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We have compared a novel sequence—structure matching
technique, FORESST, for detecting remote homologs to
three existing sequence based methods, including local
amino acid sequence similarity by BLASTP, hidden Markov
models (HMMs) of sequences of protein families using
SAM, HMMs based on sequence motifs identified using
meta-MEME. FORESST compares predicted secondary
structures to a library of structural families of proteins,
using HMMs. Altogether 45 proteins from nine structural
families in the database CATH were used in a cross-
validated test of the fold assignment accuracy of each
method. Local sequence similarity of a query sequence to
a protein family is measured by the highest segment
pair (HSP) score. Each of the HMM-based approaches
(FORESST, MEME, amino acid sequence-based HMM)
yielded log-odds score for the query sequence. In order to
make a fair comparison among these methods, the scores
for each method were converted to Z-scores in a uniform
way by comparing the raw scores of a query protein with
the corresponding scores for a set of unrelated proteins.
Z-Scores were analyzed as a function of the maximum
pairwise sequence identity (MPSID) of the query sequence
to sequences used in training the model. For MPSID above
20%, the Z-scores increase linearly with MPSID for the
sequence-based methods but remain roughly constant for
FORESST. Below 15%, average Z-scores are close to zero

Hidden Markov models (HMM) are sequence-family based
techniques which are extensively used in modeling protein
families (Hughey and Krogh, 1995). HMMs were found to
perform better compared with sequence-based methods like
WU-BLASTP for detecting remote homologs (Karplesal.,
1998). The performance of different sequence search tech-
niques for identifying homologs has been assessed recently
(Pearson, 1995; Agarwal and States, 1998; Brerateal.,
1998; Grundy, 1998; Levitt and Gerstein, 1998). In a compre-
hensive study based on the protein domains of the SCOP
database, Levitt and Gerstein (1998) found that structure
comparison methods are able to detect twice as many distantly
related proteins as sequence comparison methods, at the same
error rate. Pairwise sequence comparison methods such as
SSEARCH and FASTA detected almost all relationships
between proteins whose sequence identities were above 30%,
but detected only half of the relationships when pairwise
sequence identity is between 20 and 30% (Breehal, 1998).

Significant pairwise sequence similarity is not a necessary
condition for pairs of proteins to adopt a common fold. Indeed
it is widely accepted that three-dimensional structure is better
conserved than sequence, as is evident from the current
classifications of proteins into similar topology and architecture
(Murzin et al, 1995; Orengoet al, 1997). Proteins with
sequence identity down to about 30% generally share the same
fold (Chothia and Lesk, 1986; Sander and Schneider, 1991;
Floreset al, 1993), and surprisingly, even proteins with as
low as 5% sequence identity have the same fold (Orengo,
1993). The number of different protein folds was identified to
be 327 from the June 1996 release of the Protein Data Bank
(Chothiaet al., 1997). It now seems feasible to choose a fold
compatible with a novel protein sequence from the growing
repertoire of known folds, rather than attempting to predict
the structurede novo Fold assignment is thus becoming a

for the sequence-based methods, whereas the FORESST practical approach to protein structure prediction and recent

method yielded average Z-scores of 1.8 and 1.1, using
observed and predicted secondary structures, respectively.
This demonstrates the advantage of the sequence—structure
method for detecting remote homologs.
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Introduction

reviews (Lemeret al, 1995; Levitt, 1997) suggests that
progress in this area is continuing.

We are interested in comparing methods intended to relate
new sequences to known structures. The methods studied here
include local sequence similarity search by BLASTP (Altschul
et al, 1990), HMMs constructed from sequences of protein
families using the publically available software SAM (Hughey
and Krogh, 1995), HMMs based on identified motifs from
sequences using meta-MEME (Grundy al., 1997) and
FORESST (which stands for FOId REcognition from

Protein sequences emerging from genome sequencing proje&gcondary Structure), a method based on HMMs built from
are of greatest value to medicine and biology if their structureecondary structure sequences of proteins (Di Francessalg

and function can be identified. With the growing number of1997a). The HMM based methods require many parameters
unannotated sequences, association of a new sequence taoge estimated. It is therefore essential to measure their cross-
protein of known structure can be a significant step towardsalidated performance so that simple ‘memorization’ of the
the identification of its biological role. Simple sequence searcliraining data is excluded as a possibility.

methods such as FASTA (Pearson and Lipman, 1988) or

BLASTP (Altschulet al., 1990) readily identify close homologs

Materials and methods

of protein sequences, whereas sequences of remote homoldgsld families of proteins and cross-validated testing
have diverged so much, it may be difficult to detect theirA sample of nine fold families (Table 1) were selected from

relationship.

