the 
understanding of access control policy configurations.     

Keywords- access control; change impact analysis; 
configuration analysis;  

I.  INTRODUCTION  

     Access control is one of the central problems in computer 
security, and many access control models have been defined, 
including discretionary access control (DAC), mandatory 
access control (MAC), and role based access control (RBAC) 
among the most commonly used types [2], and less 
standardized forms of access control are often used in network 
appliances such as firewalls. Access control policies often 
become large and complex, and rule configurations evolve 
over time as functions are added or changed, or additional 
systems are connected. It is estimated that configuration errors 
account for up to 80% of network vulnerabilities [4].  For 
defensive purposes, policies must be tested to ensure that they 
behave as expected, and because policies may include 
hundreds or even thousands of rules [13], a large number of 
tests may be needed.   

     In this paper we show that there is a hierarchical 
relationship among vulnerabilities in access control systems, 
such that the conditions that allow the exploitation of one are 
sufficient for triggering other vulnerabilities downstream in 
the hierarchy.   While the number of potential flaws that result 
in vulnerabilities is vast, the structure of access control rules 
results in a hierarchy for certain classes of vulnerabilities.  
This paper demonstrates the existence of these hierarchies for 
a variety of access control rule configurations, and shows how 
the results may be used to reduce the number of tests required.   

     The analysis of hierarchies of vulnerabilities can be 
compared with similar analyses for testing [11,10,9,21], where 
a vulnerability corresponds to a fault and a test corresponds to 
an exploit for that vulnerability.  However, for testing this 
analysis is normally applied to arbitrary logic formulae while 
access control rules are typically implemented in common 
patterns such as “if A then Grant; else if B then Grant; else … 
; else Deny”.  Two types of hierarchies can be shown:  those 
specific to a particular access control policy, and generic 
forms that are determined by the structure of access control 
rules.  A taxonomy of rule structures is defined and for various 
possible flaws (e.g., deleted term, added term), conditions 
under which these faults can be detected are shown to form 
mathematical structures in which detection conditions for 
some vulnerabilities subsume those for others.  

          A vulnerability is defined in the RFC 2828 [15] as "A 
flaw or weakness in a system's design, implementation, or 
operation and management that could be exploited to violate 
the system's security policy".   To formalize this definition, we 
distinguish the specified policy as P and the policy as 
configured by coded rules on an operational system as R.  That 
is, applications that are implemented must conform to the 
policy, P, but due to human error or system failures, the policy 
as implemented may not be correct with respect to the defined 
policy P.  The policy as implemented by administrators using 
access control rules is designated R.  If R = P, then the policy 
has been implemented correctly and by definition there are no 
vulnerabilities with respect to this policy (although there may 
be problems unanticipated by policy designers that are later 
considered vulnerabilities).  If R ≠ P, then one or more 
vulnerabilities exist with respect to the policy such that 
unauthorized access or denial of service may be allowed.   

     Access control policies often take the form of a sequence of 
rules composed of conditions that result in a decision to grant 
or deny access.  For example, where the Ci contain one or 
more conditional expressions: 

if (C1) then grant; 
if (C2) then deny; 
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if (C3) then grant; 
deny;  /* default */ 

Conditions in turn include references to the components of 
access control policies:  e.g., subjects, resources, groups, roles, 
attributes, permissions, and access requests.  For example:  

if ((role = teller OR role = supervisor) 
AND(request = account_balance)) then 
grant; 

 
     Access control policies may be configured on running 
systems with dozens or hundreds of rules, sometimes 
interacting in ways that are determined dynamically depending 
on system events. This level of complexity requires careful 
evaluation to ensure that rules are implemented and modified 
correctly, and a variety of systems have been developed to 
analyze and test access control policies [5,6,14].   To enable 
this type of analysis, policies must be represented formally.  In 
this paper, policies are represented and analyzed using 
mathematical logic formulae that could be mapped to 
representations for tools such as Margrave [5] and ACPT [6].  
For example,  
 
 if (c1) then grant; 
 else if (c2) then grant; 
 
may be represented as )()( 21 grantcgrantc →⋅→ . At first 

glance, it may seem that the policy above could be represented 
with “OR” operators between the clauses, as 

)()( 21 grantcgrantc →+→ . But note that the second expression 

is equivalent to )( 21 grantcc → , i.e., grant only if both c1 and 

c2 are true, which is clearly not what is intended and not the 
way that the policy would be processed with the code above. 
The first expression simplifies to )( 21 grantcc →+ , which is 

the appropriate meaning and consistent with the code.  
 
