

FIPS PUB 186-3

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

Digital Signature Standard (DSS)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

Issued June, 2009

U.S. Department of Commerce

Gary Locke, Secretary

National Institute of Standards and Technology

Patrick Gallagher, Deputy Director

FOREWORD

The Federal Information Processing Standards Publication Series of the National Institute
of Standards and Technology (NIST) is the official series of publications relating to
standards and guidelines adopted and promulgated under the provisions of the Federal
Information Security Management Act (FISMA) of 2002.

Comments concerning FIPS publications are welcomed and should be addressed to the
Director, Information Technology Laboratory, National Institute of Standards and
Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900.

Cita Furlani, Director
Information Technology Laboratory

Abstract

This Standard specifies a suite of algorithms that can be used to generate a digital signature.
Digital signatures are used to detect unauthorized modifications to data and to authenticate the
identity of the signatory. In addition, the recipient of signed data can use a digital signature as
evidence in demonstrating to a third party that the signature was, in fact, generated by the
claimed signatory. This is known as non-repudiation, since the signatory cannot easily repudiate
the signature at a later time.

Key words: computer security, cryptography, digital signatures, Federal Information Processing
Standards, public key cryptography.

Federal Information Processing Standards Publication 186-3

June 2009

Announcing the

DIGITAL SIGNATURE STANDARD (DSS)

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce
pursuant to Section 5131 of the Information Technology Management Reform Act of 1996
(Public Law 104-106), and the Computer Security Act of 1987 (Public Law 100-235).

1. Name of Standard: Digital Signature Standard (DSS) (FIPS 186-3).

2. Category of Standard: Computer Security. Subcategory. Cryptography.

3. Explanation: This Standard specifies algorithms for applications requiring a digital
signature, rather than a written signature. A digital signature is represented in a computer as a
string of bits. A digital signature is computed using a set of rules and a set of parameters that
allow the identity of the signatory and the integrity of the data to be verified. Digital signatures
may be generated on both stored and transmitted data.

Signature generation uses a private key to generate a digital signature; signature verification uses
a public key that corresponds to, but is not the same as, the private key. Each signatory
possesses a private and public key pair. Public keys may be known by the public; private keys
are kept secret. Anyone can verify the signature by employing the signatory’s public key. Only
the user that possesses the private key can perform signature generation.

A hash function is used in the signature generation process to obtain a condensed version of the
data to be signed; the condensed version of the data is often called a message digest. The
message digest is input to the digital signature algorithm to generate the digital signature. The
hash functions to be used are specified in the Secure Hash Standard (SHS), FIPS 180-3. FIPS
approved digital signature algorithms shall be used with an appropriate hash function that is
specified in the SHS.

The digital signature is provided to the intended verifier along with the signed data. The
verifying entity verifies the signature by using the claimed signatory’s public key and the same
hash function that was used to generate the signature. Similar procedures may be used to
generate and verify signatures for both stored and transmitted data.

4. Approving Authority: Secretary of Commerce.
i

5. Maintenance Agency: Department of Commerce, National Institute of Standards and
Technology, Information Technology Laboratory, Computer Security Division.

6. Applicability: This Standard is applicable to all Federal departments and agencies for the
protection of sensitive unclassified information that is not subject to section 2315 of Title 10,
United States Code, or section 3502 (2) of Title 44, United States Code. This Standard shall be
used in designing and implementing public key-based signature systems that Federal
departments and agencies operate or that are operated for them under contract. The adoption and
use of this Standard is available to private and commercial organizations.

7. Applications: A digital signature algorithm allows an entity to authenticate the integrity of
signed data and the identity of the signatory. The recipient of a signed message can use a digital
signature as evidence in demonstrating to a third party that the signature was, in fact, generated
by the claimed signatory. This is known as non-repudiation, since the signatory cannot easily
repudiate the signature at a later time. A digital signature algorithm is intended for use in
electronic mail, electronic funds transfer, electronic data interchange, software distribution, data
storage, and other applications that require data integrity assurance and data origin
authentication.

8. Implementations: A digital signature algorithm may be implemented in software, firmware,
hardware or any combination thereof. NIST has developed a validation program to test
implementations for conformance to the algorithms in this Standard. Information about the
validation program is available at http://csrc.nist.gov/cryptval. Examples for each digital
signature algorithm are available at http://csrc.nist.gov/groups/ST/toolkit/examples.html.

Agencies are advised that digital signature key pairs shall not be used for other purposes.

9. Other Approved Security Functions: Digital signature implementations that comply with
this Standard shall employ cryptographic algorithms, cryptographic key generation algorithms,
and key establishment techniques that have been approved for protecting Federal government
sensitive information. Approved cryptographic algorithms and techniques include those that are
either:

a. specified in a Federal Information Processing Standard (FIPS),

b. adopted in a FIPS or a NIST Recommendation, or

c. specified in the list of approved security functions for FIPS 140-2.

10. Export Control: Certain cryptographic devices and technical data regarding them are
subject to Federal export controls. Exports of cryptographic modules implementing this Standard
and technical data regarding them must comply with these Federal regulations and be licensed by
the Bureau of Industry and Security of the U.S. Department of Commerce. Information about
export regulations is available at: http://www.bis.doc.gov.

11. Patents: The algorithms in this Standard may be covered by U.S. or foreign patents.

ii

http:http://www.bis.doc.gov
http://csrc.nist.gov/groups/ST/toolkit/examples.html
http://csrc.nist.gov/cryptval

12. Implementation Schedule: This Standard becomes effective immediately upon
approval by the Secretary of Commerce. A transition strategy for validating algorithms
and cryptographic modules will be posted on NIST’s Web page at
http://csrc.nist.gov/groups/STM/cmvp/index.html under Notices. The transition plan
addresses the transition by Federal agencies from modules tested and validated for
compliance to FIPS 186-2 to modules tested and validated for compliance to FIPS 186-3
under the Cryptographic Module Validation Program. The transition plan allows Federal
agencies and vendors to make a smooth transition to FIPS 186-3.
13. Specifications: Federal Information Processing Standard (FIPS) 186-3 Digital Signature
Standard (affixed).

14. Cross Index: The following documents are referenced in this Standard.

a. 	 FIPS PUB 140-2, Security Requirements for Cryptographic Modules.

b. 	 FIPS PUB 180-3, Secure Hash Standard.

c. 	 ANS X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the
Financial Services Industry (rDSA).

d. 	 ANS X9.62-2005, Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA).

e. 	 ANS X9.80, Prime Number Generation, Primality Testing and Primality Certificates.

f. 	 Public Key Cryptography Standard (PKCS) #1, RSA Encryption Standard.

g. 	 Special Publication (SP) 800-57, Recommendation for Key Management.

h. 	 Special Publication (SP) 800-89, Recommendation for Obtaining Assurances for Digital
Signature Applications.

i. 	 Special Publication (SP) 800-90, Recommendation for Random Number Generation
Using Deterministic Random Bit Generators.

j. 	 Special Publication (SP) 800-102, Recommendation for Digital Signature Timeliness

k. 	 IEEE Std. 1363-2000, Standard Specifications for Public Key Cryptography.

15. Qualifications: The security of a digital signature system is dependent on maintaining the
secrecy of the signatory’s private keys. Signatories shall, therefore, guard against the disclosure
of their private keys. While it is the intent of this Standard to specify general security
requirements for generating digital signatures, conformance to this Standard does not assure that
a particular implementation is secure. It is the responsibility of an implementer to ensure that
any module that implements a digital signature capability is designed and built in a secure
manner.

Similarly, the use of a product containing an implementation that conforms to this Standard does
not guarantee the security of the overall system in which the product is used. The responsible

iii

http://csrc.nist.gov/groups/STM/cmvp/index.html

authority in each agency or department shall assure that an overall implementation provides an
acceptable level of security.

Since a standard of this nature must be flexible enough to adapt to advancements and
innovations in science and technology, this Standard will be reviewed every five years in order
to assess its adequacy.

16. Waiver Procedure: The Federal Information Security Management Act (FISMA) does not
allow for waivers to Federal Information Processing Standards (FIPS) that are made mandatory
by the Secretary of Commerce.

17. Where to Obtain Copies of the Standard: This publication is available by accessing
http://csrc.nist.gov/publications/. Other computer security publications are available at the same
web site.

iv

http://csrc.nist.gov/publications

4

Table of Contents

1. INTRODUCTION .. 1

2. GLOSSARY OF TERMS, ACRONYMS AND MATHEMATICAL SYMBOLS 2

2.1 TERMS AND DEFINITIONS .. 2

2.2 ACRONYMS ... 5

2.3 MATHEMATICAL SYMBOLS.. 6

3. GENERAL DISCUSSION... 9

3.1 INITIAL SETUP ... 11

3.2 DIGITAL SIGNATURE GENERATION.. 12

3.3 DIGITAL SIGNATURE VERIFICATION AND VALIDATION ... 13

THE DIGITAL SIGNATURE ALGORITHM (DSA) ... 15

4.1 DSA PARAMETERS.. 15

4.2 SELECTION OF PARAMETER SIZES AND HASH FUNCTIONS FOR DSA .. 15

4.3 DSA DOMAIN PARAMETERS... 16

4.3.1 Domain Parameter Generation .. 17

4.3.2 Domain Parameter Management... 17

4.4 KEY PAIRS .. 17

4.4.1 DSA Key Pair Generation .. 17

4.4.2 Key Pair Management ... 18

4.5 DSA PER-MESSAGE SECRET NUMBER... 18

4.6 DSA SIGNATURE GENERATION .. 19

4.7 DSA SIGNATURE VERIFICATION AND VALIDATION.. 19

5. THE RSA DIGITAL SIGNATURE ALGORITHM.. 22

5.1 RSA KEY PAIR GENERATION ... 22

5.2 KEY PAIR MANAGEMENT .. 23

5.3 ASSURANCES.. 23

5.4 ANS X9.31 .. 23

5.5 PKCS #1 ... 24

6. THE ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM (ECDSA) ... 26

6.1 ECDSA DOMAIN PARAMETERS.. 26

6.1.1 Domain Parameter Generation .. 26

6.1.2 Domain Parameter Management... 28

6.2 PRIVATE/PUBLIC KEYS .. 28

6.2.1 Key Pair Generation... 28

6.2.2 Key Pair Management ... 29

6.3 SECRET NUMBER GENERATION.. 29

6.4 ECDSA DIGITAL SIGNATURE GENERATION AND VERIFICATION .. 29

6.5 ASSURANCES.. 30

APPENDIX A: GENERATION AND VALIDATION OF FFC DOMAIN PARAMETERS 31

v

A.1 GENERATION OF THE FFC PRIMES P AND Q.. 31

A.1.1 Generation and Validation of Probable Primes... 31

A.1.1.1 	 Validation of the Probable Primes p and q that were Generated Using

SHA-1 as Specified in Prior Versions of this Standard 32

A.1.1.2 	 Generation of the Probable Primes p and q Using an Approved Hash

Function .. 33

A.1.1.3 	 Validation of the Probable Primes p and q that were Generated Using

an Approved Hash Function ... 35

A.1.2	 Construction and Validation of the Provable Primes p and q... 36

A.1.2.1 	 Construction of the Primes p and q Using the Shawe-Taylor Algorithm

... 36

A.1.2.1.1 Get the First Seed ... 37

A.1.2.1.2 Constructive Prime Generation ... 38

A.1.2.2 	 Validation of the DSA Primes p and q that were Constructed Using the

Shawe-Taylor Algorithm .. 39

A.2 GENERATION OF THE GENERATOR G .. 41

A.2.1	 Unverifiable Generation of the Generator g ... 41

A.2.2	 Assurance of the Validity of the Generator g ... 41

A.2.3	 Verifiable Canonical Generation of the Generator g .. 42

A.2.4	 Validation Routine when the Canonical Generation of the Generator g Routine Was

Used... 43

APPENDIX B: KEY PAIR GENERATION .. 46

B.1 FFC KEY PAIR GENERATION.. 46

B.1.1	 Key Pair Generation Using Extra Random Bits ... 46

B.1.2	 Key Pair Generation by Testing Candidates.. 47

B.2 FFC PER-MESSAGE SECRET NUMBER GENERATION... 48

B.2.1	 Per-Message Secret Number Generation Using Extra Random Bits 48

B.2.2	 Per-Message Secret Number Generation by Testing Candidates................................. 49

B.3 IFC KEY PAIR GENERATION... 50

B.3.1	 Criteria for IFC Key Pairs ... 50

B.3.2	 Generation of Random Primes that are Provably Prime.. 53

B.3.2.1 	 Get the Seed .. 53

B.3.2.2 	 Construction of the Provable Primes p and q 54

B.3.3	 Generation of Random Primes that are Probably Prime.. 55

B.3.4	 Generation of Provable Primes with Conditions Based on Auxiliary Provable Primes ..56

vi

B.3.5 Generation of Probable Primes with Conditions Based on Auxiliary Provable Primes..58

B.3.6 Generation of Probable Primes with Conditions Based on Auxiliary Probable Primes..59

B.4 ECC KEY PAIR GENERATION ... 61

B.4.1 Key Pair Generation Using Extra Random Bits ... 61

B.4.2 Key Pair Generation by Testing Candidates.. 62

B.5 ECC PER-MESSAGE SECRET NUMBER GENERATION .. 63

B.5.1 Per-Message Secret Number Generation Using Extra Random Bits 64

B.5.2 Per-Message Secret Number Generation by Testing Candidates................................. 64

APPENDIX C: GENERATION OF OTHER QUANTITIES.. 66

C.1 COMPUTATION OF THE INVERSE VALUE... 66

C.2 CONVERSION BETWEEN BIT STRINGS AND INTEGERS .. 67

C.2.1 Conversion of a Bit String to an Integer ... 67

C.2.2 Conversion of an Integer to a Bit String ... 67

C.3 PROBABILISTIC PRIMALITY TESTS... 68

C.3.1 Miller-Rabin Probabilistic Primality Test... 70

C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test ... 71

C.3.3 (GENERAL) LUCAS PROBABILISTIC PRIMALITY TEST .. 73

C.4 CHECKING FOR A PERFECT SQUARE... 74

C.5 JACOBI SYMBOL ALGORITHM.. 75

C.6 SHAWE-TAYLOR RANDOM_PRIME ROUTINE.. 76

C.7 TRIAL DIVISION.. 79

C.8 SIEVE PROCEDURE ... 79

C.9 COMPUTE A PROBABLE PRIME FACTOR BASED ON AUXILIARY PRIMES ... 80

C.10 CONSTRUCT A PROVABLE PRIME (POSSIBLY WITH CONDITIONS), BASED ON CONTEMPORANEOUSLY

CONSTRUCTED AUXILIARY PROVABLE PRIMES .. 81

APPENDIX D: RECOMMENDED ELLIPTIC CURVES FOR FEDERAL GOVERNMENT USE........... 85

D.1 NIST RECOMMENDED ELLIPTIC CURVES .. 85

D.1.1 Choices .. 85

D.1.1.1 Choice of Key Lengths ... 85

D.1.1.2 Choice of Underlying Fields ... 85

D.1.1.3 Choice of Basis for Binary Fields ... 86

D.1.1.4 Choice of Curves... 87

D.1.1.5 Choice of Base Points ... 87

D.1.2 Curves over Prime Fields... 87

D.1.2.1 Curve P-192 .. 88

D.1.2.2 Curve P-224 .. 88

D.1.2.3 Curve P-256 .. 89

vii

D.1.2.4 Curve P-384 .. 89

D.1.2.5 Curve P-521 .. 90

D.1.3 Curves over Binary Fields.. 90

D.1.3.1 Degree 163 Binary Field... 91

D.1.3.1.1 Curve K-163 .. 92

D.1.3.1.2 Curve B-163 .. 92

D.1.3.2 Degree 233 Binary Field... 92

D.1.3.2.1 Curve K-233 .. 93

D.1.3.2.2 Curve B-233 .. 93

D.1.3.3 Degree 283 Binary Field... 94

D.1.3.3.1 Curve K-283 .. 94

D.1.3.3.2 Curve B-283 .. 95

D.1.3.4 Degree 409 Binary Field... 95

D.1.3.4.1 Curve K-409 .. 95

D.1.3.4.2 Curve B-409 .. 96

D.1.3.5 Degree 571 Binary Field... 97

D.1.3.5.1 Curve K-571 .. 97

D.1.3.5.2 Curve B-571 .. 98

D.2 IMPLEMENTATION OF MODULAR ARITHMETIC... 99

D.2.1 Curve P-192... 99

D.2.2 Curve P-224... 100

D.2.3 Curve P-256... 100

D.2.4 Curve P-384... 101

D.2.5 Curve P-521... 102

D.3 NORMAL BASES .. 102

D.4 SCALAR MULTIPLICATION ON KOBLITZ CURVES ... 104

D.5 GENERATION OF PSEUDO-RANDOM CURVES (PRIME CASE).. 107

D.6 VERIFICATION OF CURVE PSEUDO-RANDOMNESS (PRIME CASE) ... 108

D.7 GENERATION OF PSEUDO-RANDOM CURVES (BINARY CASE)... 109

D.8 VERIFICATION OF CURVE PSEUDO-RANDOMNESS (BINARY CASE).. 109

D.9 POLYNOMIAL BASIS TO NORMAL BASIS CONVERSION .. 110

D.10 NORMAL BASIS TO POLYNOMIAL BASIS CONVERSION .. 111

APPENDIX E: A PROOF THAT V = R IN THE DSA.. 113

APPENDIX F: CALCULATING THE REQUIRED NUMBER OF ROUNDS OF TESTING USING THE

MILLER-RABIN PROBABILISTIC PRIMALITY TEST .. 115

viii

F.1 THE REQUIRED NUMBER OF ROUNDS OF THE MILLER-RABIN PRIMALITY TESTS 115

F.2 GENERATING DSA PRIMES .. 116

F.3 GENERATING PRIMES FOR RSA SIGNATURES .. 117

ix

Federal Information Processing Standards Publication 186-3

June 2009

Specifications for the

DIGITAL SIGNATURE STANDARD (DSS)

1. Introduction
This Standard defines methods for digital signature generation that can be used for the protection
of binary data (commonly called a message), and for the verification and validation of those
digital signatures. Three techniques are approved.

(1) The Digital Signature Algorithm (DSA) is specified in this Standard. The specification
includes criteria for the generation of domain parameters, for the generation of public and
private key pairs, and for the generation and verification of digital signatures.

(2) The RSA digital signature algorithm is specified in American National Standard (ANS)
X9.31 and Public Key Cryptography Standard (PKCS) #1. FIPS 186-3 approves the use
of implementations of either or both of these standards, but specifies additional
requirements.

(3) The Elliptic Curve Digital Signature Algorithm (ECDSA) is specified in ANS X9.62.
FIPS 186-3 approves the use of ECDSA, but specifies additional requirements.
Recommended elliptic curves for Federal Government use are provided herein.

This Standard includes requirements for obtaining the assurances necessary for valid digital
signatures. Methods for obtaining these assurances are provided in NIST Special Publication
(SP) 800-89, Recommendation for Obtaining Assurances for Digital Signature Applications.

1

2.1

2. Glossary of Terms, Acronyms and Mathematical Symbols

Terms and Definitions

Approved 	 FIPS-approved and/or NIST-recommended. An algorithm or technique
that is either 1) specified in a FIPS or NIST Recommendation, or 2)
adopted in a FIPS or NIST Recommendation or 3) specified in a list of
NIST approved security functions.

Assurance of domain Confidence that the domain parameters are arithmetically correct.
parameter validity

Assurance of Confidence that an entity possesses a private key and any associated
possession keying material.

Assurance of public Confidence that the public key is arithmetically correct.
key validity

Bit string 	 An ordered sequence of 0’s and 1’s. The leftmost bit is the most
significant bit of the string. The rightmost bit is the least significant bit
of the string.

Certificate 	 A set of data that uniquely identifies a key pair and an owner that is
authorized to use the key pair. The certificate contains the owner’s
public key and possibly other information, and is digitally signed by a
Certification Authority (i.e., a trusted party), thereby binding the
public key to the owner.

Certification Authority The entity in a Public Key Infrastructure (PKI) that is responsible for
(CA) issuing certificates and exacting compliance with a PKI policy.

Claimed signatory 	 From the verifier’s perspective, the claimed signatory is the entity that
purportedly generated a digital signature.

Digital signature 	 The result of a cryptographic transformation of data that, when
properly implemented, provides a mechanism for verifying origin
authentication, data integrity and signatory non-repudiation.

Domain parameter seed 	 A string of bits that is used as input for a domain parameter generation
or validation process.

Domain parameters 	 Parameters used with cryptographic algorithms that are usually
common to a domain of users. A DSA or ECDSA cryptographic key
pair is associated with a specifc set of domain parameters.

2

Entity An individual (person), organization, device or process. Used
interchangeably with “party”.

Equivalent process Two processes are equivalent if, when the same values are input to
each process (either as input parameters or as values made available
during the process or both), the same output is produced.