© Oxford University Press

the database of protein structure classification, CATH release
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Table |. Protein families and proteins tested for fold assignment

Fold family Family members from CATH Protein MPSID Proteins removed from
used for training HMMs tested training HMMs
Phospholipase 1poa,1pod,3p2pA,2phiA, 1poc 17 1lpoc
1pshA,4p2p,5p2pA, 1pod 55 1pod
1pp2L,1ppa,lpoc 1pp2L 47 1pp2L
lppa 47 1lppa
Globin-like leca,1mbd,1myt,Ambs, 1colA 16 1colA
lymb,1myiA,2mm1, leca 17 leca,1lhbg,1hdsA,1mba,

3sdhA,1hbg,2lhb,1pbxB,
1hdsB,1fdhG,2mhbB,

2lhb,1hdsA,1hdsB,1fdhG,
2mhbA,1thbA,1mba

1hbsB,1pbxA,1hdsA, 1lhl 18 1lh1
2mhbA,1thbA,1mba,1lh1, 2lhb 21 2lhb,1hdsA,1hdsB,1fdhG,
1ithA,1cpcA,1lcpcB,1colA 2mhbA
3sdhA 20 3sdhA
Cytochrome-C 1lycc,lcer,5¢ytR,lyea, lcch5 18 1cc5,3c2¢,155¢
1ctz,1rag,2ycc,1crg,lcri, lycc 22 lycc,1ccr,5¢ytR,1yea, lctz,
1crj,1cty,1lrap,1lcyc, 1raq,2ycc,lcrg,lcri,1crj,
2pcbB,351c,1cor,155c, 1cty,1rap,1lcyc,2pchB
1c2rA,2mtaC,3c2c,1lcc5 5cytR 30 lycc,1ccer,5¢ytR,1yea,lctz,
1rag,2ycc,lcrg,lcri,lcrj,
1cty,1rap,lcyc,2pchB,155¢
EF Hand 3cln,1ncx,5tne, 1tnx, 1bod 29 1bod
1rro,4cpv,5pal,lpal, 2scpA 21 2ScpA
losa,2pas,2sas,2scpA, 3cin 25 3cln,1ncx,5tne,1tnx,1osa
1bod 4Acpv 23 4cpv,1rro,5pal,1pal,losa,
2pas,1bod
Cytochrome B562 2hmzA,2ccyA,256bA, 256bA 22 256bA,lapc
2tmvP,1lapc,2hmqB, 2hmzA 13 2hmzA,2hmqB,2mhr,
2mhr,1hmdB,1hmoB, 1hmdB,1hmoB
llpe,lle4,1lle2,1bbhA, 2ccyA 19 2ccyA
laep,lvtmP 2tmvP 14 2tmvP,1vtmP
a/p Hydrolase-lipase topology 1thtA,1cvl,1gpl,1tca, 1thtA 10 1thtA
1oilA,1ethA,lede, levl 11 lcvl,1loilA
1lhdeE,1lysc 1gpl 12 1gpl
ltca 10 ltca
OB fold-dihydrolipo-amide acetyl llab,1bdo,1bovA,1lafp, llab 21 1llab
transferase topology 1mijc,1krs,1rip,1lvgb, 1lbdo 21 1lbdo
1prtD,1ltsD,2sns,1csp, 1bovA 11 1bovA
1chbD,1snc lafp 10 lafp
1mijc 13 1mjc,1csp
1krs 10 1krs
lrip 11 1rip
1lvgb 12 1lvgb
1prtD 11 1prtD
1ltsD 10 1ltsD,1chbD
2sns 13 2sns,1snc
Serine protease elongation 1sgt,1thsH,5ptp,3rp2A, 1sgt 25 1sgt,1thsH,5ptp,letsH,
factor Tu-domain 3 topology letsH,1ppfE,4chA,1mctA, 1mctA,1tld,4etsE
1tld,1trmA,1ton,1gctA, 1thsH 27 1thsH,letsH,1sgt,5ptp,
4estE,1hneE 1mctA,4chaA,1tld,1trmA,
1gctA
5ptp 41 5ptp,1trmA,1tld,1mctA
3rp2A 32 3rp2A
letsH 37 letsH,1thsH
Interleukin granulocyte colony 2gmfA,1itl,3inkC, 11ki, 2gmfA 15 2gmfA
stimulating factor (form II) 3hhrA,1bgc,1rhgA,1bge, 1itl 13 1itl
Lilk,1rfbA,1hmcA,1higA, 3inkC 9 3inkC
1rni 1lki 13 1lki
3hhrA 14 3hhrA

