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Abstract 

This report defines the Common Platform Enumeration (CPE) Applicability Language version 2.3 

specification. The CPE Applicability Language specification is part of a stack of CPE specifications that 

support a variety of use cases relating to IT product description and naming. The CPE Applicability 

Language data model builds on top of other CPE specifications to provide the functionality required to 

allow CPE users to construct complex groupings of CPE names to describe IT platforms. These groupings 

are referred to as applicability statements because they are used to designate which platforms particular 

guidance, policies, etc. apply to. This report defines the semantics of the CPE Applicability Language 

data model and the requirements that IT products and CPE Applicability Language documents must meet 

for conformance with the CPE Applicability Language version 2.3 specification. 
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1. Introduction 

Common Platform Enumeration (CPE) is a standardized method of describing and identifying classes of 

applications, operating systems, and hardware devices present in an enterprise’s computing assets. CPE 

can be used as a source of information for enforcing and verifying IT management policies relating to 

these assets, such as vulnerability, configuration, and remediation policies. IT management tools can 

collect information about installed products, identify products using their CPE names, and use this 

standardized information to help make fully or partially automated decisions regarding the assets. 

CPE consists of several modular specifications. Combinations of the specifications work together in 

layers to perform various functions. One of these specifications, CPE Applicability Language, defines a 

standardized way to describe IT platforms by forming complex logical expressions out of individual CPE 

names and references to checks. For example, CPE Applicability Language could combine the CPE name 

for an operating system (such as Microsoft Windows XP), the CPE name for an application running on 

that operating system (such as Microsoft Office 2007), and a reference to a check for a particular value of 

a certain configuration setting (such as the wireless network card being enabled in the operating system). 

These logical expressions are called applicability statements, because they are used to designate which 

platforms particular guidance, policies, etc. apply to. Applicability statements can be used by tools to 

determine whether a target system is an instance of a particular platform. 

The CPE names used by the CPE Applicability Language specification are bound forms of well-formed 

CPE names (WFNs), which are the abstract logical constructions for CPE names [CPE23-N:5.1]. The 

basic building block of the CPE Applicability Language specification is referred to as the logical test. 

This is a logical conjunction (AND) or disjunction (OR) of one or more CPE names and/or references to 

checks. Individual logical tests can also be negated (inverted). Nested logical tests allow the user to 

express a platform as any logical combination of individual CPE names and/or references to checks. 

Note that previous versions of CPE referred to the Applicability Language specification as simply the 

Language specification. 

1.1 Purpose and Scope 

This report defines the specification for CPE Applicability Language version 2.3. The report also defines 

and explains the requirements that producers of CPE Applicability Language-supporting 

implementations, such as software and services, and CPE Applicability Language content must meet to 

claim conformance with the CPE Applicability Language version 2.3 specification. 

This report only applies to version 2.3 of CPE Applicability Language. All other versions are out of the 

scope of this report, as are all CPE specifications other than CPE Applicability Language. 

1.2 Audience 

This report is intended for two main audiences: the authors and editors of CPE Applicability Language 

content (applicability statements), and IT management tool developers. Readers of this report should 

already be familiar with CPE naming and name matching concepts and conventions, as specified in 

[CPE23-N] and [CPE23-M]. 
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1.3 Document Structure 

The remainder of this report is organized into the following major sections: 

 Section 2 defines selected terms and abbreviations used within this specification. 

 Section 3 provides an overview of related specifications and standards. 

 Section 4 defines the high-level conformance rules for this specification. 

 Section 5 describes the core CPE Applicability Language data model. 

 Section 6 provides CPE Applicability Language content requirements and recommendations. 

 Section 7 provides CPE Applicability Language processing requirements and recommendations. 

 Section 8 provides pseudocode that implements concepts defined in other sections of the 

specification. 

 Appendix A lists normative and informative references. 

 Appendix B provides a change log that documents significant changes to major drafts of the 

specification. 

1.4 Document Conventions 

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, 

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be 

interpreted as described in Request for Comment (RFC) 2119.
1
 

Text intended to represent computing system input, output, or algorithmic processing is presented in 

fixed-width Courier font. 

