
Guide to Enterprise Patch

Management Technologies

(Draft)

Recommendations of the National Institute
of Standards and Technology

Murugiah Souppaya
Karen Scarfone

Special Publication 800-40

Revision 3 (Draft)

NIST Special Publication 800-40

Revision 3 (Draft)

Guide to Enterprise Patch Management
Technologies (Draft)

Recommendations of the National
Institute of Standards and Technology

Murugiah Souppaya

Computer Security Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-8930

Karen Scarfone

Scarfone Cybersecurity

C O M P U T E R S E C U R I T Y

September 2012

U.S. Department of Commerce

Rebecca Blank, Acting Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary of Commerce

for Standards and Technology and Director

 1-2

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology

(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s

measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of

concept implementations, and technical analyses to advance the development and productive use of

information technology. ITL’s responsibilities include the development of management, administrative,

technical, and physical standards and guidelines for the cost-effective security and privacy of other than

national security-related information in Federal information systems. The Special Publication 800-series

reports on ITL’s research, guidelines, and outreach efforts in information system security, and its

collaborative activities with industry, government, and academic organizations.

 1-3

Authority

This publication has been developed by NIST to further its statutory responsibilities under the Federal

Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is responsible for

developing information security standards and guidelines, including minimum requirements for Federal

information systems, but such standards and guidelines shall not apply to national security systems

without the express approval of appropriate Federal officials exercising policy authority over such

systems. This guideline is consistent with the requirements of the Office of Management and Budget

(OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A-

130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A-130,

Appendix III, Security of Federal Automated Information Resources.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory

and binding on Federal agencies by the Secretary of Commerce under statutory authority. Nor should

these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of

Commerce, Director of the OMB, or any other Federal official. This publication may be used by

nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States.

Attribution would, however, be appreciated by NIST.

Public comment period: September 5

through October 5, 2012

National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Electronic mail: 800-40comments@nist.gov

National Institute of Standards and Technology Special Publication 800-40 Revision 3 (Draft)

Natl. Inst. Stand. Technol. Spec. Publ. 800-40 r3, 26 pages (Sep. 2012)

CODEN: NSPUE2

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an

experimental procedure or concept adequately. Such identification is not intended to imply recommendation or

endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the

best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in

accordance with its assigned statutory responsibilities. The information in this publication, including concepts

and methodologies, may be used by Federal agencies even before the completion of such companion

publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where

they exist, remain operative. For planning and transition purposes, Federal agencies may wish to closely follow

the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide

feedback to NIST. All NIST publications, other than the ones noted above, are available at

http://csrc.nist.gov/publications.

 1-4

Acknowledgments

The authors, Murugiah Souppaya of the National Institute of Standards and Technology (NIST) and

Karen Scarfone of Scarfone Cybersecurity, wish to thank their colleagues who reviewed drafts of this

document and contributed to its technical content.

Acknowledgments, Version 2

The authors, Peter Mell of NIST, Tiffany Bergeron of The MITRE Corporation, and David Henning of

Hughes Network Systems, LLC, wish to express their thanks to Rob Pate of the United States Computer

Emergency Readiness Team (US-CERT) for providing support for this publication. In addition, the

authors would like to thank Miles Tracy of the U.S. Federal Reserve System, who co-authored the

original version of the publication and provided significant input for this version, and Tanyette Miller of

Booz Allen Hamilton, who put together the patching resources found in the appendices. The authors

would also like to express their thanks to Timothy Grance of NIST, Manuel Costa and Todd Wittbold of

The MITRE Corporation, Matthew Baum of the Corporation for National and Community Service, and

Karen Kent of Booz Allen Hamilton for their insightful reviews, and to representatives from Department

of Health and Human Services, Department of State, Environmental Protection Agency, Federal Reserve

Board, and PatchAdvisor for their particularly valuable comments and suggestions.

Abstract

Patch management is the process for identifying, acquiring, installing, and verifying patches for products

and systems. Patches correct security and functionality problems in software and firmware. There are

several challenges that complicate patch management. If organizations do not overcome these challenges,

they will be unable to patch systems effectively and efficiently, leading to easily preventable

compromises. This publication is designed to assist organizations in understanding the basics of

enterprise patch management technologies. It explains the importance of patch management and examines

the challenges inherent in performing patch management. It provides an overview of enterprise patch

management technologies and it also briefly discusses metrics for measuring the technologies’

effectiveness and for comparing the relative importance of patches.

Keywords

information security; patch management; remediation; software patches; vulnerability management

Trademark Information

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the

United States and other countries.

All other names are registered trademarks or trademarks of their respective companies.