aMPSID is the maximum pairwise sequence identity between the query protein and the rest of the fold family.

1997 (Orengeet al., 1997). Each family was required to have by eliminating from the training set all proteins having more
sufficient size and diversity to be suitable for cross-validatedhan a specified degree of relatedness (Table 1). Each test protein
testing of each recognition algorithm. then has a maximum pairwise sequence identity (MPSID) with

The pairwise sequence identity, according to CLUSTALWthe remaining members of the same topological family used
(Thompsoret al., 1994) between any two members within the in training each of the models. We also include some examples
topology family was used as a proxy measure of relatednessf close homologs, with relatively high values for the MPSID
This approach allowed us to perform cross-validated testingp explore their effect on Z-scores.
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Identification of remote homologs

Control dataset for calibration determined. Local sequence comparison was also performed

A dataset of 132 unrelated proteins of known structures, whictpetween each protein from the control database to each fold
was obtained by slightly modifying the original database offamily (Table I). The maximum HSP score (max_LSS) over
125 unrelated proteins (Rost and Sander, 1993), is listed herthe members of the family is recorded. This entire procedure
lacx, 2ak3A, lazu, 1bbpA, 1bds, 1bmvi, 1bmv2, 1cc5, 1cdhyas repeated for each fold family.

1cdtA, 1crn, 1csel, leca, letu, 1fc2C, 1fdIH, 1fdx, 1fkf, 1fxiA, Motifs, their detection and construction of motif-based

1gd10, 1gp1A, 1hip, 1158, 1lap, ImcpL, 1ovoA, lpaz, 1pyp,HMMs (MHMM)

1r092, 1rbp, 1rhd, 1s01, 3sdhA, 1shl, 1tgsl, 1tnfA, lubq
1wsyA, 1wsyB, 256bA, 2aat, 2alp, 2cab, 2ccyA, 2cyp, 1fnd
2fxb, 2gbp, 2gcr, 2gn5, 2hmzA, 2ilb, 1gdj, 2Ihb, 2ItnA, 2ItnB,
2mev4, 2orll, 2pabA, 2pcy, 2phh, 2rspA, 2sns, 2stv, 2tgpl
2tmvP, 2tscA, 2utgA, 2wrpR, 3ait, 3b5c, 3blm, 3cla, 3cln,
3gapA, 3hmgA, 3hmgB, 3icb, 3pgm, 3rnt, 3timA, 4bp2, 4cms,

4cpy, 2fox, 4grl, 4pfk, arhvl, 4rhv3, drhva, 4sgbl, 4IS1A, using meta-MEME (Grundgt al., 1997). The query sequence

4XiaA, 5¢cytR, 5er2E, 5hvpA, 5ldh, Slyz, 6acn, 6cpa, 6¢pp, . :
6cts, 6dlfr, 6tmnE, 7catA, 7icd, 7rsa, 8abp, 8adh, 9apiA, gapiBand the proteins from the control dataset were tested against

the resulting motif-based HMM model for each fold using the
9pap, 9wgaA, 2ace, 1colA, 3cox, 1f3g, 3gly, 2gmfA, 1hddC, . X :
1hrhA, 1msbA, 1nsbA, 1pi2, 2cpkE, 2hipA, 2ifb, 2pk4, 2sarA HMMER software (Eddy, 1996). The ‘hmmsw' option of

2scpA, 4fgf, 5p21. These proteins were used througho’uﬁ)H/IMMER is a Smith-Waterman based semi-local search

. - rogram of a sequence database for best matches to a hidden
ggirnstl;(tja/diaez negative controls for each recognition metho arkov model, resulting in the log-odds score for the query

protein.
Z-Scores

. Sequence-based hidden Markov model (SHMM)

