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Abstract

We present a methodology that automati-
cally selects indexing algorithms for each
heading in MeSH, NLM’s vocabulary for
indexing MEDLINE. While manually com-
paring indexing methods is manageable
with a limited number of MeSH headings,
a large number of them makes automation
of this selection desirable. Results show
that this process can be automated based
on previously indexed MEDLINE records.
We find that AdaBoostM1 is better suited
to index a group of MeSH headings named
Check Tags and helps improve the micro
F-measure from 0.5385 to 0.7157 and the
macro F-measure from 0.4123 to 0.5387
(bothp < 0.01).

1 Introduction

MEDLINE R© citations are indexed using the
Medical Subject Headings (MeSH)R© controlled
vocabulary. This indexing is performed by a rel-
atively small group of highly qualified indexing
contractors and staff at the US National Library
of Medicine (NLM). Their task is becoming more
difficult due to the ever increasing size of MED-
LINE, currently increasing by around 700k arti-
cles per year1.

The Medical Text Indexer (MTI)2 (Aronson
et al., 2000; Aronson et al., 2004) is a support
tool for assisting indexers as they add MeSH in-
dexing to MEDLINE. MTI has two main com-
ponents: MetaMap (Aronson and Lang, 2010)

1http://www.nlm.nih.gov/bsd/bsdkey.html
2http://ii.nlm.nih.gov/mti.shtml

and the PubMedR© Related Citations (PRC) al-
gorithm (Lin and Wilbur, 2007). MetaMap an-
alyzes citations and annotates them with Uni-
fied Medical Language System (UMLS)R© con-
cepts. Then, the mapping from UMLS to MeSH
follows theRestrict-to-MeSH(Fung and Boden-
reider, 2005) approach which is based primarily
on the semantic relationships among UMLS con-
cepts (MMI). The PRC algorithm is a modified
k-Nearest Neighbors (k-NN) algorithm which re-
lies on document similarity to assign MeSH head-
ings (MHs). The output of MMI and PRC are
combined by linear combination of their indexing
confidence. This method attempts to increase the
recall of MTI by proposing indexing candidates
for MHs which are not explicitly present in the ti-
tle and abstract of the citation but which are used
in similar contexts.

We are studying the use of machine learning to
improve the MeSH heading assignment to MED-
LINE records performed by MTI. While compar-
ing and selecting indexing methods is manageable
with a limited number of MeSH headings, a large
number of them makes automation of this selec-
tion desirable.

In this work, we present a methodology to se-
lect an indexing algorithm for each MeSH head-
ing automatically. Experiments are performed on
the whole set of MeSH headings and on a set
MeSH headings known as Check Tags (CTs)3.
Check Tags are a special class of MeSH Head-
ings considered routinely for every article, which
cover species, sex and human age groups, histor-
ical periods and pregnancy. We show that this

3http://www.nlm.nih.gov/bsd/disted/mesh/indexprinc.html



process can be automated based on previously in-
dexed MEDLINE records.

2 Related work

We find that most of the existing MeSH indexing
methods fit either into pattern matching methods
which are based on a reference terminology (like
UMLS or MeSH) or machine learning approaches
which learn a model from examples of previously
indexed citations.

The task of MeSH indexing has been consid-
ered as a text categorization problem in the ma-
chine learning community. Publication of the
OHSUMED collection (Hersh et al., 1994) con-
taining all MEDLINE citations in 270 medical
journals over a five-year period (1987-1991) in-
cluding MeSH indexing, provided for a large
body of data that enabled us to view MH as-
signment as a classification problem. The scope
of the collection determines the subset of MeSH
that can be explored. For example, (Lewis et al.,
1996) and (Ruiz and Srinivasan, 1999) used 49
categories related to heart diseases with at least
75 training documents, and (Yetisgen-Yildiz and
Pratt, 2005) expanded the number of headings to
634 disease categories. (Poulter et al., 2008) pro-
vides an overview of these and other studies of
classification methods applied to MEDLINE and
MeSH subsets.