Normative references are listed in Appendix A. These references use the citation convention of a square 

bracket notation containing an abbreviation of the overall reference citation, followed by a colon and 

subsection citation where applicable (e.g., [CPE23-N:7.2] is a citation for the CPE 2.3 Naming 

specification, Section 7.2). 

This specification adheres to all rules and conventions defined lower in the CPE stack of specifications. 

The CPE Naming Specification defines the concept of a well-formed CPE name (WFN) that is a logical 

representation of a CPE name [CPE23-N:5.1]. Wherever possible, this specification uses WFN 

representation of CPE names to limit the dependency on any particular CPE name binding. 

This document uses an abstract pseudocode programming language to specify expected computational 

behavior. Pseudocode is intended to be straightforwardly readable and translatable into actual 

programming language statements. Note, however, that pseudocode specifications are not necessarily 

intended to illustrate efficient or optimized programming code; rather, their purpose is to clearly define 

the desired behavior, leaving it to implementers to choose the best language-specific design which 

respects that behavior. In some cases, particularly where standardized implementations exist for a given 

pseudocode function, we describe the function's behavior in prose. 

                                                      
1  RFC 2119, “Key words for use in RFCs to Indicate Requirement Levels”, is available at http://www.ietf.org/rfc/rfc2119.txt.  

http://www.ietf.org/rfc/rfc2119.txt
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When reading pseudocode the following should be kept in mind: 

 All pseudocode functions are pass by value, meaning that any changes applied to the supplied 

arguments within the scope of the function do not affect the values of the variables in the caller’s 

scope. 

 In a few cases, the pseudocode functions reference (more or less) standard library functions, 

particularly to support string handling. In most cases semantically equivalent functions can be 

found in the GNU C library, cf. 

http://www.gnu.org/software/libc/manual/html_node/index.html#toc_String-and-Array-Utilities. 

 

This document uses qualified names to refer to specific XML elements. A qualified name associates a 

named element with a namespace. The namespace identifies the XML model, and the XML schema is a 

definition and implementation of that model. A qualified name declares this schema to element 

association using the format ‘prefix:element-name’. The association of prefix to namespace is defined in 

the metadata of an XML document and varies from document to document. This document uses the 

conventional mappings listed below. 

 

Prefix Namespace Schema 

cpe http://cpe.mitre.org/language/2.0 CPE Language 2.3 schema 

xml http://www.w3.org/XML/1998/namespace  Common XML attributes 

xsd http://www.w3.org/2001/XMLSchema XML Schema 
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2. Definitions and Abbreviations 

This section defines selected terms and abbreviations used within the document. This section builds on 

the terms defined in the CPE Naming specification [CPE23-N] and the CPE Name Matching specification 

[CPE23-M], and does not repeat them here. 

2.1 Definitions 

Applicability Statement: A complex logical expression to describe an IT platform, formed out of 

individual CPE names and references to checks. Applicability statements are used to designate which 

platforms particular guidance, policies, etc. apply to. 

 

Check Fact Reference: An expression that refers to a check (e.g., OVAL check, OCIL check). 

 

Fact Reference: An expression that refers to a bound CPE name. 

 

Logical Test: An expression comprised of logical operators and one or more expressions to be evaluated. 

The individual expressions within a logical test may be fact references, check fact references, and/or other 

logical tests. 

 

Platform: In the context of the CPE Applicability Language specification only, a logical structure 

combining one or more bound CPE names through logical operators.  

2.2 Abbreviations 

CPE  Common Platform Enumeration 

IR Interagency Report 

IT  Information Technology 

ITL Information Technology Laboratory 

NIST  National Institute of Standards and Technology 

OCIL Open Checklist Interactive Language 

OVAL Open Vulnerability and Assessment Language 

RFC Request for Comment 

URI  Uniform Resource Identifier 

WFN  Well-Formed CPE Name 

XML  Extensible Markup Language 
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3. Relationship to Existing Specifications and Standards 

This section explains the relationships between this specification and related specifications or standards. 

3.1 Other CPE Version 2.3 Specifications 

CPE version 2.3 was constructed using a modular, stack-based approach, with each major component 

defined in a separate specification. Functional capabilities are built by layering these modular 

specifications. This architecture opens opportunities for innovation, as novel capabilities can be defined 

by combining only the needed specifications, and the impacts of change can be better compartmentalized 

and managed.  