 1-5

Table of Contents

Executive Summary ...vi

1. Introduction .. 1

1.1 Document Purpose and Scope .. 1
1.2 Audience ... 1
1.3 Document Structure .. 1

2. The Importance of Patch Management ... 2

3. The Challenges of Patch Management ... 3

3.1 Timing, Prioritization, and Testing.. 3
3.2 Patch Management Configuration ... 4
3.3 Alternative Host Architectures ... 5
3.4 Other Challenges .. 6

3.4.1 Software Inventory Management ... 6
3.4.2 Resource Overload ... 6
3.4.3 Installation Side Effects ... 6
3.4.4 Patch Implementation Verification ... 6
3.4.5 Application Whitelisting ... 6

4. Enterprise Patch Management Technologies... 8

4.1 Components and Architecture ... 8
4.1.1 Agent-Based ... 8
4.1.2 Agentless Scanning .. 8
4.1.3 Passive Network Monitoring .. 9

4.2 Security Capabilities .. 9
4.2.1 Inventory Management Capabilities .. 9
4.2.2 Patch Management Capabilities .. 9
4.2.3 Other Capabilities .. 9

4.3 Management Capabilities .. 9
4.3.1 Technology Security ...10
4.3.2 Phased Deployment ...10
4.3.3 Usability and Availability ...10

5. Metrics ...12

List of Appendices

Appendix A— Security Content Automation Protocol (SCAP) Tutorial14

Appendix B— Summary of Recommendations ..16

Appendix C— Acronyms and Abbreviations ..18

 vi

Executive Summary 1

Patch management is the process for identifying, acquiring, installing, and verifying patches for products 2

and systems. Patches correct security and functionality problems in software and firmware. From a 3

security perspective, patches are most often of interest because they are mitigating software flaw 4

vulnerabilities; applying patches to eliminate these vulnerabilities significantly reduces the opportunities 5

for exploitation. Patches serve other purposes than just fixing software flaws; they can also add new 6

features to software and firmware, including security capabilities. 7

There are several challenges that complicate patch management. If organizations do not overcome these 8

challenges, they will be unable to patch systems effectively and efficiently, leading to easily preventable 9

compromises. Organizations that can minimize the time they spend dealing with patching can use those 10

resources for addressing other security concerns. Already many organizations have largely 11

operationalized their patch management, making it more of a core IT function than a part of security. 12

However, it is still important for all organizations to carefully consider patch management in the context 13

of security because patch management is so important to achieving and maintaining sound security. 14

This publication is designed to assist organizations in understanding the basics of enterprise patch 15

management technologies. It explains the importance of patch management and examines the challenges 16

inherent in performing patch management. It provides an overview of enterprise patch management 17

technologies and it also briefly discusses metrics for measuring the technologies’ effectiveness and for 18

comparing the relative importance of patches. 19

Organizations should implement the following recommendations to improve the effectiveness and 20

efficiency of their enterprise patch management technologies. 21

Organizations should deploy enterprise patch management tools using a phased approach. 22

This allows process and user communication issues to be addressed with a small group before deploying 23

the patch application universally. Most organizations deploy patch management tools first to standardized 24

desktop systems and single-platform server farms of similarly configured servers. Once this has been 25

accomplished, organizations should address the more difficult issue of integrating multiplatform 26

environments, nonstandard desktop systems, legacy computers, and computers with unusual 27

configurations. Manual methods may need to be used for operating systems and applications not 28

supported by automated patching tools, as well as some computers with unusual configurations. 29

Organizations should reduce the risks associated with enterprise patch management tools through 30

the application of standard security techniques that should be used when deploying any enterprise-31

wide application. 32

Deploying enterprise patch management tools within an enterprise can create additional security risks for 33

an organization; however, a much greater risk is faced by organizations that do not effectively patch their 34

systems. Such tools usually increase security far more than they decrease security, especially when the 35

tools contain built-in security measures to protect against security risks and threats. Risk associated with 36

these tools include patches being altered, credentials being misused, vulnerabilities in the tools being 37

exploited, and entities monitoring tool communications to identify vulnerabilities. Examples of possible 38

countermeasures to these risks include keeping the patching solution components tightly secured and up-39

to-date, encrypting network communications, verifying the integrity of patches before installing them, and 40

testing patches before deployment. 41

 vii

Organizations should balance their security needs with their needs for usability and availability. 42

For example, installing a patch may “break” other applications; this can best be addressed by testing 43

patches before deployment. Another example is that forcing application restarts, OS reboots, and other 44

host state changes is disruptive and could cause loss of data or services. Again, organizations need to 45

balance the need to get patches applied with the need to support operations. A final example, particularly 46

important for mobile devices, is the acquisition of updates over low-bandwidth or metered connections; it 47

may be technically or financially infeasible to download large patches over such connections. 48

Organizations should make provisions for ensuring that their enterprise patching solution works for 49

mobile hosts and other hosts used on low-bandwidth or metered networks. 50

 51

 1

1. Introduction 52

1.1 Document Purpose and Scope 53

This publication is designed to assist organizations in understanding the basics of enterprise patch 54

management technologies. 55

1.2 Audience 56

This document has been created for security managers, engineers, administrators, and others who are 57

responsible for acquiring, testing, prioritizing, implementing, and verifying security patches. Auditors and 58

others who need to assess the security of systems may also find this publication useful. 59

1.3 Document Structure 60

This document is organized into the following sections and appendices: 61

 Section 2 explains the importance of patch management. 62

 Section 3 examines the challenges inherent in performing patch management. 63

 Section 4 provides an overview of enterprise patch management technologies. 64

 Section 5 briefly discusses possible metrics for measuring the effectiveness of patch management 65

technologies and for comparing the relative importance of patches. 66

 Appendix A provides a tutorial on the Security Content Automation Protocol (SCAP) and its role 67

in enterprise patch management. 68

 Appendix B provides a summary of the main recommendations made throughout the publication. 69

 Appendix C defines selected acronyms and other abbreviations for the document. 70