Among the pattern matching methods we find
MetaMap, as mentioned above, and an informa-
tion retrieval approach by (Ruch, 2006). Pat-
tern matching considers only the inner structure
of the terms but not the terms with which they co-
occur. This means that if a document is related to
a MeSH heading but the heading does not appear
in the reference source, it will not be suggested.

Currently, MeSH contains 26,142 MeSH head-
ings and over 172,000 entry terms to assist the
indexers in determining the appropriate MeSH
headings to assign to a MEDLINE citation. Small
scale studies with machine learning approaches
already exist (Aphinyanaphongs et al., 2005;
Yetisgen-Yildiz and Pratt, 2005). But the pres-
ence of a large number of categories has forced
machine learning approaches to be combined with
information retrieval methods designed to re-
duce the search space. For instance, PRC and
a k-NN approach by (Trieschnigg et al., 2009)

look for similar citations in MEDLINE and pre-
dict MeSH headings by a voting mechanism on
the top-scoring citations. Experience with MTI
shows that k-NN methods produce high recall but
low precision indexing. Other machine learn-
ing algorithms have been evaluated which rely on
a more complex representation of the citations,
e.g., learning based on Inductive Logic Program-
ming (Névéol et al., 2008).

The selection of the best indexing method is a
challenging task due to the number of available
categories and methods. In this paper, we present
a methodology which automates the selection of
indexing algorithms based on meta-learning.

3 Meta-learning

In machine learning, meta-learning (Vilalta and
Drissi, 2002; Kalousis, 2002) applies automatic
learning to machine learning experiments. In our
work, the experimental data are indexing algo-
rithm results, which are used to select the most
appropriate algorithm.

Indexing methods have different performance
depending on the MeSH heading. To illustrate
why this happens, we can place the citations in
a two dimensional space, in which a + sign is a
positive example and a - sign is a negative exam-
ple.

Figure 1 shows two sets of instances repre-
sented in this vector space. In the left image,
the positive and negative citations can be split
into two sets based on a separating hyperplane,
supporting the use of a Support Vector Machine
(SVM) approach with linear kernel. In the right
image, it is not possible to identify a hyperplane,
so another kind of learning algorithm is required,
e.g. k-NN or SVM with non-linear kernel.

Figure 1: Instance sets

Without previous experimentation, it is difficult
to know how the positive and negative instances



are distributed in the citation space. Experimen-
tation with several learning algorithms allows for
a better understanding of the problem being ad-
dressed.

We propose to collect indexing results based on
machine learning and MTI experiments and use
them as input data for the meta-learning experi-
ments. The representation of the citation will play
a role in the model optimization as well. For in-
stance, n-grams afford an appropriate representa-
tion when word collocation is relevant for index-
ing.

The optimization parameters are one level
above traditional machine learning since the ob-
jective is not to improve an existing learning al-
gorithm but to select the best algorithm and its
configuration for a given problem. In table 1,
we compare the performance of MTI and several
standard machine learning algorithms for theHu-
mansMeSH heading. In this case, AdaBoostM1
outperforms all the other methods and would be
the method of choice for indexing citations with
HumansMH.

Method Average F-measure
MTI 0.72
Naı̈ve Bayes 0.85
Support Vector Machine 0.88
AdaBoostM1 0.92

Table 1: F-measure for indexing methods on theHu-
mansMeSH Heading

4 Methods

In this section, we present the training the frame-
work, and how it is used to index citations. Then,
the base methods used for MeSH indexing are
shown. The methods include MTI, a dictionary
lookup approach and several machine learning al-
gorithms.

Experiments have been performed on a set of
300k citations from the 2011 MEDLINE indexing
and 2011 MeSH. The citations are sorted by date
so the first 200k citations are used for training and
the remaining 100k for test.

4.1 Training

The outcome of the training is a mapping be-
tween a MeSH heading and an indexing method

to be used for that MeSH heading. The perfor-
mance of each algorithm on each MeSH heading
is collected and compared. In this work, we have
used the F-measure as our indexing performance
measurement which is standard in text categoriza-
tion, even though other measurements like accu-
racy could be considered as well.