     While many applications have hard-coded access rules, 
frameworks capable of implementing access control have 
become available.  XACML [1,16] is one of the better known 
examples.  XACML supports an approach often described as 
“attribute-based” access control, where XACML attributes can 
be subjects, actions, or resources.  An attribute-ID, such as 
“clearance level” identifies the attribute, and may take on 
different attribute values, such as Secret or TopSecret.   
Implementer-defined rules are used to determine the decision 
for access requests that present attributes to be processed by 
the rule engine.  XACML decisions can be permit, deny, or 
not applicable, if there is no rule that matches the attributes in 
the request.   The option of a “not applicable” decision is 
needed for the generic framework approach more so than hard 
coded application specific rules because the framework must 
be able to accommodate changing, arbitrarily complex rule 
sets.  An analysis of vulnerabilities in access rule structures 
must therefore consider more than the conventional binary 
decisions of access control.  
 
     The organization and main results of this paper are as 
follows:  Section II introduces a taxonomy of access control 

rule structures; Sect. III explains the computation of 
vulnerability conditions; Sect. IV describes a variety of flaws 
in access control rules that result in vulnerabilities; and Sect. 
V demonstrates how these flaws result in vulnerability 
hierarchies for the various rule structures in the taxonomy.  
We conclude with a discussion of the implications of these 
results for testing access control configurations, and other 
application to analyzing configuration changes.  
 

II.  TAXONOMY OF RULE STRUCTURES 

     An access control policy, P, is implemented by a set of 
rules, R.  A vulnerability will be defined here as a condition 
under which the decision from rules R differs from the 
intended result specified by policy P, that is, where PR≠ .  
Vulnerabilities may be unauthorized access, (possibly partial) 
denial of service, or a combination of the two, depending on 
the conditions under which the decision is grant or deny.   For 
rules where the decision is Grant, there are three vulnerability 
possibilities, where Rc = grant conditions in implemented 
policy and Pc = grant conditions in correct policy: 
 

cc PR ⇒ :  a (possibly partial) denial of service (because 

                     Rc ⊂ Pc).  

cc PR ⇐ :     unauthorized access  (because Rc ⊃	Pc) 

otherwise:   possible combination of unauthorized access or 
                     denial of service 

                              
     In cases where the decision is Deny, the situation is the 
mirror image of that for Grant rules: 
 

cc PR ⇒ :     unauthorized access  (because  
cc PR ⊂ ) 

cc PR ⇐ :  a (possibly partial) denial of service (because 

                    
cc PR ⊃ ). 

otherwise:  possible combination of unauthorized access or  
                    denial of service 
 
Example:  Suppose a policy specifies that access is to be 
granted only when [the subject is an employee], designated as 
e, and either [the time is during working hours], h, or [the 
subject is a supervisor], s, and that the policy is implemented 
as “if e&h → grant; if e&s → grant; deny;”.  The Grant 
condition is specified as sehe ⋅+⋅ .  If the policy is 
implemented incorrectly so that the second rule is not 
included, then the Grant condition is .he⋅ Thus 

sehehe ⋅+⋅⇒⋅ and there is a denial of service where 
she ⋅⋅ . (This paper follows conventional practice in using · 

(or juxtaposition) for boolean and, + for or, with⊕ signifying 
exclusive-or). 

 
     An access control policy rule structure is defined here as a 
configuration of logical operators, policy terms, and decisions, 
categorized according to how the rules are constructed.  Each 
rule has a condition and a decision.  Conditions may be 
composed of other conditions connected by logical operators, 
often with a standard structure (e.g., A AND B AND C; A OR 
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B OR C).  Decisions are often binary, but may also have three 
or more values (e.g., grant, deny, defer).  Methods of rule 
combining may also have a pattern.  In many cases, a set of 
rules that can lead to a grant decision are followed by a single 
default case “else deny”.  Alternatively, rules with grant or 
deny decisions may be intermixed, followed by a default case. 
Thus one way to categorize access control policy rule 
structures is to specify the condition format, number of 
decision values, and rule combining format.  This taxonomy is 
introduced solely for the purpose of characterizing access 
control structures for which fault hierarchies are developed.  
Clearly the set of policies thus defined does not cover the 
universe of possible structures, but a large number of practical 
policy rule structures can be captured in this manner.  Note 
also that the access control rule structures defined here are not 
the same as access control policy models.  A policy model 
ensures specific properties are maintained among the elements 
of the model.  For example, the multilevel security policy 
model guarantees that a user cleared only to Secret cannot read 
data labeled TopSecret.  One or more rule structures could be 
used to implement a particular policy model.  
 