 71

 2

2. The Importance of Patch Management 72

Patch management is the process for identifying, acquiring, installing, and verifying patches for products 73

and systems. Patches correct security and functionality problems in software and firmware. From a 74

security perspective, patches are most often of interest because they are mitigating software flaw 75

vulnerabilities; applying patches to eliminate these vulnerabilities significantly reduces the opportunities 76

for exploitation. Also, patches are usually the most effective way to mitigate software flaw vulnerabilities, 77

and are often the only fully effective solution. Sometimes there are alternatives to patches, such as 78

temporary workarounds involving software or security control reconfiguration, but these workarounds 79

often negatively impact functionality. 80

Patches serve other purposes than just fixing software flaws; they can also add new features to software 81

and firmware, including security capabilities. New features can also be added through upgrades, which 82

bring software or firmware to a newer version in a much broader change than just applying a patch. 83

Upgrades may also fix security and functionality problems in previous versions of software and firmware. 84

Also, vendors often stop supporting older versions of their products, which includes no longer releasing 85

patches to address new vulnerabilities, thus making older versions less secure over time. Upgrades are 86

necessary to get such products to a supported version that is patched. 87

As Section 3 explains, there are several challenges that complicate patch management. If organizations do 88

not overcome these challenges, they will be unable to patch systems effectively and efficiently, leading to 89

easily preventable compromises. Organizations that can minimize the time they spend dealing with 90

patching can use those resources for addressing other security concerns. Already many organizations have 91

largely operationalized their patch management, making it more of a core IT function than a part of 92

security. However, it is still important for all organizations to carefully consider patch management in the 93

context of security because patch management is so important to achieving and maintaining sound 94

security. 95

Patch management is required by various security compliance frameworks, mandates, and other policies. 96

For example, NIST Special Publication (SP) 800-53
1
 requires the SI-2, Flaw Remediation security 97

control, which includes installing security-relevant software and firmware patches, testing patches before 98

installing them, and incorporating patches into the organization’s configuration management processes. 99

Another example is the Payment Card Industry (PCI) Data Security Standard (DSS)
2
, which requires that 100

the latest patches be installed and sets a maximum timeframe for installing the most critical patches. 101

 102

 103

1 http://csrc.nist.gov/publications/PubsSPs.html#800-53-rev4
2 https://www.pcisecuritystandards.org/security_standards/

http://csrc.nist.gov/publications/PubsSPs.html#800-53-rev4
https://www.pcisecuritystandards.org/security_standards/

 3

3. The Challenges of Patch Management 104

This section briefly examines the challenges inherent in performing patch management. These are the 105

challenges that the patch management technologies discussed in Section 4 are trying to solve. 106

3.1 Timing, Prioritization, and Testing 107

Timing, prioritization, and testing are intertwined issues for enterprise patch management. Ideally, an 108

organization would deploy every new patch immediately to minimize the time that systems are 109

vulnerable. However, in reality this is simply not possible because organizations have limited resources, 110

which makes it necessary to prioritize which patches should be installed before other patches. Further 111

complicating this is the significant risk of installing patches without first testing them, which could cause 112

serious operational disruptions, potentially even more damaging than the corresponding security impact 113

of not pushing the patches out. Unfortunately, testing patches consumes even more of the limited 114

resources and makes prioritization even more important. For patch management, timing, prioritization, 115

and testing are often in conflict. 116

Product vendors have responded to this conflict by bundling patches for their products. Instead of 117

releasing dozens of patches one at a time over a period of three months, necessitating testing and patch 118

deployment every few days, a vendor might release their patches in a single bundle once a quarter. This 119

allows an organization to perform testing once and roll out patches once, which is far more efficient than 120

testing and rolling out all the patches separately. It also reduces the need to prioritize patches—the 121

organization just needs to prioritize the bundle instead of separately prioritizing each patch it contains. 122

Vendors who bundle patches tend to release them monthly or quarterly, except for cases when an 123

unpatched vulnerability is actively being exploited, in which case they usually issue the appropriate patch 124

immediately instead of delaying it for the next bundle. 125

There is a downside to patch bundling; it lengthens the time from when a vulnerability is discovered to 126

the time a patch for it becomes publicly available. If an attacker discovers the same vulnerability before 127

the patch is released, the attacker may have a longer window of opportunity to exploit the vulnerability 128

because of the intentional delay in releasing the patch. However, there are two mitigating factors here. 129

One is that if exploitation is known to be occurring, the vendor is likely to release the patch immediately. 130

The other factor is that patches may be installed more quickly if they are bundled than if they are all 131

released separately. So that effectively helps to shrink the window of opportunity for vulnerabilities 132

associated with bundled patches. 133

There are even more issues to consider with timing. The release of a patch may provide attackers with the 134

information that they need to exploit the corresponding vulnerability (e.g., reverse engineer the 135

vulnerability from the patch), meaning that a newly released patch might need to be applied immediately 136

to avoid compromises. However, if a vulnerability is not being exploited yet, organizations should 137

carefully weigh the security risks of not patching with the operational risks of patching without 138

performing thorough testing first. In some operational environments, such as virtual hosts with snapshot 139

capabilities enabled, it may be preferable to patch without testing as long as the organization is fully 140

prepared to roll back the patches if there are usability or functionality problems caused by them. 141

Another fundamental issue with timing is forcing the implementation of changes, to make a patch take 142

effect; this can require restarting a patched application or service, rebooting the operating system
3
, or 143

3 This can be problematic when the host requires authentication before booting, such as the use of full disk encryption (FDE)

software. Organizations using FDE software or other technologies that require authentication before booting should

carefully consider the impact that these technologies may have on patch installation.