Since machine learning algorithms require
training, we have split the 200k training data into
training and validation subsets. To increase con-
fidence, several training and validation splits are
evaluated and the results averaged. We have con-
sidered 5 times 2-fold cross validation. Statis-
tical significance of the results is computed us-
ing a randomization version of the two sample t-
test (Cohen, 1995).

In each split, the steps to estimate the perfor-
mance of each algorithmA for each MeSH head-
ing M are:

• Step 1: If required, train algorithmA using
the training subset. The positive examples
are the citations indexed with theM MeSH
heading, the rest are considered as negative
examples.

• Step 2: Use algorithmA to index the cita-
tions in the validation subset withM MeSH
heading.

• Step 3: Compute the performance of algo-
rithm A, i.e., the F-measure, comparing the
indexing produced in Step 2 to the original
indexing for the validation set.

This process is repeated for each MeSH head-
ing. The best method for each heading is selected
and stored in a mapping table. In the case of ma-
chine learning methods, the trained model for the
best method is also stored into the table.

4.2 Indexing

During indexing time, the mapping table prepared
during the training process is used to index cita-
tions. Given a new citation, for each MeSH head-
ing M the corresponding method from the map-
ping table is selected and used to determine if the
citation should be indexed withM .

Several implementations could be considered
to speed up the indexing. Batch indexing of the
citations and a post-processing of the outcome



could be considered to index the citations with
predictions by MTI, filtering out the predictions
for which MTI was not the preferred method. On
the other hand, trained machine learning models
could be applied in parallel to determine the in-
dexing. This would allow processing of a large
number of citations with one method instead of
processing a single citation by all the methods.
Again, the results would be post-processed, but
this time to merge the results of each indexing
method.

4.3 MeSH indexing methods

Most of the indexing algorithms we study here re-
quire a training phase. MTI and dictionary lookup
do not. MTI has already been described in the in-
troduction, so we focus on the other methods used
in our experiments.

Since the main focus of the paper is the meta-
learning framework, only machine learning al-
gorithms that we could train using a large num-
ber of examples and a large number of categories
(MeSH headings) have been selected. Only Ad-
aBoostM1 has been used in a reduced set of
MeSH headings. We are planning to include more
learning algorithms as they are integrated in our
system.

4.4 Dictionary lookup

This method looks for mentions of the MeSH
heading terms in the citation text as they appear
in MeSH. If the mention of a MeSH heading is
matched in the citation text, the citation is in-
dexed with this MeSH heading. Thepreferred
term and itsentry termsare included in the dic-
tionary. MeSH is turned into a list of terms and
IDs.

Our dictionary lookup implementation is based
on the monqJFA package4. In addition to match-
ing the dictionary terms to text, morphological
changes are applied to the lexical items; e.g.,
the case of the first letter is normalized, hy-
phens are changed to spaces and plural termi-
nation is normalized. Furthermore, the longest
matched span is selected. For instance, the
span of text “...quality of breast cancer care...”
matchescancerandbreast cancer. In this case,
the matchbreast canceris selected.

4http://monqjfa.berlios.de

In our work, dictionary lookup is used to in-
dex a citation based on the title and abstract text
(MeSH TIAB DL) and to index only the title
(MeSH TI DL), which might provide higher pre-
cision at the cost of recall.

4.5 Näıve Bayes

A citation C is indexed with a MeSH headingI
if the probability of indexing the citation with the
MeSH heading is higher than the probability of
not being indexed with the MeSH headingNI:

P (I|C) > P (NI|C) (1)

Using Bayes:

P (I)P (C|I)

P (C)
>

P (NI)P (C|NI)

P (C)
(2)

We can removeP (C) without affecting the in-
equality.

As presented in the following equation, the
probability of a citation being indexed with a
given MeSH heading is the product of the prob-
abilities of each termt in the citation. The prob-
ability of a citation not indexed with the MeSH
heading is estimated in the same way.

P (C|I) =
∏

t∈C

P (t|I) (3)

The probability of a term given a MeSH head-
ing is estimated as shown in the following equa-
tions, whereN is the total number of citations,
cft,I is the number of citations where termt ap-
pears and the citation is indexed with the MeSH
heading.V is the set of all tokens.