Hash function A function that maps a bit string of arbitrary length to a fixed length
bit string. Approved hash functions are specified in FIPS 180-3 and
are designed to satisfy the following properties:

1. (One-way) It is computationally infeasible to find any input that
maps to any new pre-specified output, and

2. (Collision resistant) It is computationally infeasible to find any
two distinct inputs that map to the same output.

Hash value See “message digest”.

Intended signatory An entity that intends to generate digital signatures in the future.

Key A parameter used in conjunction with a cryptographic algorithm that
determines its operation. Examples applicable to this Standard
include:

1. The computation of a digital signature from data, and

2. The verification of a digital signature.

Key pair A public key and its corresponding private key.

Message The data that is signed. Also known as “signed data” during the
signature verification and validation process.

Message digest The result of applying a hash function to a message. Also known as
“hash value”.

Non-repudiation A service that is used to provide assurance of the integrity and origin
of data in such a way that the integrity and origin can be verified and
validated by a third party as having originated from a specific entity in
possession of the private key (i.e., the signatory).

Owner A key pair owner is the entity that is authorized to use the private key
of a key pair.

Party An individual (person), organization, device or process. Used
interchangeably with “entity”.

Per-message secret
number

A secret random number that is generated prior to the generation of
each digital signature.

3

Public Key A framework that is established to issue, maintain and revoke public
Infrastructure (PKI) key certificates.

Prime number A string of random bits that is used to determine a prime number with
generation seed the required characteristics.

Private key A cryptographic key that is used with an asymmetric (public key)
cryptographic algorithm. For digital signatures, the private key is
uniquely associated with the owner and is not made public. The
private key is used to compute a digital signature that may be verified
using the corresponding public key.

Probable prime An integer that is believed to be prime, based on a probabilistic
primality test. There should be no more than a negligible probability
that the so-called probable prime is actually composite.

Provable prime An integer that is either constructed to be prime or is calculated to be
prime using a primality-proving algorithm.

Pseudorandom A process or data produced by a process is said to be pseudorandom
when the outcome is deterministic, yet also effectively random as long
as the internal action of the process is hidden from observation. For
cryptographic purposes, “effectively” means “within the limits of the
intended security strength.”

Public key A cryptographic key that is used with an asymmetric (public key)
cryptographic algorithm and is associated with a private key. The
public key is associated with an owner and may be made public. In the
case of digital signatures, the public key is used to verify a digital
signature that was signed using the corresponding private key.

Random number A device or algorithm that can produce a sequence of random numbers
generator that appears to be statistically independent and unbiased.

Security strength A number associated with the amount of work (that is, the number of
operations) that is required to break a cryptographic algorithm or
system. Sometimes referred to as a security level.

Shall Used to indicate a requirement of this Standard.

Should Used to indicate a strong recommendation, but not a requirement of
this Standard.

Signatory The entity that generates a digital signature on data using a private
key.

Signature generation The process of using a digital signature algorithm and a private key to
generate a digital signature on data.

4

Signature validation The (mathematical) verification of the digital signature and obtaining
the appropriate assurances (e.g., public key validity, private key
possession, etc.).

Signature verification The process of using a digital signature algorithm and a public key to
verify a digital signature on data.

Signed data The data or message upon which a digital signature has been
computed. Also, see “message”.

Subscriber An entity that has applied for and received a certificate from a
Certificate Authority.

Trusted third party An entity other than the owner and verifier that is trusted by the owner
(TTP) or the verifier or both. Sometimes shortened to “trusted party”.

Verifier The entity that verifies the authenticity of a digital signature using the
public key.

2.2 Acronyms
ANS American National Standard.

CA Certification Authority.

DSA Digital Signature Algorithm; specified in this Standard.

ECDSA Elliptic Curve Digital Signature Algorithm; specified in ANS X9.62.

FIPS Federal Information Processing Standard.

NIST National Institute of Standards and Technology.

PKCS Public Key Cryptography Standard.

PKI Public Key Infrastructure.

RBG Random Bit Generator; specified in SP 800-90.

RSA Algorithm developed by Rivest, Shamir and Adelman; specified in
ANS X9.31 and PKCS #1.

SHA Secure Hash Algorithm; specified in FIPS 180-3.

SP NIST Special Publication

TTP Trusted Third Party.

5

L

2.3 Mathematical Symbols
a mod n

b ≡ a mod n

counter

d

domain_parameter_seed

e

g

GCD (a, b)

Hash (M)

index

k

(L, N)

LCM (a, b)

len (a)

M

m

N

The unique remainder r, 0 ≤ r ≤ (n – 1), when integer a is divided by
the positive integer n. For example, 23 mod 7 = 2.

There exists an integer k such that b – a = kn; equivalently, a mod n
= b mod n.

The counter value that results from the domain parameter generation
process when the domain parameter seed is used to generate DSA
domain parameters.

1. For RSA, the private signature exponent of a private key.

2. For ECDSA, the private key.

A seed used for the generation of domain parameters.

The public verification exponent of an RSA public key.

One of the DSA domain parameters; g is a generator of the q-order

cyclic group of GF(p)*; that is, an element of order q in the

multiplicative group of GF(p).

Greatest common divisor of the integers a and b.

The result of a hash computation (message digest or hash value) on

message M using an approved hash function.

A value used in the generation of g to indicate its intended use (e.g.,

for digital signatures).

For DSA and ECDSA, a per-message secret number.

For DSA, the length of the parameter p in bits.

The associated pair of length parameters for a DSA key pair, where L

is the length of p, and N is the length of q.

The least common multiple of the integers a and b.

The length of a in bits.

The message that is signed using the digital signature algorithm.

For ECDSA, the degree of the finite field GF .
m2

For DSA, the length of the parameter q in bits.

6

x

n 1. For RSA, the modulus; the bit length of n is considered to be the
key size.

2. 	For ECDSA, the order of the base point of the elliptic curve; the
bit length of n is considered to be the key size.

(n, d) 	 An RSA private key, where n is the modulus, and d is the private
signature exponent.

(n, e) 	 An RSA public key, where n is the modulus, and e is the public
verification exponent.

nlen 	 The length of the RSA modulus n in bits.

p 	 1. For DSA, one of the DSA domain parameters; a prime number
that defines the Galois Field GF(p) and is used as a modulus in the
operations of GF(p).

2. For RSA, a prime factor of the modulus n.

q 	 1. For DSA, one of the DSA domain parameters; a prime factor of
p – 1.

2. For RSA, a prime factor of the modulus n.

Q An ECDSA public key.

r One component of a DSA or ECDSA digital signature. See the
definition of (r, s).

(r, s) A DSA or ECDSA digital signature, where r and s are the digital
signature components.

s One component of a DSA or ECDSA digital signature. See the
definition of (r, s).

seedlen The length of the domain_parameter_seed in bits.

SHAx(M) The result when M is the input to the SHA-x hash function, where
SHA-x is specified in FIPS 180-3.

The DSA private key.

y The DSA public key.

⊕ Bitwise logical “exclusive-or” on bit strings of the same length; for
corresponding bits of each bit string, the result is determined as
follows: 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, or 1 ⊕ 1 = 0.

Example: 01101 ⊕ 11010 = 10111
+ 	 Addition.

7

∗ Multiplication.

/ Division.

a || b The concatenation of two strings a and b. Either a and b are both bit

strings, or both are byte strings.

⎡a⎤ The ceiling of a: the smallest integer that is greater than or equal to
a. For example, ⎡5⎤ = 5, ⎡5.3⎤ = 6, and ⎡–2.1⎤ = –2.

⎣a⎦ The floor of a; the largest integer that is less than or equal to a. For
example, ⎣5⎦ = 5, ⎣5.3⎦ = 5, and ⎣-2.1⎦. = -3.

|a| The absolute value of a; |a| is – a if a < 0; otherwise, it is simply a.
For example, |2| = 2, and |–2| = 2.

[a, b] The interval of integers between and including a and b. For example,
[1, 4] consists of the integers 1, 2, 3 and 4.

{, a, b, …} Used to indicate optional information.

0x The prefix to a bit string that is represented in hexadecimal characters.

8

3. General Discussion
A digital signature is an electronic analogue of a written signature; the digital signature can be
used to provide assurance that the claimed signatory signed the information. In addition, a
digital signature may be used to detect whether or not the information was modified after it was
signed (i.e., to detect the integrity of the signed data). These assurances may be obtained whether
the data was received in a transmission or retrieved from storage. A properly implemented
digital signature algorithm that meets the requirements of this Standard can provide these
services.

Private
Key

Public
KeySignature

Generation

Message/Data

Signature
Verification

Message/Data

Hash FunctionHash Function Hash FunctionHash Function

Message Digest Message Digest

Signature Generation Signature Verification

Signature
Valid or
Invalid

Figure 1: Digital Signature Processes

A digital signature algorithm includes a signature generation process and a signature verification
process. A signatory uses the generation process to generate a digital signature on data; a verifier
uses the verification process to verify the authenticity of the signature. Each signatory has a
public and private key and is the owner of that key pair. As shown in Figure 1, the private key is
used in the signature generation process. The key pair owner is the only entity that is authorized
to use the private key to generate digital signatures. In order to prevent other entities from
claiming to be the key pair owner and using the private key to generate fraudulent signatures, the

9

private key must remain secret. The approved digital signature algorithms are designed to
prevent an adversary who does not know the signatory’s private key from generating the same
signature as the signatory on a different message. In other words, signatures are designed so that
they cannot be forged. A number of alternative terms are used in this Standard to refer to the
signatory or key pair owner. An entity that intends to generate digital signatures in the future
may be referred to as the intended signatory. Prior to the verification of a signed message, the
signatory is referred to as the claimed signatory until such time as adequate assurance can be
obtained of the actual identity of the signatory.

The public key is used in the signature verification process (see Figure 1). The public key need
not be kept secret, but its integrity must be maintained. Anyone can verify a correctly signed
message using the public key.

For both the signature generation and verification processes, the message (i.e., the signed data) is
converted to a fixed-length representation of the message by means of an approved hash
function. Both the original message and the digital signature are made available to a verifier.

A verifier requires assurance that the public key to be used to verify a signature belongs to the
entity that claims to have generated a digital signature (i.e., the claimed signatory). That is, a
verifier requires assurance that the signatory is the actual owner of the public/private key pair
used to generate and verify a digital signature. A binding of an owner’s identity and the owner’s
public key shall be effected in order to provide this assurance.

A verifier also requires assurance that the key pair owner actually possesses the private key
associated with the public key, and that the public key is a mathematically correct key.

By obtaining these assurances, the verifier has assurance that if the digital signature can be
correctly verified using the public key, the digital signature is valid (i.e., the key pair owner
really signed the message). Digital signature validation includes both the (mathematical)
verification of the digital signature and obtaining the appropriate assurances. The following are
reasons why such assurances are required.

1.	 If a verifier does not obtain assurance that a signatory is the actual owner of the key pair
whose public component is used to verify a signature, the problem of forging a signature
is reduced to the problem of falsely claiming an identity. For example, anyone in
possession of a mathematically consistent key pair can sign a message and claim that the
signatory was the President of the United States. If a verifier does not require assurance
that the President is actually the owner of the public key that is used to mathematically
verify the message’s signature, then successful signature verification provides assurance
that the message has not been altered since it was signed, but does not provide assurance
that the message came from the President (i.e., the verifier has assurance of the data’s
integrity, but source authentication is lacking).

2.	 If the public key used to verify a signature is not mathematically valid, the arguments
used to establish the cryptographic strength of the signature algorithm may not apply.
The owner may not be the only party who can generate signatures that can be verified

10

with that public key.

3.	 If a public key infrastructure cannot provide assurance to a verifier that the owner of a
key pair has demonstrated knowledge of a private key that corresponds to the owner’s
public key, then it may be possible for an unscrupulous entity to have their identity (or an
assumed identity) bound to a public key that is (or has been) used by another party. The
unscrupulous entity may then claim
to be the source of certain messages
signed by that other party. Or, it
may be possible that an
unscrupulous entity has managed to
obtain ownership of a public key
that was chosen with the sole
purpose of allowing for the
verification of a signature on a
specific message.

Technically, a key pair used by a digital
signature algorithm could also be used for
purposes other than digital signatures (e.g.,
for key establishment). However, a key pair
used for digital signature generation and
verification as specified in this Standard
shall not be used for any other purpose. See
SP 800-57 on Key Usage for further
information.

A number of steps are required to enable a
digital signature generation or verification
capability in accordance with this Standard.
All parties that generate digital signatures
shall perform the initial setup process as
discussed in Section 3.1. Digital signature
generation shall be performed as discussed
in Section 3.2. Digital signature verification
and validation shall be performed as
discussed in Section 3.3.

3.1 Initial Setup
Figure 2 depicts the steps that are
performed prior to generating a digital
signature by an entity intending to act as a

Obtain
Assurance of Possession

of the
DS Private Key

Obtain
Assurance of Possession

of the
DS Private Key

Obtain
Assurance of

Public Key Validity

Obtain
Assurance of

Public Key Validity

Obtain
DS Key Pair

Obtain
DS Key Pair

Obtain Assurance of
Domain Parameter

Validity

Obtain Assurance of
Domain Parameter

Validity

Obtain
Domain Parameters

Obtain
Domain Parameters

Intended Signatory Ready for
Generating Digital Signatures

Intended
signatory

OR
another

entity
generates

Intended
signatory

OR
a TTP

generates

Register the Public Key
and Identity with a

TTP
Optional

DSA
and
ECDSA

Figure 2: Initial Setup by an Intended
Signatory

11

signatory.

For the DSA and ECDSA algorithms, the intended signatory shall first obtain appropriate
domain parameters, either by generating the domain parameters itself, or by obtaining domain
parameters that another entity has generated. Having obtained the set of domain parameters, the
intended signatory shall obtain assurance of the validity of those domain parameters; approved
methods for obtaining this assurance are provided in SP 800-89. Note that the RSA algorithm
does not use domain parameters.

Each intended signatory shall obtain a digital signature key pair that is generated as specified for
the appropriate digital signature algorithm, either by generating the key pair itself or by
obtaining the key pair from a trusted party. The intended signatory is authorized to use the key
pair and is the owner of that key pair. Note that if a trusted party generates the key pair, that
party needs to be trusted not to masquerade as the owner, even though the trusted party knows
the private key.

After obtaining the key pair, the intended signatory (now the key pair owner) shall obtain (1)
assurance of the validity of the public key and (2) assurance that he/she actually possesses the
associated private key. Approved methods for obtaining these assurances are provided in SP
800-89.

A digital signature verifier requires assurance of the identity of the signatory. Depending on the
environment in which digital signatures are generated and verified, the key pair owner (i.e., the
intended signatory) may register the public key and establish proof of identity with a mutually
trusted party. For example, a certification authority (CA) could sign credentials containing an
owner’s public key and identity to form a certificate after being provided with proof of the
owner’s identity. Systems for certifying
credentials and distributing certificates are
beyond the scope of this Standard. Other means
of establishing proof of identity (e.g., by
providing identity credentials along with the
public key directly to a prospective verifier) are
allowed.

3.2 Digital Signature Generation
Figure 3 depicts the steps that are performed by
an intended signatory (i.e., the entity that
generates a digital signature).

Prior to the generation of a digital signature, a
message digest shall be generated on the
information to be signed using an appropriate
approved hash function.

Generate a Digital Signature

Obtain Additional
Information for the

Digital Signature Process

Obtain Additional
Information for the

Digital Signature Process

Digital Signature Generation Complete

DSA
and

ECDSA

Generate a Message Digest

Verify the Digital SignatureOptional

Figure 3: Digital Signature Generation
12

Depending on the digital signature algorithm to be used, additional information shall be
obtained. For example, a random per-message secret number shall be obtained for DSA and
ECDSA.

Using the selected digital signature algorithm, the signature private key, the message digest, and
any other information required by the digital signature process, a digital signature shall be
generated in accordance with this Standard.

The signatory may optionally verify the digital signature using the signature verification process
and the associated public key. This optional verification serves as a final check to detect
otherwise undetected signature generation computation errors; this verification may be prudent
when signing a high-value message, when multiple users are expected to verify the signature, or
if the verifier will be verifying the signature at a much later time.

3.3 Digital Signature Verification and Validation
Figure 4 depicts the digital signature verification and validation process that are performed by a
verifier (e.g., the intended recipient of the signed data and associated digital signature). Note that
the figure depicts a successful verification and validation process (i.e., no errors are detected).

In order to verify a digital signature, the verifier shall obtain the public key of the claimed
signatory, (usually) based on the claimed identity. If DSA or ECDSA has been used to generate
the digital signature, the verifier shall also obtain the domain parameters. The public key and
domain parameters may be obtained, for example, from a certificate created by a trusted party
(e.g., a CA) or directly from the claimed signatory. A message digest shall be generated on the
data whose signature is to be verified (i.e., not on the received digital signature) using the same
hash function that was used during the digital signature generation process. Using the
appropriate digital signature algorithm, the domain parameters (if appropriate), the public key
and the newly computed message digest, the received digital signature is verified in accordance
with this Standard. If the verification process fails, no inference can be made as to whether the
data is correct, only that in using the specified public key and the specified signature format, the
digital signature cannot be verified for that data.

Before accepting the verified digital signature as valid, the verifier shall have (1) assurance of
the signatory’s claimed identity, (2) assurance of the validity of the domain parameters (for DSA
and ECDSA), (3) assurance of the validity of the public key, and (4) assurance that the claimed
signatory actually possessed the private key that was used to generate the digital signature at the
time that the signature was generated. Methods for the verifier to obtain these assurances are
provided in SP 800-89. Note that assurance of domain parameter validity may have been
obtained during initial setup (see Section 3.1).

If the verification and assurance processes are successful, the digital signature and signed data
shall be considered valid. However, if a verification or assurance process fails, the digital
signature should be considered invalid. An organization’s policy shall govern the action to be
taken for an invalid digital signature. Such policy is outside the scope of this Standard.

13

Obtain the Domain
Parameters and Public Key

Get the Claimed
Signatory’s Identifier

Get the Claimed
Signatory’s Identifier

Generate a Message Digest

Verify the Digital Signature

Obtain Assurance of the Claimed
Signatory’s Identity

Obtain Assurance of Domain
Parameter Validity

Obtain Assurance of the Validity
of the Owner’s Public Key

Obtain Assurance that the Owner
Possesses the Private Key

Digital Signature Validation Complete

Actions Assurances

Figure 4: Digital Signature Verification and Validation

14

4 The Digital Signature Algorithm (DSA)

4.1 DSA Parameters
A DSA digital signature is computed using a set of domain parameters, a private key x, a per-
message secret number k, data to be signed, and a hash function. A digital signature is verified
using the same domain parameters, a public key y that is mathematically associated with the
private key x used to generate the digital signature, data to be verified, and the same hash
function that was used during signature generation. These parameters are defined as follows:

p a prime modulus, where 2L–1 < p < 2L, and L is the bit length of p. Values for L are
provided in Section 4.2.

q a prime divisor of (p – 1), where 2N–1 < q < 2 N, and N is the bit length of q. Values for N
are provided in Section 4.2.

g a generator of the subgroup of order q mod p, such that 1 < g < p.

x the private key that must remain secret; x is a randomly or pseudorandomly generated
integer, such that 0 < x < q, i.e., x is in the range [1, q–1].

y the public key, where y = gx mod p.

k a secret number that is unique to each message; k is a randomly or pseudorandomly
generated integer, such that 0 < k < q, i.e., k is in the range [1, q–1].

4.2 Selection of Parameter Sizes and Hash Functions for DSA
This Standard specifies the following choices for the pair L and N (the bit lengths of p and q,
respectively):

L = 1024, N = 160

L = 2048, N = 224

L = 2048, N = 256

L = 3072, N = 256

Federal Government entities shall generate digital signatures using use one or more of these
choices.

An approved hash function, as specified in FIPS 180-3, shall be used during the generation of
digital signatures. The security strength associated with the DSA digital signature process is no
greater than the minimum of the security strength of the (L, N) pair and the security strength of
the hash function that is employed. Both the security strength of the hash function used and the
security strength of the (L, N) pair shall meet or exceed the security strength required for the
digital signature process. The security strength for each (L, N) pair and hash function is provided

15

in SP 800-57.

SP 800-57 provides information about the selection of the appropriate (L, N) pair in accordance
with a desired security strength for a given time period for the generation of digital signatures.
An (L, N) pair shall be chosen that protects the signed information during the entire expected
lifetime of that information. For example, if a digital signature is generated in 2009 for
information that needs to be protected for five years, and a particular (L, N) pair is invalid after
2010, then a larger (L, N) pair shall be used that remains valid for the entire period of time that
the information needs to be protected.

It is recommended that the security strength of the (L, N) pair and the security strength of the
hash function used for the generation of digital signatures be the same unless an agreement has
been made between participating entities to use a stronger hash function. When the length of the
output of the hash function is greater than N (i.e., the bit length of q), then the leftmost N bits of
the hash function output block shall be used in any calculation using the hash function output
during the generation or verification of a digital signature. A hash function that provides a lower
security strength than the (L, N) pair ordinarily should not be used, since this would reduce the
security strength of the digital signature process to a level no greater than that provided by the
hash function.