 4

making other changes to the state of the host. Ultimately what matters is not when the patch was installed, 144

but when the patch actually takes effect. In some cases it may make more sense to mitigate a vulnerability 145

through an alternative method, at least until patches are fully operational. An example is changing 146

configuration settings for vulnerable software to temporarily block vulnerable application functionality. 147

Each mitigation option has different implications for the security, functionality, and operations of the 148

vulnerable host, so it is not a trivial matter to select one option over others. Also, if configuration settings 149

are changed, this necessitates preserving the old setting values and restoring them at the appropriate time. 150

Another problem with changing configuration settings is that they often require a state change to the host 151

to take effect, such as restarting an application. Implementing configuration changes may be as disruptive 152

to the operations of a host as installing a patch. 153

Prioritizing which patches to apply and when to apply them is closely related to timing, but there are other 154

considerations as well. It can depend on the relative importance of the vulnerable systems (for example, 155

servers versus clients) and the relative severity of each vulnerability (e.g., vulnerability severity metrics 156

such as the Common Vulnerability Scoring System [CVSS]). Another consideration is dependencies that 157

patches may have on each other; installing one patch may require installing other patches first, and in 158

some cases restarting an application or rebooting a host multiple times to make the patches take effect 159

sequentially. 160

In summary, organizations should carefully consider the relevant issues related to timing, prioritization, 161

and testing when planning and executing their enterprise patch management processes. 162

3.2 Patch Management Configuration 163

Another major challenge in enterprise patch management is that there are usually multiple mechanisms 164

for applying patches. For example: 165

 A piece of software may be able to automatically update itself. 166

 A centralized OS management tool may be able to initiate patching. 167

 Third-party patch management applications may be able to initiate patching. 168

 Network access control, health check technologies, and similar technologies may be able to 169

initiate patching. 170

 A user may be able to manually direct software to update itself. 171

 A user may be able to manually install a patch or a new version of the software. 172

Having multiple ways of applying patches can cause conflicts. Multiple methods might each try to patch 173

the same software, which is particularly problematic when the organization doesn’t want certain patches 174

applied because of issues with those patches, testing delays, etc. Multiple methods can also cause patches 175

to be delayed or missed because each tool or administrator may assume another one is already taking care 176

of a particular patch. Organizations should identify all the ways in which patches could be applied and act 177

to resolve any conflicts among patch application methods. 178

A related problem with patch management configuration is that users may override or circumvent patch 179

management processes. If users are able to make changes to their hosts’ software, such as altering settings 180

(e.g., enabling direct updates, disabling patch management software), installing old versions of software, 181

and uninstalling patches, they can undermine patch management integrity. To address these problems, 182

 5

organizations should ensure that users cannot disable or otherwise negatively affect enterprise patch 183

management technologies, and organizations should perform continuous monitoring of enterprise patch 184

management technologies to identify any issues that occur. 185

3.3 Alternative Host Architectures 186

Enterprise patch management is relatively straightforward when all of the hosts are fully managed and 187

running typical applications and operating systems on a regular platform. When alternative host 188

architectures are employed, patch management can be considerably more challenging. Examples of these 189

architectures include the following: 190

 Unmanaged hosts. As discussed in Section 3.2, it can be much more difficult to control patching 191

when hosts are not centrally managed (i.e., users manage their own hosts). 192

 Out-of-office hosts (e.g., telework laptops). Hosts on other networks are not protected by the 193

enterprise’s network security controls (firewalls, network intrusion detection systems, 194

vulnerability scanners, etc.) 195

 Non-standard IT components (e.g., appliances). On such hosts, it’s often not possible to patch 196

individual applications independently. Rather, the organization must wait for the component 197

vendor to release updated software. 198

 Mobile devices. Smartphones, tablets, and other mobile devices (excluding laptops) typically run 199

mobile operating systems, and patching for these devices is fundamentally different. It is often 200

necessary to connect the mobile device to a desktop or laptop and to acquire and download 201

updates through that desktop or laptop. Some mobile devices can directly download updates, but 202

this can be problematic because of bandwidth considerations (such as taking a long time to 203

download large updates and paying data charges for the downloads). Another option for keeping 204

mobile devices updated is the use of enterprise mobile device management software. Enterprise 205

mobile device management software is used to manage mobile devices, even personally owned 206

devices not controlled by the organization. It can install, update, and remove applications, and it 207

can restrict enterprise access if the phone’s operating system and mobile device management 208

software are not up to date. See Section 3 of SP 800-124 Revision 1, Guidelines for Managing 209

and Securing Mobile Devices in the Enterprise, for more information. 210

 Operating system virtualization. Patches need to be maintained for every OS image and 211

snapshot used for full virtualization. Patching capabilities are often built into virtualized 212

environments, such as the ability to patch offline images and quarantine dormant virtual machine 213

instances. See NIST SP 800-125, Guide to Security for Full Virtualization Technologies, for 214

additional information—specifically, Section 3.3 discusses virtual machine image and snapshot 215

management. 216

 Firmware. Firmware updates, such as updating the system BIOS, generally require special 217

privileges and involve different procedures than other types of updates. See NIST SP 800-147, 218