Z-Scores were computed from the raw scores obtained by | )
individual methods compared here. We chose to ignore thé'qden Markov models were constructed for each fold family
significance values given by some of these methods, as thé{sing the publically available software SAM version 1.3.1
are based upon a variety of statistical assumptions. Therefor€;iughey and Krogh, 1995). Default parameters were used for
E-values, p-values, rankings, information content, etc. ar&aining 15 models with different seed values. The training
ignored in favor of the raw scores on which these measure¥@s done by the expectation maximization method with a
are based. Each method may be assessed objectively by mammum_of four surgeries, until the relative improvement in
ability to generate a score for properly matching a quenthe negative log-likelihood (NLL) score dropped to 0.01
sequence to its own family of proteins which differs markedly(Hughey and Krogh, 1995). A nine-component empirical
from the scores produced by a standard set of unrelated contrBirichlet mixture prior (Brownet al, 1993) was used in
sequences. The fact that both the test protein and the contr[der to train models with smaller training sets (seven to 25
proteins had known structure made it possible to eliminat&eguences). In spite of the potential advantage of using larger
potential control set proteins which belong to the same foldraining sets (Hughey and Krogh, 1996), we did not include
family as the test protein and therefore might bear a distanffore sequences for training a given model because, after
evolutionary relationship. Knowledge of the structures alsg€moving those proteins which were closely related to the
allows for proper identification of true positives and true duery protein, the number of remaining proteins within the
negatives for each query sequence. same fold famlly was I|_m|ted. Also, we maintained consistency

The distribution of raw scores for the control databaseWith the training proteins of HMM models based on observed
was analyzed for each method. Although the control dataséiecondary structures of fold families, which were also limited
represented 132 proteins, the empirical distributions of thdy the number of diverse structures in the same topological
scores deviated at most mildly from a normal (Gaussiangroup of CATH. The resulting log-odds scores (NLL scores
distribution for each method. To compare different methodsOf the model—NLL scores of a ‘"NULL' model, obtained by
Z-scores were obtained from the raw scores by subtracting tréverage letter frgguen.ues found in match states), were o_btamed
mean and dividing by the standard deviation of the raw scorefor the true positives in each model and the true negatives of
of the control database (for methods max_LSS and MHMM)the control dataset.
When the raw score varied strongly with the length of theFORESST
control protein (length range between 50 and 600 residuesy;

median around 165), a length dependent correction was appliq m unali ; :
gned, experimentally derived secondary structure
to the raw scores (for methods SHMM and FORESST)'sequences of the proteins listed in Table | by the method

discussed in detall later. FORESST (Di Francescet al, 1999; Di Francescet al,
Local sequence similarity (LSS) method 1997a). During training, the expectation—maximization estima-
Local sequence similarity was computed using a version ofion process was stopped when the relative improvement in
BLASTP with the BLOSUM®62 matrix, with the expectation the average NLL score of the training sequences with respect
thresholdE of 1000, parameterB andV set to 500,T to 1, to the current model was less than 0.01, and up to four
with the rest of the parameters set to their default values, ssurgeries were allowed (Hughey and Krogh, 1995). The
as to obtain alignment scores for all members of the controlemaining parameters and the transition probability prior distri-
database. Representative proteins of each fold family (betwedsutions were set to default values. The prior distributions of
three and 11 sequences per family), were used as quetkie observation symbols were set to be proportional to the
proteins for pairwise sequence comparison against each merraction of the residues in the three secondary structure states
ber of the family and the highest segment pairs (HSP) scores the training sequences of each model.

Motifs of sequences within fold families were automatically
'detected using MEME and MAST (Bailey and Elkan, 1994)
for the same set of sequences of each fold listed in Table I,
with default parameter settings available over the Web
(http://www.sdsc.edu/MEME). The motifs, ungapped, non-
overlapping segments are later combined into a single model

dden Markov models for each fold family were trained
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300