P (t|I) =
cft,I∑

tV ∈V cftV ,I

(4)

We use a smoothed model based on Jelinek-
Mercer (Manning et al., 2008) due to term spar-
sity. In our experiments, we have used a value for
λ of 0.8.

P̂ (t|I) = λP (t|I) + (1 − λ)P (t|G) (5)

Finally, the prior P (I) is presented below
where cfI is the number of citations that have
been indexed with the MeSH headingI.



P (I) =
cfI

N
(6)

We have implemented, in addition, a variant of
Naı̈ve Bayes (NB) based on TF-IDF (Rennie et
al., 2003) which has shown to improve the perfor-
mance on traditional NB for text categorization.

We represent documents as binary features, so
the frequency of a term in a document is not con-
sidered. We use a unigram model so the relation
of the terms in the citation is also not considered.

4.6 Rocchio

Usually used in query expansion in ad-hoc re-
trieval, Rocchio has been used as well for text cat-
egorization. A vector is calculated for each MeSH
heading by adding the mentions of the termt in
the citations where the MHI and the term occur
together as we can see in the following formula.

~q = {
cft1,I

N
, . . . ,

cftV , I

N
} (7)

Given a citation, MeSH headings are ranked by
cosine similarity. From this ranked list, we take
the top n MHs. In our experiments, we have con-
sidered the top 20.

4.7 AdaBoostM1

AdaBoostM1 (Schapire et al., 1996) is an ensem-
ble learning algorithm which samples iteratively
from the training data according to the perfor-
mance of a base learner. In each iteration, a new
model is produced. The final decision is based on
the weighted sum of the models produced in the
iterative process. The weights are estimated based
on the performance of each model on the training
data. In this work, 10 iterations are performed.

In our experiments, we use C4.5 as the base
learner since it produced good results in the
past (Jimeno-Yepes et al., 2011) with a smaller
set of MeSH headings. Our decision tree is an
implementation of the C4.5 algorithm (Quinlan,
1986) with pruning and the minimum number of
elements in leaf nodes set to 5. In our imple-
mentation, we consider binary features and 1-
versus-all classification as well. This setup allows
for optimizations in the information gain calcula-
tion that allow training this algorithm efficiently.
We trained the learner on the random training set

splits as well as with oversampling of the posi-
tive examples trying to overcome skewness in the
distribution of positive and negative examples. In
oversampling, examples are added to the minority
category. In our experiments, we selected exam-
ples randomly from the minority category till both
categories had the same number of examples.

4.8 Voting

Combinations of methods have proved to increase
performance of individual methods (Kim et al.,
2009; Hirschman et al., 2005).

Given a citation, for a given MeSH heading the
predictions for each of the indexing methods pre-
sented above are collected. Then, the number of
votes are counted and if the sum of the votes is
over a given threshold, the MeSH heading is pre-
dicted by this method.

5 Results and Discussion

We have performed two experiments. In the first
one, we have considered all the MHs and trained
algorithms which can handle a large number of
categories and features. In the second one, we
show results for the reduced set of MHs named
Check Tags.

In both experiments, MTI annotation is consid-
ered the baseline method. Features for the ma-
chine learning algorithms are represented as the
presence of tokens from the title and abstract of
the citation, no frequency of the tokens in the ci-
tation text is used. Tokens are lowercased but not
stemmed.

5.1 Results with all MeSH headings

This experiment is done on all MeSH headings.
These experiments used all but the AdaBoostM1
method due to the time it takes to train it. For
2,712 of the 26k MeSH headings, a different
method than MTI is selected; either a single
method or a voting combination of them. In ta-
ble 2, we only show the set of MeSH headings
grouped by learning method where MTI is outper-
formed by methods as selected by meta-learning.
MTI is the best algorithms for the MeSH headings
not included in this table.

