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We have compared a novel sequence–structure matching
technique, FORESST, for detecting remote homologs to
three existing sequence based methods, including local
amino acid sequence similarity by BLASTP, hidden Markov
models (HMMs) of sequences of protein families using
SAM, HMMs based on sequence motifs identified using
meta-MEME. FORESST compares predicted secondary
structures to a library of structural families of proteins,
using HMMs. Altogether 45 proteins from nine structural
families in the database CATH were used in a cross-
validated test of the fold assignment accuracy of each
method. Local sequence similarity of a query sequence to
a protein family is measured by the highest segment
pair (HSP) score. Each of the HMM-based approaches
(FORESST, MEME, amino acid sequence-based HMM)
yielded log-odds score for the query sequence. In order to
make a fair comparison among these methods, the scores
for each method were converted to Z-scores in a uniform
way by comparing the raw scores of a query protein with
the corresponding scores for a set of unrelated proteins.
Z-Scores were analyzed as a function of the maximum
pairwise sequence identity (MPSID) of the query sequence
to sequences used in training the model. For MPSID above
20%, the Z-scores increase linearly with MPSID for the
sequence-based methods but remain roughly constant for
FORESST. Below 15%, average Z-scores are close to zero
for the sequence-based methods, whereas the FORESST
method yielded average Z-scores of 1.8 and 1.1, using
observed and predicted secondary structures, respectively.
This demonstrates the advantage of the sequence–structure
method for detecting remote homologs.
Keywords: hidden Markov models/motifs/remote homologs/
secondary structures

Introduction
Protein sequences emerging from genome sequencing projects
are of greatest value to medicine and biology if their structure
and function can be identified. With the growing number of
unannotated sequences, association of a new sequence to a
protein of known structure can be a significant step towards
the identification of its biological role. Simple sequence search
methods such as FASTA (Pearson and Lipman, 1988) or
BLASTP (Altschulet al., 1990) readily identify close homologs
of protein sequences, whereas sequences of remote homologs
have diverged so much, it may be difficult to detect their
relationship.
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Hidden Markov models (HMM) are sequence-family based
techniques which are extensively used in modeling protein
families (Hughey and Krogh, 1995). HMMs were found to
perform better compared with sequence-based methods like
WU-BLASTP for detecting remote homologs (Karpluset al.,
1998). The performance of different sequence search tech-
niques for identifying homologs has been assessed recently
(Pearson, 1995; Agarwal and States, 1998; Brenneret al.,
1998; Grundy, 1998; Levitt and Gerstein, 1998). In a compre-
hensive study based on the protein domains of the SCOP
database, Levitt and Gerstein (1998) found that structure
comparison methods are able to detect twice as many distantly
related proteins as sequence comparison methods, at the same
error rate. Pairwise sequence comparison methods such as
SSEARCH and FASTA detected almost all relationships
between proteins whose sequence identities were above 30%,
but detected only half of the relationships when pairwise
sequence identity is between 20 and 30% (Brenneret al., 1998).

Significant pairwise sequence similarity is not a necessary
condition for pairs of proteins to adopt a common fold. Indeed
it is widely accepted that three-dimensional structure is better
conserved than sequence, as is evident from the current
classifications of proteins into similar topology and architecture
(Murzin et al., 1995; Orengoet al., 1997). Proteins with
sequence identity down to about 30% generally share the same
fold (Chothia and Lesk, 1986; Sander and Schneider, 1991;
Flores et al., 1993), and surprisingly, even proteins with as
low as 5% sequence identity have the same fold (Orengoet al.,
1993). The number of different protein folds was identified to
be 327 from the June 1996 release of the Protein Data Bank
(Chothiaet al., 1997). It now seems feasible to choose a fold
compatible with a novel protein sequence from the growing
repertoire of known folds, rather than attempting to predict
the structurede novo. Fold assignment is thus becoming a
practical approach to protein structure prediction and recent
reviews (Lemeret al., 1995; Levitt, 1997) suggests that
progress in this area is continuing.

We are interested in comparing methods intended to relate
new sequences to known structures. The methods studied here
include local sequence similarity search by BLASTP (Altschul
et al., 1990), HMMs constructed from sequences of protein
families using the publically available software SAM (Hughey
and Krogh, 1995), HMMs based on identified motifs from
sequences using meta-MEME (Grundyet al., 1997) and
FORESST (which stands for FOld REcognition from
Secondary Structure), a method based on HMMs built from
secondary structure sequences of proteins (Di Francescoet al.,
1997a). The HMM based methods require many parameters
to be estimated. It is therefore essential to measure their cross-
validated performance so that simple ‘memorization’ of the
training data is excluded as a possibility.

