
Built for Speed: Using Bloom
Filters for File Identification

Doug White



Disclaimer
Trade names and company products are mentioned in

the text or identified. In no case does such
identification imply recommendation or endorsement
by the National Institute of Standards and
Technology, nor does it imply that the products are
necessarily the best available for the purpose.

Statement of Disclosure
This research was funded by the National Institute of

Standards and Technology Office of Law
Enforcement Standards, the Department of Justice
National Institute of Justice, the Federal Bureau of
Investigation and the National Archives and Records
Administration.



Issues Identified

• Storage and distribution of tens of
millions of hash values

• Storage and distribution of hundreds of
millions of block hash values

• Speed of testing acquired hash values
• Interagency awareness without

information release



Bloom Filter

A Bloom filter is a data structure that is
used to test whether an element is a
member of a set.
– False positives
– Elements can not removed

Most implementations are dynamic,
growing as data is added to a back-end
storage system.



Items x, y, and z have been added to the Bloom filter.
A search for item w yields a negative result.



Storage Space

Bloom filters have an advantage over other data
structures which require storing at least the
data items themselves.

 A Bloom filter with 1% false positive rate
requires only about 9.6 bits per element
regardless of element size.

 The false positive rate can be reduced by a
factor of ten each time 4.8 bits per element
are added.



Storage Space

NSRL investigated values of m = 2^32
and n = 10^8, which equates to a
512MB bit array containing 100,000,000
items.

A value of k = 16 allows a false positive
rate of 0.000001%.

This compares favorably to 1.6GB
needed for 100,000,000 MD5 hashes.



Storage Space

NSRL investigated values of m = 2^35
and n = 10^9, which equates to a 4GB
bit array containing 1 billion items.

A value of k = 16 allows a false positive
rate of 0.000014%.

This compares favorably to 16GB needed
for 1 billion MD5 hashes.



Speed of Access

Bloom filters have the property that the time needed to
add items or test set membership is a fixed constant,
O(k), independent of the number of items in the set.

No other constant-space set data structure has this
property.

The k lookups in a Bloom filter are independent and can
be parallelized.



NSRL Implementation

Fixed size files allow use of stable vector
algorithms.

Fixed size files with stable algorithms reduce
two of three variables to constants when
computing false positive rate.

Code and example filters are available at
http://www.nsrl.nist.gov/RDS/rds_2.13/bloom



NSRL File Structure

• 512 Byte header
– File signature
– Agency information
– Bloom parameters (bits, items, keys)
– SHA1 and MD5 of data section
– Text description of contents

• 512MB data (2^32 bits)
• Unbounded trailer



Measurements

Experiments focused on a 512MB filter, as math could
be performed with 32 bit integers and 512MB was
easily held in RAM.

Using a 2GHz intel Core 2 Duo, 10 million MD5 values
can be added to a 512MB filter in less than 10
seconds.

Average query speed is on the order of 15,000 results
per second.

Query speed increases as the ratio of unknown items
increases.



Information Distribution

Bloom filter distribution can be as simple
as a bitwise-or process for updates.

Filters can be built for specific query
universes.

Data items are not distributed.



Next Steps

Investigation of 4GiB, billion item sets
Investigation of k value / false positive

rate tradeoffs in larger scales
Prototype disk block imager
Publicly available prototype for feedback



Contacts
Douglas White
www.nsrl.nist.gov
nsrl@nist.gov

Barbara Guttman
Software Diagnostics & Conformance Testing Division
barbara.guttman@nist.gov

Sue Ballou, Office of Law Enforcement Standards
Rep. For State/Local Law Enforcement
susan.ballou@nist.gov