the local alignment method, a much larger control database
was developed by randomly sampling a very large database
of sequences from GENPEPT 103 (ftp://ftp.ncifcrf.gov/pub/
genpept) to produce a collection of 1000 protein sequences.
Since these sequences were not all associated with known
structures, we were less confident about their status as negative
controls. But sequences bearing an obvious relationship to the
guery were removed from the set when the BLAST E-values
for those sequences wexe0.00001. The distribution of HSP
scores of the true negatives for the small database of 132
proteins gave a mean of 28.37 and a standard deviation of
5.17. The same distribution with respect to the larger database
resulted in a mean of 28.14 and a standard deviation of 5.20
. , . , , , , and we concluded that the smaller database was adequate for
o W0 W0 A el %0 0w the current study.
The effect of size of the database was also closely examined
T oo o3 st s b o, s 01 1€ HMM based methods. The standard deviaton of log-
model for the protein 1poc in the phospholi?)ase fold family. Predicted log- odds scores after subtracting the length-dependent prected
odds scores are shown as a solid line. The model length was 132, roughly 109-0dds scores for the small database of 132 proteins was
corresponding to the ‘knot’ position (127) of the two linear segments. 9.74, whereas the value was 9.39 for the larger database. The
change in the standard deviation is not greater than would be
To evaluate the capabilities of each model at recognizingxpected from the sampling error for samples of size 132 and
its family members, Z-scores were calculated from log-oddsl000 and we again concluded that the smaller dataset was
scores as described above. The log-odds score is a measureadequate here.
how a given HMM of a specific fold family fits a query scores and their evaluation
sequence better than a generic null model related to somg,
underlying background distribution. For each HMM, the null
model was defined with default transition probability distribu-
tions and observation symbol probability distributions equa
to the relative frequencies of helical, extended and coil residu
of the training set sequences in the model match states.
When evaluating the recognition capabilities of the model

2501

LOG-ODDS SCORE
o N
3 8

5

s0F e

e pairwise sequence identity determined by the CLUSTALW
alignment (Thompsomt al., 1994) between proteins is often
Iused as a measure of how likely the two proteins are to adopt
esimilar folds. This serves as rough measure of the difficulty
of the recognition problem, since protein pairs with higher
spairwise sequence identity are more easily recognized. We

using predicted secondary structure sequences (FORESSE;fme the MPSID as the maximum pairwise sequence identity

b . PSID) of the sequences used in the various models.

oth the query sequences and the sequences in the cont

database were predicted with the quadratic—logistic (QL)Sensitivity and specificity for fold assignment

method (Munsoret al, 1994). When evaluating the models Z-Scores were computed for members and non-members of
using observed secondary structure sequences (denotedch fold family to examine the discriminatory power of each
FORESST-obs), the query sequences and the sequences in thethod. If the Z-score for a query against a particular protein
control database were obtained from the output of DSSFamily is greater than 2.0, the query is considered ‘positive’
(Kabsch and Sander, 1983). for that family. Sensitivity is defined as the ratio of true
Length dependence of the log-odds scores positives to all true family members and specificity is defined

The log-odds scores by the HMM methods for the negative&S the ratio of true positives to all positives for that family. The
of the control database were found to be generally related tBercentage sensitivity and specificity therefore vary anywhere
the length of the protein sequence, often in a non-lineaP€Ween 0 and 100. A good method should have both high
fashion. Accordingly, for each model, a simple linear regressiorye"Sitivity and high specificity values.

and a two-segment linear regression model were fitted to the

scores of the control proteins (Figure 1) to determine theResults

expected value of the score for a sequence of given lengticomparison of methods for fold assignment

For the two-segment model, two lines were fit, with the break-rpe 7 seqres computed for the local pairwise sequence com-
point or ‘knot" adjusted to fit the data. The linear fit was oo (max_LSS), sequence-based HMMs (SHMM), motif-
accepted unless the two-segment fit displayed a residual su sed HMMs_(MHMM) FORESST and FORESST—oBs will

of squares values less than 90% of that for the linear fit. "be discussed here. There were in total 45 bproteins from
either case, the Z-scores were determined by subtracting tlﬁ X P

; . fferent fold families tested for fold assignment (Table I).
regression value (expected value given the sequence lengthy " joo| nairwise sequence comparison method gave rise to
from the raw score and dividing the rgsult by the root mearhighest scoring segment pairs (HSP) for each protein tested
square (r.m.s.) error from the regression. In most cases, tl’g

it

expected score was adequately fit by two linear segments w gainst each family member. To obtain a single score for the
the knot placed near the effective length of the hidde ntire family, the maximum HSP score (max_LSS) was taken