 

The CPE Applicability Language version 2.3 specification builds upon the CPE Naming version 2.3 

[CPE23-N] and CPE Name Matching version 2.3 [CPE23-M] specifications.  

3.2 CPE Version 2.2 

The CPE version 2.3 specifications, including this specification, collectively replace [CPE22]. CPE 

version 2.3 is intended to provide all the capabilities made available by [CPE22] while adding new 

features suggested by the CPE user community. 

 

The primary difference between CPE Applicability Language versions 2.2 and 2.3 is the updated 

namePattern type in the version 2.3 schema, which allows for both formatted string and URI 

bindings of a WFN. Also, version 2.2 was called the CPE Language, not the CPE Applicability Language. 
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4. Conformance 

Products and organizations may want to claim conformance with this specification for a variety of 

reasons. For example, vulnerability researchers may want to assert that they provide vulnerability 

applicability statements in the form of CPE Applicability Language statements. In relation to this, 

implementers may want to assert that their products have the ability to process applicability statements 

written using the CPE Applicability Language. 

This section provides the high-level requirements that a product or organization must meet if they are 

seeking conformance with this specification. The majority of the requirements listed in this section 

reference other sections in this document that fully define the high-level requirement.  

4.1 Product Conformance 

All products claiming conformance with this specification MUST adhere to the following requirements: 

 

1. If a product is reading valid CPE 2.3 Applicability Language content, then the product MUST 

process the content and interpret it according to the semantics of the data model defined in 

Section 5 and the additional requirements detailed in Section 7.  

2. If the product is generating content containing CPE Language constructs, then the product MUST 

output the content in the form of XML instance data that validates against the CPE Applicability 

Language version 2.3 schema, conforms to the semantics of the CPE Applicability Language data 

model defined in Section 5, and conforms to the CPE name requirements defined in [CPE23-N]. 

3. The product MUST make an explicit claim of conformance to this specification in any 

documentation provided to end users. 

4.2 Organization Conformance 

Organizations creating or maintaining CPE 2.3 Applicability Language documents that claim 

conformance with this specification SHALL follow these requirements: 

 

1. Adhere to the official CPE Applicability Language schema. Ensure that the CPE Applicability 

Language documents validate against the CPE Applicability Language version 2.3 schema and 

that the content conforms to the semantics of the CPE Applicability Language data model as 

defined in Section 5. 

2. Adhere to the syntax, structural, and other CPE Applicability Language document development 

requirements defined in Section 6.  

3. Adhere to the requirements for CPE names (WFNs and bound forms) as defined in [CPE23-N]. 
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5. Data Model Overview 

This section provides an overview of the data model that all CPE Applicability Language 

implementations MUST support. The data model does not prescribe a specific binding or implementation 

for itself. It merely describes the data that is required to support common CPE Applicability Language 

use cases. This section uses the term “element” to identify the classes within the data model, and the term 

“property” to identify any properties of a class. This section only defines selected aspects of the data 

model. The CPE Applicability Language XML schema, which is the authoritative XML binding 

definition, can be found at http://scap.nist.gov/schema/cpe/2.3/cpe-language_2.3.xsd. The tables below 

use the prefix “cpe” to refer to this schema. 

5.1 The <cpe:platform-specification> Element 

The <cpe:platform-specification> element is the root element of a CPE Applicability 

Language XML document and therefore acts as a container for child platform definitions. The table below 

describes the platform-specification element’s properties. 

Element or 
Attribute 

Type Count Description 

platform 
(element) 

cpe:PlatformType 1-n The description or qualifications of a particular IT platform type. 

5.2 The <cpe:platform> Element  

The table below describes the <cpe:platform> element’s properties. 

Element or 
Attribute 

Type Count Description 

id (attribute) xsd:anyURI 1 
A locally unique name for the platform. There is no defined 
format for this id; however, it MUST be unique within the 
containing CPE Applicability Language document. 

title 
(element) 

cpe:TextType 0-n 

A human-readable title for a platform. To support uses intended 
for multiple languages, the <cpe:title> element supports the 

@xml:lang attribute. At most one <cpe:title> element 

MAY appear for each language. 

remark 
(element) 

cpe:TextType 0-n 

An additional description. To support uses intended for multiple 
languages, the <cpe:remark> element supports the 

@xml:lang attribute. There MAY be multiple <cpe:remark> 

elements for a single language. 

logical-test 
(element) 

cpe:LogicalTestType 1 Definition of test using logical operators (AND, OR, negate). 