Materials and methods
Fold families of proteins and cross-validated testing
A sample of nine fold families (Table I) were selected from
the database of protein structure classification, CATH release
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Table I. Protein families and proteins tested for fold assignment

Fold family Family members from CATH Protein MPSIDa Proteins removed from
used for training HMMs tested training HMMs

Phospholipase 1poa,1pod,3p2pA,2phiA, 1poc 17 1poc
1pshA,4p2p,5p2pA, 1pod 55 1pod
1pp2L,1ppa,1poc 1pp2L 47 1pp2L

1ppa 47 1ppa
Globin-like 1eca,1mbd,1myt,1mbs, 1colA 16 1colA

1ymb,1myiA,2mm1, 1eca 17 1eca,1hbg,1hdsA,1mba,
3sdhA,1hbg,2lhb,1pbxB, 2lhb,1hdsA,1hdsB,1fdhG,
1hdsB,1fdhG,2mhbB, 2mhbA,1thbA,1mba
1hbsB,1pbxA,1hdsA, 1lh1 18 1lh1
2mhbA,1thbA,1mba,1lh1, 2lhb 21 2lhb,1hdsA,1hdsB,1fdhG,
1ithA,1cpcA,1cpcB,1colA 2mhbA

3sdhA 20 3sdhA
Cytochrome-C 1ycc,1ccr,5cytR,1yea, 1cc5 18 1cc5,3c2c,155c

1ctz,1raq,2ycc,1crg,1cri, 1ycc 22 1ycc,1ccr,5cytR,1yea,1ctz,
1crj,1cty,1rap,1cyc, 1raq,2ycc,1crg,1cri,1crj,
2pcbB,351c,1cor,155c, 1cty,1rap,1cyc,2pcbB
1c2rA,2mtaC,3c2c,1cc5 5cytR 30 1ycc,1ccr,5cytR,1yea,1ctz,

1raq,2ycc,1crg,1cri,1crj,
1cty,1rap,1cyc,2pcbB,155c

EF Hand 3cln,1ncx,5tnc,1tnx, 1bod 29 1bod
1rro,4cpv,5pal,1pal, 2scpA 21 2scpA
1osa,2pas,2sas,2scpA, 3cln 25 3cln,1ncx,5tnc,1tnx,1osa
1bod 4cpv 23 4cpv,1rro,5pal,1pal,1osa,

2pas,1bod
Cytochrome B562 2hmzA,2ccyA,256bA, 256bA 22 256bA,1apc

2tmvP,1apc,2hmqB, 2hmzA 13 2hmzA,2hmqB,2mhr,
2mhr,1hmdB,1hmoB, 1hmdB,1hmoB
1lpe,1le4,1le2,1bbhA, 2ccyA 19 2ccyA
1aep,1vtmP 2tmvP 14 2tmvP,1vtmP

α/β Hydrolase-lipase topology 1thtA,1cvl,1gpl,1tca, 1thtA 10 1thtA
1oilA,1ethA,1ede, 1cvl 11 1cvl,1oilA
1hdeE,1ysc 1gpl 12 1gpl

1tca 10 1tca
OB fold-dihydrolipo-amide acetyl 1lab,1bdo,1bovA,1afp, 1lab 21 1lab
transferase topology 1mjc,1krs,1rip,1vqb, 1bdo 21 1bdo

1prtD,1ltsD,2sns,1csp, 1bovA 11 1bovA
1chbD,1snc 1afp 10 1afp

1mjc 13 1mjc,1csp
1krs 10 1krs
1rip 11 1rip
1vqb 12 1vqb
1prtD 11 1prtD
1ltsD 10 1ltsD,1chbD
2sns 13 2sns,1snc

Serine protease elongation 1sgt,1thsH,5ptp,3rp2A, 1sgt 25 1sgt,1thsH,5ptp,1etsH,
factor Tu-domain 3 topology 1etsH,1ppfE,4chA,1mctA, 1mctA,1tld,4etsE

1tld,1trmA,1ton,1gctA, 1thsH 27 1thsH,1etsH,1sgt,5ptp,
4estE,1hneE 1mctA,4chaA,1tld,1trmA,

1gctA
5ptp 41 5ptp,1trmA,1tld,1mctA
3rp2A 32 3rp2A
1etsH 37 1etsH,1thsH

Interleukin granulocyte colony 2gmfA,1itl,3inkC,1lki, 2gmfA 15 2gmfA
stimulating factor (form II) 3hhrA,1bgc,1rhgA,1bge, 1itl 13 1itl

1ilk,1rfbA,1hmcA,1higA, 3inkC 9 3inkC
1rni 1lki 13 1lki

3hhrA 14 3hhrA

aMPSID is the maximum pairwise sequence identity between the query protein and the rest of the fold family.