A Federal Government entity other than a Certification Authority (CA) should use only the first
three (L, N) pairs (i.e., the (1024, 160), (2048, 224) and (2048, 256) pairs). A CA shall use an (L,
N) pair that is equal to or greater than the (L, N) pairs used by its subscribers. For example, if
subscribers are using the (2048, 224) pair, then the CA shall use either the (2048, 224), (2048,
256) or (3072, 256) pair. Possible exceptions to this rule include cross certification between
CAs, certifying keys for purposes other than digital signatures and transitioning from one key
size or algorithm to another. See SP 800-57 for further guidance.

4.3 DSA Domain Parameters
DSA requires that the private/public key pairs used for digital signature generation and
verification be generated with respect to a particular set of domain parameters. These domain
parameters may be common to a group of users and may be public. A user of a set of domain
parameters (i.e., both the signatory and the verifier) shall have assurance of their validity prior to
using them (see Section 3). Although domain parameters may be public information, they shall
be managed so that the correct correspondence between a given key pair and its set of domain
parameters is maintained for all parties that use the key pair. A set of domain parameters may
remain fixed for an extended time period.

The domain parameters for DSA are the integers p, q, and g, and optionally, the
domain_parameter_seed and counter that were used to generate p and q (i.e., the full set of
domain parameters is (p, q, g {, domain_parameter_seed, counter})).

16

4.3.1 Domain Parameter Generation
Domain parameters may be generated by a trusted third party (a TTP, such as a CA) or by an
entity other than a TTP. Assurance of domain parameter validity shall be obtained prior to key
pair generation, digital signature generation or digital signature verification (see Section 3).

The integers p and q shall be generated as specified in Appendix A.1. The input to the
generation process is the selected values of L and N (see Section 4.2); the output of the
generation process is the values for p and q, and optionally, the values of the
domain_parameter_seed and counter.

The generator g shall be generated as specified in Appendix A.2.

The security strength of a hash function used during the generation of the domain parameters
shall meet or exceed the security strength associated with the (L, N) pair. Note that this is more
restrictive than the hash function that can be used for the digital signature process (see Section
4.2).

4.3.2 Domain Parameter Management
Each digital signature key pair shall be correctly associated with one specific set of domain
parameters (e.g., by a public key certificate that identifies the domain parameters associated with
the public key). The domain parameters shall be protected from unauthorized modification until
the set is deactivated (if and when the set is no longer needed). The same domain parameters
may be used for more than one purpose (e.g., the same domain parameters may be used for both
digital signatures and key establishment). However, using different values for the generator g
reduces the risk that key pairs generated for one purpose could be accidentally used
(successfully) for another purpose.

4.4 Key Pairs
Each signatory has a key pair: a private key x and a public key y that are mathematically related
to each other. The private key shall be used for only a fixed period of time (i.e., the private key
cryptoperiod) in which digital signatures may be generated; the public key may continue to be
used as long as digital signatures that were generated using the associated private key need to be
verified (i.e., the public key may continue to be used beyond the cryptoperiod of the associated
private key). See SP 800-57 for further guidance.

4.4.1 DSA Key Pair Generation
A digital signature key pair x and y is generated for a set of domain parameters (p, q, g {,
domain_parameter_seed, counter}). Methods for the generation of x and y are provided in
Appendix B.1.

17

4.4.2 Key Pair Management
Guidance on the protection of key pairs is provided in SP 800-57. The secure use of digital
signatures depends on the management of an entity’s digital signature key pair as follows:

1. The validity of the domain parameters shall be assured prior to the generation of the key
pair, or the verification and validation of a digital signature (see Section 3).

2. 	 Each key pair shall be associated with the domain parameters under which the key pair
was generated.

3. 	 A key pair shall only be used to generate and verify signatures using the domain

parameters associated with that key pair.

4. 	 The private key shall be used only for signature generation as specified in this Standard
and shall be kept secret; the public key shall be used only for signature verification and
may be made public.

5. 	 An intended signatory shall have assurance of possession of the private key prior to or
concurrently with using it to generate a digital signature (see Section 3.1).

6. 	 A private key shall be protected from unauthorized access, disclosure and modification.

7. 	 A public key shall be protected from unauthorized modification (including substitution).
For example, public key certificates that are signed by a CA may provide such protection.

8. A verifier shall be assured of a binding between the public key, its associated domain
parameters and the key pair owner (see Section 3).

9. A verifier shall obtain public keys in a trusted manner (e.g., from a certificate signed by a
CA that the entity trusts, or directly from the intended or claimed signatory, provided that
the entity is trusted by the verifier and can be authenticated as the source of the signed
information that is to be verified).

10. Verifiers shall be assured that the claimed signatory is the key pair owner, and that the
owner possessed the private key that was used to generate the digital signature at the time
that the signature was generated (i.e., the private key that is associated with the public
key that will be used to verify the digital signature) (see Section 3.3).

11. A signatory and a verifier shall have assurance of the validity of the public key (see
Sections 3.1 and 3.3).

4.5 DSA Per-Message Secret Number
A new secret random number k shall be generated prior to the generation of each digital
signature for use during the signature generation process. This secret number shall be protected
from unauthorized disclosure and modification.

k −1	 k −1 is the multiplicative inverse of k with respect to multiplication modulo q; i.e., 0 < < q

18

k −1and 1 = (k) mod q. This inverse is required for the signature generation process (see Section
k −14.6). A technique is provided in Appendix C.1 for deriving from k.

k −1k and may be pre-computed, since knowledge of the message to be signed is not required for
k −1the computations. When k and are pre-computed, their confidentiality and integrity shall be

protected.

Methods for the generation of the per-message secret number are provided in Appendix B.2.

4.6 DSA Signature Generation
The intended signatory shall have assurances as specified in Section 3.1.

Let N be the bit length of q. Let min(N, outlen) denote the minimum of the positive integers N

and outlen, where outlen is the bit length of the hash function output block.

The signature of a message M consists of the pair of numbers r and s that is computed according

to the following equations:

r = (gk mod p) mod q.

z = the leftmost min(N, outlen) bits of Hash(M).

k −1s = ((z + xr)) mod q.

When computing s, the string z obtained from Hash(M) shall be converted to an integer. The
conversion rule is provided in Appendix C.2.

Note that r may be computed whenever k, p, q and g are available, e.g., whenever the domain
parameters p, q and g are known, and k has been pre-computed (see Section 4.5), r may also be
pre-computed, since knowledge of the message to be signed is not required for the computation
of r. Pre-computed k, k-1 and r values shall be protected in the same manner as the the private
key x until s has been computed (see SP 800-57).

The values of r and s shall be checked to determine if r = 0 or s = 0. If either r = 0 or s = 0, a
new value of k shall be generated, and the signature shall be recalculated. It is extremely
unlikely that r = 0 or s = 0 if signatures are generated properly.

The signature (r, s) may be transmitted along with the message to the verifier.

4.7 DSA Signature Verification and Validation
Signature verification may be performed by any party (i.e., the signatory, the intended recipient
or any other party) using the signatory’s public key. A signatory may wish to verify that the
computed signature is correct, perhaps before sending the signed message to the intended
recipient. The intended recipient (or any other party) verifies the signature to determine its

19

authenticity.

Prior to verifying the signature of a signed message, the domain parameters, and the claimed
signatory’s public key and identity shall be made available to the verifier in an authenticated
manner. The public key may, for example, be obtained in the form of a certificate signed by a
trusted entity (e.g., a CA) or in a face-to-face meeting with the public key owner.

Let M ′, r′, and s′ be the received versions of M, r, and s, respectively; let y be the public key of
the claimed signatory; and let N be the bit length of q. Also, let min(N, outlen) denote the
minimum of the positive integers N and outlen, where outlen is the bit length of the hash
function output block.

The signature verification process is as follows:

1. The verifier shall check that 0 < r′ < q and 0 < s′ < q; if either condition is violated, the
signature shall be rejected as invalid.

2. 	 If the two conditions in step 1 are satisfied, the verifier computes the following:

w = (s′)–1 mod q.

z = the leftmost min(N, outlen) bits of Hash(M′).

u1 = (zw) mod q.

u2 = ((r′)w) mod q.

v = (((g)u1 (y)u2) mod p) mod q.

A technique is provided in Appendix C.1 for deriving (s′)–1 (i.e., the multiplicative
inverse of s′ mod q).

The string z obtained from Hash(M′) shall be converted to an integer. The conversion

rule is provided in Appendix C.2.

3. If v = r′, then the signature is verified. For a proof that v = r′ when M′ = M, r′ = r, and s′
= s, see Appendix E.

4. If v does not equal r′, then the message or the signature may have been modified, there
may have been an error in the signatory’s generation process, or an imposter (who did not
know the private key associated with the public key of the claimed signatory) may have
attempted to forge the signature. The signature shall be considered invalid. No inference
can be made as to whether the data is valid, only that when using the public key to verify
the signature, the signature is incorrect for that data.

5. 	 Prior to accepting the signature as valid, the verifier shall have assurances as specified in
Section 3.3.

An organization’s policy may govern the action to be taken for invalid digital signatures. Such
policy is outside the scope of this Standard. Guidance about determining the timeliness of

20

digitally signed messages is addressed in SP 800-102, Recommendation for Digital Signature
Timeliness.

21

5. The RSA Digital Signature Algorithm
The use of the RSA algorithm for digital signature generation and verification is specified in
American National Standard (ANS) X9.31 and Public Key Cryptography Standard (PKCS) #1.
While each of these standards uses the RSA algorithm, the format of the ANS X9.31 and PKCS
#1 data on which the digital signature is generated differs in details that make the algorithms
non-interchangeable.

5.1 RSA Key Pair Generation
An RSA digital signature key pair consists of an RSA private key, which is used to compute a
digital signature, and an RSA public key, which is used to verify a digital signature. An RSA key
pair used for digital signatures shall only be used for one digital signature scheme (e.g., ANS
X9.31, RSASSA-PKCS1 v1.5 or RSASSA-PSS; see Sections 5.4 and 5.5). In addition, an RSA
digital signature key pair shall not be used for other purposes (e.g., key establishment).

An RSA public key consists of a modulus n, which is the product of two positive prime integers
p and q (i.e., n = pq), and a public key exponent e. Thus, the RSA public key is the pair of values
(n, e) and is used to verify digital signatures. The size of an RSA key pair is commonly
considered to be the length of the modulus n in bits (nlen).

The corresponding RSA private key consists of the same modulus n and a private key exponent d
that depends on n and the public key exponent e. Thus, the RSA private key is the pair of values
(n, d) and is used to generate digital signatures. Note that an alternative method for representing
(n, d) using the Chinese Remainder Theorem (CRT) is allowed.

In order to provide security for the digital signature process, the two integers p and q, and the
private key exponent d shall be kept secret. The modulus n and the public key exponent e may
be made known to anyone. Guidance on the protection of these values is provided in SP 800-57.

This Standard specifies three choices for the length of the modulus (i.e., nlen): 1024, 2048 and
3072 bits. Federal Government entities shall generate digital signatures using one or more of
these choices.

An approved hash function, as specified in FIPS 180-3, shall be used during the generation of
key pairs and digital signatures. When used during the generation of an RSA key pair (as
specified in this Standard), the length in bits of the hash function output block shall meet or
exceed the security strength associated with the bit length of the modulus n (see SP 800-57).

The security strength associated with the RSA digital signature process is no greater than the
minimum of the security strength associated with the bit length of the modulus and the security
strength of the hash function that is employed. The security strength for each modulus length and
hash function used during the digital signature process is provided in SP 800-57. Both the
security strength of the hash function used and the security strength associated with the bit length
of the modulus n shall meet or exceed the security strength required for the digital signature

22

process.

It is recommended that the security strength of the modulus and the security strength of the hash
function be the same unless an agreement has been made between participating entities to use a
stronger hash function. A hash function that provides a lower security strength than the security
strength associated with the bit length of the modulus ordinarily should not be used, since this
would reduce the security strength of the digital signature process to a level no greater than that
provided by the hash function.

Federal Government entities other than CAs should use only the first two choices (i.e., nlen =
1024 or 2048) during the timeframes indicated in SP 800-57. A CA should use a modulus whose
length nlen is equal to or greater than the moduli used by its subscribers. For example, if the
subscribers are using nlen = 2048, then the CA should use nlen ≥ 2048. SP 800-57 provides
further information about the selection of the bit length of n. Possible exceptions to this rule
include cross certification between CAs, certifying keys for purposes other than digital
signatures and transitioning from one key size or algorithm to another.

Criteria for the generation of RSA key pairs are provided in Appendix B.3.1.

When RSA parameters are randomly generated (i.e., the primes p and q, and optionally, the
public key exponent e), they shall be generated using an approved random or pseudorandom
number generator (see SP 800-90). The resulting (pseudo) random numbers shall be used as
seeds for generating RSA parameters (e.g., the (pseudo) random number is used as a prime
number generation seed). Prime number generation seeds shall be kept secret or destroyed when
the modulus n is computed. If the prime number generation seeds are retained, they shall only be
used as evidence that the generated values (i.e., p and q) were determined in an arbitrary manner,
and the seeds shall be protected in a manner that is (at least) equivalent to the protection required
for the private key.

5.2 Key Pair Management
The secure use of digital signatures depends on the management of an entity’s digital signature
key pair. Key pair management requirements for RSA are provided in Section 4.4.2,
requirements 4 – 11. Note that the first three requirements in Section 4.4.2, which address the
relationship between domain parameters and key pairs, are not applicable to RSA.

5.3 Assurances
The intended signatory shall have assurances as specified in Section 3.1. Prior to accepting a digital
signature as valid, the verifier shall have assurances as specified in Section 3.3.

5.4 ANS X9.31
ANS X9.31, Digital Signatures Using Reversible Public Key Cryptography for the Financial

23

Services Industry (rDSA), was developed for the American National Standards Institute by the
Accredited Standards Committee on Financial Services, X9. See http://www.x9.org for
information about obtaining copies of ANS X9.31 and any associated errata. The following
discussions are based on the version of ANS X9.31 that was approved in 1998.

Methods for the generation of the private prime factors p and q are provided in Appendix B.3.

In ANS X9.31, the length of the modulus n is allowed in increments of 256 bits beyond a
minimum of 1024 bits. Implementations claiming conformance to FIPS 186-3 shall include one
or more of the modulus sizes specified in Section 5.1.

Two methods for the generation of digital signatures are included in ANS X9.31. When the
public signature verification exponent e is odd, the digital signature algorithm is commonly
known as RSA; when the public signature verification exponent e is even, the digital signature
algorithm is commonly known as Rabin-Williams. This Standard (i.e., FIPS 186-3) adopts the
use of RSA, but does not adopt the use of Rabin-Williams.

During signature verification, the extraction of the hash value H(M)′ from the data structure IR′
shall be accomplished by either:

•	 Selecting the hashlen bytes of the data structure IR′ that immediately precedes the two
bytes of trailer information, where hashlen is the length in bytes of the hash function
used, regardless of the length of the padding, or

•	 If the hash value H(M)′ is selected by its location with respect to the last byte of padding
(i.e., 0xBA), including a check that the hash value is followed by only two bytes
containing the expected trailer value.

ANS X9.31 contains an annex on random number generation. However, implementations of
ANS X9.31 shall use the approved random number generation methods specified in SP 800-90.

Annexes in ANS X9.31 provide informative discussions of security and implementation
considerations.

5.5 PKCS #1
Public-Key Cryptography Standard (PKCS) #1, RSA Cryptography Standard, defines
mechanisms for encrypting and signing data using the RSA algorithm. PKCS #1 v2.1 specifies
two digital signature processes and corresponding formats: RSASSA-PKCS1-v1.5 and
RSASSA-PSS. Both signature schemes are approved for use, but additional constraints are
imposed beyond those specified in PKCS #1 v2.1.

(a) Implementations that generate RSA key pairs shall use the criteria and methods in
Appendix B.3 to generate those key pairs,

(b) Only approved hash functions shall be used.

(c) Only two prime factors p and q shall be used to form the modulus n.

24

http:http://www.x9.org

(d) Random numbers shall be generated in accordance with SP 800-90.

(e) For RSASSA-PSS, the length of the salt (sLen) shall be: 0 ≤ sLen ≤ hlen, where hlen is
the length of the hash function output block.

(f) For RSASSA-PKCS-v1.5, when the hash value is recovered from the encoded message
EM during the verification of the digital signature1, the extraction of the hash value shall
be accomplished by either:

•	 Selecting the rightmost (least significant) bits of EM, based on the size of the hash
function used, regardless of the length of the padding, or

•	 If the hash value is selected by its location with respect to the last byte of padding,
including a check that the hash value is located in the rightmost (least significant)
bytes of EM (i.e., no other information follows the hash value in the encoded
message).

Note: PKCS #1 was initially developed by RSA Laboratories in 1991 and has been revised as
multiple versions. At the time of the approval of FIPS 186-3, three versions of PKSC #1 were
available: version 1.5, version 2.0 and version 2.1. This Standard references only version 2.1.

1 PKCS #1, v2.1 provides two methods for comparing the hash values: by comparing the encoded messages EM and
EM′, and by extracting the hash value from the decoding of the encoded message (see the Note in PKCS #1, v2.1).
Step (f) above applies to the latter case.

25

6. The Elliptic Curve Digital Signature Algorithm (ECDSA)
ANS X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve
Digital Signature Standard (ECDSA), was developed for the American National Standards
Institute by the Accredited Standards Committee on Financial Services, X9. Information about
obtaining copies of ANS X9.62 is available at http://www.x9.org. The following discussions are
based on the version of ANS X9.62 that was approved in 2005. This version of ANS X9.62 shall
be used, subject to the transition period referenced in the implementation schedule of this
Standard.

ANS X9.62 defines methods for digital signature generation and verification using the Elliptic
Curve Digital Signature Algorithm (ECDSA). Specifications for the generation of the domain
parameters used during the generation and verification of digital signatures are also included in
ANS X9.62. ECDSA is the elliptic curve analog of DSA. ECDSA keys shall not be used for any
other purpose (e.g., key establishment).

6.1 ECDSA Domain Parameters
ECDSA requires that the private/public key pairs used for digital signature generation and
verification be generated with respect to a particular set of domain parameters. These domain
parameters may be common to a group of users and may be public. Domain parameters may
remain fixed for an extended time period.

Domain parameters for ECDSA are of the form (q, FR, a, b {, domain_parameter_seed}, G, n,
h), where q is the field size; FR is an indication of the basis used; a and b are two field elements
that define the equation of the curve; domain_parameter_seed is the domain parameter seed and
is an optional bit string that is present if the elliptic curve was randomly generated in a verifiable
fashion, G is a base point of prime order on the curve (i.e., G = (xG, yG)), n is the order of the
point G, and h is the cofactor (which is equal to the order of the curve divided by n).

6.1.1 Domain Parameter Generation
This Standard specifies five ranges for n (see Table 1). For each range, a maximum cofactor size
is also specified. Note that the specification of a cofactor h in a set of domain parameters is
optional in ANS X9.62, whereas implementations conforming to this Standard (i.e., FIPS 186-3)
shall specify the cofactor h in the set of domain parameters. Table 1 provides the maximum sizes
for the cofactor h.

26

http:http://www.x9.org

Table 1: ECDSA Security Parameters

Bit length of n

⎡log 2 n⎤

Maximum
Cofactor (h)

160 - 223 210

224 - 255 214

256 - 383 216

384 - 511 224

≥ 512 232

ECDSA is defined for two arithmetic fields: the finite field GFp and the finite field GF . Form2

the field GFp , p is required to be an odd prime.

NIST Recommended curves are provided in Appendix D of this Standard (i.e., FIPS 186-3).
Three types of curves are provided:

1. Curves over prime fields, which are identified as P-xxx,

2. Curves over Binary fields, which are identified as B-xxx, and

3. Koblitz curves, which are identified as K-xxx,

where xxx indicates the bit length of the field size.

Alternatively, ECDSA domain parameters may be generated as specified in ANS X9.62; when
ECDSA domain parameters are generated (i.e., the NIST Recommended curves are not used),
the value of G should be generated canonically (verifiably random). An approved hash function,
as specified in FIPS 180-3, shall be used during the generation of ECDSA domain parameters.
When generating these domain parameters, the security strength of a hash function used shall
meet or exceed the security strength associated with the bit length of n (see footnote 2 below).

An approved hash function, as specified in FIPS 180-3, is required during the generation of
domain parameters. The security strength of the hash function used shall meet or exceed the
security strength associated with the bit length of n. The security strengths for the ranges of n
and the hash functions are provided in SP 800-57. It is recommended that the security strength
associated with the bit length of n and the security strength of the hash function be the same

2 The NIST Recommended curves were generated prior to the formulation of this guidance and using SHA-1, which
was the only approved hash function available at that time. Since SHA-1 was considered secure at the time of
generation, the curves were made public, and SHA-1 will only be used to validate those curves, the NIST
Recommended curves are still considered secure and appropriate for Federal government use.