     Here we define the following rule structure attributes and 
possible values: 
• Condition format:  con – conjunction of conditions; dis – 

disjunction of conditions; cnf – conjunctive normal form 
of conditions. 

• Number of decision values:  binary or n-ary.    
• Rule combining:  singular (all rule decisions of the same 

type, e.g., grant or deny, followed by a default), or mixed, 
which refers to mixed grant and deny decisions in rules. 

 
Structures can then be categorized in the format 〈condition  
format〉/〈number of decision values〉/〈rule combining method〉.  
Some structures that can be defined using this taxonomy are 
discussed below.  

 
A. con/2/singular 
     Decisions are determined by the conjunction of conditions 
under which access is granted.  If no ‘grant’ decision matches 
the input configuration, access is denied.  

 
if (c11 · . . . · c1n1) then grant;   
if (c21 · . . . · c2n2) then grant; 
. . . 
if (ck1 · . . . · ckn3) then grant; 
else deny; 
 
This structure is modeled by: 
(  (c11 · . . . · c1n1) →  grant) 

· ((c21 · . . . · c2n2) →  grant) 
. . . 

·  ((ck1 · . . . · ckn3) →  grant) 
·  (~(c11 · . . . · c1n1) · ~(c21 · . . . · c2n2) . . . ·  ~ (ck1 · . . 
. · ckn3) →  deny) 

 

B. con/2/mixed 
     Decisions are determined by the conjunction of conditions 
under which access is granted or denied.  If no grant decision 
matches the input configuration, access is denied.  The rule set 
is as defined for con/2/singular except that decisions above the 
default may be either grant or deny.   
 
C. disj/2/singular 
     Decisions are determined by a disjunction of conditions 
under which access is granted.  If no ‘grant’ decision matches 
the input configuration, access is denied.  

 
if (c11 + . . . + c1n1) then grant; 
if (c21 + . . . + c2n2) then grant; 
. . . 
if (ck1 + . . . + ckn3) then grant; 
else deny; 
 
This structure is modeled by: 

( (c11 + . . . + c1n1) →  grant) 

· ((c21 + . . . + c2n2) →  grant) 
. . . 

· ((ck1 + . . . + ckn3) →  grant) 
· (~(c11 + . . . + c1n1) · ~(c21 + . . . + c2n2) . . . ·  ~ (ck1 + . . 

. + ckn3) →  deny) 
 

D. disj/2/mixed 
     Decisions are determined by the disjunction of conditions 
under which access is granted or denied.  If no grant decision 
matches the input configuration, access is denied.  The rule set 
is as defined for disj/2/singular except that decisions above the 
default may be either grant or deny.   
 
E. cnf/2/singular 
     Decisions are determined by conditions in conjunctive 
normal form (CNF) under which access is granted.  If no 
‘grant’ decision matches the input configuration, access is 
denied.  This rule class is included because it is relatively 
common in real-world access control problems.  The XACML 
[16] standard is one such widely used framework for 
implementing access control policies.  An XACML rule set 
includes clauses for subjects, resources, and actions, where 
rules include matching conditions for these three attributes.  

  
For example, an XACML rule may specify “if (role = 

engineer OR role = technician) AND (database = test_results) 
AND (action = append) then GRANT”.  (XACML uses an 
XML syntax, but for readability, this example is given in 
natural language.)  Rules may have decisions of grant, deny, 
or no match in cases where none of the rule predicates match 
the set of attributes presented to the XACML decision system.  
In this paper, we consider only XACML rules where a series 
of grant rules are offered, with a default deny.  In the syntax 
below, we use s, r, and a, for subject, resource, and action 
terms, but the extension to other CNF rule sets is obvious.  

  
if (s11 + . . . + s1n1) ·  (r11 + . . . + r1n1) · (a11 + . . . + a1n1)   
then grant; 
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if (s21 + . . . + s2n1) ·  (r21 + . . . + r1n1) · (a21 + . . . + a2n1)   
then grant; 
. . . 
if (sk1 + . . . + skn1) ·  (rk1 + . . . + rkn1) · (ak1 + . . . + akn1)   
then grant; 
else deny; 
 
This structure is modeled by: 
(  (s11 + . . . + s1n1) ·  (r11 + . . . + r1n1) · (a11 + . . . + a1n1)   
→  grant) 
· ((s21 + . . . + s2n1) ·  (r21 + . . . + r1n1) · (a21 + . . . + a2n1)   
→  grant) 
. . . 