Voting 3, at least three methods agree on pre-
dicting the MeSH heading, seems to perform
better than the individual methods tested in this



work. Surprisingly, dictionary lookup (MeSH
TIAB DL) is performing reasonably well in some
cases compared to MTI. Machine learning meth-
ods perform better only on a small set of MHs;
one of the problems could be the small number of
positive examples available for most of the MeSH
headings. NB has good performance on the most
frequent MeSH headings (Humans, MaleandFe-
male), which belong to the set of CTs. The mod-
ified NB (NBTFIDF) has a better performance
for a larger number of MeSH Headings compared
to plain Naı̈ve Bayes. Finally, Rocchio performs
better in a larger number of MeSH headings com-
pared to the other two NB algorithms.

We can see that only a limited number of
MeSH headings were affected by using the pro-
posed approach. We have analyzed the results
and found that the improvements appear signifi-
cantly on MeSH headings which had a higher in-
dexing frequency. The large imbalance and vari-
ability between the training and test might justify
the results obtained with lower frequency MeSH
headings. Another factor is that, since the MTI
is the current system, it has been left as default
if the differences with MTI were not statistically
significant.

5.2 Results with Check Tags

In this experiment, we have included Ad-
aBoostM1 as a learning algorithm. In table 3, we
evaluate the selected method on the test data. We
show that in most of the cases, the AdaBoostM1
with oversampling is the selected method. In ta-
ble 4, we compare the overall Check Tags results
with the MTI results. The performance of MTI
is largely improved by meta-learning methods. In
particular,Middle Aged, Young Adultand history-
related terms profit from the use of alternative
methods which have very low MTI performance.
These results are in agreement with the experi-
ments performed with all of MEDLINE, in which
high frequency MHs show a larger improvement
based on meta-learning.

6 Conclusions and Future Work

We have presented a framework which allows
comparing alternative indexing strategies and an
automated way of deciding on an optimal strategy
a large scale categorizer, namely MTI. We plan

to add classifiers like Support Vector Machines
and to experiment with a larger set of MHs with
AdaBoostM1. In addition, we would like to in-
clude techniques which could learn with very im-
balanced datasets to improve the performance in
lower frequency MeSH headings.

We have considered only the text from the ti-
tle and abstract. More information is available in
MEDLINE meta-data which might be exploited;
examples include the journal and author affilia-
tions.

Other sampling techniques, like synthetic sam-
pling, might overcome some of the problems of
oversampling and undersampling.

We would like to work as well on the automatic
combination of the indexing methods. This may
require a combination of features and models in
which genetic programming might play a relevant
role.
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Animals D000818 AdaBoostM1 OverSampling 24,218 18,111 3,405 0.8417 0.7478 0.7920

MTI 17,582 2,712 0.8664 0.7260 0.7900
Bees D001516 MTI 59 46 19 0.7077 0.7797 0.7419
Cats D002415 vote.3 233 153 18 0.8947 0.6567 0.7574

MTI 196 107 0.6469 0.8412 0.7313
Cattle D002417 AdaBoostM1 OverSampling 1,114 791 269 0.7462 0.7101 0.7277

MTI 772 271 0.7402 0.6930 0.7158
Cercopithecus aethiops D002522 MTI 206 62 56 0.5254 0.3010 0.3827
Chick Embryo D002642 AdaBoostM1 OverSampling 92 55 57 0.4911 0.5978 0.5392

MTI 28 9 0.7568 0.3043 0.4341
Child D002648 MTI 6,082 3,501 2,122 0.6226 0.5756 0.5982
Child, Preschool D002675 AdaBoostM1 OverSampling 3,302 1,495 1,448 0.5080 0.4528 0.4788

MTI 23 62 0.2706 0.0070 0.0136
Cricetinae D006224 AdaBoostM1 OverSampling 321 158 62 0.7182 0.4922 0.5841

MTI 171 157 0.5213 0.5327 0.5270
Dogs D004285 AdaBoostM1 633 461 70 0.8682 0.7283 0.7921

MTI 483 134 0.7828 0.7630 0.7728
Female D005260 AdaBoostM1 OverSampling 35,501 25,824 6,718 0.7936 0.7274 0.7590

MTI 11,335 1,812 0.8622 0.3193 0.4660
Guinea Pigs D006168 MTI 132 103 11 0.9035 0.7803 0.8374
History, 15th Century D049668 AdaBoostM1 OverSampling 42 9 437 0.0202 0.2143 0.0369