27

unless an agreement has been made between participating entities to use a stronger hash
function; a hash function that provides a lower security strength than is associated with the bit
length of n shall not be used. If the length of the output of the hash function is greater than the
bit length of n, then the leftmost n bits of the hash function output block shall be used in any
calculation using the hash function output during the generation or verification of a digital
signature.

Normally, a CA should use a bit length of n whose assessed security strength is equal to or
greater than the assessed security strength associated with the bit length of n used by its
subscribers. For example, if subscribers are using a bit length of n with an assessed security
strength of 112 bits, then CAs should use a bit length of n whose assessed security strength is
equal to or greater than 112 bits. SP 800-57 provides further information about the selection of a
bit length of n. Possible exceptions to this rule include cross certification between CAs,
certifying keys for purposes other than digital signatures and transitioning from one key size or
algorithm to another. However, these exceptions require further analysis.

6.1.2 Domain Parameter Management
Each ECDSA key pair shall be correctly associated with one specific set of domain parameters
(e.g., by a public key certificate that identifies the domain parameters associated with the public
key). The domain parameters shall be protected from unauthorized modification until the set is
deactivated (if and when the set is no longer needed). The same domain parameters may be used
for more than one purpose (e.g., the same domain parameters may be used for both digital
signatures and key establishment). However, using different domain parameters reduces the risk
that key pairs generated for one purpose could be accidentally used (successfully) for another
purpose.

6.2 Private/Public Keys
An ECDSA key pair consists of a private key d and a public key Q that is associated with a
specific set of ECDSA domain parameters; d, Q and the domain parameters are mathematically
related to each other. The private key is normally used for a period of time (i.e., the
cryptoperiod); the public key may continue to be used as long as digital signatures that have been
generated using the associated private key need to be verified (i.e., the public key may continue
to be used beyond the cryptoperiod of the associated private key). See SP 800-57 for further
guidance.

ECDSA keys shall only be used for the generation and verification of ECDSA digital signatures.

6.2.1 Key Pair Generation
A digital signature key pair d and Q is generated for a set of domain parameters (q, FR, a, b {,
domain_parameter_seed}, G, n, h). Methods for the generation of d and Q are provided in

28

Appendix B.4.

6.2.2 Key Pair Management
The secure use of digital signatures depends on the management of an entity’s digital signature
key pair as specified in Section 4.4.2.

6.3 Secret Number Generation
A new secret random number k shall be generated prior to the generation of each digital
signature for use during the signature generation process. This secret number shall be protected
from unauthorized disclosure and modification. Methods for the generation of the per-message
secret number are provided in Appendix B.5.

k −1 k −1 is the multiplicative inverse of k with respect to multiplication modulo n; i.e., 0 < < n
k −1and 1 = (k) mod n. This inverse is required for the signature generation process. A technique

k −1is provided in Appendix C.1 for deriving from k.

k −1k and may be pre-computed, since knowledge of the message to be signed is not required for
k −1the computations. When k and are pre-computed, their confidentiality and integrity shall be

protected.

6.4 ECDSA Digital Signature Generation and Verification
An ECDSA digital signature (r, s) shall be generated as specified in ANS X9.62, using:

1. Domain parameters that are generated in accordance with Section 6.1.1,

2. A private key that is generated as specified in Section 6.2.1,

3. A per-message secret number that is generated as specified in Section 6.3,

4. An approved hash function as discussed below, and

5. An approved random number generator as specified in SP 800-90.

An ECDSA digital signature shall be verified as specified in ANS X9.62, using the same domain
parameters and hash function that were used during signature generation.

An approved hash function, as specified in FIPS 180-3, shall be used during the generation of
digital signatures. The security strength associated with the ECDSA digital signature process is
no greater than the minimum of the security strength associated with the bit length of n and the
security strength of the hash function that is employed. Both the security strength of the hash
function used and the security strength associated with the bit length of n shall meet or exceed
the security strength required for the digital signature process. The security strengths for the
ranges of the bit lengths of n and for each hash function is provided in SP 800-57.

29

It is recommended that the security strength associated with the bit length of n and the security
strength of the hash function be the same unless an agreement has been made between
participating entities to use a stronger hash function. When the length of the output of the hash
function is greater than the bit length of n, then the leftmost n bits of the hash function output
block shall be used in any calculation using the hash function output during the generation or
verification of a digital signature. A hash function that provides a lower security strength than
the security strength associated with the bit length of n ordinarily should not be used, since this
would reduce the security strength of the digital signature process to a level no greater than that
provided by the hash function.

6.5 Assurances
The intended signatory shall have assurances as specified in Section 3.1. Prior to accepting a
signature as valid, the verifier shall have assurances as specified in Section 3.3.

30

APPENDIX A: Generation and Validation of FFC Domain Parameters
Finite field cryptography (FFC) is a method of implementing discrete logarithm cryptography
using finite field mathematics. DSA, as specified in this Standard, is an example of FFC. The
Diffie-Hellman and MQV key establishment algorithms specified in SP 800-56A can also be
implemented as FFC.

The domain parameters for FFC consist of the set of values (p, q, g {, domain_parameter_seed,
counter}). This appendix specifies techniques for the generation of the FFC domain parameters
p, q and g and performing an explicit domain parameter validation. During the generation
process, the values for domain_parameter_seed and counter are obtained.

A.1 Generation of the FFC Primes p and q
This section provides methods for generating the primes p and q that fulfill the criteria specified
in Sections 4.1 and 4.2. One of these methods shall be used when generating these primes. A
method is provided in Appendix A.1.1 to generate random candidate integers and then test them
for primality using a probabilistic algorithm. A second method is provided in Appendix A.1.2
that constructs integers from smaller integers so that the constructed integer is guaranteed to be
prime.

During the generation, validation and testing processes, conversions between bit strings and
integers are required. Appendix C.2 provides methods for these conversions.

A.1.1 Generation and Validation of Probable Primes
Previous versions of this Standard contained a method for the generation of the domain
parameters p and q using SHA-1 and probabilistic methods. This method is no longer approved
for domain parameter generation; however, the validation process for this method is provided in
Appendix A.1.1.1 to validate previously generated domain parameters.

A method for the generation and validation of the primes p and q using probabilistic methods is
provided in Appendix A.1.1.2 and is based on the use of an approved hash function; this method
shall be used for generating probable primes. The validation process for this method is provided
in Appendix A.1.1.3.

The probabilistic methods use a hash function and an arbitrary seed (domain_parameter_seed).
Arbitrary seeds could be anything, e.g., a user’s favorite number or a random or pseudorandom
number output by a random number generator (see SP 800-90). The domain_parameter_seed
determines a sequence of candidates for p and q in the required intervals that are then tested for
primality using a probabilistic primality test (see Appendix C.3). The test determines that the
candidate is either not a prime (i.e., it is a composite integer) or is “probably a prime” (i.e., there
is a very small probability that a composite integer will be declared to be a prime). p and q shall
be the first candidate set that passes the primality tests. Note that the domain_parameter_seed

31

shall be unique for every unique set of domain parameters that are generated using the same
method.

A.1.1.1 	 Validation of the Probable Primes p and q that were Generated Using SHA-1 as
Specified in Prior Versions of this Standard

This prime validation algorithm is used to validate that the primes p and q that were generated by
the prime generation algorithm specified in previous versions of this Standard. The algorithm
requires the values of p, q, domain_parameter_seed and counter, which were output from the
prime generation algorithm.

Let SHA1() be the SHA-1 hash function specified in FIPS 180-3. The following process or its
equivalent shall be used to validate p and q for this method.

Input:

1. p, q	 The generated primes p and q.

2. domain_parameter_seed 	A seed that was used to generate p and q.

3. counter	 A count value that was determined during generation.

Output:

1. 	 status The status returned from the validation procedure, where
status is either VALID or INVALID.

Process:

1. If (len (p) ≠ 1024) or (len (q) ≠ 160), then return INVALID.

2. If (counter > 4095), then return INVALID.

3. 	 seedlen = len (domain_parameter_seed).

4. If (seedlen < 160), then return INVALID.

5. 	 computed_q = SHA1(domain_parameter_seed) ⊕ SHA1((domain_parameter_seed +
1) mod 2seedlen).

6. 	 Set the first and last bits of computed_q equal to 1 (i.e., the 159th and 0th bits).

7. 	 Test whether or not computed_q is prime as specified in Appendix C.3. If
(computed_q ≠ q) or (computed_q is not prime), then return INVALID.

8. 	 offset = 2.

9. For i = 0 to counter do

9.1 	For j = 0 to 6 do

Vj = SHA1((domain_parameter_seed + offset + j) mod 2seedlen).

9.2 	 W = V0 + (V1 ∗ 2160) + (V2 ∗ 2320) + (V3 ∗ 2480) + (V4 ∗ 2640) + (V5 ∗ 2800) +

32

((V6 mod 263) ∗ 2960).

9.3 	 X = W + 21023. Comment: 0 ≤ W < 2L–1.

9.4 	 c = X mod 2q.

9.5 	 computed_p = X – (c – 1). Comment: computed_p ≡ 1 (mod 2q).

9.6 	If (computed_p < 21023), then go to step 9.8.

9.7 	 Test whether or not computed_p is prime as specified in Appendix C.3. If
computed_p is determined to be prime, then go to step 10.

9.8 	 offset = offset + 7.

10. If ((i ≠ counter) or (computed_p ≠ p) or (computed_p is not prime)), then return
INVALID.

11. Return VALID.

A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function

This method uses an approved hash function and may be used for the generation of the primes p
and q for any application (e.g., digital signatures or key establishment). The security strength of
the hash function shall be equal to or greater than the security strength associated with the (L, N)
pair.

An arbitrary domain_parameter_seed of seedlen bits is also used, where seedlen shall be equal
to or greater than N.

The generation process returns a set of integers p and q that have a very high probability of being
prime. For another entity to validate that the primes were generated correctly using the validation
process in Appendix A.1.1.3, the value of the domain_parameter_seed and the counter used to
generate the primes must also be returned and made available to the validating entity; the
domain_parameter_seed and counter need not be kept secret. Let Hash() be the selected hash
function, and let outlen be the bit length of the output block, where outlen shall be equal to or
greater than N.

The following process or its equivalent shall be used to generate p and q for this method.

Input:

1. L	 The desired length of the prime p (in bits).

2. N	 The desired length of the prime q (in bits).

3. 	 seedlen The desired length of the domain parameter seed; seedlen shall be
equal to or greater than N.

Output:

1. status The status returned from the generation procedure, where status is

33

either VALID or INVALID. If INVALID is returned as the status,
either no values for the other output parameters shall be returned, or
invalid values shall be returned (e.g., zeros or Null strings).

2. p, q	 The generated primes p and q.

3. 	 domain_parameter_seed

(Optional) A seed that was used to generate p and q.

4. counter	 (Optional) A count value that was determined during generation.

Process:

1. 	 Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If
the pair is not in the list, then return INVALID.

2. If (seedlen < N), then return INVALID.

3. 	 n = ⎡L ⁄ outlen⎤ – 1.

4. 	 b = L – 1 – (n ∗ outlen).

5. 	 Get an arbitrary sequence of seedlen bits as the domain_parameter_seed.

6. 	 U = Hash (domain_parameter_seed) mod 2N–1.

7. 	 q = 2N–1 + U + 1 – (U mod 2).

8. 	 Test whether or not q is prime as specified in Appendix C.3.

9. If q is not a prime, then go to step 5.

10. offset = 1.

11. For counter = 0 to (4L – 1) do

11.1 	For j = 0 to n do

Vj = Hash ((domain_parameter_seed + offset + j) mod 2seedlen).

11.2 	 W = V0 + (V1 ∗ 2outlen) + … + (Vn–1 ∗ 2(n–1) ∗ outlen) + ((Vn mod 2b) ∗ 2n ∗ outlen).

11.3 	 X = W + 2L–1. Comment: 0 ≤ W < 2L–1; hence, 2L–1 ≤ X < 2L .

11.4 	 c = X mod 2q.

11.5 	 p = X – (c – 1). Comment: p ≡ 1 (mod 2q).

11.6 	If (p < 2L–1), then go to step 11.9.

11.7 	 Test whether or not p is prime as specified in Appendix C.3.

11.8 	If p is determined to be prime, then return VALID and the values of p, q and
(optionally) the values of domain_parameter_seed and counter.

34

11.9 	 offset = offset + n + 1. Comment: Increment offset; then, as part of
the loop in step 11, increment counter; if
counter < 4L, repeat steps 11.1 through 11.8.

12. Go to step 5.

A.1.1.3 	 Validation of the Probable Primes p and q that were Generated Using an
Approved Hash Function

This prime validation algorithm is used to validate that the integers p and q were generated by
the prime generation algorithm given in Appendix A.1.1.2. The validation algorithm requires the
values of p, q, domain_parameter_seed and counter, which were output from the prime
generation algorithm. Let Hash() be the hash function used to generate p and q, and let outlen
be its output block length.

The following process or its equivalent shall be used to validate p and q for this method.

Input:

1. p, q	 The generated primes p and q.

3. domain_parameter_seed 	The domain parameter seed that was used to generate p and
q.

4. counter	 A count value that was determined during generation.

Output:

1. 	 status The status returned from the validation procedure, where
status is either VALID or INVALID.

Process:

1. 	 L = len (p).

2. 	 N = len (q).

3. 	 Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If the
pair is not in the list, return INVALID.

4. If (counter > (4L – 1)), then return INVALID.

5. 	 seedlen = len (domain_parameter_seed).

6. If (seedlen < N), then return INVALID.

7. 	 U = Hash(domain_parameter_seed) mod 2N–1.

8. 	 computed_q = 2N–1 + U + 1 – (U mod 2).

9. 	 Test whether or not computed_q is prime as specified in Appendix C.3. If (computed_q ≠
q) or (computed_q is not prime), then return INVALID.

35

10. n = ⎡L ⁄ outlen⎤ – 1.

11. b = L – 1 – (n ∗ outlen).

12. offset = 1.

13. For i = 0 to counter do

13.1 For j = 0 to n do

Vj = Hash((domain_parameter_seed + offset + j) mod 2seedlen).

13.2 W = V0 + (V1 ∗ 2outlen) + … + (Vn–1 ∗ 2(n–1) ∗ outlen) + ((Vn mod 2b) ∗ 2n ∗ outlen).

13.3 X = W + 2L–1.

13.4 c = X mod 2q.

13.5 computed_p = X – (c – 1).

13.6 If (computed_p < 2L–1), then go to step 13.9

13.7 Test whether or not computed_p is prime as specified in Appendix C.3.

13.8 If computed_p is determined to be a prime, then go to step 14.

13.9 offset = offset + n + 1.

14. If ((i ≠ counter) or (computed_p ≠ p) or (computed_p is not a prime)), then return
INVALID.

15. Return VALID.

A.1.2 Construction and Validation of the Provable Primes p and q
Primes can be generated so that they are guaranteed to be prime. The following algorithm for
generating p and q uses an approved hash function and an arbitrary seed (firstseed) to construct p
and q in the required intervals. The security strength of the hash function shall be equal to or
greater than the security strength associated with the (L, N) pair.

Arbitrary seeds can be anything, e.g., a user’s favorite number or a random or pseudorandom
number that is output from a random number generator. Note that the firstseed must be unique to
produce a unique set of domain parameters. Candidate primes are tested for primality using a
deterministic primality test that proves whether or not the candidate is prime. The resulting p and
q are guaranteed to be primes.

A.1.2.1 Construction of the Primes p and q Using the Shawe-Taylor Algorithm

For each set of domain parameters generated, an arbitrary initial seed (firstseed) of at least
seedlen bits shall be determined, where seedlen shall be ≥ N.

The generation process returns a set of integers p and q that are guaranteed to be prime. For

36

another entity to validate that the primes were generated correctly (using the validation process
in Appendix A.1.2.2), the value of the firstseed, the two computed seeds (pseed and qseed) and
the counters used to generate the primes (pgen_counter and qgen_counter) must be made
available to the validating entity; the seeds and the counters need not be kept secret. The domain
parameters for DSA are identified in Section 4.3 as (p, q, g {, domain_parameter_seed,
counter}). When using the Shawe-Taylor algorithm for generating p and q, the
domain_parameter_seed consists of three seed values (firstseed, pseed, and qseed), and the
counter consists of the pair of counter values (pgen_counter and qgen_counter).

Let Hash() be the selected hash function (see Appendix A.1.2), and let outlen be the bit length
of the output block of that hash function.

A.1.2.1.1 Get the First Seed
The following process or its equivalent shall be used to generate firstseed for this constructive
method.

Input:

1. N	 The length of q in bits.

2. seedlen	 The length of firstseed, where seedlen ≥ N.

Output:

1. 	 status The status returned from the generation procedure, where status is
either SUCCESS or FAILURE. If FAILURE is returned, then
either no firstseed value shall be provided or an invalid value shall
be returned.

2. firstseed 	 The first seed generated.

Process:

1. firstseed = 0.

2. Check that N is in the list of acceptable (L, N) pairs (see Section 4.2). If not, then
return FAILURE.

3. If (seedlen < N), then return FAILURE.

4. While firstseed < 2N–1.

Get an arbitrary sequence of seedlen bits as firstseed.

5. Return SUCCESS and the value of firstseed.

Note: This routine could be incorporated into the beginning of the constructive prime generation
procedure in Appendix A.1.2.1.2. However, this was not done in this specification so that the
validation process in Appendix A.1.2.2 could also call the constructive prime generation

37

procedure and provide the value of firstseed as input.

A.1.2.1.2 Constructive Prime Generation
The following process or its equivalent shall be used to generate p and q for this constructive
method.

Input:

1. L	 The requested length for p (in bits).

2. N 	 The requested length for q (in bits).

3. 	 firstseed The first seed to be used. This was obtained as specified in
Appendix A.1.2.1.1.

Output:

1. 	 status The status returned from the generation procedure, where status is
either SUCCESS or FAILURE. If FAILURE is returned, then
either no other values shall be returned, or invalid values shall be
returned.

2. p, q	 The requested primes.

3. pseed, qseed	 (Optional) Computed seed values that were used to generate p and
q. The entire seed for the generation of p and q consists of
firstseed, pseed and qseed.

4. 	 pgen_counter, qgen_counter

(Optional) The count values that were determined during generation.

Process:

1. 	 Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If
the pair is not in the list, return FAILURE.

Comment: Use the Shawe-Taylor random
prime routine in Appendix C.6 to generate
random primes.

2.	 Using N as the length and firstseed as the input_seed, use the random prime
generation routine in Appendix C.6 to obtain q, qseed and qgen_counter. If
FAILURE is returned, then return FAILURE.

3. Using ⎡L / 2 + 1⎤ as the length and qseed as the input_seed, use the random prime
routine in Appendix C.6 to obtain p0 , pseed, and pgen_counter. If FAILURE is
returned, then return FAILURE.

4. 	 iterations = ⎡L / outlen⎤ –1.

38

5. old_counter = pgen_counter.

Comment: Generate a (pseudo) random x in
the interval [2L−1, 2L].

6. x = 0.

7. For i = 0 to iterations do

x = x + (Hash(pseed + i) ∗ 2 i * outlen).

8. pseed = pseed + iterations + 1.

9. x = 2L−1 + (x mod 2L–1).

Comment: Generate p, a candidate for the
prime, in the interval [2L−1, 2L].

10. t = ⎡x / (2qp0)⎤.

11. If (2tqp0 + 1) > 2L, then t = ⎡2L−1 / (2qp0)⎤.

12. p = 2tqp0 + 1.

13. pgen_counter = pgen_counter + 1.

Comment: Test p for primality; choose an
integer a in the interval [2, p–2].

14. a = 0

15. For i = 0 to iterations do

a = a + (Hash(pseed + i) ∗ 2 i * outlen).

16. pseed = pseed + iterations + 1.

17. a = 2 + (a mod (p–3)).

18. z = a2tq mod p.

19. If ((1 = GCD(z–1, p)) and (1 = z p0 mod p)), then return SUCCESS and the values
of p, q and (optionally) pseed, qseed, pgen_counter, and qgen_counter.

20. If (pgen_counter > (4L + old_counter)), then return FAILURE.

21. t = t + 1.

22. Go to step 11.

A.1.2.2 	 Validation of the DSA Primes p and q that were Constructed Using the Shawe-
Taylor Algorithm

The validation of the primes p and q that were generated by the method described in Appendix
A.1.2.1.2 may be performed if the values of firstseed, pseed, qseed, pgen_counter and

39

qgen_counter were saved and are provided for use in the following algorithm.

The following process or its equivalent shall be used to validate p and q for this constructive
method.

Input:

1. p, q	 The primes to be validated.

2. firstseed, pseed, qseed	 Seed values that were used to generate p and q.

3. 	 pgen_counter, qgen_counter

The count values that were determined during generation.

Output:

1. 	 status The status returned from the validation procedure, where
status is either SUCCESS or FAILURE.