·  ((sk1 + . . . + skn1) ·  (rk1 + . . . + rkn1) · (ak1 + . . . + akn1
→  

grant) 
·  (~((s11 + . . . + s1n1) ·  (r11 + . . . + r1n1) · (a11 + . . . + a1n1) 
. . . ·  ~ ((sk1 + . . . + skn1) ·  (rk1 + . . . + rkn1) · (ak1 + . . . + 

akn1) →  deny) 
 

F. cnf/2/mixed 
     Decisions are determined by the conjunction of conditions 
under which access is granted or denied.  If no grant decision 
matches the input configuration, access is denied.  The rule set 
is as defined for cnf/2/singular except that decisions above the 
default may be either grant or deny.   

 
G. 〈condition〉/n/〈combining〉  ( n-ary Decision Rules) 
     When possible decisions are more than grant or deny, rule 
structures are defined as above with the modification that 
grant decisions are replaced by n possible decisions other than 
deny.  

III.  VULNERABILITY DETECTION CONDITIONS 

     As defined above, a vulnerability is a faulty 
implementation of an access control policy.  The detection 
conditions for a flaw in a policy P are given by the boolean 
difference, 'PP⊕ , where P’ represents formula P with the 
fault inserted.  If P’ is P with Fault 1, and P’’  is P with Fault 
2, and 'PP⊕  ⇒ ''PP⊕ , then a test that detects Fault 1 will 
also detect Fault 2 [11].  In this case we say that Fault 1 
subsumes Fault 2.  Consequently, a test constructed to detect 
Fault 1 will detect Fault 2 as well, eliminating the need to 
construct tests specifically for Fault 2.  Depending on the form 
of boolean expressions in the specification, and the fault 
classes defined, a hierarchy may be established such that one 
or more root nodes subsume other fault classes [9, 10, 11,12, 
21].   Then tests defined for the root fault class(es) will detect 
the other classes subsumed by these, obviating the need to 
develop additional tests.   
 
Example1:  Consider the policy from the previous example 
which specifies that access is to be granted only when [the 
subject is an employee], designated as e, and either [the time is 
during working hours], h, or [the subject is a supervisor], s, a 
policy specified as P = ))()(~( GesehGeseh →+→+ .  If rule 

R is implemented incorrectly as ))()(~( GehGeh →→ , then 

)eseheh +⇒ and there is a denial of service where she ⋅⋅ .  

To detect this vulnerability, compute  
)))()(~)( GesehGeseh →+→+ ))()(~( GehGeh →→⊕

she=  
 
     That is, a result that differs from the correct policy occurs 
where the subject is an employee and supervisor and the time 
is out of hours.  A test input of she will detect that the 
implemented policy does not behave according to the specified 
policy because the subject is improperly denied access.   
 
     A different situation occurs if the implemented policy 
allows access that is not authorized by the specified policy.  
For example if the implemented policy fails to check hours, 
i.e., if ))()(~( GeseGese →+→+  is implemented, then 

unauthorized access will be allowed when the subject is an 
employee but not a supervisor and time is out of working 
hours:  

))()(~( GesehGeseh →+→+

))()(~( GeseGese →+→+⊕ she=  

This type of analysis can be applied to more complex rules.   