Markov model Ton the theor_y that a family is recognized if the query recognizes
o ) at least a single member. We analyzed the entire data where
Effect of size of the database for computing Z-scores proteins with MPSID were less than 55% (Figure 2). The
To resolve any question concerning the modest size of oumean Z-score (standard error) for the max_LSS method is
control database, and the possible effect on the Z-scores fat7(2.1). The SHMM method has a mean Z-score of 4.4(0.9)
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Fig. 4. (a) Z-Scores plotted as a function of MPSID. a, max_LSS; b,
MHMM; ¢, SHMM; d, FORESST-o0bs; and e, FORESST. Data points (x)
shown only for max_LSS. Data for all the methods are modeled as a
segmented linear fitb) Z-Scores plotted as a function of MPSID.

a, max_LSS; b, MHMM; ¢, SHMM; d, FORESST-obs; e, FORESST. Data

and MHMM method has a mean Z-score of 6.9(1.8). Thepoints (*) shown only for FORESST. Data for all the methods are modeled
FORESST and FORESST-obs methods have means 1.31(0.13%)2 segmented linear fit.
and 2.58(0.27) with maximum Z-scores of 5.1 and 6.8,
respectively. ately linearly for MPSID above 20% but are evidently flat for
Sequence-based methods are generally successful in findingPSID below 15%. Accordingly, we fit the individual points
homologous proteins with MPSID greater than 20% but arevith a segmented linear model, with a break point set at
less successful for lower values of MPSID. The Z-scores fol5%. Although the exact position of the break could not be
the 20 proteins with MPSID less than 15% are plotted as aletermined precisely, it lies within the range of 15-20%. Of
function of the different methods (Figure 3). When MPSID isthe four sequence-based methods, the max_ LSS generally
less than 15%, average Z-score for max_LSS drops to 0.5(0.3)erforms better than other sequence-based methods for MPSID
making recognition unreliable for the remote homologousover 20%. The FORESST-obs method performs better com-
pairs. For this range of MPSID, MHMM and SHMM methods pared with any of the methods for MPSID below 15%.
also have low average Z-scores, 0.1(0.2) and 0.3(0.1), respect-The Z-scores appear to be largely independent of MPSID
ively. In contrast, FORESST has a mean of 1.1(0.2) (Figure 3)or FORESST (Figure 4b). The average (standard error) Z-score
When observed rather than predicted secondary structure @ver the entire range of MPSID for FORESST is 1.31(0.19).
used, the mean Z-score rises to 1.8(0.3), suggesting thdihe average Z-score for FORESST using observed secondary
improvements in prediction accuracy would materially improvestructures is 2.58(0.27) over the entire range, although the
the overall performance of the FORESST method. MoreoverZ-scores increase gradually as the MPSID increases, reaching
the average Z-scores for FORESST (using prediction om maximum Z-score around 7.0 for MPSID of 55%.
observation) is higher than for any of the sequence-based For each family, methods can recognize not only the proteins
methods analyzed in this paper. of their own members but also proteins from other families
The results (Figure 4a) for all the sequence-based methodsiggesting that recognition specificity is an issue. The overall
show a striking dependency on the difficulty of the recognitionsensitivity and specificity rates for all the methods are found
problem as measured by the maximum pairwise sequende be strongly dependent on the difficulty of the recognition
identity (MPSID). The Z-scores appear to increase approximproblem. Table Il summarizes the sensitivity and specificity
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Fig. 3. Z-scores obtained for various methods for proteins with MPSID
<15%, namely, the remote homologs.
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Table II. Overall sensitivity and specificity by various methods

METHODS All test proteins MPSIB<15% 16< MPSID =< 30%
Sensitivity* Specificity? Sensitivity Specificity Sensitivity Specificity
(%) (%) (%) (%) (%) (%)

max_LSS 47 58 7 10 77 63

MHMM 44 71 6 7 66 63

SHMM 40 35 6 7 58 34

FORESST 24 41 25 66 39 37

FORESST-obs 64 51 50 58 66 48

aSensitivity is defined as the ratio of true positives to all true family members.
bSpecificity is defined as the ratio of true positives to all positives for that family. Detection is based on Z-scores greater than 2.0.