Process:

1. L = len (p).

2. N = len (q).

3. Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If
the pair is not in the list, then return FAILURE.

4. If (firstseed < 2N–1), then return FAILURE.

5. If (2N ≤ q), then return FAILURE).

6. If (2L ≤ p), then return FAILURE.

7. If ((p – 1) mod q ≠ 0), then return FAILURE.

8. Using L, N and firstseed, perform the constructive prime generation procedure in
Appendix A.1.2.1.2 to obtain p_val, q_val, pseed_val, qseed_val, pgen_counter_val,
and qgen_counter_val. If FAILURE is returned, or if (q_val ≠ q) or (qseed_val ≠
qseed) or (qgen_counter_val ≠ qgen_counter) or (p_val ≠ p) or (pseed_val ≠ pseed)
or (pgen_counter_val ≠ pgen_counter), then return FAILURE.

9. Return SUCCESS.

40

A.2 Generation of the Generator g
The generator g depends on the values of p and q. Two methods for determining the generator g
are provided; one of these methods shall be used. The first method, discussed in Appendix
A.2.1, may be used when complete validation of the generator g is not required; it is
recommended that this method be used only when the party generating g is trusted to not
deliberately generate a g that has a potentially exploitable relationship to another generator g′.
For example, it must be hard to determine an exponential relationship between the generators
such that g = (g′)x mod p for a known value of x. (Note: Read (g′)x as g prime to the x.)

Appendix A.2.2 provides a method for partial validation when the method of generation in
Appendix A.2.1 is used. The second method for generating g, discussed in Appendix A.2.3, shall
be used when validation of the generator g is required; the method for the validation of a
generator determined using the method in Appendix A.2.3 is provided in Appendix A.2.4.

A.2.1 Unverifiable Generation of the Generator g
This method is used to determine a value for g, based on the values of p and q. It may be used
when validation of the generator g is not required. The correct generation of g cannot be
completely validated (see Appendix A.2.2). Note that this generation method for g was also
specified in previous versions of this Standard.

The following process or its equivalent shall be used to generate the generator g for this method.

Input:

1. p, q The generated primes.

Output:

1. g The requested value of g.

Process:

1. e = (p – 1)/q.

2. Set h = any integer satisfying 1 < h < (p – 1), such that h differs from any value
previously tried. Note that h could be obtained from a random number generator or
from a counter that changes after each use.

3. g = he mod p.

4. If (g = 1), then go to step 2.

5. Return g.

A.2.2 Assurance of the Validity of the Generator g
The order of the generator g that was generated using Appendix A.2.1 can be partially validated

41

by checking the range and order, thereby performing a partial validation of g.

The following process or its equivalent shall be used when partial validation of the generator g is
required:

Input:

1. p, q, g 	 The domain parameters.

Output:

1. 	 status The status returned from the generation routine, where status is either
PARTIALLY VALID or INVALID.

Process:

1. Verify that 2 ≤ g ≤ (p–1). If not true, return INVALID.

2. If (gq = 1 mod p), then return PARTIALLY VALID.

3. Return INVALID.

The non-existence of a potentially exploitable relationship of g to another generator g′ (that is
known to the entity that generated g, but may not be known by other entities) cannot be checked.
In this sense, the correct generation of g cannot be completely validated.

A.2.3 Verifiable Canonical Generation of the Generator g
The generation of g is based on the values of p, q and domain_parameter_seed (which are
outputs of the generation processes in Appendix A.1). When p and q were generated using the
method in Appendix A.1.1.2, the domain_parameter_seed value must have been returned from
the generation routine. When p and q were generated using the method in Appendix A.1.2.1, the
firstseed, pseed, and qseed values must have been returned from the generation routine; in this
case, domain_parameter_seed = firstseed || pseed || qseed shall be used in the following process.

This method of generating a generator g can be validated (see Appendix A.2.4).

This generation method supports the generation of multiple values of g for specific values of p
and q. The use of different values of g for the same p and q may be used to support key
separation; for example, using the g that is generated with index = 1 for digital signatures and
with index = 2 for key establishment.

Let Hash() be the hash function used to generate p and q (see Appendix A.1). The following
process or its equivalent shall be used to generate the generator g.

Input:

1. p, q 	 The primes.

2. domain_parameter_seed The seed used during the generation of p and q.

42

3. 	 index The index to be used for generating g. index is a bit string
of length 8 that represents an unsigned integer.

Output:

1. 	 status The status returned from the generation routine, where status is either
VALID or INVALID.

2. g The value of g that was generated.

Process: Note: count is an unsigned 16-bit integer.

Comment: Check that a valid value of the index has
been provided (see above).

1. If (index is incorrect), then return INVALID.

2. N = len(q).

3. e = (p – 1)/q.

4. count = 0.

5. count = count + 1.

Comment: Check that count does not wrap around
to 0.

6. If (count = 0), then return INVALID.

Comment: the length of the
domain_parameter_seed has already been checked.
“ggen” is the bit string 0x6767656E.

7. U = domain_parameter_seed || “ggen” || index || count.

8. W = Hash(U).

9. g = We mod p.

10. If (g < 2), then go to step 5. Comment: If a generator has not been found.

11. Return VALID and the value of g.

A.2.4 Validation Routine when the Canonical Generation of the Generator g
Routine Was Used

This algorithm shall be used to validate the value of g that was generated using the process in
Appendix A.2.3, based on the values of p, q, domain_parameter_seed, and the appropriate value
of index. It is assumed that the values of p and q have been previously validated according to
Appendix A.1. Note that the method specified in Appendix A.2.3 for the generation of g was not
included in previous versions of this Standard; therefore, this validation method is not

43

appropriate for that case.

The domain_parameter_seed is an output from the generation of p and q. When p and q were
generated using the method in Appendix A.1.1.2, the domain_parameter_seed must have been
returned from the generation routine and made available to the validating party. When p and q
were generated using the method in Appendix A.1.2.1, the firstseed, pseed, and qseed values
must have been returned from the generation routine and made available; firstseed, pseed, and
qseed shall be concatenated to form the domain_parameter_seed used in the following process.
Let Hash() be the hash function used to generate g (i.e., the hash function also used to generate
p and q).

The input index is the index number for the generator g. See Appendix A.2.3 for more details.

The following process or its equivalent shall be used to validate the generator g for this method.

Input:

1. p, q 	 The primes.

2. domain_parameter_seed	 The seed used to generate p and q.

3. 	 index The index used in Appendix A.2.3 to generate x. index is
a bit string of length 8 that represents an unsigned
integer.

4. g	 The value of g to be validated.

Output:

1. 	 status The status returned from the generation routine, where
status is either VALID or INVALID.

Process: 	 Note: count is an unsigned 16-bit integer.

Comment: Check that a valid value of the index has been
provided (see above).

1. If (index is incorrect), then return INVALID.

2. Verify that 2 ≤ g ≤ (p–1). If not true, return INVALID.

3. If (gq ≠ 1 mod p), then return INVALID.

4. N = len(q).

5. e = (p – 1)/q.

6. count = 0.

7. count = count + 1.

Comment: Check that count does not wrap around
to 0.

44

8. If (count = 0), then return INVALID.

Comment: “ggen” is the bit string 0x6767656E.

9. U = domain_parameter_seed || “ggen” || index || count.

10. W = Hash(U).

11. computed_g = We mod p.

12. If (computed_g < 2), then go to step 7. Comment: If a generator has not been found.

13. If (computed_g = g), then return VALID, else return INVALID.

45

APPENDIX B: Key Pair Generation
Discrete logarithm cryptography (DLC) is divided into finite field cryptography (FFC) and
elliptic curve cryptography (ECC); the difference between the two is the type of math that is
used. DSA is an example of FFC; ECDSA is an example of ECC. Other examples of DLC are
the Diffie-Hellman and MQV key agreement algorithms, which have both FFC and ECC forms.

The most common example of integer factorization cryptography (IFC) is RSA.

This appendix specifies methods for the generation of FFC and ECC key pairs and secret
numbers, and the generation of IFC key pairs. All generation methods require the use of an
approved, properly instantiated random bit generator (RBG) as specified in SP 800-90; the RBG
shall have a security strength equal to or greater than the security strength associated with the
key pairs and secret numbers to be generated. See SP 800-57 for guidance on security strengths
and key sizes.

This appendix does not indicate the required conversions between bit strings and integers. When
required by a process in this appendix, the conversion shall be accomplished as specified in
Appendix C.2.

B.1 FFC Key Pair Generation
An FFC key pair (x, y) is generated for a set of domain parameters (p, q, g {,
domain_parameter_seed, counter}). Two methods are provided for the generation of the FFC
private key x and public key y; one of these two methods shall be used. Prior to generating DSA
key pairs, assurance of the validity of the domain parameters (p, q and g) shall have been
obtained as specified in Section 3.1.

For DSA, the valid values of L and N are provided in Section 4.2.

B.1.1 Key Pair Generation Using Extra Random Bits
In this method, 64 more bits are requested from the RBG than are needed for x so that bias
produced by the mod function in step 6 is negligible.

The following process or its equivalent may be used to generate an FFC key pair.

Input:

(p, q, g) 	 The subset of the domain parameters that are used for this process. p, q
and g shall either be provided as integers during input, or shall be
converted to integers prior to use.

46

Output:

1. 	 status The status returned from the key pair generation process. The status will
indicate SUCCESS or an ERROR.

2. 	(x, y) The generated private and public keys. If an error is encountered during
the generation process, invalid values for x and y should be returned, as
represented by Invalid_x and Invalid_y in the following specification. x
and y are returned as integers. The generated private key x is in the range
[1, q–1], and the public key is in the range [1, p–1].

Process:

1. 	 N = len(q); L = len(p).

Comment: Check that the (L, N) pair is specified in
Section 4.2.

2. 	 If the (L, N) pair is invalid, then return an ERROR indicator, Invalid_x, and
Invalid_y.

3. 	 requested_security_strength = the security strength associated with the (L, N) pair;
see SP 800-57.

4. 	 Obtain a string of N+64 returned_bits from an RBG with a security strength of
requested_security_strength or more. If an ERROR indication is returned, then
return an ERROR indication, Invalid_x, and Invalid_y.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. 	 x = (c mod (q–1)) + 1. Comment: 0 ≤ c mod (q–1) ≤ q–2 and implies that
1 ≤ x ≤ q–1.

7. 	 y = gx mod p.

8. Return SUCCESS, x, and y.

B.1.2 Key Pair Generation by Testing Candidates
In this method, a random number is obtained and tested to determine that it will produce a value
of x in the correct range. If x is out-of-range, another random number is obtained (i.e., the
process is iterated until an acceptable value of x is obtained.

The following process or its equivalent may be used to generate an FFC key pair.

Input:

(p, q, g) 	 The subset of the domain parameters that are used for this process. p, q
and g shall either be provided as integers during input, or shall be
converted to integers prior to use.

47

Output:

1. 	 status The status returned from the key pair generation process. The status will
indicate SUCCESS or an ERROR.

2. 	(x, y) The generated private and public keys. If an error is encountered during
the generation process, invalid values for x and y should be returned, as
represented by Invalid_x and Invalid_y in the following specification. x
and y are returned as integers. The generated private key x is in the range
[1, q–1], and the public key is in the range [1, p–1].

Process:

1. 	 N = len(q); L = len(p).

Comment: Check that the (L, N) pair is specified in
Section 4.2.

2. 	 If the (L, N) pair is invalid, then return an ERROR indication, Invalid_x, and
Invalid_y.

3. 	 requested_security_strength = the security strength associated with the (L, N) pair;
see SP 800-57.

4. 	 Obtain a string of N returned_bits from an RBG with a security strength of
requested_security_strength or more. If an ERROR indication is returned, then
return an ERROR indication, Invalid_x, and Invalid_y.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. If (c > q–2), then go to step 4.

7. 	 x = c + 1.

8. 	 y = gx mod p.

9. Return SUCCESS, x, and y.

B.2 FFC Per-Message Secret Number Generation
DSA requires the generation of a new random number k for each message to be signed. Two
methods are provided for the generation of k; one of these two methods shall be used.

The valid values of N are provided in Section 4.2. Let inverse(k, q) be a function that computes
the inverse of a (non-negative) integer k with respect to multiplication modulo the prime number
q. A technique for computing the inverse is provided in Appendix C.1.

B.2.1 Per-Message Secret Number Generation Using Extra Random Bits
In this method, 64 more bits are requested from the RBG than are needed for k so that bias

48

produced by the mod function in step 6 is not readily apparent.

The following process or its equivalent may be used to generate a per-message secret number.

Input:

(p, q, g) DSA domain parameters that are generated as specified in Section 4.3.1.

Output:

1. 	 status The status returned from the secret number generation process. The status
will indicate SUCCESS or an ERROR.

k −1	 k −12. 	(k,) The per-message secret number k and its mod q inverse, . If an error is
k −1encountered during the generation process, invalid values for k and

should be returned, as represented by Invalid_k and Invalid_k_inverse in
k −1the following specification. k and are in the range [1, q–1].

Process:

1. 	 N = len(q); L = len(p).

Comment: Check that the (L, N) pair is specified in
Section 4.2.

2. 	 If the (L, N) pair is invalid, then return an ERROR indication, Invalid_k, and
Invalid_k_inverse.

3. 	 requested_security_strength = the security strength associated with the (L, N) pair;
see SP 800-57.

4. 	 Obtain a string of N+64 returned_bits from an RBG with a security strength of
requested_security_strength or more. If an ERROR indication is returned, then
return an ERROR indication, Invalid_k, and Invalid_k_inverse.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. k = (c mod (q–1)) + 1.

7. (status, k–1) = inverse (k, q).

k −1
8. Return status, k, and .

B.2.2 Per-Message Secret Number Generation by Testing Candidates
In this method, a random number is obtained and tested to determine that it will produce a value
of k in the correct range. If k is out-of-range, another random number is obtained (i.e., the
process is iterated until an acceptable value of k is obtained.

The following process or its equivalent may be used to generate a per-message secret number.

49

Input:

(p, q, g) DSA domain parameters that are generated as specified in Section 4.3.1.

Output:

1. 	 status The status returned from the secret number generation process. The status
will indicate SUCCESS or an ERROR.

k −1	 k −12. (k,) The per-message secret number k and its inverse, . If an error is
encountered during the generation process, invalid values for k and
k −1 should be returned, as represented by Invalid_k and Invalid_k_inverse

k −1in the following specification. k and are in the range [1, q–1].

Process:

1. 	 N = len(q); L = len(p).

Comment: Check that the (L, N) pair is specified in
Section 4.2).

2. 	 If the (L, N) pair is invalid, then return an ERROR indication, Invalid_k, and
Invalid_k_inverse.

3. 	 requested_security_strength = the security strength associated with the (L, N) pair;
see SP 800-57.

4. 	 Obtain a string of N returned_bits from an RBG with a security strength of
requested_security_strength or more. If an ERROR indication is returned, then
return an ERROR indication, Invalid_k, and Invalid_k_inverse.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6.	 If (c > q–2), then go to step 4.

7. 	 k = c + 1.

k −1
8. (status,) = inverse(k, q).

k −1
9. Return status, k, and .

B.3 IFC Key Pair Generation

B.3.1 Criteria for IFC Key Pairs
Key pairs for IFC consist of a public key (n, e), and a private key (n, d), where n is the modulus
and is the product of two prime numbers p and q. The security of IFC depends on the quality and
secrecy of these primes and the private exponent d. The primes p and q shall be generated using
one of the following methods:

50

A. Both p and q are randomly generated prime numbers (Random Primes), where p and q
shall both be either :

1. 	 Provable primes (see Appendix B.3.2), or

2. 	 Probable primes (see Appendix B.3.3).

Using these methods, primes of 2048 or 3072 bits may be generated; primes of 1024 bits
shall not be generated using these methods. Primes of 1024 bits shall be generated using
conditions based on auxiliary primes (see Appendices B.3.4, B.3.5, or B.3.6).

B. Both p and q are randomly generated prime numbers that satisfy the following additional
conditions (Primes with Conditions):

•	 (p–1) has a prime factor p1

•	 (p+1) has a prime factor p2

•	 (q–1) has a prime factor q1

• (q+1) has a prime factor q2

where p1, p2, q1 and q2 are called auxiliary primes of p and q.

Using this method, one of the following cases shall apply:

1. The primes p1, p2, q1, q2, p and q shall all be provable primes (see Appendix
B.3.4),

2. The primes p1, p2, q1 and q2 shall be provable primes, and the primes p and q
shall be probable primes (see Appendix B.3.5), or

3 	The primes p1, p2, q1, q2, p and q shall all be probable primes (see Appendix
B.3.6).

The minimum lengths for each of the auxiliary primes p1, p2, q1 and q2 are dependent on
nlen, where nlen is the length of the modulus n in bits. Note that nlen is also called the
key size. The lengths of the auxiliary primes may be fixed or randomly chosen, subject to
the restrictions in Table B.1. The maximum length is determined by nlen (the sum of the
length of each auxiliary prime pair) and whether the primes p and q are probable primes
or provable primes (e.g., for the auxiliary prime pair p1 and p2, len(p1) + len(p2) shall be
less than a value determined by nlen, whether p1 and p2 are generated to be probable or
provable primes)3.

3 For the probable primes p and q: len(p1) + len(p2) < len(p) – log2(len(p)) – 6; similarly for len(q1) + len(q2) and
len(q). For the provable primes p and q: len(p1) + len(p2) < len(p)/2 – log2(len(p)) – 7; similarly for len(q1) + len(q2)
and len(q). In each case, len(p) = len(q) = nlen/2.

51

Table B.1. Minimum and maximum lengths of p1, p2, q1 and q2

nlen Min. length of
auxiliary primes

Max. length of len(p1) + len(p2) and
len(q1) + len(q2)

p1, p2, q1 and q2 p, q Probable primes p, q Provable primes

1024 > 100 bits < 496 bits < 239 bits

2048 > 140 bits < 1007 bits < 494 bits

3072 > 170 bits < 1518 bits < 750 bits

For different values of nlen (i.e., different key sizes), the methods allowed for the generation of
p and q are specified in Table B.2.

Table B.2. Allowable Prime Generation Methods

nlen Random Primes Primes with Conditions

1024 No Yes

2048 Yes Yes

3072 Yes Yes

In addition, all IFC keys shall meet the following criteria in order to conform to FIPS 186-3:

1. The public exponent e shall be selected with the following constraints:

(a) The public verification exponent e shall be selected prior to generating the primes
p and q, and the private signature exponent d.

(b) The exponent e shall be an odd positive integer such that:

216 < e < 2256.

Note that the value of e may be any value that meets constraint 1(b), i.e., e may be
either a fixed value or a random value.

2. The primes p and q shall be selected with the following constraints:

(a) (p–1) and (q–1) shall be relatively prime to the public exponent e.

(b) The private prime factor p shall be selected randomly and shall satisfy
(2)(2(nlen / 2) – 1) ≤ p ≤ (2nlen / 2– 1), where nlen is the appropriate length for the
desired security_strength.

(c) The private prime factor q shall be selected randomly and shall satisfy

52

(2)(2(nlen / 2) – 1) ≤ q ≤ (2nlen / 2– 1), where nlen is the appropriate length for the
desired security_strength.

(d) |p – q| > 2(nlen / 2) – 100.

3.	 The private signature exponent d shall be selected with the following constraints after the
generation of p and q:

(a) The exponent d shall be a positive integer value such that

2nlen/ 2 < d < LCM(p–1, q–1), and

(b) d = e–1 mod (LCM(p–1, q–1)).

That is, the inequality in (a) holds, and 1 ≡ (ed) (mod LCM(p–1, q–1)).

In the extremely rare event that d ≤ 2nlen / 2, then new values for p, q and d shall be
determined. A different value of e may be used, although this is not required.

Any hash function used during the generation of the key pair shall be approved (i.e., specified in
FIPS 180-3).

B.3.2 Generation of Random Primes that are Provably Prime
An approved method that satisfies the constraints of Appendix B.3.1 shall be used for the
generation of IFC random primes p and q that are provably prime (see case A.1). One such
method is provided in Appendix B.3.2.1 and B.3.2.2. For this method, a random seed is initially
required (see Appendix B.3.2.1); the length of the seed is equal to twice the security strength
associated with the modulus n. After the seed is obtained, the primes can be generated (see
Appendix B.3.2.2).

B.3.2.1 Get the Seed

The following process or its equivalent shall be used to generate the seed for this method.

Input:

nlen The intended bit length of the modulus n.

Output:

status The status to be returned, where status is either SUCCESS or FAILURE.

seed The seed. If status = FAILURE, a value of zero is returned as the seed.

Process:

1. If nlen is not valid (see Section 5.1), then Return (FAILURE, 0).

2. Let security_strength be the security strength associated with nlen, as specified in SP
800-57, Part 1.

3. 	 Obtain a string seed of (2 * security_strength) bits from an RBG that supports the

53

security_strength.