Example 2:  A policy can be defined as below: 

if (a & b & c) then grant; if (d & e) then grant; else deny; 
modeled by: 
P = ((a b c) → G) ((d e) → G) · ( ~(a b c) · ~(d e) →  ~G) 
 
     Suppose the policy is implemented incorrectly, leaving out 
condition a: 
Ptc = ((b c ) → G)  ((d e) → G) · ( ~(b c) · ~(d e) →  ~G) 
 
The detection conditions for this type of flaw in Ptc are:  
 

P ⊕Ptc = a̅ b c d̅  + a̅  b c e̅      
 
That is, for inputs of either a̅  b c d̅   or  a̅  b c e̅ ,  policy 
Ptc produces an incorrect result, so a test with either of these 
inputs will detect the error.  A different faulty policy may 
replace the condition in rule 1 with its negation: 
 
Pnc = ((~a b c) → G) ((d e) → G) ( ~(~ a b c) · ~(d e) →  ~G) 
 
For the implementation Pnc, the detection conditions are  

P ⊕Pnc = b c d̅   + b c e̅      
   

Thus a test with b c d̅   + b c e̅   (and either a or a̅ ) would 
detect the error.  Since P ⊕Ptc = a̅ (P ⊕ Pnc), it is easy to see 
that 

nctc PPPP ⊕⇒⊕ , i.e., the detection conditions for Ptc 

subsume those for Pnc, so a test that detects the faulty policy 
Ptc, with the true condition, will also detect policies with the 
same condition negated in the same rule.  For example, the test 
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a̅  b c d̅ would detect both vulnerabilities by evaluating to G in 
both faulty implementations, instead of the correct result G̅.       
 
     Extreme cases may also be analyzed in this manner:  a 
faulty policy that should grant access under condition p but 
grants access in all cases has vulnerability conditionp :   

pGGpGp =→⊕→→ )1())(( .  A faulty policy with the 

opposite result, that always denies access, has vulnerability 
condition p:  pGGpGp =→⊕→→ )1())(( . 

IV.  VULNERABILITY CLASSES 

     This section defines classes of vulnerabilities and 
determines vulnerability hierarchies for the access control 
policy structures defined previously.  A large number of 
vulnerabilities can be defined for access control rules, but a 
reasonable set may include the following (where OP is · or  +).  
Note that the exact form will vary with the type of structure as 
defined in the taxonomy of Section II.   

 
Add Condition:   A condition ca that was not specified has 
been added to the implementation:  

    if (ci1 OP ... OP cij OP...OP cini) then decision;   
is replaced with 
    if (ci1 OP ... cij OP ca OP cij+1  ...OP cini) then decision; 

 
Delete Condition:  A specified condition is missing from the 
implementation: 

    if (ci1 OP ... OP cij OP...OP cini) then decision;   
is replaced with 
    if (ci1 OP ... cij-1 OP cij+1 OP...OP cini) then decision; 
 
Replace Condition:  A condition is replaced with a different 
one, not equivalent: 

    if (ci1 OP ... OP cij OP...OP cini) then decision;   
is replaced with 
    if (ci1 OP ... cij-1 OP cx OP cij+1 OP...OP cini) then decision; 
 
True Condition:   A condition is always true: 

    if (ci1 OP ... OP cij OP...OP cini) then decision;   
is replaced with 
    if (ci1 OP ... OP true OP...OP cini) then decision; 
 
False Condition:  A condition is always false: 

    if (ci1 OP ... OP cij OP...OP cini) then decision;   
is replaced with 
    if (ci1 OP ... OP false OP...OP cini) then decision; 
 
Negate Condition:  A condition is negated:  

    if (ci1 OP ... OP cij OP...OP cini) then decision;   
is replaced with 
    if (ci1 OP ... OP ~cij OP...OP cini) then ~decision; 

 

Negate Decision:  The specified result for a condition is the 
opposite of intended. This mutation can apply only when there 
are two possible decisions, generally Grant or Deny: 
 
    if (condition) then decision;  
is replaced with  
    if (condition) then ~decision; 
 
Delete Rule:  A specified rule has been omitted from the 
implementation.  

A rule from the policy is deleted: 
    if (c11 · . . . · c1n1) then grant; 

. . . 
    if (ci1 · . . . · cini) then grant; 

. . . 
    if (ck1 · . . . · ckn3) then grant; 
    else deny; 
is replaced with: 
    if (c11 · . . . · c1n1) then grant; 

. . . 
    if (ck1 · . . . · ckn3) then grant; 
    else deny; 
 
     In practical implementations, some of these vulnerabilities 
could arise from administrator error, such as accidentally 
deleting or leaving out a condition or rule, and others may 
result from software failures, such as a module that is intended 
to verify an attribute and return true or false, but always 
returns true.  Tests can be produced by inserting flaws or 
mutations in a policy and then model checking or other 
methods to analyze the difference between the mutated and 
correct policies [3, 8, 14, 20].  