1997 (Orengoet al., 1997). Each family was required to have
sufficient size and diversity to be suitable for cross-validated
testing of each recognition algorithm.

The pairwise sequence identity, according to CLUSTALW
(Thompsonet al., 1994) between any two members within the
topology family was used as a proxy measure of relatedness.
This approach allowed us to perform cross-validated testing
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by eliminating from the training set all proteins having more
than a specified degree of relatedness (Table I). Each test protein
then has a maximum pairwise sequence identity (MPSID) with
the remaining members of the same topological family used
in training each of the models. We also include some examples
of close homologs, with relatively high values for the MPSID
to explore their effect on Z-scores.
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Control dataset for calibration
A dataset of 132 unrelated proteins of known structures, which
was obtained by slightly modifying the original database of
125 unrelated proteins (Rost and Sander, 1993), is listed here:
1acx, 2ak3A, 1azu, 1bbpA, 1bds, 1bmv1, 1bmv2, 1cc5, 1cdh,
1cdtA, 1crn, 1cseI, 1eca, 1etu, 1fc2C, 1fdlH, 1fdx, 1fkf, 1fxiA,
1gd1O, 1gp1A, 1hip, 1l58, 1lap, 1mcpL, 1ovoA, 1paz, 1pyp,
1r092, 1rbp, 1rhd, 1s01, 3sdhA, 1sh1, 1tgsI, 1tnfA, 1ubq,
1wsyA, 1wsyB, 256bA, 2aat, 2alp, 2cab, 2ccyA, 2cyp, 1fnd,
2fxb, 2gbp, 2gcr, 2gn5, 2hmzA, 2i1b, 1gdj, 2lhb, 2ltnA, 2ltnB,
2mev4, 2or1L, 2pabA, 2pcy, 2phh, 2rspA, 2sns, 2stv, 2tgpI,
2tmvP, 2tscA, 2utgA, 2wrpR, 3ait, 3b5c, 3blm, 3cla, 3cln,
3gapA, 3hmgA, 3hmgB, 3icb, 3pgm, 3rnt, 3timA, 4bp2, 4cms,
4cpv, 2fox, 4gr1, 4pfk, 4rhv1, 4rhv3, 4rhv4, 4sgbI, 4ts1A,
43iaA, 5cytR, 5er2E, 5hvpA, 5ldh, 5lyz, 6acn, 6cpa, 6cpp,
6cts, 6dfr, 6tmnE, 7catA, 7icd, 7rsa, 8abp, 8adh, 9apiA, 9apiB,
9pap, 9wgaA, 2ace, 1colA, 3cox, 1f3g, 3gly, 2gmfA, 1hddC,
1hrhA, 1msbA, 1nsbA, 1pi2, 2cpkE, 2hipA, 2ifb, 2pk4, 2sarA,
2scpA, 4fgf, 5p21. These proteins were used throughout
our study as negative controls for each recognition method
being studied.
Z-Scores
Z-Scores were computed from the raw scores obtained by
individual methods compared here. We chose to ignore the
significance values given by some of these methods, as they
are based upon a variety of statistical assumptions. Therefore,
E-values, p-values, rankings, information content, etc. are
ignored in favor of the raw scores on which these measures
are based. Each method may be assessed objectively by its
ability to generate a score for properly matching a query
sequence to its own family of proteins which differs markedly
from the scores produced by a standard set of unrelated control
sequences. The fact that both the test protein and the control
proteins had known structure made it possible to eliminate
potential control set proteins which belong to the same fold
family as the test protein and therefore might bear a distant
evolutionary relationship. Knowledge of the structures also
allows for proper identification of true positives and true
negatives for each query sequence.