5.3 The <cpe:logical-test> Element  

The table below describes the <cpe:logical-test> element’s properties. 

 

 

http://scap.nist.gov/schema/cpe/2.3/cpe-language_2.3.xsd
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Element or 
Attribute 

Type Count Description 

operator 
(attribute) 

cpe:operatorEnumeration 1 

The operator applied to the results of evaluating the 
<cpe:fact-ref>, <cpe:check-fact-ref>, and 

<cpe:logical-test> elements. The permitted 

operators are “AND” and “OR”. 

negate 
(attribute) 

xsd:boolean 1 
Whether the result of applying the operator should be 
negated. Possible values are “TRUE” and “FALSE”. 
Ignored if the result of applying the operator is “ERROR”. 

logical-test 
(element) 

cpe:LogicalTestType 0-n 

Definition of complex logical test using AND, OR, and/or 
negate operators. A <cpe:logical-test> element 

evaluates to TRUE, FALSE, or ERROR. 

fact-ref 
(element) 

cpe:CPEFactRefType 0-n 

A reference to a bound form of a WFN; the reference 
always evaluates to TRUE or FALSE. The bindings 
contained within a <cpe:fact-ref> are meant to 

describe possible sets of products and are not meant to 
identify a unique product class.  
The <cpe:fact-ref> element has a REQUIRED @name 

attribute of type cpe:namePattern (defines the format 

for acceptable CPE names) and an OPTIONAL 
@description attribute of type xsd:normalizedString 

(contains a human-readable description of what the 
<cpe:fact-ref> checks). 

check-fact-ref 
(element) 

cpe:CheckFactRefType 0-n 
A reference to a check that evaluates to TRUE, FALSE, or 
ERROR. Examples of types of checks are OVAL and 
OCIL checks. 

 
A <cpe:logical-test> element can be nested within another <cpe:logical-test> element.  

 

Although <cpe:fact-ref>, <cpe:check-fact-ref>, and <cpe:logical-test> MAY be 

omitted from the body of a <cpe:logical-test> element, at least one instance of one of them 

MUST appear as a property of each <cpe:logical-test> element. 

5.4 The <cpe:check-fact-ref> Element  

The table below describes the <cpe:check-fact-ref> element’s properties. 

 
Element or 
Attribute 

Type Count Description 

description 
(attribute) 

xsd:normalizedString 0-1 
A human-readable description of what the <cpe:check-

fact-ref> checks. 

system 
(attribute) 

xsd:anyURI 1 
The system identifier for the check system, such as 
“http://oval.mitre.org/XMLSchema/oval-definitions-5” or 
“http://scap.nist.gov/schema/ocil/2”. 

href 
(attribute) 

xsd:anyURI 1 
The location of the check content, such as the OVAL or OCIL 
document holding the desired check. 

id-ref 
(attribute) 

xsd:token 1 
The ID for the check to be evaluated, such as a specific OVAL 
definition ID or an OCIL questionnaire ID. 

 

http://oval.mitre.org/XMLSchema/oval-definitions-5
http://www.mitre.org/ocil/2
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6. Content Design Requirements and Recommendations 

This section defines content design requirements, including syntax and structural requirements, that an 

organization or product MUST follow to create and maintain a well-formed CPE Applicability Language 

version 2.3 document. This section also provides recommendations for CPE Applicability Language 

content. The requirements and recommendations presented in this section supplement the data model 

defined in Section 5. 

6.1 CPE Applicability Language Document Contents 

A CPE Applicability Language document instance SHALL hold exactly one <cpe:platform-

specification> element. The <cpe:platform-specification> element SHALL be the root XML 

element of a CPE Applicability Language document.  

 

Each CPE Applicability Language document SHALL validate against the CPE Applicability Language 

schema. CPE Applicability Language elements SHALL belong to the namespace 

“http://cpe.mitre.org/language/2.0”.  