BIOS Protection Guidelines, for additional information on BIOS updates. 219

Organizations should carefully consider all alternative host architectures in use for the enterprise when 220

designing enterprise patch management policies and solutions. 221

 6

3.4 Other Challenges 222

This section briefly discusses other challenges not covered earlier in this section. 223

3.4.1 Software Inventory Management 224

Enterprise patch management is dependent on having a current and complete inventory of the patchable 225

software (applications and operating systems) installed on each host. This inventory should include not 226

only which software is currently installed on each host, but also what version of each piece of software is 227

installed. Without this information, the correct patches cannot be identified, acquired, and installed. This 228

inventory information is also necessary for identifying older versions of installed software so that they 229

can be brought up to date. A major benefit of updating older versions is that it reduces the number of 230

software versions that need to be patched and have their patches tested. 231

3.4.2 Resource Overload 232

Enterprise patch management can cause resources to become overloaded. For example, many hosts might 233

start downloading the same large patch (or bundle of patches) at the same time. This could consume 234

excessive network bandwidth or, if the patches are coming from an organization patch server, overwhelm 235

the resources of that server. Organizations should ensure that their enterprise patch management can 236

avoid resource overload situations, such as by sizing the solution to meet expected volumes of requests, 237

and staggering the delivery of patches so that the enterprise patch management system does not try to 238

transfer patches to too many hosts at the same time. 239

3.4.3 Installation Side Effects 240

Installing a patch may cause side effects to occur. A common example is the installation inadvertently 241

altering existing security configuration settings or adding new settings. This may create a new security 242

problem in the process of fixing the original vulnerability via patching. Organizations should be capable 243

of detecting side effects, such as changes to security configuration settings, caused by patch installation. 244

3.4.4 Patch Implementation Verification 245

As discussed in Section 3.1, an installed patch might not take effect until the affected software is restarted 246

or other state changes are made. It can be surprisingly difficult to examine a host and determine whether 247

or not a particular patch has taken effect. This is further complicated when there is no indication for a 248

patch when it would take effect (reboot required/not required, etc.) One option is to attempt to exploit the 249

vulnerability, but this is generally only feasible if an exploit already exists, and there are substantial risks 250

with attempting exploitation, even under highly controlled conditions. Organizations should use other 251

methods of confirming installation, such as a vulnerability scanner that is independent from the patch 252

management system. 253

3.4.5 Application Whitelisting 254

Application whitelisting technologies can conflict with patch management technologies because the 255

application whitelisting technologies function based on known characteristics of executables and other 256

application components, which may be changed by patching. If the vendor is providing the whitelist 257

information, the vendor will have to acquire the patch, record its files’ characteristics, and send the 258

corresponding information to customers. If the organization is building its own whitelist information, it 259

will have to acquire each patch, record its files’ characteristics, and update its whitelists with the new 260

information. Either method may cause problematic delays for organizations that apply patches quickly, 261

 7

especially automatically; patched software may be seen as unknown software and prohibited from 262

running. 263

To avoid these problems with updates, most application whitelisting technologies offer maintenance 264

options. For example, many technologies allow the administrator to select certain services (e.g., patch 265

management software) to be trusted updaters. This means that any files that they add to or modify on a 266

host are automatically added to the whitelist. Similar options are available for designating trusted 267

publishers (i.e., software vendors), users (such as system administrators), sources (such as trusted network 268

paths), and other trusted entities that may update whitelists. Organizations using application whitelisting 269

technologies should ensure that they are configured to avoid problems with updates. 270

 271

 8

4. Enterprise Patch Management Technologies 272

This section provides an overview of enterprise patch management technologies. It discusses their 273

composition, focuses on the security and management capabilities that they provide, and gives 274

recommendations for their use. 275

4.1 Components and Architecture 276

Enterprise patch management technologies are similar architecturally to other enterprise security 277

solutions: one or more centralized servers that provide management and reporting, and one or more 278

consoles.
4
 What distinguishes enterprise patch management technologies from each other architecturally 279

are the techniques they use to identify missing patches. The three prevalent techniques are agent-based, 280

agentless scanning, and passive network monitoring. Many products support only one of these techniques, 281

while other products support more than one. All the techniques are explained in more detail below. 282

Organizations should carefully consider the advantages and disadvantages of each technique when 283

selecting enterprise patch management technologies. 284

4.1.1 Agent-Based 285

An agent-based patch management technology requires an agent to be running on each host to be 286

patched
5
, with one or more servers that manage the patching process and coordinate with the agents. Each 287

agent is responsible for determining what vulnerable software is installed on the host, communicating 288

with the patch management servers, determining what new patches are available for the host, installing 289

those patches, and executing any state changes needed to make the patches take effect (e.g., application 290

restart, OS reboot). Each agent runs with administrator privileges so it can perform these actions. The 291

patch management server is responsible for providing the agents with information on vulnerable software 292

and available patches, including where patches can be acquired from and what state changes are needed. 293