The distribution of raw scores for the control database
was analyzed for each method. Although the control dataset
represented 132 proteins, the empirical distributions of the
scores deviated at most mildly from a normal (Gaussian)
distribution for each method. To compare different methods,
Z-scores were obtained from the raw scores by subtracting the
mean and dividing by the standard deviation of the raw scores
of the control database (for methods max_LSS and MHMM).
When the raw score varied strongly with the length of the
control protein (length range between 50 and 600 residues,
median around 165), a length dependent correction was applied
to the raw scores (for methods SHMM and FORESST),
discussed in detail later.
Local sequence similarity (LSS) method
Local sequence similarity was computed using a version of
BLASTP with the BLOSUM62 matrix, with the expectation
thresholdE of 1000, parametersB and V set to 500,T to 1,
with the rest of the parameters set to their default values, so
as to obtain alignment scores for all members of the control
database. Representative proteins of each fold family (between
three and 11 sequences per family), were used as query
proteins for pairwise sequence comparison against each mem-
ber of the family and the highest segment pairs (HSP) scores
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determined. Local sequence comparison was also performed
between each protein from the control database to each fold
family (Table I). The maximum HSP score (max_LSS) over
the members of the family is recorded. This entire procedure
was repeated for each fold family.

Motifs, their detection and construction of motif-based
HMMs (MHMM)

Motifs of sequences within fold families were automatically
detected using MEME and MAST (Bailey and Elkan, 1994)
for the same set of sequences of each fold listed in Table I,
with default parameter settings available over the Web
(http://www.sdsc.edu/MEME). The motifs, ungapped, non-
overlapping segments are later combined into a single model
using meta-MEME (Grundyet al., 1997). The query sequence
and the proteins from the control dataset were tested against
the resulting motif-based HMM model for each fold using the
HMMER software (Eddy, 1996). The ‘hmmsw’ option of
HMMER is a Smith–Waterman based semi-local search
program of a sequence database for best matches to a hidden
Markov model, resulting in the log-odds score for the query
protein.

Sequence-based hidden Markov model (SHMM)

Hidden Markov models were constructed for each fold family
using the publically available software SAM version 1.3.1
(Hughey and Krogh, 1995). Default parameters were used for
training 15 models with different seed values. The training
was done by the expectation maximization method with a
maximum of four surgeries, until the relative improvement in
the negative log-likelihood (NLL) score dropped to 0.01
(Hughey and Krogh, 1995). A nine-component empirical
Dirichlet mixture prior (Brown et al., 1993) was used in
order to train models with smaller training sets (seven to 25
sequences). In spite of the potential advantage of using larger
training sets (Hughey and Krogh, 1996), we did not include
more sequences for training a given model because, after
removing those proteins which were closely related to the
query protein, the number of remaining proteins within the
same fold family was limited. Also, we maintained consistency
with the training proteins of HMM models based on observed
secondary structures of fold families, which were also limited
by the number of diverse structures in the same topological
group of CATH. The resulting log-odds scores (NLL scores
of the model—NLL scores of a ‘NULL’ model, obtained by
average letter frequencies found in match states), were obtained
for the true positives in each model and the true negatives of
the control dataset.

FORESST

Hidden Markov models for each fold family were trained
from unaligned, experimentally derived secondary structure
sequences of the proteins listed in Table I by the method
FORESST (Di Francescoet al., 1999; Di Francescoet al.,
1997a). During training, the expectation–maximization estima-
tion process was stopped when the relative improvement in
the average NLL score of the training sequences with respect
to the current model was less than 0.01, and up to four
surgeries were allowed (Hughey and Krogh, 1995). The
remaining parameters and the transition probability prior distri-
butions were set to default values. The prior distributions of
the observation symbols were set to be proportional to the
fraction of the residues in the three secondary structure states
in the training sequences of each model.
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Fig. 1. Log-odds scores plotted as a function of the length of the proteins in
the control dataset for a cross-validated sequence-based hidden Markov
model for the protein 1poc in the phospholipase fold family. Predicted log-
odds scores are shown as a solid line. The model length was 132, roughly
corresponding to the ‘knot’ position (127) of the two linear segments.

To evaluate the capabilities of each model at recognizing
its family members, Z-scores were calculated from log-odds
scores as described above. The log-odds score is a measure of
how a given HMM of a specific fold family fits a query
sequence better than a generic null model related to some
underlying background distribution. For each HMM, the null
model was defined with default transition probability distribu-
tions and observation symbol probability distributions equal
to the relative frequencies of helical, extended and coil residues
of the training set sequences in the model match states.