6.2 The platform element 

Each <cpe:platform> element SHALL have an identifier, as expressed using the @id attribute, that is 

unique within the CPE Applicability Language document and also provides a means to uniquely reference 

the platform from other models besides CPE. Each <cpe:platform> element SHALL be referenced 

through its identifier. 

 

Each <cpe:platform> element SHALL have a single <cpe:logical-test> element defined directly 

within it. One or more additional <cpe:logical-test> elements MAY be nested within any 

<cpe:logical-test> element. 

 

The following is an example of the structure of a <cpe:platform> element: 

 
   <cpe:platform id="789">  

      <cpe:title> 

      Microsoft Windows XP with Internet Explorer 7.x or 8.x 

      </cpe:title>  

      <cpe:logical-test operator="AND" negate="FALSE">  

         <cpe:fact-ref 

            name="cpe:2.3:o:microsoft:windows_xp:*:*:*:*:*:*:*:*"/>  

    <cpe:logical-test operator="OR" negate="FALSE">  

          <cpe:fact-ref  

               name="cpe:2.3:a:microsoft:internet_explorer:7.*:*:*:*: 

                *:*:*:*"/>  

       <cpe:fact-ref  

               name="cpe:2.3:a:microsoft:internet_explorer:8.*:*:*:*: 

                *:*:*:*"/>  

    </cpe:logical-test>  

      </cpe:logical-test>  

   </cpe:platform> 
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6.3 The logical-test element 

A <cpe:logical-test> element MAY contain one or more <cpe:logical-test> elements, MAY 

contain one or more <cpe:fact-ref> elements, and MAY contain one or more <cpe:check-fact-

ref> elements. Although <cpe:fact-ref>, <cpe:check-fact-ref>, or <cpe:logical-test> 

MAY be omitted from a <cpe:logical-test> element, at least one instance of one of them MUST 

appear within the body of each <cpe:logical-test> element. 

 

A <cpe:logical-test> element SHALL have an @operator attribute. This attribute SHALL be set 

to either “AND” or “OR”. The designated operation is applied to all the values of the <cpe:fact-ref>, 

<cpe:check-fact-ref>, and <cpe:logical-test> elements within the <cpe:logical-test> 

element, resulting in a TRUE, FALSE, or ERROR value. More complex tests MAY be constructed by 

nesting <cpe:logical-test> elements and setting their @operator and @negate attributes 

appropriately. 

 

A <cpe:logical-test> element SHALL have a @negate attribute. This attribute SHALL be set to 

either “TRUE” or “FALSE”. This attribute is ignored if the value of the <cpe:logical-test> element 

is set to “ERROR”. Otherwise, if set to “TRUE”, the value of the <cpe:logical-test> element is 

inverted, and if set to “FALSE”, the value of the <cpe:logical-test> element is unaffected. 

 

The following example shows the <cpe:logical-test> element’s syntax and structure. In this 

example, first the two <cpe:fact-ref> elements will be evaluated. Next, an OR of their values will be 

done. The result will become the final value of the <cpe:logical-test> element, since the negate 

function is not enabled. 

 
   <cpe:logical-test operator="OR" negate="FALSE">  

      <cpe:fact-ref  

         name="cpe:2.3:a:microsoft:internet_explorer:7.*:*:*:*:*:*:*:*"/>  

 <cpe:fact-ref  

         name="cpe:2.3:a:microsoft:internet_explorer:8.*:*:*:*:*:*:*:*"/>        

   </cpe:logical-test>  

 

The truth table in Section 7.3 defines how individual results are combined by a <cpe:logical-test> 

element into a final result. 

 

Implementations processing CPE Applicability Language content MAY optimize their performance by 

skipping elements that are not necessary. For example, in the example above, if the first <cpe:fact-

ref> element evaluates to TRUE, then it is known that the <cpe:logical-test> element will evaluate 

to TRUE, even though the value of the second <cpe:fact-ref> element is not known. To take 

advantage of this efficiency, authors of CPE Applicability Language content MAY choose to plan the 

sequence of their <cpe:fact-ref>, <cpe:check-fact-ref>, and <cpe:logical-test> elements, 

such as putting elements most likely to evaluate TRUE at the top of “OR” <cpe:logical-test> 

elements, and putting elements most likely to evaluate FALSE or ERROR at the top of “AND” 

<cpe:logical-test> elements. 