Compared to agentless scanning and passive network monitoring, agent-based patch management 294

technologies are strongly preferred for hosts that are not on the local network all the time, such as 295

telecommuter laptops and smartphones. 296

There are a few limitations to agent-based patch management technologies. Hosts that don’t permit direct 297

administrator access to the operating system, such as many appliances, generally cannot run agents. Also, 298

agents may not be available for all of the organization’s platforms. 299

4.1.2 Agentless Scanning 300

An agentless scanning patch management technology has one or more servers that perform network 301

scanning of each host to be patched and determine what patches each host needs. Generally agentless 302

scanning requires the servers to have administrative privileges on each host, so that they can return more 303

accurate scanning results and they have the ability to install patches and implement state changes on the 304

hosts (application restarts, OS reboots, etc.) 305

The main advantage of agentless scanning is that it doesn’t require the installation and execution of an 306

agent on each host. 307

One of the primary limitations of agentless scanning is that it omits hosts not on the local network, such 308

4 Enterprise patch management technologies can also be offered as a managed service.
5 Agent-based patch management technology is built into some operating systems.

 9

as telecommuter laptops and mobile devices. Also, network security controls (e.g., host-based firewalls) 309

and network technologies (e.g., network address translation) may inadvertently block scanning or 310

otherwise negatively affect scanning results. Agentless scanning may also negatively impact operations 311

by consuming excessive amounts of bandwidth. Finally, agentless scanning may not support all of the 312

organization’s platforms. 313

4.1.3 Passive Network Monitoring 314

Passive network monitoring technologies for patch management monitor local network traffic to identify 315

applications (and in some cases, operating systems) that are in need of patching. 316

These technologies can be effective at identifying hosts that are not being maintained by other patch 317

management solutions (agent-based, agentless scanning). They do not require any privileges on the hosts 318

to be monitored, so they can be used to monitor the patch status of hosts that the organization does not 319

control (unmanaged systems, visitor systems, contractor systems, etc.) 320

The primary disadvantage of passive network monitoring is that it only works with software where you 321

can identify the version based on its network traffic (assumed to be unencrypted). Also, of course, it only 322

works with hosts on the local network. 323

4.2 Security Capabilities 324

This section describes common security capabilities provided by patch management technologies, divided 325

into three categories: inventory management, patch management, and other. 326

4.2.1 Inventory Management Capabilities 327

Patch management technologies typically have capabilities for identifying which software and versions of 328

software are installed on each host, or alternately, just identifying vulnerable versions of software that are 329

installed. In addition, some products have features for installing new versions of software, installing or 330

uninstalling software features, and uninstalling software. 331

4.2.2 Patch Management Capabilities 332

Patch management technologies obviously provide a range of patch management capabilities. Common 333

features include identifying which patches are needed, bundling and sequencing patches for distribution, 334

allowing administrators to select which patches may or may not be deployed, and installing patches and 335

verifying installation. Many patch management technologies also allow patches to be stored centrally 336

(within the organization) or downloaded as needed from external sources. 337

4.2.3 Other Capabilities 338

Many host-based products that have patch management capabilities also provide a variety of other 339

security capabilities, such as antivirus software, configuration management, and vulnerability scanning. 340

Further discussion of these capabilities is outside the scope of this document. 341

4.3 Management Capabilities 342

Once a patch management technology has been selected, its administrators should design a solution 343

architecture, perform testing, deploy and secure the solution, and maintain its operations and security. 344

This section highlights issues of particular interest with the management—the implementation, operation, 345

 10

and maintenance—of patch management technologies, and provides recommendations for performing 346

them effectively and efficiently. 347

4.3.1 Technology Security 348

Deploying enterprise patch management tools within an enterprise can create additional security risks for 349

an organization; however, a much greater risk is faced by organizations that do not effectively patch their 350

systems. Such tools usually increase security far more than they decrease security, especially when the 351

tools contain built-in security measures to protect against security risks and threats. The following are 352

some risks with using these tools: 353

 A patch may have been altered (inadvertently or intentionally). 354

 Credentials may be misused. 355

 Vulnerabilities in the solution components (including agents) may be exploited. 356

 An entity could monitor tool communications to identify vulnerabilities (particularly when the 357

host is on an external network). 358

Organizations should reduce these risks through the application of standard security techniques that 359

should be used when deploying any enterprise-wide application. Examples of countermeasures include 360

the following: 361

 Keeping the patching solution components tightly secured (including patching them) 362

 Encrypting network communications 363

 Verifying integrity of patches before installing them 364

 Testing patches before deployment (to identify corruption) 365

4.3.2 Phased Deployment 366

Organizations should deploy enterprise patch management tools using a phased approach. This allows 367

process and user communication issues to be addressed with a small group before deploying the patch 368

application universally. Most organizations deploy patch management tools first to standardized desktop 369

systems and single-platform server farms of similarly configured servers. Once this has been 370

accomplished, organizations should address the more difficult issue of integrating multiplatform 371

environments, nonstandard desktop systems, legacy computers, and computers with unusual 372

configurations. Manual methods may need to be used for operating systems and applications not 373

supported by automated patching tools, as well as some computers with unusual configurations; examples 374

include embedded systems, industrial control systems, medical devices, and experimental systems. For 375

such computers, there should be a written and implemented procedure for the manual patching process. 376