When evaluating the recognition capabilities of the models
using predicted secondary structure sequences (FORESST),
both the query sequences and the sequences in the control
database were predicted with the quadratic–logistic (QL)
method (Munsonet al., 1994). When evaluating the models
using observed secondary structure sequences (denoted
FORESST-obs), the query sequences and the sequences in the
control database were obtained from the output of DSSP
(Kabsch and Sander, 1983).

Length dependence of the log-odds scores
The log-odds scores by the HMM methods for the negatives
of the control database were found to be generally related to
the length of the protein sequence, often in a non-linear
fashion. Accordingly, for each model, a simple linear regression
and a two-segment linear regression model were fitted to the
scores of the control proteins (Figure 1) to determine the
expected value of the score for a sequence of given length.
For the two-segment model, two lines were fit, with the break-
point or ‘knot’ adjusted to fit the data. The linear fit was
accepted unless the two-segment fit displayed a residual sum
of squares values less than 90% of that for the linear fit. In
either case, the Z-scores were determined by subtracting the
regression value (expected value given the sequence length)
from the raw score and dividing the result by the root mean
square (r.m.s.) error from the regression. In most cases, the
expected score was adequately fit by two linear segments with
the knot placed near the effective length of the hidden
Markov model.

Effect of size of the database for computing Z-scores
To resolve any question concerning the modest size of our
control database, and the possible effect on the Z-scores for
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the local alignment method, a much larger control database
was developed by randomly sampling a very large database
of sequences from GENPEPT 103 (ftp://ftp.ncifcrf.gov/pub/
genpept) to produce a collection of 1000 protein sequences.
Since these sequences were not all associated with known
structures, we were less confident about their status as negative
controls. But sequences bearing an obvious relationship to the
query were removed from the set when the BLAST E-values
for those sequences were,0.00001. The distribution of HSP
scores of the true negatives for the small database of 132
proteins gave a mean of 28.37 and a standard deviation of
5.17. The same distribution with respect to the larger database
resulted in a mean of 28.14 and a standard deviation of 5.20
and we concluded that the smaller database was adequate for
the current study.

The effect of size of the database was also closely examined
for the HMM based methods. The standard deviation of log-
odds scores after subtracting the length-dependent expected
log-odds scores for the small database of 132 proteins was
9.74, whereas the value was 9.39 for the larger database. The
change in the standard deviation is not greater than would be
expected from the sampling error for samples of size 132 and
1000 and we again concluded that the smaller dataset was
adequate here.

Scores and their evaluation
The pairwise sequence identity determined by the CLUSTALW
alignment (Thompsonet al., 1994) between proteins is often
used as a measure of how likely the two proteins are to adopt
similar folds. This serves as rough measure of the difficulty
of the recognition problem, since protein pairs with higher
pairwise sequence identity are more easily recognized. We
define the MPSID as the maximum pairwise sequence identity
(MPSID) of the sequences used in the various models.

Sensitivity and specificity for fold assignment
Z-Scores were computed for members and non-members of
each fold family to examine the discriminatory power of each
method. If the Z-score for a query against a particular protein
family is greater than 2.0, the query is considered ‘positive’
for that family. Sensitivity is defined as the ratio of true
positives to all true family members and specificity is defined
as the ratio of true positives to all positives for that family. The
percentage sensitivity and specificity therefore vary anywhere
between 0 and 100. A good method should have both high
sensitivity and high specificity values.

Results

Comparison of methods for fold assignment
The Z-scores computed for the local pairwise sequence com-
parison (max_LSS), sequence-based HMMs (SHMM), motif-
based HMMs (MHMM), FORESST and FORESST-obs will
be discussed here. There were in total 45 proteins from
different fold families tested for fold assignment (Table I).
The local pairwise sequence comparison method gave rise to
highest scoring segment pairs (HSP) for each protein tested
against each family member. To obtain a single score for the
entire family, the maximum HSP score (max_LSS) was taken
on the theory that a family is recognized if the query recognizes
at least a single member. We analyzed the entire data where
proteins with MPSID were less than 55% (Figure 2). The
mean Z-score (standard error) for the max_LSS method is
7.7(2.1). The SHMM method has a mean Z-score of 4.4(0.9)
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Fig. 2. Z-Scores obtained for various methods for all the test proteins. The
average Z-score for each method is also indicated (as.--, ).

Fig. 3. Z-scores obtained for various methods for proteins with MPSID
,15%, namely, the remote homologs.

and MHMM method has a mean Z-score of 6.9(1.8). The
FORESST and FORESST-obs methods have means 1.31(0.19)
and 2.58(0.27) with maximum Z-scores of 5.1 and 6.8,
respectively.