6.4 The fact-ref element 

A <cpe:fact-ref> element SHALL have a @name attribute that holds a bound form of a valid WFN, 

as defined in [CPE23-N:6]. This SHOULD be a formatted string binding, but it MAY be a URI binding 

(for backward compatibility).   
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6.5 The check-fact-ref element 

A <cpe:check-fact-ref> element SHALL have the following attributes: 

 A @check-system attribute that holds the system identifier for the check system. Examples of 

commonly used check system identifiers are “http://oval.mitre.org/XMLSchema/oval-definitions-

5” for the OVAL check system and “http://scap.nist.gov/schema/ocil/2” for the OCIL check 

system. The @check-system attribute MAY refer to any check system. 

 A @check-location attribute that holds the location of the check content, such as the OVAL 

or OCIL document that contains the desired check.  

 A @check-id attribute that holds the ID for the check to be evaluated, such as an OVAL 

definition ID or an OCIL questionnaire ID. 

 

When selecting a check for inclusion in CPE Applicability Language content, the author SHALL choose 

checks that only return results that can clearly be mapped to boolean values (TRUE and FALSE) and, 

optionally, error conditions (ERROR).  
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7. Processing Requirements and Recommendations 

This section describes the processing requirements that a CPE Applicability Language implementation 

MUST follow to correctly process a CPE Applicability Language document. 

7.1 CPE Bound Name Conversions 

The CPE 2.3 Applicability Language schema defines a cpe:namePattern type that supports two 

forms of bound names: formatted string bindings (defined in [CPE23-N:6.2]) and URI bindings (defined 

in [CPE23-N:6.1]). CPE 2.3 Applicability Language implementations MAY convert formatted string 

bindings into URI bindings and URI bindings into formatted string bindings. These conversions  

SHOULD comply with the appropriate function that implements this conversion process, either 

convert_fs_to_uri defined in [CPE23-N:7.1] or convert_uri_to_fs defined in [CPE23-

N:7.1]. 

7.2 Graceful Error Handling 

A CPE Language implementation SHOULD NOT suddenly terminate its execution due to an error 

condition. CPE Language implementations SHOULD handle all exceptional conditions gracefully by 

performing proper error and exception handling and producing an informative error message.  

7.3 Evaluating Elements 

The following subsections discuss the evaluation process for <cpe:logical-test>, <cpe:fact-

ref>, and <cpe:check-fact-ref> elements. 

7.3.1 Evaluating a logical-test Element 

The results of evaluating the individual <cpe:fact-ref>, <cpe:check-fact-ref>, and nested 

<cpe:logical-test> elements within a <cpe:logical-test> element are combined to produce the 

final value for the <cpe:logical-test> element. Table 1 provides a truth table that defines how the 

results SHALL be combined. A “+” sign in the table denotes the specified value and any larger value. So, 

for example, “1+” means any value of 1 or greater. 

 

Table 1. Truth Table for Logical-Test Element 

Operator 

Number of Individual Results 

(logical-test, fact-ref, check-fact-ref) Negate 
Final 

Result 
TRUE FALSE ERROR 

AND 

1+ 0 0 FALSE TRUE 

1+ 0 0 TRUE FALSE 

1+ 0 1+ TRUE or FALSE ERROR 

0+ 1+ 0+ FALSE FALSE 

0+ 1+ 0+ TRUE TRUE 

OR 

1+ 0+ 0+ FALSE TRUE 

1+ 0+ 0+ TRUE FALSE 

0 1+ 0 FALSE FALSE 

0 1+ 0 TRUE TRUE 

0 1+ 1+ TRUE or FALSE ERROR 
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An implementation evaluating a <cpe:logical-test> element MAY skip evaluating one or more of 

its components if their results are not necessary—for example, if a <cpe:logical-test> element has 

an OR operator, then evaluation of the element’s components MAY stop as soon as any component is 

found to be TRUE, since the final result for the element is already known. In other words, processing 

MAY stop as soon as there is only one row in Table 1 left as a possibility. 

 

An implementation processing a <cpe:logical-test> element MAY process individual components 

in any order; however, the implementation SHOULD process them in sequence to take advantage of 

sequencing choices made by content authors to help optimize evaluation performance. 