4.3.3 Usability and Availability 377

Organizations should balance their security needs with their needs for usability and availability. For 378

example, installing a patch may “break” other applications; this can best be addressed by testing patches 379

before deployment. Another example is that forcing application restarts, OS reboots, and other host state 380

changes is disruptive and could cause loss of data or services. Again, organizations need to balance the 381

need to get patches applied with the need to support operations. A final example, particularly important 382

for mobile devices, is the acquisition of updates over low-bandwidth or metered connections; it may be 383

 11

technically or financially infeasible to download large patches over such connections. Organizations 384

should make provisions for ensuring that their enterprise patching solution works for mobile hosts and 385

other hosts used on low-bandwidth or metered networks. 386

 387

 12

5. Metrics 388

As explained in Section 3.3 of NIST SP 800-55 Revision 1, Performance Measurement Guide for 389

Information Security there are three types of measures: 390

 “Implementation measures are used to demonstrate progress in implementing security programs, 391

specific security controls, and associated policies and procedures…. 392

 Effectiveness/efficiency measures are used to monitor if program-level processes and system-393

level security controls are implemented correctly, operating as intended, and meeting the desired 394

outcome…. 395

 Impact measures are used to articulate the impact of information security on an organization’s 396

mission….” 397

Regarding these types of measures, “less mature information security programs need to develop their 398

goals and objectives before being able to implement effective measurement. More mature programs use 399

implementation measures to evaluate performance, while the most mature programs use 400

effectiveness/efficiency and business impact measures to determine the effect of their information 401

security processes and procedures.” Accordingly, organizations should implement and use appropriate 402

measures for their enterprise patch management technologies and processes. 403

Examples of possible implementation measures include: 404

 What percentage of the organization’s desktops and laptops are being covered by the enterprise 405

patch management technologies? 406

 What percentage of the organization’s servers have their applications automatically inventoried 407

by the enterprise patch management technologies? 408

Examples of possible effectiveness/efficiency measures include: 409

 How often are hosts checked for missing updates? 410

 How often are asset inventories for host applications updated? 411

 What is the minimum/average/maximum time to apply patches to X% of hosts? 412

 What percentage of the organization’s desktops and laptops are patched within X days of patch 413

release? Y days? Z days? (where X, Y, and Z are different values, such as 10, 20, and 30) 414

 On average, what percentage of hosts are fully patched at any given time? Percentage of high 415

impact hosts? Moderate impact? Low impact? 416

 What percentage of patches are applied fully automatically, versus partially automatically, versus 417

manually? 418

 13

Examples of possible impact measures include: 419

 What cost savings has the organization achieved through its patch management processes? 420

 What percentage of the agency’s information system budget is devoted to patch management? 421

 14

Appendix A—Security Content Automation Protocol (SCAP) Tutorial 422

This appendix provides an overview of the Security Content Automation Protocol (SCAP) as it relates to 423

enterprise patch management technologies. The appendix is based on material from NIST SP 800-117 424

Revision 1, Guide to Adopting and Using the Security Content Automation Protocol (SCAP) Version 1.2. 425

Please see NIST SP 800-117 for additional information on SCAP. 426

SCAP (pronounced ess-cap), as expressed in NIST Special Publication (SP) 800-126, is “a suite of 427

specifications that standardize the format and nomenclature by which software flaw and security 428

configuration information is communicated, both to machines and humans.” SCAP is designed to 429

organize, express, and measure security-related information in standardized ways, as well as related 430

reference data, such as identifiers for software flaws and security configuration issues. SCAP can be used 431

to maintain the security of enterprise systems, such as automatically verifying the installation of patches, 432

checking system security configuration settings, and examining systems for signs of compromise. 433

Table A-1 lists the component specifications for the SCAP version 1.2 protocol. The components are 434

grouped by type: 435

 Languages. The SCAP languages provide standard vocabularies and conventions for expressing 436

security policy, technical check mechanisms, and assessment results. 437

 Reporting formats. The SCAP reporting formats provide the necessary constructs to express 438

collected information in standardized formats. 439

 Enumerations. Each SCAP enumeration defines a standard nomenclature (naming format) and an 440

official dictionary or list of items expressed using that nomenclature. 441

 Measurement and scoring systems. In SCAP this refers to evaluating specific characteristics of a 442

security weakness (for example, software vulnerabilities and security configuration issues) and, based 443

on those characteristics, generating a score that reflects their relative severity. 444

 Integrity protection. An SCAP integrity protection specification helps to preserve the integrity of 445

SCAP content and results. 446

Table A-1. SCAP Version 1.2 Component Specifications 447

SCAP Component Description

Languages

Extensible Configuration Checklist
Description Format (XCCDF) 1.2

A language for authoring security checklists/benchmarks and for
reporting results of evaluating them

Open Vulnerability and Assessment
Language (OVAL) 5.10

A language for representing system configuration information,
assessing machine state, and reporting assessment results

Open Checklist Interactive Language
(OCIL) 2.0

A language for representing assessment content that collects
information from people or from existing data stores made by other
data collection efforts

Reporting Formats

Asset Reporting Format (ARF) 1,2 A format for expressing the exchange of information about assets
and the relationships between assets and reports

Asset Identification A format for uniquely identifying assets based on known identifiers
and/or known information about the assets

 15

SCAP Component Description

Enumerations

Common Platform Enumeration (CPE) 2.3 A nomenclature and dictionary of hardware, operating systems, and
applications, plus an applicability language for constructing complex
logical groupings of CPE names

