

FIPS 186-3, DIGITAL SIGNATURE STANDARD
PROPOSED REVISIONS

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Gaithersburg, MD 20899

DATE OF CHANGE: 2012 Month Day

Federal Information Processing Standard (FIPS) 186-3, Digital Signature Standard,
specifies three techniques for the generation and verification of digital signatures that can
be used for the protection of data: the Digital Signature Algorithm (DSA), the Elliptic
Curve Digital Signature Algorithm (ECDSA) and the Rivest-Shamir-Adelman (RSA)
algorithm. FIPS 186-3 is used in conjunction with the hash functions specified in FIPS
180-4, Secure Hash Standard (SHS).

The following revisions to FIPS 186-3 are proposed:

1. The Use of Random Bit/Number Generators

FIPS 186-3 makes several references to approved random number generators (RNGs)
and approved random bit generators (RBGs) throughout the Standard. In some cases,
FIPS 186-3 specifically states that NIST SP 800-90 Deterministic Random Bit
Generators (DRBGs) are to be used. In other cases, FIPS 186-3 states that an approved
RNG is to be used, with a parenthetical reference to NIST SP 800-90. The motivation for
these statements was to encourage adoption of the more secure NIST SP 800-90 DRBGs.
Note that SP 800-90 has been revised to be SP 800-90A, and further references will be to
SP 800-90A, rather than to SP 800-90. Also, note that the approved RNGs specified in
FIPS 140-2, Annex C, except those in NIST SP 800-90A, are currently deprecated and
will be disallowed after December 2015, as specified in NIST SP 800-131A.

With regard to the use of random bit/number generators by this Standard:

Any random number generator (RNG) or random bit generator (RBG) that is
approved for use in FIPS 140-validated modules may be used, subject to the
transition schedule specified in SP 800-131A. Specific references to SP 800-90A
should not be considered as a requirement to use a generator specified in SP 800-
90A until such time as the use of the other generators is no longer allowed.

This change is intended to accommodate transition issues regarding transitioning from
the validation of FIPS 186-2 to FIPS 186-3.

Note that when randomly or pseudorandomly-generated numbers or integers are specified
in the Standard, a conversion from random (or pseudorandom) bits is required.

2. Definition Clarification

Several of the terms in the Standard require more precise definitions.

a) “Random number generator”: Change the definition to “See random bit

generator.”

b) Insert the following definition for “Random bit generator”:

A device or algorithm that can produce a sequence of random or
pseudorandom bits that appears to be statistically independent and unbiased.

c) Insert the following definition for “Random number (or integer, prime, seed, or
value)”:

A random or pseudorandom “item” that is determined using the output of an
approved random bit generator and possibly an approved method for
transforming the bits output by the generator to meet the criteria for that
“item” (e.g., convert bits into integers or use the bits to “find” a prime
number).

d) Insert the following definition for “Randomly generated”:

Randomly or pseudorandomly generated; i.e., generated using an approved
random bit generator.

3.	 The Reuse of a Prime Number Generation Seed for RSA Key Pair
Generation

Section 5.1 contains the following statement in the last paragraph:

If the prime number generation seeds are retained, they shall only be used as
evidence that the generated values (i.e., p and q) were determined in an arbitrary
manner, and the seeds shall be protected in a manner that is (at least) equivalent to
the protection required for the private key.

This change notice specifies the following change to this statement:

If any prime number generation seed is retained (e.g., to regenerate the RSA modulus
n, or as evidence that the generated prime factors (i.e., p and q) were determined in
an arbitrary manner), then the seed shall be kept secret and shall be protected in a
manner that is (at least) equivalent to the protection required for the associated
private key.

4.	 Methods Used for the Generation of k

Appendices B.2 and B.5 have the following requirement:

“Two methods are provided for the generation of k; one of these two methods shall
be used.”

This change notice specifies the following change to both appendices (the underlined text
is the change):

“Two methods are provided for the generation of k; one of these two methods or
another approved method shall be used.”

5.	 Processing Step Error in the Secret Number Generation for ECDSA

In Appendices B.5.1 and B.5.2, processing step 1 (i.e., N = len(q)) is incorrect. This
change notice specifies the following change to step 1: “N = len(n),” ; i.e., “q” is changed
to “n”.

This change may be significant if the cofactor is greater than one; for the NIST-
recommended curves, the cofactor is one, so in this case, both values produce the same
value for N.

6. Criteria for IFC Key Pairs

Appendix B.3.1, item A, has the following statement:

“Using these methods, primes of 2048 or 3072 bits may be generated; primes of 1024
bits shall not be generated using these methods. Primes of 1024 bits shall be
generated using conditions based on auxiliary primes (see Appendices B.3.4, B.3.5,
or B.3.6).”

This change notice makes the following change to the above statement (the changed text
is underlined):

“Using these methods, p and q with lengths of 1024 or 1536 bits may be generated; p
and q with lengths of 512 bits shall not be generated using these methods. Instead, p
and q with lengths of 512 bits shall be generated using conditions based on auxiliary
primes (see Appendices B.3.4, B.3.5, or B.3.6).”

7. Salt Length for RSASSA-PSS

PKCS #1, versions 2.1, contains the statement:

“If emlen < hLen + sLen + 2, output “encoding error” and stop”,

where emLen is (modulus _length – 1)/8 , hlen is the length of the output block of a
hash function (in octets), and slen is the length of a salt (in octets). Typical salt lengths in
octets are hLen and 0.

Section 5.5 of FIPS 186-3, item e, contains the statement;

“For RSASSA-PSS, the length of the salt (sLen) shall be: 0 ≤ sLen ≤ hlen, where hlen
is the length of the hash function output block (in bytes or octets).”

These statements are consistent with the 2048 and 3072-bit moduli for all approved hash
functions. However, when a 1024-bit modulus is used with SHA-512 and a salt length
equal to hlen (512 bits = 64 octets, in this case), then:

emLen = (1024 – 1)/8 = 128 octets,

hLen = sLen = 64 octets, and

hLen + sLen + 2 = 130, which is greater than emLen, so the process produces an
error (see the statement in PKCS #1 that is provided above).

Therefore, this change notice makes the following change to the statement in item e) of
Section 5.5 in FIPS 186-3:

“For RSASSA-PSS:

If nlen = 1024 bits, and the output length of the approved hash function output
block is 512 bits, then the length of the salt shall be 0 ≤ sLen ≤ hLen – 2.

Otherwise, the length of the salt (sLen) shall be: 0 ≤ sLen ≤ hLen

where hlen is the length of the hash function output block (in bytes or octets).”

6. Changes to the Referenced Documents for Item 14 of the
Announcement:

i. Special Publication (SP) 800-90A, Recommendation for Random Number
Generation Using Deterministic Random Bit Generators.

l. Special Publication (SP) 131A, Transitions: Recommendation for Transitioning the
Use of Cryptographic Algorithms and Key Lengths.