V. VULNERABILITY HIERARCHIES 

    For the eight vulnerability classes introduced above, 
hierarchical relationships exist for the access control rule 
structures in the taxonomy of Sect. III.   As can be seen, some 
common relationships emerge, but variations occur as a result 
of the differences in rule structure, e.g., conjunctions or 
disjunctions.  In the structures below, vulnerabilities are 
abbreviated as follows: 

ac:  add condition   
dc:  delete condition  
rc:  replace condition 
tc:  true condition 
fc:  false condition  
nc:  negate condition 
nd:  negate decision  
dr:  delete rule  

 
Note that this set of vulnerabilities is not claimed to be 
complete.  If could be extended, for example, with 
vulnerabilities such as “add rule” or “replace rule”.  A more 
comprehensive collection will be studied in a future paper.  
Hierarchical relationships among detection conditions for n 
different vulnerability classes can be determined by checking 
for implications between the n(n-1) pairs of detection 
conditions.  That is, for all pairs of vulnerabilities Pi, Pj, i≠j, 
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compute 
ji PPPP ⊕⇒⊕ , where Pi and Pj are access rules 

for particular faults that lead to vulnerabilities.  For instance, it 
was shown that 

nctc PPPP ⊕⇒⊕  for Example 2 above.  For 

access control rules with a regular structure, such as those 
introduced in Section II, generic hierarchies can be 
constructed for various vulnerabilities.    
 
     The hierarchies below can be shown for policies with 
multiple (two or more) rules with grant decisions, where each 
rule contains two or more conditions that can be treated as 
boolean terms, and the same condition is affected in the 
correct and faulty policy. (Computations not shown due to 
space limitation.) The analysis below is for policies containing 
a series of rules with grant decisions, followed by a default 
deny decision, where each rule has either a conjunction of two 
or more conditions (con/2/singular) or disjunction of two or 
more conditions (dis/2/singular).  Similar hierarchies can be 
constructed for other rule patterns in the taxonomy of Sect. II.  
Although any propositional expression can be converted to a 
different but equivalent formula, the form of expressions must 
be considered when analyzing detection conditions because 
flaws in practice may not affect all occurrences of a variable.  
For example, a + bc = (a+b)(a+c).  If a is accidentally negated 
in one place on each side of the equation, the results are not 
equivalent:  a̅  + bc ≠ (a̅ +b)(a+c). 
 
con/2/singular, changes to rules with grant decision 
 
 
 
 
 
 
 
 
 
 
 
dis/2/singular, changes to rules with grant decision 

 
 
 
 
 
 
 
 
 
 
Note that for con/2/singular policies, dc and tc are equivalent, 
because setting one term to true in a set of terms in a 
conjunction is equivalent to deleting the term, e.g., setting a to 
true, abc = 1bc = bc.  Similarly, setting a term to false for this 
class of rules is equivalent to deleting the entire rule, e.g., 
setting a to false, abc → G = 0bc → G = 1 + G = 1.  Similarly, 

for dis/2/singular, dc and fc are equivalent, e.g., setting a to 
false, a+b+c = 0+b+c = b+c.    

Example Policy 

     To illustrate the utility of the hierarchies discussed above, 
we define a small policy that could be implemented in a 
variety of frameworks such as XACML.  The policy is 
summarized below, followed by a pseudo-code 
implementation which is then converted to a logic formula for 
analysis.  Policy:  Supervisors may print customer account 
information during normal business hours or outside of 
business hours if special access is granted.  Auditors may 
print customer information during normal business hours, or 
if authorized by a bank supervisor.  Customer account 
information may be updated only by tellers through a teller 
terminal, or by accounting clerks if authorized by the 
accounting department supervisor.   
 