for all the test proteins at varying levels of the MPSID. Thegreater than 20%. This corroborates an earlier study, where
max_LSS method has greater sensitivity and specificity foBLAST was found to outperform other sequence based
proteins with MPSID between 16 and 30% (Table Il), comparedcapproaches, namely, HMMER and MEME (Grundy, 1998).
with proteins with MPSID less than 15%. This sequenceHowever, that study did not examine their performance as a
similarity search method is not capable of reliably identifying function of the pairwise sequence identity which we show to
the very remote homologous pairs. be critical to the understanding of the relative performance of
The MHMM method seems to perform well in cases wherethese methods. Use of a gapped BLAST or PSI-BLAST
it is possible to identify fingerprints or sequence motifs of the(Altschul et al., 1997) might also improve the results obtained
fold families as is evident from the overall specificity ratesby the LSS method here for some of the remote homologs.
for all the query proteins and for proteins with MPSID ranging Although an earlier study comparing the PSI-BLAST and
from 16 to 30%. The moderate sensitivity and higher overalHMM methods found the HMM method to detect 35% of the
specificty rate (Table II, columns 2 and 3) by MHMM for all true homologs while PSI-BLAST detected only 30% (Park
the test proteins when compared with other methods, seengs al.,, 1998).
to roughly corroborate a similar observation which found the Close homologs are readily recognized by sequence based
motif-based method MEME to have moderate power andnethods. The recognition power of each method improves
higher confidence, while comparing multiple protein sequenceoughly linearly with sequence identity above 15-20%, except
alignment servers (Briffeuiét al., 1998). Both the sensitivity for FORESST which maintains a nearly constant Z-score
and specificity rates decrease for MPSID below 15%. between 1.0 and 1.5, regardless of the sequence identity of
The SHMM method has an overall sensitivity of 40% andthe target. That the Z-scores for FORESST do not increase
the overall specificity is 35%. The overall sensitivity rate with MPSID may be attributed to the errors in the secondary
increases for MPSID between 16 and 30%. In essence, all thstructure prediction. The method based on experimental
sequence-based methods have a very low sensitivity anskcondary structures (FORESST-obs) is included to explore
specificity rate for MPSID below 15%, thus making recognitionthe upper limit of the performance of any of the secondary
of these very remote homologs very unlikely. structure prediction methods. It has been noted that the greater
The overall sensitivity and specificity rates by the FORESSTihe sequence identity between a pair of related proteins, the
method (Table I1) is lower compared with other sequencegreater the agreement of secondary structures (Chothia and
based methods for all the test proteins. The specificity rate isesk, 1986; Russell and Barton, 1994). This would explain
slightly better than the SHMM method but still less than otherthe increase of Z-scores with MPSID seen here for FORESST
sequence-based methods. However, the sensitivity and thgised on observed secondary structures as opposed to predicted
specificty rates are much higher than sequence-based tedbnes. The maximum attainable Z-score for the FORESST
niques when proteins have MPSID less than 15% (Table limethod is smaller than for any of the sequence-based methods.
columns 4 and 5). When the FORESST method is basethis is likely due to the reduced size of the alphabet used for
on observed secondary structures for the query protein, thepresenting secondary structures (namely, H, E and C, see
sensitivity, specificity rates are even better compared with alMaterials and methods), which in turn implies a higher chance

the other methods analyzed. of falsely matching a given position of the secondary structure
) ) sequence in the control database.
Discussion The higher rates of sensitivity and specificity for the

We have assessed various methods for detection of remot€ORESST method compared with all the sequence-based
homologs using a uniform, objective, statistically valid com-methods in the range of MPSID less than 15%, suggests the
parison. Each HMM-based method was trained on the identicaldvantage of the secondary structure-based method over the
database of proteins and tested with carefully controlled crossequence-based methods for identification of these very remote
validation. The protein families we have discussed in thishomologs. However, the moderate sensitivities and specificities
paper include both close and remote homologs. Even thoughith predicted secondary structures emphasizes the need to
the remote homologs are not easily detectable by sequendé@prove the accuracy of prediction and encourages the use of
search methods alone, such methods may at times recognik®VR secondary structure assignments for fold recognition.
distant homologs. The results also show that the local similarity The relatively poor performance of the SHMM method for
search method performs relatively well compared with otherecognition of some of the remote homologs may be attributed
sequence or structure based approaches, mainly for an MPSID part to the fact that the hidden Markov models were not