4. Return (SUCCESS, seed).

B.3.2.2 Construction of the Provable Primes p and q

The following process or its equivalent shall be used to construct the random primes p and q (to
be used as factors of the RSA modulus n) that are provably prime:

Input:

nlen The intended bit length of the modulus n.

e The public verification exponent.

seed The seed obtained using the method in Appendix B.3.2.1.

Output:

status	 The status of the generation process, where status is either SUCCESS or
FAILURE. When FAILURE is returned, zero values shall be returned as the
other parameters.

p and q	 The private prime factors of n.

Process:

1. If nlen is neither 2048 nor 3072, then return (FAILURE, 0, 0).

2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0).

3. 	 Set the value of security_strength in accordance with the value of nlen, as specified in SP
800-57, Part 1.

4. If (len(seed) ≠ 2 * security_strength), then return (FAILURE, 0, 0).

5. 	 working_seed = seed.

6. Generate p:

6.1 	Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the provable
prime construction method in Appendix C.10 to obtain p and pseed. If FAILURE
is returned, then return (FAILURE, 0, 0).

6.2 	 working_seed = pseed.

7. Generate q:

7.1 	Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the provable
prime construction method in Appendix C.10 to obtain q and qseed. If FAILURE
is returned, then return (FAILURE, 0, 0).

7.2 	 working_seed = qseed.

54

8. 	 If (|p – q| ≤ 2nlen/2 – 100), then go to step 7.

9. 	 Zeroize the internally generated seeds:

9.1 pseed = 0;

9.2 qseed = 0;

9.3 working_seed = 0.

10. Return (SUCCESS, p, q).

B.3.3 Generation of Random Primes that are Probably Prime
An approved method that satisfies the constraints of Appendix B.3.1 shall be used for the
generation of IFC random primes p and q that are probably prime (see case A.2).

The following process or its equivalent shall be used to construct the random probable primes p
and q (to be used as factors of the RSA modulus n):

Input:

nlen The intended bit length of the modulus n.

e The public verification exponent.

Output:

status	 The status of the generation process, where status is either SUCCESS or

FAILURE.

p and q	 The private prime factors of n. When FAILURE is returned, zero values shall be
returned as p and q.

Process:

1. If nlen is neither 2048 nor 3072, return (FAILURE, 0, 0).

2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0).

3. 	 Set the value of security_strength in accordance with the value of nlen, as specified in SP
800-57, Part 1.

4. Generate p:

4.1 i = 0.

4.2 Obtain a string p of (nlen/2) bits from an RBG that supports the security_strength.

4.3 If (p is not odd), then p = p + 1.

4.4 If ((p < (2)(2(nlen / 2) – 1)), then go to step 4.2.

4.5 If (GCD(p−1, e) = 1), then

55

4.5.1 Test p for primality as specified in Appendix C.3, using an appropriate
value from Table C-2 or C-3 in Appendix C.3 as the number of iterations.

4.5.2 If p is PROBABLY PRIME, then go to step 5.

4.6 	 i= i + 1.

4.7 	If (i ≥ 5(nlen/2)), then return (FAILURE, 0, 0)

Else go to step 4.2.

5. Generate q:

5.1 	 i = 0.

5.2 	 Obtain a string q of (nlen/2) bits from an RBG that supports the security_strength

5.3 	If (q is not odd), then q = q + 1.

5.4 	If (|p – q| ≤ 2nlen/2 – 100), then go to step 5.2.

5.5 If ((q < (2)(2(nlen / 2) – 1)), then go to step 5.2.

5.6 	If (GCD(q−1, e) = 1) then

5.6.1 Test q for primality as specified in Appendix C.3, using an appropriate
value from Table C-2 or C-3 in Appendix C.3 as the number of iterations.

5.6.2 If q is PROBABLY PRIME, then return (SUCCESS, p, q).

5.7 	 i = i + 1.

5.8 	If (i ≥ 5(nlen/2)), then return (FAILURE, 0, 0)

Else go to step 5.2.

B.3.4 Generation of Provable Primes with Conditions Based on Auxiliary
Provable Primes

This section specifies an approved method for the generation of the IFC primes p and q with the
additional conditions specified in Appendix B.3.1, case B.1, where p, p1, p2, q, q1 and q2 are all
provable primes. For this method, a random seed is initially required (see Appendix B.3.2.1); the
length of the seed is equal to twice the security strength associated with the modulus n. After the
first seed is obtained, the primes can be generated.

Let bitlen1, bitlen2, bitlen3, and bitlen4 be the bit lengths for p1, p2, q1 and q2, respectively, in
accordance with Table B.1. The following process or its equivalent shall be used to generate the
provable primes:

Input:

nlen The intended bit length of the modulus n.

56

e The public verification exponent.

seed The seed obtained using the method in Appendix B.3.2.1.

Output:

status	 The status of the generation process, where status is either SUCCESS or
FAILURE. If FAILURE is returned then zeros shall be returned as the values
for p and q.

p and q	 The private prime factors of n.

Process:

1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0).

2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0).

3. 	 Set the value of security_strength in accordance with the value of nlen, as specified in SP
800-57, Part 1.

4. If (len(seed) ≠ 2 * security_strength), then return (FAILURE, 0, 0).

5. 	 working_seed = seed.

6. Generate p:

6.1 Using L = nlen/2, N1 = bitlen1, N2 = bitlen2, firstseed = working_seed and e, use the
provable prime construction method in Appendix C.10 to obtain p, p1, p2 and pseed.
If FAILURE is returned, return (FAILURE, 0, 0).

6.2 working_seed = pseed.

7. Generate q:

7.1 Using L = nlen/2, N1 = bitlen3, N2 = bitlen4 and firstseed = working_seed and e, use
the provable prime construction method in Appendix C.10 to obtain q, q1, q2 and
qseed. If FAILURE is returned, return (FAILURE, 0, 0).

7.2 working_seed = qseed.

8. 	 If (|p – q| ≤ 2nlen/2 – 100), then go to step 7.

9. 	 Zeroize the internally generated seeds:

9.1 pseed = 0.

9.2 qseed = 0.

9.3 working_seed = 0.

10. Return (SUCCESS, p, q).

57

B.3.5 Generation of Probable Primes with Conditions Based on Auxiliary
Provable Primes

This section specifies an approved method for the generation of the IFC primes p and q with the
additional conditions specified in Appendix B.3.1, case B.2, where p1, p2, q1 and q2 are provably
prime, and p and q are probably prime. For this method, a random seed is initially required (see
Appendix B.3.2.1); the length of the seed is equal to twice the security strength associated with
the modulus n. After the first seed is obtained, the primes can be generated.

Let bitlen1, bitlen2, bitlen3, and bitlen4 be the bit lengths for p1, p2, q1 and q2, respectively in
accordance with Table B.1. The following process or its equivalent shall be used to construct p
and q.

Input:

nlen	 The intended bit length of the modulus n.

e	 The public verification exponent.

seed 	 The seed obtained using the method in Appendix B.3.2.1.

Output:

status	 The status of the generation process, where status is either SUCCESS or
FAILURE. If FAILURE is returned then zeros shall be returned as the
values for p and q.

p and q	 The private prime factors of n.

Process:

1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0).

2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0).

3. 	 Set the value of security_strength in accordance with the value of nlen, as specified in
SP 800-57, Part 1.

4. If (len(seed) ≠ 2 * security_strength), then return (FAILURE, 0, 0).

Comment: Generate four primes p1, p2, q1 and q2
that are provably prime.

5. Generate p:

5.1 	Using bitlen1 as the length, and seed as the input_seed, use the random prime
generation routine in Appendix C.6 to obtain p1 and prime_seed. If FAILURE
is returned, the return (FAILURE, 0, 0).

5.2 	Using bitlen2 as the length, and prime_seed as the input_seed, use the random
prime generation routine in Appendix C.6 to obtain p2 and a new value for
prime_seed. If FAILURE is returned, the return (FAILURE, 0, 0).

58

5.3 	 Generate a prime p using the routine in Appendix C.9 with inputs of p1, p2, nlen,
e and security_strength, also obtaining Xp. If FAILURE is returned, return
(FAILURE, 0, 0).

6. Generate q:

6.1. Using bitlen3 as the length, and prime_seed as the input_seed, use the random
prime generation routine in Appendix C.6 to obtain q1 and a new value for
prime_seed. If FAILURE is returned, the return (FAILURE, 0, 0).

6.2 	Using bitlen4 as the length, and prime_seed as the input_seed, use the random
prime generation routine in Appendix C.6 to obtain q2 and a new value for
prime_seed. If FAILURE is returned, the return (FAILURE, 0, 0).

6.3 	 Generate a prime q using the routine in Appendix C.9 with inputs of q1, q2, nlen,
e and security_strength, also obtaining Xq. If FAILURE is returned, return
(FAILURE, 0, 0).

7. If ((|p – q| ≤ 2nlen/2 –100) OR (|Xp – Xq| ≤ 2nlen/2 – 100)), then go to step 6.

8. Zeroize the internally generated that are not returned:

8.1 	 Xp = 0.

8.2 	 Xq = 0.

8.3 	 prime_seed = 0.

8.4 	 p1 = 0.

8.5	 p2 = 0.

8.6 	 q1 = 0.

8.7 	 q2 = 0.

9. Return (SUCCESS, p, q).

B.3.6 Generation of Probable Primes with Conditions Based on Auxiliary
Probable Primes

An approved method that satisfies the constraints of Appendix B.3.1 shall be used for the
generation of IFC primes p and q that are probably prime and meet the additional constraints of
Appendix B.3.1 (see case B.3). For this case, the prime factors p1, p2, q1 and q2 are also probably
prime.

Four random numbers Xp1, Xp2, Xq1 and Xq2 are generated, from which the prime factors p1, p2, q1
and q2 are determined. p1 and p2, and an additional random number Xp are then used to determine
p, and q1 and q2 and a random number Xq are used to obtain q. Let bitlen1, bitlen2, bitlen3, and
bitlen4 be the bit lengths for p1, p2, q1 and q2, respectively chosen in accordance with Table B.1.

59

The following process or its equivalent shall be used to generate p and q:

Input:

nlen The intended bit length of the modulus n.

e The public verification exponent.

Output:

status The status of the generation process, where status is either SUCCESS or
FAILURE. If FAILURE is returned then zeros shall be returned as the
values for p and q.

p and q The private prime factors of n.

Process:

1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0).

2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0).

3. 	 Set the value of security_strength in accordance with the value of nlen, as specified in
SP 800-57, Part 1.

4. Generate p:

4.1 	 Generate an odd integer Xp1 of length bitlen1 bits, and a second odd integer Xp2
of length bitlen2 bits, using an approved random number generator that supports
the security_strength.

4.2 	 Sequentially search successive odd integers, starting at Xp1 until the first
probable prime p1 is found. Candidate integers shall be tested for primality as
specified in Appendix C.3. Repeat the process to find p2, starting at Xp2. The
probable primes p1 and p2 shall be the first integers that pass the primality test.

4.3 	 Generate a prime p using the routine in Appendix C.9 with inputs of p1, p2, nlen,
e and security_ strength, also obtaining Xp. If FAILURE is returned, return
(FAILURE, 0, 0).

5. Generate q:

5.1 	 Generate an odd integer Xq1 of length bitlen3 bits, and a second odd integer Xq2
of length bitlen4 bits, using an approved random number generator that supports
the security_strength.

5.2 	 Sequentially search successive odd integers, starting at Xq1 until the first
probable prime q1 is found. Candidate integers shall be tested for primality as
specified in Appendix C.3. Repeat the process to find q2, starting at Xq2. The
probable primes q1 and q2 shall be the first integers that pass the primality test.

5.3 	 Generate a prime q using the routine in Appendix C.9 with inputs of q1, q2, nlen,

60

e and security_ strength, also obtaining Xq. If FAILURE is returned, return
(FAILURE, 0, 0).

6. If ((|Xp – Xq| ≤ 2nlen/2 –100) OR (|p – q| ≤ 2nlen/2 – 100))), then go to step 5.

7. Zeroize the internally generated values that are not returned:

7.1 Xp = 0.

7.2 Xq = 0.

7.3 Xp1 = 0.

7.4 Xp2 = 0.

7.5 Xq1 = 0.

7.6 Xq2 = 0.

7.7 p1 = 0.

7.8 p2 = 0.

7.9 q1 = 0.

7.10 q2 = 0.

8. Return (SUCCESS, p, q).

B.4 ECC Key Pair Generation
An ECC key pair d and Q is generated for a set of domain parameters (q, FR, a, b {,
domain_parameter_seed}, G, n, h). Two methods are provided for the generation of the ECC
private key d and public key Q; one of these two methods shall be used to generate d and Q.
Prior to generating ECDSA key pairs, assurance of the validity of the domain parameters (q, FR,
a, b {, domain_parameter_seed}, G, n, h) shall have been obtained as specified in Section 3.1.

For ECDSA, the valid bit-lengths of n are provided in Section 6.1.1. See ANS X9.62 for
definitions of the elliptic curve math and the conversion routines.

B.4.1 Key Pair Generation Using Extra Random Bits
In this method, 64 more bits are requested from the RBG than are needed for d so that bias
produced by the mod function in step 6 is negligible.

The following process or its equivalent may be used to generate an ECC key pair.

Input:

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h)

The domain parameters that are used for this process. n is a prime number,

61

and G is a point on the elliptic curve.

Output:

1. 	 status The status returned from the key pair generation procedure. The status will
indicate SUCCESS or an ERROR.

2. 	(d, Q) The generated private and public keys. If an error is encountered during
the generation process, invalid values for d and Q should be returned, as
represented by Invalid_d and Invalid_Q in the following specification. d is
an integer, and Q is an elliptic curve point. The generated private key d is
in the range [1, n–1].

Process:

1. 	 N = len(n).

Comment: Check that N is included in Table 1 of
Section 6.1.1.

2. If N is invalid, then return an ERROR indication, Invalid_d, and Invalid_Q.

3. 	 requested_security_strength = the security strength associated with N; see SP 800-57,
Part 1.

4. 	 Obtain a string of N+64 returned_bits from an RBG with a security strength of
requested_security_strength or more. If an ERROR indication is returned, then
return an ERROR indication, Invalid_d, and Invalid_Q.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. 	 d = (c mod (n–1)) + 1.

7. 	 Q = dG.

8. Return SUCCESS, d, and Q.

B.4.2 Key Pair Generation by Testing Candidates
In this method, a random number is obtained and tested to determine that it will produce a value
of d in the correct range. If d is out-of-range, another random number is obtained (i.e., the
process is iterated until an acceptable value of d is obtained.

The following process or its equivalent may be used to generate an ECC key pair.

Input:

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h)

The domain parameters that are used for this process. n is a prime number,
and G is a point on the elliptic curve.

62

Output:

1. 	 status The status returned from the key pair generation procedure. The status will
indicate SUCCESS or an ERROR.

2. 	(d, Q) The generated private and public keys. If an error is encountered during
the generation process, invalid values for d and Q should be returned, as
represented by Invalid_d and Invalid_Q in the following specification. d is
an integer, and Q is an elliptic curve point. The generated private key d is
in the range [1, n–1].

Process:

1. 	 N = len(n).

Comment: Check that N is included in Table 1 of
Section 6.1.1.

2. If N is invalid, then return an ERROR indication, Invalid_d, and Invalid_Q.

3. 	 requested_security_strength = the security strength associated with N; see SP 800-57,
Part 1.

4. 	 Obtain a string of N returned_bits from an RBG with a security strength of
requested_security_strength or more. If an ERROR indication is returned, then
return an ERROR indication, Invalid_d, and Invalid_Q.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6.	 If (c > n–2), then go to step 4.

7.	 d = c + 1.

8. 	 Q = dG.

9. Return SUCCESS, d, and Q.

B.5 ECC Per-Message Secret Number Generation
ECDSA requires the generation of a new random number k for each message to be signed. Two
methods are provided for the generation of k; one of these two methods shall be used.

The valid values of n are provided in Section 6.1.1. See ANS X9.62 for definitions of the elliptic
curve math and the conversion routines.

Let inverse(k, n) be a function that computes the inverse of a (non-negative) integer k with
respect to multiplication modulo the prime number n. A technique for computing the inverse is
provided in Appendix C.1.

63

B.5.1 Per-Message Secret Number Generation Using Extra Random Bits
In this method, 64 more bits are requested from the RBG than are needed for k so that bias
produced by the mod function in step 6 is not readily apparent.

The following process or its equivalent may be used to generate a per-message secret number.

Input:

1. 	(q, FR, a, b {, domain_parameter_seed}, G, n, h)

The domain parameters that are used for this process. n is a prime
number, and G is a point on the elliptic curve.

Output:

1. 	 status The status returned from the key pair generation procedure. The status will
indicate SUCCESS or an ERROR.

2. (k, k −1) 	 The generated secret number k and its inverse k–1. If an error is
encountered during the generation process, invalid values for k and
k −1 should be returned, as represented by Invalid_k and Invalid_k_inverse

k −1in the following specification. k and are integers in the range [1, n–1].

Process:

1. 	 N = len(q).

Comment: Check that N is included in Table 1 of
Section 6.1.1.

2. If N is invalid, then return an ERROR indication, Invalid_k, and Invalid_k_inverse.

3. 	 requested_security_strength = the security strength associated with N; see SP 800-57,
Part 1.

4. 	 Obtain a string of N+64 returned_bits from an RBG with a security strength of
requested_security_strength or more. If an ERROR indication is returned, then
return an ERROR indication, Invalid_k, and Invalid_k_inverse.

5. Convert returned_bits to the non-negative integer c (see Appendix C.2.1).

6. k = (c mod (n–1)) + 1.

k −1
7. (status,) = inverse(k, n).

k −1
8. Return status, k, and .

B.5.2 Per-Message Secret Number Generation by Testing Candidates
In this method, a random number is obtained and tested to determine that it will produce a value

64

of k in the correct range. If k is out-of-range, another random number is obtained (i.e., the
process is iterated until an acceptable value of k is obtained.

The following process or its equivalent may b used to generate a per-message secret number.

Input:

1. 	(q, FR, a, b {, domain_parameter_seed}, G, n, h)

The domain parameters that are used for this process. n is a prime number,
and G is a point on the elliptic curve.

Output:

1. 	 status The status returned from the key pair generation procedure. The status will
indicate SUCCESS or an ERROR.

2. 	(k, k −1) The generated secret number k and its inverse k–1. If an error is
k −1encountered during the generation process, invalid values for k and

should be returned, as represented by Invalid_k and Invalid_k_inverse in
k −1the following specification. k and are integers in the range [1, n–1].

Process:

1. 	 N = len(q).

Comment: Check that N is included in Table 1 of
Section 6.1.1.

2. If N is invalid, then return an ERROR indication, Invalid_k, and Invalid_k_inverse.

3. 	 requested_security_strength = the security strength associated with N; see SP 800-57,
Part 1.

4. 	 Obtain a string of N returned_bits from an RBG with a security strength of
requested_security_strength or more. If an ERROR indication is returned, then
return an ERROR indication, Invalid_k, and Invalid_k_inverse.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6.	 If (c > n–2), then go to step 4.

7. 	 k = c + 1.

8. (status, k–1) = inverse(k, n).

k −1
9. Return status, k, and .

65

Appendix C: Generation of Other Quantities
This appendix contains routines for supplementary processes required for the implementation of
this Standard. Appendix C.1 is needed to produce the inverse of the per-message secret k (see
Section 4.5, and Appendices B.2.1, B.2.2, B.5.1 and B.5.2) and the inverse of the signature
portion s that is used during signature verification (see Section 4.7). The routines in Appendix
C.2 are required to convert between bit strings and integers where required in implementing this
Standard. Appendix C.3 contains probabilistic primality tests to be used during the generation of
DSA domain parameters and RSA key pairs. Appendices C.4 and C.5 contain algorithms
required during the Lucas probabilistic primality test of Appendix C.3.3 to check for a perfect
square and to compute the Jacobi symbol. Appendix C.6 contains the Shawe-Taylor algorithm
for the construction of primes. Appendix C.7 provides a process to perform trial division, as
required by the random prime generation routine in Appendix C.6. The sieve procedure in
Appendix C.8 is needed by the trial division routine in Appendix C.7. The trial division process
in Appendix C.7 and the sieve procedure in Appendix C.8 have been extracted from ANS X9.80,
Prime Number Generation, Primality Testing, and Primality Certificates. Appendix C.9 is
required during the generation of RSA key pairs. Appendix C.10 provides a method for
constructing provable primes for RSA (see Appendix B.3.2.2 and B.3.4).

C.1 Computation of the Inverse Value
This algorithm or an algorithm that produces an equivalent result shall be used to compute the
multiplicative inverse z–1 mod a, where 0 < z < a, 0 < z–1 < a, and a is a prime number. In this
Standard, z is either k or s, and a is either q or n.

Input:

1. z	 The value to be inverted mod a (i.e., either k or s).

2. a	 The domain parameter and (prime) modulus (i.e., either q or n).

Output:

1. 	 status The status returned from this function, where the status is either
SUCCESS or ERROR.