Implementation:  This policy may be coded as follows: 
 

if role = spvsr & busn_hrs & req = print → grant; 
else if role = spvsr & !busn_hrs & spec_access & req = print 
→ grant; 
else if role = auditor & busn_hrs & req = print → grant; 
else if role = auditor & !busn_hrs & spvsr_auth & req = 
print → grant; 
else if role = teller & node = teller_term & req = updat) → 
grant; 
else if role = acct & acct_spvsr_auth & req = update → 
grant; 
else deny; 
 

Abbreviations for the terms in the policy are:  
s: role = spvsr  
b:  busn_hrs 
a:  spec_access 
p:  req = print 
d: role = auditor 
h: spvsr_auth 
t:  role = teller 
n:  node = teller_term 
u:  req = update 
c: role = acct 
r: acct_spvsr_auth 

 
Writing the policy as formula P for manipulation:  
 
P  = (sbp →G)(sb̅ap→G)(dbp → G)(db̅hp → G)(tnu →G)(cru 
→G)(~(sbp) ~(sb̅ap) ~(dbp) ~(db̅hp) ~(tnu) ~(cru) → G̅); 
 
     According to the taxonomy defined previously, this policy 
may be categorized as con/2/singular .  Thus, as shown above, 
the relationships dr/fc → nc  and dr/fc → nd  must hold.  That 
is, a test for either delete rule or false condition will detect 
both negate condition errors and negate decision errors.  
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     A negated condition faulty policy occurs where the 
condition is negated.  That is, if an administrator mistakenly 
codes the rule to specify the condition “req ≠ update” instead 
of “req = update”, the policy is as follows: 
nc = (sbp →G)(sb̅ap →G)(dbp →G)(db̅hp →  G)(tnu̅ →
G)(cru →G)(~(sbp) ~(sb̅ap) ~(dbp) ~(db̅hp) ~( tnu̅) ~(cru) → 
G̅); 
     A negate decision error can occur in practice if a rule that 
should have a Grant decision is accidentally entered as Deny. 
nd  = (sbp →G)(sb̅ap →G)(dbp →G)(db̅hp→G)(tnu →→→→G̅)(cru 
→G)(~(sbp) ~(sb̅ap) ~(dbp) ~(db̅hp) ~(tnu) ~(cru) → G̅); 
 
In practice, a delete rule error may occur easily when a rule is 
accidentally removed or left out, particularly when policies 
contain dozens or hundreds of rules.  As modeled, this would 
be written as:  
dr  = (sbp →G)(sb̅ap →G) (dbp →G) (db̅hp → G) /*deleted 
rule*/  (cru →G) (~(sbp) ~(sb̅ap) ~(dbp) ~(db̅hp) ~(cru) → G̅); 
 
Detection conditions for each of these errors are as follows: 
Detection conditions, negated condition:  dnc =  
n & t & ~c & ~p +  
n & t & ~p & ~r +  
n & t & ~p & ~u + 
n & t & ~c & ~d & ~s + 
n & t & ~d & ~r & ~s + 
n & t & ~d & ~s & ~u + 
n & t & ~a & ~b & ~c & ~d + 
n & t & ~a & ~b & ~c & ~h + 
n & t & ~a & ~b & ~d & ~r + 
n & t & ~a & ~b & ~d & ~u + 
n & t & ~a & ~b & ~h & ~r + 
n & t & ~a & ~b & ~h & ~u + 
n & t & ~b & ~c & ~h & ~s + 
n & t & ~b & ~h & ~r & ~s + 
n & t & ~b & ~h & ~s & ~u 
 
Detection conditions, negated decision:  dnd =  
G & n & t & u + 
G & n & t & u & ~p + 
n & t & u & ~c & ~p + 
n & t & u & ~p & ~r + 
G & n & t & u & ~d & ~s + 
n & t & u & ~c & ~d & ~s + 
n & t & u & ~d & ~r & ~s + 
n & t & u & ~a & ~b & ~c & ~d + 
n & t & u & ~a & ~b & ~c & ~h + 
n & t & u & ~a & ~b & ~d & ~r + 
n & t & u & ~b & ~c & ~h & ~s + 
G & n & r & t & u & ~a & ~b & ~h + 
n & t & u & ~G & ~a & ~b & ~h & ~r + 
n & t & u & ~G & ~b & ~h & ~r & ~s 
 
Detection conditions, deleted rule:  ddr =  
n & t & u & ~c & ~p + 
n & t & u & ~p & ~r + 

n & t & u & ~c & ~d & ~s + 
n & t & u & ~d & ~r & ~s + 
n & t & u & ~a & ~b & ~c & ~d + 
n & t & u & ~a & ~b & ~c & ~h + 
n & t & u & ~a & ~b & ~d & ~r + 
n & t & u & ~a & ~b & ~h & ~r + 
n & t & u & ~b & ~c & ~h & ~s + 
n & t & u & ~b & ~h & ~r & ~s 
     In other words, conditions that trigger a deleted rule 
vulnerability for the rule in the rule tnu →grant will also 
trigger a negated condition or a negated decision vulnerability.  
Because this implication relationship holds, a test for 
vulnerability dr will also detect vulnerability nc.  Note that 
several tests occur in all three sets of detection conditions.  For 
example n & t & u & ~c & ~d & ~s is a single test that will 
detect policies that have been incorrectly containing a negated 
condition fault for u in the rule tnu →grant, a negated decision 
fault for this rule, or if the rule has been left out completely.  
 