7.3.2 Evaluating a fact-ref Element 

For a <cpe:fact-ref> element, the bound name in its @name attribute SHALL be the source matched 

against the target list. The target list SHALL consist of one or more bound names for valid WFNs, each of 

type cpe:namePattern. An implementation MAY process the target names in any sequence. The 

implementation SHALL perform a CPE name match, as defined in [CPE23-M], of each target name 

against the source name until either a match is found or all target names have been processed. A match 

SHALL occur only when the source name’s relation with the target name is determined to be either 

EQUAL or SUPERSET [CPE23-M:6.2]. A match SHALL result in a TRUE value for the <cpe:fact-

ref> element, otherwise the element SHALL be given a value of FALSE. 

7.3.3 Evaluating a check-fact-ref Element 

A <cpe:check-fact-ref> element MAY use any check system that meets the basic requirements 

specified in Section 6.5. However, CPE Language implementations are not required to support all of these 

check systems. Implementations SHALL support the OVAL check system. Its use in content is indicated 

by the <cpe:check-fact-ref> element’s @check-system attribute being set to 

“http://oval.mitre.org/XMLSchema/oval-definitions-5”. Implementations MAY support additional check 

systems, such as OCIL. 

 

For all check systems that an implementation supports, the implementation MUST be capable of 

referencing the check using the attributes specified for the <cpe:check-fact-ref> element and 

handling the result. The implementation SHALL accept results that clearly map to TRUE and FALSE. 

The implementation SHALL accept error condition results, such as “error” or “not applicable”, and 

SHALL treat them as ERROR results. Also, if an implementation does not support a check system that 

the <cpe:check-fact-ref> element uses, if the specified check content is not accessible, or if any 

other condition occurs that prevents evaluation of the check, the implementation SHALL treat it as an 

ERROR result. If a result from the <cpe:check-fact-ref> element is required to calculate a result for 

its parent <cpe:logical-test> element, then evaluation of the parent element MAY cease. 
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8. CPE Applicability Language Pseudocode 

This section specifies the required common applicability language capabilities in terms of an abstract 

pseudocode programming language. The input/output behavior of all functions defined in pseudocode 

should be considered normative. The pseudocode implementations themselves should be considered 

informative, as the algorithms are written for clarity and simplicity rather than for efficiency. Section 8.1 

defines the core function for CPE applicability language statement matching, while Section 8.2 defines 

supporting functions. 

8.1 Core Function 

The following pseudocode defines the required core CPE_App_Lang_Match function. 

 
;; Begin CPE_App_Lang_Match function. Input argument E is an 

;; expression in the CPE Applicability Language, represented as the 

;; XML infoset for the platform element (see Section 5.2). 

;; Input argument K is a set of known CPE names, represented as 

;; CPE 2.3 formatted string bindings and/or URI bindings. 

;; Returns the result of evaluating E (TRUE, FALSE, ERROR). 

function CPE_App_Lang_Match(E, K)  

  if (element(E) = "platform") then  

    ;; Parse through E’s elements and ignore all but logical-test. 

    foreach C in children(E) do  

      if (element(C) = "logical-test") then  

        ;; Call the function again, but with logical-test as the  

        ;; root element. 

        return CPE_App_Lang_Match(C, K). 

    end. 

  else if (element(E) = "fact-ref") then  

    ;; fact-ref’s name attribute is a bound name, 

    ;; so we unbind it to a WFN before passing it. 

    return Fact_Ref_Eval(unbind(attribute(E, "name")), K). 

  else if (element(E) = "check-fact-ref") then  

    return Check_Fact_Ref_Eval(E). 

  else if (element(E) = "logical-test") then  

    count := 0.  

    len := 0.  

    answer := FALSE.  

    foreach C in children(E) do  

      len := len + 1. 

      result := CPE_App_Lang_Match(C, K). 

      if (result = TRUE) then  

        count := count + 1.  

      else if (result = ERROR) then 

        answer := ERROR. 

      end. 

    end. 

    if ((attribute(E, "operator") = "AND") and (count = len)) then  

      answer := TRUE. 

    else 

      if ((attribute(E, "operator") = "OR") and (count > 0)) then 
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        answer := TRUE. 

    if (attribute(E, "negate") = TRUE and answer != ERROR) then  

      answer := !answer.  

    return answer.  

  else  

    return FALSE.  

  endif.  

end. 