2. z–1	 The multiplicative inverse of z mod a, if it exists.

Process:

1. Verify that a and z are positive integers such that z < a; if not, return an ERROR
indication.

2. Set i = a, j = z, y2 = 0, and y1 = 1.

3. quotient = ⎣ i/j⎦.

66

4. remainder = i –(j * quotient).

5. y = y2 –(y1 * quotient).

6. Set i = j, j = remainder, y2 = y1, and y1 = y.

7. If (j > 0), then go to step 3.

8. If (i ≠ 1), then return an ERROR indication.

9. Return SUCCESS and y2 mod a.

C.2 Conversion Between Bit Strings and Integers

C.2.1 Conversion of a Bit String to an Integer

An n-long sequence of bits { x1, …, xn } is converted to an integer by the rule

n–1 n–2
{ x1, … , xn } → (x1 ∗ 2) + (x2 ∗ 2) + … + (n1 ∗ 2) + xn .

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding
integer, and the last bit corresponds to the least significant bit.

Input:

1. b1, b2, … , bn The bit string to be converted.

Output:

1. C The requested integer representation of the bit string.

Process:

1. Let (b1, b2, … , bn) be the bits of b from leftmost to rightmost.
n

n−i)
2. C = ∑2(bi
i=1

3. Return C.

In this Standard, the binary length of an integer C is defined as the smallest integer n satisfying C
< 2n .

C.2.2 Conversion of an Integer to a Bit String
An integer x in the range 0 ≤ x < 2n may be converted to an n-long sequence of bits by using its
binary expansion as shown below:

67

x = (x1 ∗ 2n–1) + (x2 ∗ 2n–2) + … + (xn–1 ∗ 2) + xn → {x1, … , xn}

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding
integer, and the last bit corresponds to the least significant bit.

Input:

1. C The non-negative integer to be converted.

Output:

1. b1, b2, …, bn The bit string representation of the integer C.

Process:

1. Let (b1, b2, …, bn) represent the bit string, where bi = 0 or 1, and b1 is the most
significant bit, while bn is the least significant bit.

2. For any integer n that satisfies C < 2n, the bits bi shall satisfy:

(n−i)C = ∑
n

2 bi
i=1

3. Return b1, b2, …, bn.

In this Standard, the binary length of the integer C is defined as the smallest integer n that
satisfies C < 2n .

C.3 Probabilistic Primality Tests
A probabilistic primality test may be required during the generation and validation of prime
numbers. An approved robust probabilistic primality test shall be selected and used.

There are several probabilistic algorithms available. The Miller-Rabin probabilistic primality
tests described in Appendices C.3.1 and C.3.2 are versions of a procedure due to M.O. Rabin,
based in part on ideas of Gary L. Miller; one of these versions shall be used as the Miller-Rabin
test discussed below. For more information, see [4]. For these tests, let RBG be an approved
random bit generator (see SP 800-90).

There are several Lucas probabilistic primality tests available; the version provided in [5] is
specified in Appendix C.3.3.

This Standard allows two alternatives for testing primality: either using several iterations of only
the Miller-Rabin test, or using the iterated Miller-Rabin test, followed by a single Lucas test. The
value of iterations (as used in Appendices C.3.1 and C.3.2) depends on the algorithm being used,
the security strength, the error probability used, the length (in bits) of the candidate prime and
the type of tests to be performed. Tables C.1, C.2 and C.3 list the minimum number of iterations

68

of the Miller-Rabin tests that shall be performed.

As stated in Appendix F, if the definition of the error probability that led to the values of the
number of Miller-Rabin tests for p and q in Tables C.1, C.2 and C.3 is not conservative enough,
the prescribed number of Miller-Rabin tests can be followed by a single Lucas test. Since there
are no known non-prime values that pass the two test combination (i.e., the indicated number of
rounds of the Miller-Rabin test with randomly selected bases, followed by one round of the
Lucas test), the two test combination may provide additional assurance of primality over the use
of only the Miller-Rabin test. For DSA, the two-test combination may provide better
performance. However, the Lucas test is not required when testing the p1, p2, q1 and q2 values for
primality when generating RSA primes. See Appendix F for further information.

Table C.1. Minimum number of Miller-Rabin iterations for DSA

Parameters M-R Tests Only M-R Tests when followed
by One Lucas test

p: 1024 bits
q: 160 bits

Error probability = 2−80

For p and q: 40 For p: 3

For q: 19

p: 2048 bits
q: 224 bits

Error probability = 2−112

For p and q: 56 For p: 3

For q: 24

p: 2048 bits
q: 256 bits

Error probability = 2−112

For p and q: 56 For p: 3

For q: 27

p: 3072 bits
q: 256 bits

Error probability = 2−128

For p and q: 64 For p: 2

For q: 27

Table C.2. Minimum number of rounds of M-R testing when generating primes for use in
RSA Digital Signatures

Parameters M-R Tests Only

p1 , p2 , q1 and q2 > 100 bits

p and q: 512 bits

Error probability = 2−80

For p1 , p2 , q1 and q2 : 28

For p and q: 5

69

p1 , p2 , q1 and q2 > 140 bits

p and q: 1024 bits

Error probability = 2−112

For p1 , p2 , q1 and q2 : 38

For p and q: 5

p1 , p2 , q1 and q2 > 170 bits

p and q: 1536 bits

Error probability = 2 –128

For p1 , p2 , q1 and, q2 : 41

For p and q: 4

Table C.3. Minimum number of rounds of M-R testing when generating primes for use in
RSA Digital Signatures using an error probability of 2–100

Parameters M-R Tests Only

p1 , p2 , q1 and q2 > 100 bits

p and q: 512

For p1 , p2 , q1 and q2 : 38

For p and q: 7

p1 , p2 , q1 and q2 > 140 bits

p and q: 1024 bits

For p1 , p2 , q1 and q2 : 32

For p and q: 4

p1 , p2 , q1 and q2 > 170 bits

p and q: 1536 bits

For p1 , p2 , q1 and q2 : 27

For p and q: 3

C.3.1 Miller-Rabin Probabilistic Primality Test
Let RBG be an approved random bit generator (see SP 800-90).

Input:

1. 	 w The odd integer to be tested for primality. This will be either p or
q, or one of the auxiliary primes p1, p2, q1 or q2.

2. 	 iterations The number of iterations of the test to be performed; the value
shall be consistent with Table C.1, C.2 or C.3.

Output:

1. 	 status The status returned from the validation procedure, where status is
either PROBABLY PRIME or COMPOSITE.

Process:

1. Let a be the largest integer such that 2a divides w−1.

70

2. m = (w−1) / 2a.

3. wlen = len (w).

4. For i = 1 to iterations do

4.1 	 Obtain a string b of wlen bits from an RBG.

Comment: Ensure that 1 < b < w−1.

4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1.

4.3 z = bm mod w.

4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7.

4.5 For j = 1 to a − 1 do.

4.5.1 z = z2 mod w.

4.5.2 If (z = w−1), then go to step 4.7.

4.5.3 If (z = 1), then go to step 4.6.

4.6 Return COMPOSITE.

4.7 Continue. 	Comment: Increment i for the do-loop in
step 4.

5. Return PROBABLY PRIME.

C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test
This method provides additional information when an error is encountered that may be useful
when generating or validating RSA moduli. Let RBG be an approved random bit generator (see
SP 800-90).

Input:

1. 	 w The odd integer to be tested for primality. This will be either p or
q, or one of the auxiliary primes p1, p2, q1 or q2.

2. 	 iterations The number of iterations of the test to be performed; the value
shall be consistent with Table C.1, C.2 or C.3.

Output:

1. 	 status The status returned from the validation procedure, where status is
either PROBABLY PRIME, PROVABLY COMPOSITE
WITH FACTOR (returned with the factor), and PROVABLY
COMPOSITE AND NOT A POWER OF A PRIME.

71

Process:

1. Let a be the largest integer such that 2a divides w–1.

2. m = (w–1) / 2a.

3. wlen = len (w).

4. For i = 1 to iterations do

4.1 	 Obtain a string b of wlen bits from an RBG.

Comment: Ensure that 1 < b < w–1.

4.2 	If ((b ≤ 1) or (b ≥ w–1)), then go to step 4.1.

4.3 	 g = GCD(b, w).

4.4 	If (g > 1), then return PROVABLY COMPOSITE WITH FACTOR and the
value of g.

4.5 	 z = bm mod w.

4.6 	If ((z = 1) or (z = w – 1)), then go to step 4.15.

4.7 	For j = 1 to a – 1 do.

4.7.1 x = z.	 Comment: x ≠ 1 and x ≠ w–1.

4.7.2 z = x2 mod w.

4.7.3 If (z = w–1), then go to step 4.15.

4.7.4 If (z = 1), then go to step 4.12.

4.8 x = z.	 Comment: x = b(w–1)/2 mod w and x ≠ w–1.

4.9 	 z = x2 mod w.

4.10 If (z = 1), then go to step 4.12.

4.11 x = z.	 Comment: x = b(w–1) mod w and x ≠ 1.

4.12 	g = GCD(x–1, w).

4.13 If (g > 1), then return PROVABLY COMPOSITE WITH FACTOR and the
value of g.

4.14 Return PROVABLY COMPOSITE AND NOT A POWER OF A PRIME.

4.15 Continue. 	Comment: Increment i for the do-loop in
step 4.

5. Return PROBABLY PRIME.

72

C.3.3 (General) Lucas Probabilistic Primality Test
The following process or its equivalent shall be used as the Lucas test.

Input:

C The candidate odd integer to be tested for primality.

Output:

status Where status is either PROBABLY PRIME or COMPOSITE.

Process:

1. Test whether C is a perfect square (see Appendix C.4). If so, return (COMPOSITE).

2. Find the first D in the sequence {5, –7, 9, –11, 13, –15, 17, …} for which the Jacobi
Dsymbol () = –1. See Appendix C.5 for an approved method to compute the Jacobi
C

D
Symbol. If () = 0 for any D in the sequence, return (COMPOSITE).
C

3. K = C+1.

4. Let Kr Kr – 1 … K0 be the binary expansion of K, with Kr = 1.

5. Set Ur = 1 and Vr = 1.

6. For i = r–1 to 0, do

6.1 Utemp = Ui+1 Vi+1 mod C.

Vi+1
2 + DU i+1

2

6.2 Vtemp = mod C.
2

6.3 	If (Ki = 1), then Comment: If Ki = 1, then do steps 6.3.1 and 6.3.2;
otherwise, do steps 6.3.3 and 6.3.4.

U +Vtemp temp6.3.1 Ui = 	 mod C.
2

V + DUtemp temp6.3.2 Vi = 	 mod C.
2

Else

6.3.3 Ui = Utemp.

6.3.4 Vi = Vtemp.

7. If (U0 = 0), then return (PROBABLY PRIME). Otherwise, return (COMPOSITE).

Steps 6.2, 6.3.1 and 6.3.2 contain expressions of the form A/2 mod C, where A is an integer, and

73

C is an odd integer. If A/2 is not an integer (i.e., A is odd), then A/2 mod C may be calculated as
(A+C)/2 mod C. Alternatively, A/2 mod C = A·(C+1)/2 mod C, for any integer A, without regard
to A being odd or even.

C.4 Checking for a Perfect Square
The following algorithm may be used to determine whether an n-bit positive integer C is a
perfect square:

Input:

C The integer to be checked.

Output:

status Where status is either PERFECT SQUARE or NOT A PERFECT SQUARE.

Process:

1. Set n, such that 2n > C ≥ 2(n−1).

2. 	 m = ⎡n/2⎤.

3. 	 i = 0.

4. Select X0, such that 2m > X0 ≥ 2(m−1).

5. Repeat

5.1 i = i + 1.

5.2 Xi = ((Xi–1)2 + C)/(2Xi–1).

Until (Xi)2 < 2m + C.

6. If C = ⎣ Xi ⎦ 2, then

status = PERFECT SQUARE.

Else

status = NOT A PERFECT SQUARE.

7. Return status.

Notes:

1. 	 By starting with X0 > (1/2) Sqrt(C), ⎪X0 − Sqrt(C)⎪is guaranteed to be less than X0 .
This inequality is maintained in step 5; i.e., ⎪Xi − Sqrt(C)⎪< Xi for all i.

2. For i ≥ 1, 0 ≤ Xi − Sqrt(C) = (Xi–1 − Sqrt(C))2 / (2 Xi–1) < X0/2i .

In particular, 0 ≤ Xm − Sqrt(C) < 1. If Sqrt(C) were an integer, then it would
be equal to the floor of Xm .

74

3. 	 In general, the inequality Xi − Sqrt(C) < 1 will occur for values of i that are much less
than m. To detect this, the fact that 2(m−1) ≤ Sqrt(C) < Xi for all i ≥ 1 can be used,

Xi − Sqrt(C) = ((Xi)2 − C)/(Xi + Sqrt(C))

≤ ((Xi)2 − C)/(2 Sqrt(C))

≤ ((Xi)2 − C)/(2m)

Thus, the condition (Xi)2 < 2m + C implies that Xi − Sqrt(C) < 1.

C.5 Jacobi Symbol Algorithm

⎛ a ⎞This routine computes the Jacobi symbol ⎜ ⎟ .
⎠⎝ n

Jacobi():

Input:

a Any integer. For this Standard, the initial value is in the sequence {5, –7, 9, –11,

13, –15, 17, …}, as determined by Appendix C.3.3.

n Any integer. For this Standard, the initial value is the candidate being tested, as
determined by Appendix C.3.3.

Output:

result The calculated Jacobi symbol.

Process:

1. 	 a = a mod n. Comment: a will be in the range 0 ≤ a < n.

2. If a = 1, or n = 1, then return (1).

3. If a = 0, then return (0).

4. Define e and a1 such that a = 2e a1, where a1 is odd.

5. If e is even, then s = 1.

Else if ((n ≡ 1 (mod 8)) or (n ≡ 7 (mod 8))), then s = 1.

Else if ((n ≡ 3 (mod 8)) or (n ≡ 5 (mod 8)), then s = –1.

6. If ((n ≡ 3 (mod 4)) and (a1 ≡ 3 (mod 4))), then s = –s.

7. 	 n1 = n mod a1.

8. Return (s * Jacobi (n1, a1)). Comment: Call this routine recursively.

75

Example: Compute the Jacobi symbol for a = 5 and n = 3439601197:

1. 	 n is not 1, and a is not 1, so proceed to Step 2.

2. 	 a is not 0, so proceed to Step 3.

3. 	 5 = 20 * 5, so e = 0, and a1 = 5.

4.	 e is even, so s = 1.

5. 	 a1 is not congruent to 3 mod 4, so do not change s.

6. 	 n1 = 2 = n mod 5.

7. 	 Compute and return (1 * Jacobi(2, 5)). This calls Jacobi recursively. Compute the Jacobi
symbol for a = 2 and n = 5:

7.1 	 n is not 1, and a is not 1, so proceed to Step 7.2.

7.2 	 a is not 0, so proceed to Step 7.3.

7.3 	 2 = 21 * 1, so e = 1, and a1 = 1.

7.4 	 e is odd, and n ≡ 5 (mod 8), so set s = –1.

7.5 	 n is not 3 mod 4, and a1 is not 3 mod 4, so proceed to step 7.6.

7.6 	 n1 = 0 = n mod 1.

7.7 	 Return (–1 * Jacobi(0, 1) = –1). This calls Jacobi recursively. Compute the Jacobi
symbol for a = 0 and n = 1:

7.7.1 n = 1, so return 1.

Thus, Jacobi (0,1) = 1, so Jacobi (2,5) = –1*(1) = –1, and Jacobi (5, 3439601197) = 1* (–1) = –1.

C.6 Shawe-Taylor Random_Prime Routine
This routine is recursive and may be used to construct a provable prime number using a hash
function.

Let Hash() be the selected hash function, and let outlen be the bit length of the hash function
output block. The following process or its equivalent shall be used to generate a prime number
for this constructive method.

ST_Random_Prime ():

Input:

1. 	 length The length of the prime to be generated.

2. 	 input_seed The seed to be used for the generation of the requested prime.

76

Output:

1. 	 status The status returned from the generation routine, where status is
either SUCCESS or FAILURE. If FAILURE is returned, then
zeros are returned as the other output values.

2. prime The requested prime.

3 prime_seed A seed determined during generation.

4. 	 prime_gen_counter (Optional) A counter determined during the generation of the
prime.

Process:

1. If (length < 2), then return (FAILURE, 0, 0 {, 0}).

2. If (length ≥ 33), then go to step 14.

3. prime_seed = input_seed.

4. prime_gen_counter = 0.

Comment: Generate a pseudorandom integer
c of length bits.

5. c = Hash(prime_seed) ⊕ Hash(prime_seed + 1).

6. c = 2length – 1 + (c mod 2length – 1).

7. c = (2 ∗ ⎣c / 2⎦) + 1.

Comment: Set prime to the least odd
integer greater than or equal to c.

8. prime_gen_counter = prime_gen_counter + 1.

9. prime_seed = prime_seed + 2.

10. Perform a deterministic primality test on c. For example, since c is small, its primality
can be tested by trial division. See Appendix C.7.

11. If (c is a prime number), then

11.1 prime = c.

11.2 Return (SUCCESS, prime, prime_seed {, prime_gen_counter}).

12. If (prime_gen_counter > (4 ∗ length)), then return (FAILURE, 0, 0 {, 0}).

13. Go to step 5.

14. (status, c0, prime_seed, prime_gen_counter) = (ST_Random_Prime ((⎡length / 2⎤ +
1), input_seed).

77

15. If FAILURE is returned, return (FAILURE, 0, 0 {, 0}).

16. iterations = ⎡length / outlen⎤ – 1.

17. old_counter = prime_gen_counter.

Comment: Generate a pseudorandom integer
x in the interval [2length – 1, 2length].

18. x = 0.

19. For i = 0 to iterations do

x = x + (Hash(prime_seed + i) ∗ 2i × outlen).

20. prime_seed = prime_seed + iterations + 1.

21. x = 2length – 1 + (x mod 2length – 1).

Comment: Generate a candidate prime c in
the interval [2length – 1, 2length].

22. t = ⎡x / (2c0)⎤.

23. If (2tc0 + 1 > 2length), then t = ⎡2length – 1 / (2c0)⎤.

24. c = 2tc0 + 1.

25. prime_gen_counter = prime_gen_counter + 1.

Comment: Test the candidate prime c for
primality; first pick an integer a between 2
and c – 2.

26. a = 0.

27. For i = 0 to iterations do

a = a + (Hash(prime_seed + i) ∗ 2 i * outlen).

28. prime_seed = prime_seed + iterations + 1.

29. a = 2 + (a mod (c – 3)).

30. z = a2t mod c.

31. If ((1 = GCD(z – 1, c)) and (1 = zc0 mod c)), then

31.1 prime = c.

31.2 Return (SUCCESS, prime, prime_seed {, prime_gen_counter}).

32. If (prime_gen_counter ≥ ((4 ∗ length) + old_counter)), then return (FAILURE, 0, 0
{, 0}).

78

33. t = t + 1.
34. Go to step 23.

C.7 Trial Division
An integer is proven to be prime by showing that it has no prime factors less than or equal to its
square root. This procedure is not recommended for testing any integers longer than 10 digits.

To prove that c is prime:

1. 	 Prepare a table of primes less than c . This can be done by applying the sieve procedure in
Appendix C.8.

2. Divide c by every prime in the table. If c is divisible by one of the primes, then declare that c
is composite and exit. If convenient, c may be divided by composite numbers. For example,
rather than preparing a table of primes, it might be more convenient to divide by all integers
except those divisible by 3 or 5.

3. 	 Otherwise, declare that c is prime and exit.

C.8 Sieve Procedure

A sieve procedure is described as follows: Given a sequence of integers Y0, Y0 + 1, … , Y0 + J, a
sieve will identify the integers in the sequence that are divisible by primes up to some selected
limit.

Note that the definitions of the mathematical symbols in this process (e.g., h, L, M, p) are
internal to this process only, and should not be confused with their use elsewhere in this
Standard.

Start by selecting a factor base of all the primes pj, from 2 up to some selected limit L. The value
of L is arbitrary and may be determined by computer limitations. A good, typical value of L
would be anywhere from 103 to 105.

1. Compute Sj =Y0 mod pj for all pj in the factor base.

2. 	 Initialize an array of length J + 1 to zero.

3. Starting at Y0 – Sj + pj , let every pj
th element of the array be set to 1. Do this for the entire

length of the array and for every j.

4. 	 When finished, every location in the array that has the value 1 is divisible by some small
prime, and is therefore a composite.

The array can be either a bit array for compactness when memory is small, or a byte array for
speed when memory is readily available. There is no need to sieve the entire sieve interval at
once. The array can be partitioned into suitably small pieces, sieving each piece before going on
to the next piece. When finished, every location with the value 0 is a candidate for prime testing.

79

The amount of work for this procedure is approximately M log log L, where M is the length of
the sieve interval; this is a very efficient procedure for removing composite candidates for
primality testing. If L = 105, the sieve will remove about 96% of all composites.