532



Identification of remote homologs

trained with an adequate number of sequences. The trainirtg the catalytic triad of serine proteases (Nienadteal., 1993;
set of the SHMM model includes few sequences, whichMarchler-Bauer and Bryant, 1997; Murzin and Bateman, 1997).
resulted in the artificially low specificity and sensitivity of  We were also able to identify a novel pleckstrin homology
some of these models. Recognition might improve for thegPH) domain using FORESST and SHMM in the mammalian
SHMM or even the MHMM method if more sequences werephospholipase D (PLD) proteins PLD1 and PLD2 (Holbrook
used for training, as has been shown by Karplus and coet al, 1999). Previously, these PLD protein sequences were
workers (Karpluset al., 1997). In this study, we used a limited reported to lack signaling domains. The presence of these PH
number of sequences for training the SHMM method, in ordedomains in PLDs has also been demonstrated with independent
to allow for the rigorous cross-validation of the models andbiochemical and sequence homology searches (Steed,
to confine our study only to proteins of known structure, a1998). This finding would therefore resolve the contradictory
prerequisite for determining membership in a structural foldobservations about PLD regulation (Stesdal., 1998).
family. In any case, it should be observed that with a smaller After fold recognition, the query sequence must then be
number of sequences in the training set, the HMMs based ocorrectly aligned to a known fold in order to build a successful
secondary structures are more successful in identifying remotree-dimensional model for the novel sequence. Unfortunately,
homologs than the HMMs based on amino acid sequences. the sequence to structure alignment quality of current fold
The protein sequences whose structures were not yet pubecognition methods is not yet adequate and stands in the way
lished, served as prediction targets for various fold recognitiorof better protein structure prediction. Fold recognition currently
methods (Lemeet al., 1995; Levitt, 1997) during the second helps in the annotation of sequences for which no function is
Critical Assessment of Structure Prediction experiment, nameliknown. Future progress in fold recognition is also hampered
CASP2 (Moultet al, 1997). Some of the prediction targets at by the fact that there are only a limited number of known
the CASP2 had functional relationship with the existing proteinfolds. Even attempts to build novel folds by understanding the
folds (Russellet al, 1998) and those proteins which had topological rules of existing folds (Reva and Finkelstein, 1996)
sequence motifs were identified as ‘easy targets’ (Marchlerhave not advanced the current repertoire of fold libraries. It
Bauer and Bryant, 1997). The method responsible for theemains to be seen if existing or new and improved fold
accurate predictions for almost all of the submitted targets imecognition methods are capable of identifying a greater
the fold recognition category had combined knowledge fromnumber of remote homologs successfully at the CASP3 contest.
various sources, namely, sequence, function, prEdiCteéonclusion

secondary structure and information from the literature (Murzin
and Bateman, 1997). In the absence of function or otheyVe conclude that the sequence-based methods are successful

information, as is the case in high throughput genome sequentl 'écognizing close homologs, but structure-sequence based

ing projects, a fold recognition method based on structureMethods, such as FORESST, are more appropriate for fold

sequence information alone might help to infer the functionf€c0gnition of remote homologs (MPSID less than 15%). The
for the novel protein. performance of FORESST-obs, which used the experimentally-
As an illustration of our Z-score methodology, we appliedderived secondary structure of the query sequence, suggests
these five methods to the two CASP2 prediction targets (TOOOI’bat Improving sep(_)ndgry structure prediction can improve
and T0031) which are among the fold families studied here2utomated recognition in some cases. None of the sequence
Post hoc analysis of the TO004 sequence by the currerf&ased methods studied here can provide evidence for related-
approach resulted in a Z-score of 2.20 by the max_LS$€SS of these distant homologs, in general. In choosing between
method, identifying the protein 1mijc é member of the—OBsequen_c_e—based or sequence_—structure—based methods for fold
fold family. The Z-scores obtained for the OB fold family by recognition, one should be guided by the degree of relatedne_ss
the SHMM and FORESST methods were 2.46 and 2.860f the homolog being sought. Our results suggest that a hybrid

respectively, whereas MHMM vyielded a Z-score of 0.70. ThreemeofhOd utidlizing both sequeg_ce_ (for CI%S% hofmolog seaLches)
out of five methods studied here seem to be able to recognizd'd secondary structure prediction methods (for remote homo-
this remote homolog of the OB fold family with Z-scores o9 sea_r_cheszc,fwlould fbe an Ieven t_)etter approach for automatic
greater than 2.0. In the CASP2 contest, we correctly predicteffc0gnition of folds of novel protein sequences.
TO004 to be a member of the OB fold family using the
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