Sequence-based methods are generally successful in finding
homologous proteins with MPSID greater than 20% but are
less successful for lower values of MPSID. The Z-scores for
the 20 proteins with MPSID less than 15% are plotted as a
function of the different methods (Figure 3). When MPSID is
less than 15%, average Z-score for max_LSS drops to 0.5(0.3),
making recognition unreliable for the remote homologous
pairs. For this range of MPSID, MHMM and SHMM methods
also have low average Z-scores, 0.1(0.2) and 0.3(0.1), respect-
ively. In contrast, FORESST has a mean of 1.1(0.2) (Figure 3).
When observed rather than predicted secondary structure is
used, the mean Z-score rises to 1.8(0.3), suggesting that
improvements in prediction accuracy would materially improve
the overall performance of the FORESST method. Moreover,
the average Z-scores for FORESST (using prediction or
observation) is higher than for any of the sequence-based
methods analyzed in this paper.

The results (Figure 4a) for all the sequence-based methods
show a striking dependency on the difficulty of the recognition
problem as measured by the maximum pairwise sequence
identity (MPSID). The Z-scores appear to increase approxim-
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Fig. 4. (a) Z-Scores plotted as a function of MPSID. a, max_LSS; b,
MHMM; c, SHMM; d, FORESST-obs; and e, FORESST. Data points (x)
shown only for max_LSS. Data for all the methods are modeled as a
segmented linear fit. (b) Z-Scores plotted as a function of MPSID.
a, max_LSS; b, MHMM; c, SHMM; d, FORESST-obs; e, FORESST. Data
points (*) shown only for FORESST. Data for all the methods are modeled
as a segmented linear fit.

ately linearly for MPSID above 20% but are evidently flat for
MPSID below 15%. Accordingly, we fit the individual points
with a segmented linear model, with a break point set at
15%. Although the exact position of the break could not be
determined precisely, it lies within the range of 15–20%. Of
the four sequence-based methods, the max_LSS generally
performs better than other sequence-based methods for MPSID
over 20%. The FORESST-obs method performs better com-
pared with any of the methods for MPSID below 15%.

The Z-scores appear to be largely independent of MPSID
for FORESST (Figure 4b). The average (standard error) Z-score
over the entire range of MPSID for FORESST is 1.31(0.19).
The average Z-score for FORESST using observed secondary
structures is 2.58(0.27) over the entire range, although the
Z-scores increase gradually as the MPSID increases, reaching
a maximum Z-score around 7.0 for MPSID of 55%.

For each family, methods can recognize not only the proteins
of their own members but also proteins from other families
suggesting that recognition specificity is an issue. The overall
sensitivity and specificity rates for all the methods are found
to be strongly dependent on the difficulty of the recognition
problem. Table II summarizes the sensitivity and specificity
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Table II. Overall sensitivity and specificity by various methods

METHODS All test proteins MPSIDø15% 16ø MPSID ø 30%

Sensitivitya Specificityb Sensitivity Specificity Sensitivity Specificity
(%) (%) (%) (%) (%) (%)

max_LSS 47 58 7 10 77 63
MHMM 44 71 6 7 66 63
SHMM 40 35 6 7 58 34
FORESST 24 41 25 66 39 37
FORESST-obs 64 51 50 58 66 48

aSensitivity is defined as the ratio of true positives to all true family members.
bSpecificity is defined as the ratio of true positives to all positives for that family. Detection is based on Z-scores greater than 2.0.

for all the test proteins at varying levels of the MPSID. The
max_LSS method has greater sensitivity and specificity for
proteins with MPSID between 16 and 30% (Table II), compared
with proteins with MPSID less than 15%. This sequence
similarity search method is not capable of reliably identifying
the very remote homologous pairs.

The MHMM method seems to perform well in cases where
it is possible to identify fingerprints or sequence motifs of the
fold families as is evident from the overall specificity rates
for all the query proteins and for proteins with MPSID ranging
from 16 to 30%. The moderate sensitivity and higher overall
specificty rate (Table II, columns 2 and 3) by MHMM for all
the test proteins when compared with other methods, seems
to roughly corroborate a similar observation which found the
motif-based method MEME to have moderate power and
higher confidence, while comparing multiple protein sequence
alignment servers (Briffeuilet al., 1998). Both the sensitivity
and specificity rates decrease for MPSID below 15%.