8.2 Support Functions 

The following pseudocode defines the support functions needed for the core function in Section 8.1. 
 

;; Begin Fact_Ref_Eval function. Input argument factrefname is WFN. 

;; Input argument target is a list of CPE bound names. 

;; Returns TRUE if factrefname is a non-proper superset (true superset 

;; or equal to) any of the names in target, otherwise FALSE. 

function Fact_Ref_Eval(factrefname, target) 

  foreach N in target do 

    ;; Need to convert each N from bound form to WFN. 

    if (CPE_SUPERSET(factrefname, unbind(N))) 

      return TRUE. 

  end. 

  return FALSE. 

end. 

 

;; Begin Check_Fact_Ref_Eval function. Input argument is the XML 

;; infoset for the check_fact_ref element (see Section 5.4). 

;; Returns the result (TRUE, FALSE, ERROR) of performing the specified 

;; check, unless the check isn’t supported, in which case it returns 

;; FALSE. ERROR is a catch-all for all results other than TRUE and 

;; FALSE. 

;; 

function Check_Fact_Ref_Eval(checkfactref) 

  checksystemID := attribute(checkfactref, "check-system"). 

  if (checksystemID = "http://oval.mitre.org/XMLSchema/oval-

definitions-5") 

    ;; Perform an OVAL check. First attribute is the URI of an OVAL 

    ;; definitions file. Second attribute is an OVAL definition ID. 

    return ovalcheck(attribute(checkfactref, "check-location"),  

                     attribute(checkfactref, "check-id")). 

  if (checksystemID = “http://scap.nist.gov/schema/ocil/2”) 

    ;; Perform an OCIL check. First attribute is the URI of an OCIL 

    ;; questionnaire file. Second attribute is OCIL questionnaire ID. 

    return ocilcheck(attribute(checkfactref, "check-location"),  

                     attribute(checkfactref, "check-id")). 

  ;; can add additional check systems here, with each returning a 

  ;; TRUE, FALSE, or ERROR value 

  return FALSE. 

end. 
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;; Unbinds a bound form to a WFN. 

function unbind(boundname) 

  if fs(boundname) 

    return(unbind_fs(boundname)). 

  else 

    return(unbind_URI(boundname)). 

end. 

 

;; Pseudocode for unbind_fs function is at [CPE23-N:6.2.3.2]. 

function unbind_fs(fs) 

  ;; Unbinds a formatted string fs to a WFN. 

  ;; Input is formatted string, output is WFN. 

end. 

 

;; Pseudocode for unbind_URI function is at [CPE23-N:6.1.3.2]. 

function unbind_URI(uri) 

  ;; Unbinds a URI binding uri to a WFN. 

  ;; Input is URI binding, output is WFN. 

end. 

 

;; Pseudocode for CPE_SUPERSET is at [CPE23-M:7.2]. 

function CPE_SUPERSET(source,target) 

  ;; Returns TRUE if the set relation between source and target is 

  ;; SUPERSET, otherwise FALSE. Input arguments are WFNs. 

end. 

 

;; Makes a structure for parsing a CPE Applicability Language  

;; expression. 

function children(langexpr) 

  ;; Holds the XML elements of the expression so that they can be 

  ;; parsed one at a time. 

  ;; Input is CPE Applicability Language expression, represented 

  ;; as the XML infoset for the platform element. 

  ;; Output is the structure holding the expression elements. 

end. 

 

;; Checks the element type (platform, logical-test, etc.) of a  

;; CPE Applicability Language expression element. 

function element(langexprelement) 

  ;; Input is one element of a CPE Applicability Language 

  ;; expression, from the structure created by the children function. 

  ;; Output is the type of that element, represented as a string. 

end. 

 

;; Returns the value of a particular attribute within a 

;; CPE Applicability Language expression. 

function attribute(langexpr, attribtype) 

  ;; Input is a CPE Applicability Language expression and an 

  ;; attribute type (operator, negate, etc.) 

  ;; Output is a string representing the value of that attribute (for  

  ;; example, the operator type could have a value of "AND" or "OR".  

end. 
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