Common Configuration Enumeration
(CCE) 5

A nomenclature and dictionary of software security configurations

Common Vulnerabilities and Exposures
(CVE)

A nomenclature and dictionary of security-related software flaws

Measurement and Scoring Systems

Common Vulnerability Scoring System
(CVSS) 2.0

A system for measuring the relative severity of software flaw
vulnerabilities

Common Configuration Scoring System
(CCSS) 1,0

A system for measuring the relative severity of system security
configuration issues

Integrity Protection

Trust Model for Security Automation Data
(TMSAD) 1,0

A specification for using digital signatures in a common trust model
applied to other security automation specifications

 448

Each of the SCAP components offers unique functions and can be used independently, but greater 449

benefits can be achieved by using the components together. For example, the ability to have XCCDF 450

documents that use CCE, CPE, and CVE identifiers with OVAL definitions to express rules and 451

relationships for technical checks and that use OCIL questionnaires to express management and 452

operational checks comprises the building blocks for SCAP-expressed checklists.
6
 In other words, SCAP-453

expressed checklists use a standardized language (XCCDF) to express what checks should be performed 454

(OVAL, OCIL), which platforms are being discussed (CPE), and which security settings (CCE) and 455

software flaw vulnerabilities (CVE) should be addressed. 456

Both comprehensive SCAP-expressed checklists, such as a checklist to secure an operating system, and 457

more specialized SCAP-expressed checklists are valuable. A specialized checklist can be used to check 458

particular characteristics of systems to identify potential security problems. A common example is using 459

an SCAP checklist to confirm the installation of patches and identify which patches are missing. SCAP-460

formatted data for patch checking can be made publicly available by software vendors for their products; 461

organizations can download this data and use it through their SCAP-capable tools.
7
 462

6 SCAP-expressed checklists are further defined in Table 4-1 of NIST SP 800-70 Revision 1.
7 Patch information can be downloaded from the MITRE OVAL Repository at http://oval.mitre.org/repository/.

http://oval.mitre.org/repository/

 16

Appendix B—Summary of Recommendations 463

This appendix provides a summary of the main recommendations made throughout the publication. 464

Section 3 465

Section 3.1: If a vulnerability is not being exploited yet, organizations should carefully weigh the security 466

risks of not patching with the operational risks of patching without performing thorough testing first. 467

Section 3.1: Organizations should carefully consider the relevant issues related to timing, prioritization, 468

and testing when planning and executing their enterprise patch management processes. 469

Section 3.2: Organizations should identify all the ways in which patches could be applied and act to 470

resolve any conflicts among patch application methods. 471

Section 3.2: Organizations should ensure that users cannot disable or otherwise negatively affect 472

enterprise patch management technologies, and organizations should perform continuous monitoring of 473

enterprise patch management technologies to identify any issues that occur. 474

Section 3.3: Organizations should carefully consider all alternative host architectures in use for the 475

enterprise when designing enterprise patch management policies and solutions. 476

Section 3.4.1: The inventory of the patchable software (applications and operating systems) installed on 477

each host should include not only which software is currently installed on each host, but also what version 478

of each piece of software is installed. 479

Section 3.4.2: Organizations should ensure that their enterprise patch management can avoid resource 480

overload situations. 481

Section 3.4.3: Organizations should be capable of detecting side effects, such as changes to security 482

configuration settings, caused by patch installation. 483

Section 3.4.4: Organizations should use other methods of confirming installation, such as a vulnerability 484

scanner that is independent from the patch management system. 485

Section 3.4.5: Organizations using application whitelisting technologies should ensure that they are 486

configured to avoid problems with updates. 487

Section 4 488

Section 4.1: Organizations should carefully consider the advantages and disadvantages of each technique 489

for identifying missing patches (e.g., agent-based, agentless scanning, passive network monitoring) when 490

selecting enterprise patch management technologies. 491

Section 4.3: A patch management technology’s administrators should design a solution architecture, 492

perform testing, deploy and secure the solution, and maintain its operations and security. 493

Section 4.3.1: Organizations should reduce the risks of using enterprise patch management tools through 494

the application of standard security techniques that should be used when deploying any enterprise-wide 495

application. 496

 17

Section 4.3.2: Organizations should deploy enterprise patch management tools using a phased approach. 497

Section 4.3.3: Organizations should balance their security needs with their needs for usability and 498

availability. 499

Section 5 500

Section 5: Organizations should implement and use appropriate measures for their enterprise patch 501

management technologies and processes. 502

 503

 18

Appendix C—Acronyms and Abbreviations 504

Selected acronyms and abbreviations used in the guide are defined below. 505

ARF Asset Reporting Format 506

CCE Common Configuration Enumeration 507

CCSS Common Configuration Scoring System 508

CPE Common Platform Enumeration 509

CVE Common Vulnerabilities and Exposures 510

CVSS Common Vulnerability Scoring System 511

FISMA Federal Information Security Management Act 512

IT Information Technology 513

ITL Information Technology Laboratory 514

NIST National Institute of Standards and Technology 515

OCIL Open Checklist Interactive Language 516

OMB Office of Management and Budget 517

OVAL Open Vulnerability and Assessment Language 518

SCAP Security Content Automation Protocol 519

SP Special Publication 520

TMSAD Trust Model for Security Automation Data 521

XCCDF Extensible Configuration Checklist Description Format 522

 523