     Similarly, tests for add condition faults will detect four 
fault classes:  rc, dr, fc, or nd. Thus tests must be generated for 
only two of the eight fault classes, because the other five types 
of faults will be detected by the generated tests as well.  Note 
that this optimization works for policy specifications that fall 
into the con/2/singular category.  For other configuration 
structures, different relationships hold, thus it is important to 
understand the type of configuration defined for a particular 
system.  The analysis method described in Sect. V may be 
applied to any rule configuration structure, and is not confined 
to those specified in this paper.   
 
     Considering vulnerability hierarchies in test design can 
increase test efficiency by reducing the number of tests 
required to detect common errors, without reducing fault 
detection effectiveness, as can occur with other test 
minimization procedures [19]. Access control policy 
configuration is a problem that is particularly well suited to 
this type of analysis.  Policies typically have a well-defined 
structure.  Consequently, the set of common errors may be 
more restricted than, for example, may occur in ordinary 
programming.  Conditions in rules may be omitted 
accidentally, placed in the wrong rule (added accidentally to 
one rule and left out of the other), the wrong decision may be 
specified for a particular set of conditions, coded as variable 
= value when variable != value was intended, and so 
forth.  Using the hierarchies shown above, tests may be 
designed to detect common errors using fewer tests than 
would be required without knowledge of the hierarchical 
relationship among common errors.   For example, if the 
policy includes n rules with k conditions each in the 
con/2/singular pattern, then no more than n tests for the 
deleted rule fault class will be needed to detect  a deleted rule, 
negated decision, or if any of the nk conditions have been 
accidentally negated. 
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VI.  RELATED WORK 

     A key aspect of methods described here is the use of fault 
model for common errors in access control policies. A number 
of authors have reviewed access control policy faults for use in 
mutation testing, including [5,7,14,18,20]. Some of the 
vulnerability classes detailed in Sect. IV can be mapped to 
faults from fault models in these papers. This paper applies the 
methods for fault hierarchy construction developed for logic 
faults in boolean expressions to the problem of analyzing 
access control vulnerabilities introduced by configuration 
errors.  Fault hierarchies in logic specifications were 
introduced in [11], and subsequently extended by others, 
including [9, 10, 12,17, 21].  These methods have not been 
previously applied to analysis of access control configurations.   
Several of the fault classes for boolean expressions apply also 
to vulnerability hierarchies, such as stuck at true or stuck at 
false faults, or literal insertion faults, which correspond to the 
added condition faults of Section IV, but others are unique to 
access control rules as a result of their structure.  The deleted 
rule and negated decision faults discussed in this paper are 
two examples, and others could be developed as well.  Early 
work on fault hierarchies assumed specifications were in 
disjunctive normal form, but hierarchies can still be shown 
after removing this assumption [17].  The DNF assumption is 
significant because DNF expressions are not commonly used 
in programming conditionals, and a fault in a general boolean 
expression can result in multiple faults when the expression is 
converted to DNF. Unlike conventional programming practice, 
access control system rules tend to be highly structured.  This 
paper explicitly takes the form of various rule logic structures 
into account in computing vulnerability class hierarchies.   

VII.  CONCLUSIONS 

     This paper has demonstrated the application of methods for 
analyzing fault hierarchies to understanding relationships 
among vulnerabilities in access control rule structures.  A 
taxonomy of rule structures was introduced and detection 
conditions computed for each class of vulnerability in the 
different structures.  For two configuration structures, 
detection conditions were analyzed for the existence of logical 
implication relations between conditions.  It was shown that 
hierarchies of detection conditions exist, and that hierarchies 
vary among rule structures.  The existence of such hierarchies 
can be used to reduce the number of tests required to detect the 
presence of fault classes in access control rules as 
implemented.   Other structures in the taxonomy will be 
analyzed in a forthcoming paper.  
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