The SHMM method has an overall sensitivity of 40% and
the overall specificity is 35%. The overall sensitivity rate
increases for MPSID between 16 and 30%. In essence, all the
sequence-based methods have a very low sensitivity and
specificity rate for MPSID below 15%, thus making recognition
of these very remote homologs very unlikely.

The overall sensitivity and specificity rates by the FORESST
method (Table II) is lower compared with other sequence-
based methods for all the test proteins. The specificity rate is
slightly better than the SHMM method but still less than other
sequence-based methods. However, the sensitivity and the
specificty rates are much higher than sequence-based tech-
niques when proteins have MPSID less than 15% (Table II,
columns 4 and 5). When the FORESST method is based
on observed secondary structures for the query protein, the
sensitivity, specificity rates are even better compared with all
the other methods analyzed.

Discussion
We have assessed various methods for detection of remote
homologs using a uniform, objective, statistically valid com-
parison. Each HMM-based method was trained on the identical
database of proteins and tested with carefully controlled cross-
validation. The protein families we have discussed in this
paper include both close and remote homologs. Even though
the remote homologs are not easily detectable by sequence
search methods alone, such methods may at times recognize
distant homologs. The results also show that the local similarity
search method performs relatively well compared with other
sequence or structure based approaches, mainly for an MPSID
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greater than 20%. This corroborates an earlier study, where
BLAST was found to outperform other sequence based
approaches, namely, HMMER and MEME (Grundy, 1998).
However, that study did not examine their performance as a
function of the pairwise sequence identity which we show to
be critical to the understanding of the relative performance of
these methods. Use of a gapped BLAST or PSI-BLAST
(Altschul et al., 1997) might also improve the results obtained
by the LSS method here for some of the remote homologs.
Although an earlier study comparing the PSI-BLAST and
HMM methods found the HMM method to detect 35% of the
true homologs while PSI-BLAST detected only 30% (Park
et al., 1998).

Close homologs are readily recognized by sequence based
methods. The recognition power of each method improves
roughly linearly with sequence identity above 15–20%, except
for FORESST which maintains a nearly constant Z-score
between 1.0 and 1.5, regardless of the sequence identity of
the target. That the Z-scores for FORESST do not increase
with MPSID may be attributed to the errors in the secondary
structure prediction. The method based on experimental
secondary structures (FORESST-obs) is included to explore
the upper limit of the performance of any of the secondary
structure prediction methods. It has been noted that the greater
the sequence identity between a pair of related proteins, the
greater the agreement of secondary structures (Chothia and
Lesk, 1986; Russell and Barton, 1994). This would explain
the increase of Z-scores with MPSID seen here for FORESST
based on observed secondary structures as opposed to predicted
ones. The maximum attainable Z-score for the FORESST
method is smaller than for any of the sequence-based methods.
This is likely due to the reduced size of the alphabet used for
representing secondary structures (namely, H, E and C, see
Materials and methods), which in turn implies a higher chance
of falsely matching a given position of the secondary structure
sequence in the control database.

The higher rates of sensitivity and specificity for the
FORESST method compared with all the sequence-based
methods in the range of MPSID less than 15%, suggests the
advantage of the secondary structure-based method over the
sequence-based methods for identification of these very remote
homologs. However, the moderate sensitivities and specificities
with predicted secondary structures emphasizes the need to
improve the accuracy of prediction and encourages the use of
NMR secondary structure assignments for fold recognition.

The relatively poor performance of the SHMM method for
recognition of some of the remote homologs may be attributed
in part to the fact that the hidden Markov models were not
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trained with an adequate number of sequences. The training
set of the SHMM model includes few sequences, which
resulted in the artificially low specificity and sensitivity of
some of these models. Recognition might improve for the
SHMM or even the MHMM method if more sequences were
used for training, as has been shown by Karplus and co-
workers (Karpluset al., 1997). In this study, we used a limited
number of sequences for training the SHMM method, in order
to allow for the rigorous cross-validation of the models and
to confine our study only to proteins of known structure, a
prerequisite for determining membership in a structural fold
family. In any case, it should be observed that with a smaller
number of sequences in the training set, the HMMs based on
secondary structures are more successful in identifying remote
homologs than the HMMs based on amino acid sequences.