MTI 0 0 0.0000 0.0000 0.0000
History, 16th Century D049669 AdaBoostM1 72 2 10 0.1667 0.0278 0.0476

MTI 0 0 0.0000 0.0000 0.0000
History, 17th Century D049670 AdaBoostM1 94 6 21 0.2222 0.0638 0.0992

MTI 0 0 0.0000 0.0000 0.0000
History, 18th Century D049671 AdaBoostM1 145 12 23 0.3429 0.0828 0.1333

MTI 0 0 0.0000 0.0000 0.0000
History, 19th Century D049672 AdaBoostM1 OverSampling 397 128 497 0.2048 0.3224 0.2505

MTI 0 0 0.0000 0.0000 0.0000
History, 20th Century D049673 AdaBoostM1 OverSampling 928 375 1097 0.2548 0.4041 0.3125

MTI 0 0 0.0000 0.0000 0.0000
History, 21st Century D049674 AdaBoostM1 OverSampling 476 97 730 0.1173 0.2038 0.1489

MTI 0 0 0.0000 0.0000 0.0000
History, Ancient D049690 AdaBoostM1 OverSampling 103 35 112 0.2381 0.3398 0.2780

MTI 0 0 0.0000 0.0000 0.0000
History, Medieval D049691 AdaBoostM1 OverSampling 59 10 64 0.1351 0.1695 0.1504

MTI 0 0 0.0000 0.0000 0.0000
History of Medicine D006666 MTI 27 1 3 0.25 0.0370 0.0645
Horses D006736 MTI 229 182 37 0.8311 0.7948 0.8125
Humans D006801 AdaBoostM1 71,484 66,429 5,985 0.9174 0.9293 0.9233

MTI 48,318 4,360 0.9172 0.6759 0.7783
Infant D007223 AdaBoostM1 OverSampling 2,569 1,144 1,224 0.4831 0.4453 0.4634

MTI 668 841 0.4427 0.2600 0.3276
Infant, Newborn D007231 AdaBoostM1 OverSampling 1,985 1,042 851 0.5504 0.5249 0.5374

MTI 850 419 0.6698 0.4282 0.5224
Male D008297 AdaBoostM1 OverSampling 34,463 24,664 7,107 0.7763 0.7157 0.7448

MTI 8,602 1,405 0.8596 0.2496 0.3869
Mice D051379 MTI 7,144 5,332 810 0.8681 0.7464 0.8026
Middle Aged D008875 AdaBoostM1 OverSampling 18,709 12,275 6,351 0.6590 0.6561 0.6576

MTI 56 500 0.1007 0.0030 0.0058
Pregnancy D011247 AdaBoostM1 OverSampling 2,637 1,988 653 0.7527 0.7539 0.7533

MTI 2,107 880 0.7054 0.7990 0.7493
Rabbits D011817 MTI 531 418 58 0.8781 0.7872 0.8302
Rats D051381 MTI 4,577 3,681 443 0.8926 0.8042 0.8461
Sheep D012756 AdaBoostM1 OverSampling 249 196 78 0.7153 0.7871 0.7495

MTI 199 125 0.6142 0.7992 0.6946
Swine D013552 AdaBoostM1 OverSampling 767 581 212 0.7327 0.7575 0.7449

MTI 479 187 0.7192 0.6245 0.6685
United States D014481 AdaBoostM1 OverSampling 3,510 1,369 2,130 0.3913 0.3900 0.3906

MTI 1,007 1,614 0.3842 0.2869 0.3285
Young Adult D055815 ROCCHIO.output 8,527 3,561 10,388 0.2553 0.4176 0.3169

MTI 12 186 0.0606 0.0014 0.0026

Table 3: Results for MTI and Meta-learning for the CTs set

Methods Micro P Micro R Micro F Macro P Macro R Macro F
Meta-learning 0.7151 0.7157 0.7154 0.5549 0.5236 0.5387
MTI 0.8283 0.3989 0.5385 0.4884 0.3567 0.4123

Table 4: Micro and macro results for the CTs set