The protein sequences whose structures were not yet pub-
lished, served as prediction targets for various fold recognition
methods (Lemeret al., 1995; Levitt, 1997) during the second
Critical Assessment of Structure Prediction experiment, namely
CASP2 (Moultet al., 1997). Some of the prediction targets at
the CASP2 had functional relationship with the existing protein
folds (Russellet al., 1998) and those proteins which had
sequence motifs were identified as ‘easy targets’ (Marchler-
Bauer and Bryant, 1997). The method responsible for the
accurate predictions for almost all of the submitted targets in
the fold recognition category had combined knowledge from
various sources, namely, sequence, function, predicted
secondary structure and information from the literature (Murzin
and Bateman, 1997). In the absence of function or other
information, as is the case in high throughput genome sequenc-
ing projects, a fold recognition method based on structure–
sequence information alone might help to infer the function
for the novel protein.

As an illustration of our Z-score methodology, we applied
these five methods to the two CASP2 prediction targets (T0004
and T0031) which are among the fold families studied here.
Post hoc analysis of the T0004 sequence by the current
approach resulted in a Z-score of 2.20 by the max_LSS
method, identifying the protein 1mjc, a member of the OB
fold family. The Z-scores obtained for the OB fold family by
the SHMM and FORESST methods were 2.46 and 2.86,
respectively, whereas MHMM yielded a Z-score of 0.70. Three
out of five methods studied here seem to be able to recognize
this remote homolog of the OB fold family with Z-scores
greater than 2.0. In the CASP2 contest, we correctly predicted
T0004 to be a member of the OB fold family using the
FORESST method (Di Francescoet al., 1997a,b). The success
of sequence similarity search methods like BLASTP in identify-
ing T0004 as an OB fold, even though the sequence identity
is in the twilight zone, is partly due to the conservation of the
key functional residues. The sequence motif Phe22, Val33,
His34, Ser36, Ileu38 in T0004 is also found in the RNP-1
motif of cold-shock proteins (Schindelinet al., 1994; Marchler-
Bauer and Bryant, 1997; Murzin and Bateman, 1997).

The Z-score for the prediction target T0031 turned out to
be 4.28 against a serine protease SHMM, 1.58 by the max_LSS
method and 2.44 by the FORESST method. Here again, the
MHMM method gave the Z-score of 0.15, and was unable to
recognize this protein as a member of the serine protease fold
family. Our CASP2 FORESST prediction for T0031 as a
member of the serine protease fold is confirmed by the post
hoc analysis of the Z-scores on the target by this method.
Furthermore, T0031 has conserved functional residues similar
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to the catalytic triad of serine proteases (Nienaberet al., 1993;
Marchler-Bauer and Bryant, 1997; Murzin and Bateman, 1997).

We were also able to identify a novel pleckstrin homology
(PH) domain using FORESST and SHMM in the mammalian
phospholipase D (PLD) proteins PLD1 and PLD2 (Holbrook
et al., 1999). Previously, these PLD protein sequences were
reported to lack signaling domains. The presence of these PH
domains in PLDs has also been demonstrated with independent
biochemical and sequence homology searches (Steedet al.,
1998). This finding would therefore resolve the contradictory
observations about PLD regulation (Steedet al., 1998).

After fold recognition, the query sequence must then be
correctly aligned to a known fold in order to build a successful
three-dimensional model for the novel sequence. Unfortunately,
the sequence to structure alignment quality of current fold
recognition methods is not yet adequate and stands in the way
of better protein structure prediction. Fold recognition currently
helps in the annotation of sequences for which no function is
known. Future progress in fold recognition is also hampered
by the fact that there are only a limited number of known
folds. Even attempts to build novel folds by understanding the
topological rules of existing folds (Reva and Finkelstein, 1996)
have not advanced the current repertoire of fold libraries. It
remains to be seen if existing or new and improved fold
recognition methods are capable of identifying a greater
number of remote homologs successfully at the CASP3 contest.

Conclusion

We conclude that the sequence-based methods are successful
in recognizing close homologs, but structure–sequence based
methods, such as FORESST, are more appropriate for fold
recognition of remote homologs (MPSID less than 15%). The
performance of FORESST-obs, which used the experimentally-
derived secondary structure of the query sequence, suggests
that improving secondary structure prediction can improve
automated recognition in some cases. None of the sequence
based methods studied here can provide evidence for related-
ness of these distant homologs, in general. In choosing between
sequence-based or sequence–structure-based methods for fold
recognition, one should be guided by the degree of relatedness
of the homolog being sought. Our results suggest that a hybrid
method utilizing both sequence (for close homolog searches)
and secondary structure prediction methods (for remote homo-
log searches), would be an even better approach for automatic
recognition of folds of novel protein sequences.
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