In some cases, rather than having a set of consecutive integers to sieve, the set of integers to be
tested consists of integers lying in an arithmetic progression Y0, Y0 + h, Y0 + 2h, …, Y0 + Jh,
where h is large and not divisible by any primes in the factor base.

1. 	 Select a factor base and initialize an array of length J + 1 to 0.

2. Compute Sj =Y0 mod pj for all pj in the factor base.

3. Compute Tj = h mod pj and r = – Sj Tj
 – 1 mod pj.

4. Starting at Y0 + r, let every pj
th element of the array be set to 1. Do this for the entire

length of the array and for every j. Note that the position Y0 + r in the array actually
denotes the number Y0 + rh.

5. 	 When finished, every location in the array that has the value 1 is divisible by some small
prime and is therefore composite.

Note: The prime “2” takes the longest amount of time (M/2) to sieve, since it touches the most
locations in the sieve array. An easy optimization is to combine the initialization of the sieve
array with the sieving of the prime “2”. It is also possible to sieve the prime “3” during
initialization. These optimizations can save about 1/3 of the total sieve time.

C.9 Compute a Probable Prime Factor Based on Auxiliary Primes
This routine constructs a probable prime (a candidate for p or q) using two auxiliary prime
numbers and the Chinese Remainder Theorem (CRT).

Input:

r1 and r2 Two odd prime numbers satisfying
log2(r1r2) ≤ (nlen/2) – log2(nlen/2) – 6.

nlen The desired length of n, the RSA modulus.

e The public verification exponent.

security_strength The minimum security strength required for random number
generation.

Output:

status 	 The status returned from the generation procedure, where status is
either SUCCESS or FAILURE. If FAILURE is returned, then
zeros are returned as the other output values.

private_prime_factor	 The prime factor of n.

80

X The random number used during the generation of the
private_prime_factor.

Process:

1. If (GCD(2r1, r2) ≠ 1), then return (FAILURE, 0, 0).

2. R = ((r2
–1 mod 2r1) * r2) – (((2r1)–1 mod r2) * 2r1).

Comment: Apply the CRT, so that R ≡ 1 (mod 2r1)
and R ≡ –1 (mod r2).

3. Generate a random number X using an approved random number generator that
nlen / 2−1 nlen / 2supports the security_ strength, such that (2)(2) ≤ X ≤ (2 −1).

4. 	 Y = X + ((R – X) mod 2r1r2). Comment: Y is the first odd integer ≥ X, such that r1
is a prime factor of Y–1, and r2 is a prime factor of
Y+1.

Comment: Determine the requested prime number
by constructing candidates from a sequence and
performing primality tests.

5. i = 0.

6. If (Y ≥ 2nlen/2), then go to step 3.

7. If (GCD(Y–1, e) = 1), then

7.1 	 Check the primality of Y as specified in Appendix C.3. If PROBABLY PRIME
is not returned, go to step 8.

7.2 	 private_prime_factor = Y.

7.3 	Return (SUCCESS, private_prime_factor, X).

8. i = i + 1.

9. If (i ≥ 5(nlen/2)), then return (FAILURE, 0, 0).

10. Y = Y + (2r1r2).

11. Go to step 6.

C.10 	 Construct a Provable Prime (possibly with Conditions), Based on
Contemporaneously Constructed Auxiliary Provable Primes

The following process (or its equivalent) shall be used to generate an L-bit provable prime p (a
candidate for one of the prime factors of an RSA modulus). Note that the use of p in this
specification is used generically; both RSA prime factors p and q may be generated using this
method.

81

If a so-called “strong prime” is required, this process can generate primes p1 and p2 (of specified
bit-lengths N1 and N2) that divide p−1 and p+1, respectively. The resulting prime p will satisfy
the conditions traditionally required of a strong prime, provided that the requested bit-lengths for
p1 and p2 have appropriate sizes.
Regardless of the bit-lengths selected for p1 and p2, the quantity p−1 will have a prime divisor p0
whose bit-length is slightly more than half that of p. In addition, the quantity
p0 −1 will have a prime divisor whose bit-length is slightly more than half that of p0.

This algorithm requires that N1 + N2 ≤ L – ⎡L/2⎤ – 4. Values for N1 and N2 should be chosen such
that N1 + N2 ≤ (L/2) – log2(L) – 7, to ensure that the algorithm can generate as many as 5L
distinct candidates for p.

Let Hash be the selected hash function to be used, and let outlen be the bit length of the hash
function output block.

Provable_Prime_Construction():

Input:

1. 	 L A positive integer equal to the requested bit-length for p. Note that
acceptable values for L= nlen/2 are computed as specified in
Appendix B.3.1, criteria 2(b) and (c), with nlen assuming a value
specified in Table B.1.

2. 	 N1 A positive integer equal to the requested bit-length for p1. If N1 ≥
2, then p1 is an odd prime of N1 bits; otherwise, p1 = 1. Acceptable
values for N1 ≥ 2 are provided in Table B.1

3. 	 N2 A positive integer equal to the requested bit-length for p2. If N2 ≥
2, then p2 is an odd prime of N2 bits; otherwise, p2 = 1.
Acceptable values for N2 ≥ 2 are provided in Table B.1

4. firstseed	 A bit string equal to the first seed to be used.

5. e	 The public verification exponent.

Output:

1. 	 status The status returned from the generation procedure, where status is
either SUCCESS or FAILURE. If FAILURE is returned, then
zeros are returned as the other output values.

2. 	 p, p1, p2 The required prime p, along with p1 and p2 having the property that
p1 divides p−1 and p2 divides p+1.

3. pseed	 A seed determined during generation.

82

Process:

1. If L, N1, and N2 are not acceptable, then, return (FAILURE, 0, 0, 0, 0).

Comment: Generate p1 and p2, as well as the prime
p0.

2. If N1 = 1, then

2.1 p1 = 1.

2.2 p2seed = firstseed.

3. If N1 ≥ 2, then

3.1 Using N1 as the length and firstseed as the input_seed, use the random prime
generation routine in Appendix C.6 to obtain p1 and p2seed.

3.2 If FAILURE is returned, then return (FAILURE, 0, 0, 0, 0).

4. If N2 = 1, then

4.1 p2 = 1.

4.2 p0seed = p2seed.

5. If N2 ≥ 2, then

5.1 Using N2 as the length and p2seed as the input_seed, use the random prime
generation routine in Appendix C.6 to obtain p2 and p0seed.

5.2 If FAILURE is returned, then return (FAILURE, 0, 0, 0, 0).

6. Using ⎡L / 2⎤ + 1 as the length and p0seed as the input_seed, use the random prime
generation routine in Appendix C.6 to obtain p0 and pseed. If FAILURE is returned,
then return (FAILURE, 0, 0, 0, 0).

Comment: Generate a (strong) prime p in the
interval [(2)(2L−1), 2L −1].

7. iterations = ⎡L / outlen⎤ −1.

8. pgen_counter = 0.

Comment: Generate pseudo-random x in the
interval [(2)(2L−1)−1, 2L −1].

9. x = 0.

10. For i = 0 to iterations do

x = x + (Hash(pseed + i))∗ 2 i * outlen
 .

11. pseed = pseed + iterations + 1.

83

12. x = ⎣(2)(2L−1)⎦ + (x mod (2L − ⎣(2)(2L−1)⎦)).

Comment: Generate a candidate for the prime p.

13. If (GCD(p0p1, p2) ≠ 1), then return (FAILURE, 0, 0, 0, 0).

14. Compute y in the interval [1, p2] such that 0 = (y p0 p1–1) mod p2.

15. t = ⎡((2 y p0 p1) + x)/(2 p0 p1 p2)⎤.

16. If ((2(t p2 − y) p0 p1 + 1) > 2L), then

t = ⎡((2 y p0 p1) + ⎣(2)(2L−1)⎦) / (2 p0 p1 p2)⎤.

Comment: p satisfies
0 = (p–1) mod (2p0 p1) and
0 = (p+1) mod p2.

17. p = 2(t p2 − y) p0 p1 + 1.

18. pgen_counter = pgen_counter + 1.

19. If (GCD(p–1, e) = 1), then

Comment: Choose an integer a in the interval [2, p–
2].

19.1 a = 0

19.2 	For i = 0 to iterations do

a = a + (Hash(pseed + i))∗ 2 i * outlen
 .

19.3 pseed = pseed + iterations + 1.

19.4 	 a = 2 + (a mod (p–3)).

Comment: Test p for primality:

2(t p2 − y) p119.5 z = a mod p.

19.6 	 If ((1 = GCD(z–1, p)) and (1 = (z p0 mod p)), then return (SUCCESS, p, p1, p2,
pseed).

20. If (pgen_counter ≥ 5L), then return (FAILURE, 0, 0, 0, 0).

21. t = t + 1.

22. Go to step 16.

84

Appendix D: Recommended Elliptic Curves for Federal Government
Use

This collection of elliptic curves is recommended for Federal government use and contains
choices for the private key length and underlying fields. These curves were generated using
SHA-1 and the method given in the ANS X9.62 and IEEE Standard 1363-2000 standards. This
appendix describes the process that was used. Note that these curves are the same as those
included in the previous version of this Standard.

D.1 NIST Recommended Elliptic Curves

D.1.1 Choices
D.1.1.1 Choice of Key Lengths

The principal parameters for elliptic curve cryptography are the elliptic curve E and a designated
point G on E called the base point. The base point has order n, which is a large prime. The
number of points on the curve is hn for some integer h (the cofactor), which is not divisible by n.
For efficiency reasons, it is desirable to have the cofactor be as small as possible.

All of the curves given below have cofactors 1, 2, or 4. As a result, the private and public keys
for a curve are approximately the same length.

D.1.1.2 Choice of Underlying Fields

For each key length, two kinds of fields are provided.

•	 A prime field is the field GF(p), which contains a prime number p of elements. The
elements of this field are the integers modulo p, and the field arithmetic is implemented
in terms of the arithmetic of integers modulo p.

•	 A binary field is the field GF(2m), which contains 2m elements for some m (called the
degree of the field). The elements of this field are the bit strings of length m, and the field
arithmetic is implemented in terms of operations on the bits.

The security strengths for five ranges of the bit length of n is provided in SP 800-57. For the
field GF(p), the security strength is dependent on the length of the binary expansion of p. For the
field GF(2m), the security strength is dependent on the value of m. Table E-1 provides the bit
lengths of the various underlying fields of the curves provided in this appendix. Column 1 lists
the ranges for the bit length of n (also see Table 1 in Section 6.1.1). Column 2 identifies the
value of p used for the curves over prime fields, where len(p) is the length of the binary
expansion of the integer p. Column 3 provides the value of m for the curves over binary fields.

85

Table D-1: Bit Lengths of the Underlying Fields of the Recommended Curves

Bit Length of n Prime Field Binary Field

161 – 223 len(p) = 192 m = 163

224 – 255 len(p) = 224 m = 233

256 – 383 len(p) = 256 m = 283

384 – 511 len(p) = 384 m = 409

≥ 512 len(p) = 521 m = 571

D.1.1.3 Choice of Basis for Binary Fields

To describe the arithmetic of a binary field, it is first necessary to specify how a bit string is to be
interpreted. This is referred to as choosing a basis for the field. There are two common types of
bases: a polynomial basis and a normal basis.

•	 A polynomial basis is specified by an irreducible polynomial modulo 2, called the field
polynomial. The bit string (am–1 … a2 a1 a0) is taken to represent the polynomial

am–1 t m–1 + …+ a2 t2 + a1 t + a0

over GF(2). The field arithmetic is implemented as polynomial arithmetic modulo p(t),
where p(t) is the field polynomial.

•	 A normal basis is specified by an element θ of a particular kind. The bit string (a0 a1 a2
… am–1) is taken to represent the element

a0θ + a1θ 2 + a2θ 2 2
 + … + am–1θ 2 m–1

 .

Normal basis field arithmetic is not easy to describe or efficient to implement in general,
except for a special class called Type T low-complexity normal bases. For a given field
degree m, the choice of T specifies the basis and the field arithmetic (see Appendix D.3).

There are many polynomial bases and normal bases from which to choose. The following
procedures are commonly used to select a basis representation.

•	 Polynomial Basis: If an irreducible trinomial tm + tk + 1 exists over GF (2), then the field
polynomial p(t) is chosen to be the irreducible trinomial with the lowest-degree middle
term tk . If no irreducible trinomial exists, then a pentanomial t m + t a + t b + t c + 1 is
selected. The particular pentanomial chosen has the following properties: the second term
ta has the lowest degree m; the third term tb has the lowest degree among all irreducible
pentanomials of degree m and second term ta; and the fourth term tc has the lowest degree
among all irreducible pentanomials of degree m, second term ta, and third term tb .

86

• Normal Basis: Choose the Type T low-complexity normal basis with the smallest T.

For each binary field, the parameters are given for the above basis representations.

D.1.1.4 Choice of Curves

Two kinds of curves are given:

•	 Pseudo-random curves are those whose coefficients are generated from the output of a
seeded cryptographic hash function. If the domain parameter seed value is given along
with the coefficients, it can be easily verified that the coefficients were generated by that
method.

•	 Special curves are those whose coefficients and underlying field have been selected to
optimize the efficiency of the elliptic curve operations.

For each curve size range, the following curves are given:

→	 A pseudo-random curve over GF(p).

→	 A pseudo-random curve over GF(2m).

→ A special curve over GF(2m) called a Koblitz curve or anomalous binary curve.

The pseudo-random curves were generated as specified in ANS X9.62 using SHA-1.

D.1.1.5 Choice of Base Points

Any point of order n can serve as the base point. Each curve is supplied with a sample base
point G = (Gx , Gy). Users may want to generate their own base points to ensure cryptographic
separation of networks. See ANS X9.62 or IEEE Standard 1363-2000.

D.1.2 Curves over Prime Fields
For each prime p, a pseudo-random curve

E : y2 ≡ x3 – 3x +b (mod p)

of prime order n is listed4. (Thus, for these curves, the cofactor is always h = 1.) The following
parameters are given:

•	 The prime modulus p

•	 The order n

•	 The 160-bit input seed SEED to the SHA-1 based algorithm (i.e., the domain parameter
seed)

•	 The output c of the SHA-1 based algorithm

4 The selection a ≡ -3 for the coefficient of x was made for reasons of efficiency; see IEEE Std 1363-2000.

87

• The coefficient b (satisfying b2 c ≡ –27 (mod p))

• The base point x coordinate Gx

• The base point y coordinate Gy

The integers p and n are given in decimal form; bit strings and field elements are given in
hexadecimal.

D.1.2.1 Curve P-192

p = 6277101735386680763835789423207666416083908700390324961279

n = 6277101735386680763835789423176059013767194773182842284081

SEED = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

c = 3099d2bb bfcb2538 542dcd5f b078b6ef 5f3d6fe2 c745de65

b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

G x = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

G y = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

D.1.2.2 Curve P-224

p = 2695994666715063979466701508701963067355791626002630814351

0066298881

n = 2695994666715063979466701508701962594045780771442439172168

2722368061

SEED = bd713447 99d5c7fc dc45b59f a3b9ab8f 6a948bc5

c = 5b056c7e 11dd68f4 0469ee7f 3c7a7d74 f7d12111 6506d031

218291fb

b = b4050a85 0c04b3ab f5413256 5044b0b7 d7bfd8ba 270b3943

2355ffb4

G x = b70e0cbd 6bb4bf7f 321390b9 4a03c1d3 56c21122 343280d6

115c1d21

G y = bd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199

85007e34

88

D.1.2.3 Curve P-256

p = 1157920892103562487626974469494075735300861434152903141955

33631308867097853951

n = 115792089210356248762697446949407573529996955224135760342

422259061068512044369

SEED = c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

c = 7efba166 2985be94 03cb055c 75d4f7e0 ce8d84a9 c5114abc

af317768 0104fa0d

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6

3bce3c3e 27d2604b

G x = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0

f4a13945 d898c296

G y = 	 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece

cbb64068 37bf51f5

D.1.2.4 Curve P-384

p = 3940200619639447921227904010014361380507973927046544666794

8293404245721771496870329047266088258938001861606973112319

n = 3940200619639447921227904010014361380507973927046544666794

6905279627659399113263569398956308152294913554433653942643

SEED = a335926a a319a27a 1d00896a 6773a482 7acdac73

c = 79d1e655 f868f02f ff48dcde e14151dd b80643c1 406d0ca1

0dfe6fc5 2009540a 495e8042 ea5f744f 6e184667 cc722483

b = b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112

0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

G x = aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98

59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7

G y = 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c

e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f

89

D.1.2.5 Curve P-521

p = 686479766013060971498190079908139321726943530014330540939

446345918554318339765605212255964066145455497729631139148

0858037121987999716643812574028291115057151

n = 686479766013060971498190079908139321726943530014330540939

446345918554318339765539424505774633321719753296399637136

3321113864768612440380340372808892707005449

SEED = d09e8800 291cb853 96cc6717 393284aa a0da64ba

c = 0b4 8bfa5f42 0a349495 39d2bdfc 264eeeeb 077688e4

4fbf0ad8 f6d0edb3 7bd6b533 28100051 8e19f1b9 ffbe0fe9

ed8a3c22 00b8f875 e523868c 70c1e5bf 55bad637

b = 051 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b

99b315f3 b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd

3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00

G x = c6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139

053fb521 f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127

a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66

G y = 118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 98f54449

579b4468 17afbd17 273e662c 97ee7299 5ef42640 c550b901

3fad0761 353c7086 a272c240 88be9476 9fd16650

D.1.3 Curves over Binary Fields
For each field degree m, a pseudo-random curve is given, along with a Koblitz curve. The
pseudo-random curve has the form

E: y 2 + x y = x 3 + x 2 + b,

and the Koblitz curve has the form

Ea: y2 + x y = x 3 + ax 2 + 1,

where a = 0 or 1.

For each pseudorandom curve, the cofactor is h = 2. The cofactor of each Koblitz curve is h = 2
if a = 1, and h = 4 if a = 0.

90

The coefficients of the pseudo-random curves, and the coordinates of the base points of both
kinds of curves, are given in terms of both the polynomial and normal basis representations
discussed in Appendix D.1.1.3.

For each m, the following parameters are given:

Field Representation:

•	 The normal basis type T

•	 The field polynomial (a trinomial or pentanomial)

Koblitz Curve:

•	 The coefficient a

•	 The base point order n

•	 The base point x coordinate G x

• The base point y coordinate G y

Pseudo-random curve:

• The base point order n

Pseudo-random curve (Polynomial Basis representation):

•	 The coefficient b

•	 The base point x coordinate G x

• The base point y coordinate G y

Pseudo-random curve (Normal Basis representation):

•	 The 160-bit input seed SEED to the SHA-1 based algorithm (i.e., the domain parameter
seed)

•	 The coefficient b (i.e., the output of the SHA-1 based algorithm)

•	 The base point x coordinate G x

•	 The base point y coordinate G y

Integers (such as T, m, and n) are given in decimal form; bit strings and field elements are given
in hexadecimal.

D.1.3.1 Degree 163 Binary Field

T = 4

p(t) = t 163 + t 7 + t 6 + t 3 + 1

91

D.1.3.1.1 Curve K-163
a = 1

n = 5846006549323611672814741753598448348329118574063

Polynomial Basis:

G x = 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8

G y = 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

Normal Basis:

G x = 0 5679b353 caa46825 fea2d371 3ba450da 0c2a4541

G y = 2 35b7c671 00506899 06bac3d9 dec76a83 5591edb2

D.1.3.1.2 Curve B-163

n = 5846006549323611672814742442876390689256843201587

Polynomial Basis:

b = 2 0a601907 b8c953ca 1481eb10 512f7874 4a3205fd

G x = 3 f0eba162 86a2d57e a0991168 d4994637 e8343e36

G y = 0 d51fbc6c 71a0094f a2cdd545 b11c5c0c 797324f1

Normal Basis:

SEED = 85e25bfe 5c86226c db12016f 7553f9d0 e693a268

b = 6 645f3cac f1638e13 9c6cd13e f61734fb c9e3d9fb

G x = 0 311103c1 7167564a ce77ccb0 9c681f88 6ba54ee8

G y = 3 33ac13c6 447f2e67 613bf700 9daf98c8 7bb50c7f

D.1.3.2 Degree 233 Binary Field

T = 2

p(t) = t 233 + t 74 + 1

92

D.1.3.2.1 Curve K-233

a = 0

n = 345087317339528189371737793113851276057094098886225212\

6328087024741343

Polynomial Basis:

G x = 172 32ba853a 7e731af1 29f22ff4 149563a4 19c26bf5

0a4c9d6e efad6126

G y = 1db 537dece8 19b7f70f 555a67c4 27a8cd9b f18aeb9b

56e0c110 56fae6a3

Normal Basis:

G x = 0fd e76d9dcd 26e643ac 26f1aa90 1aa12978 4b71fc07

22b2d056 14d650b3

G y = 064 3e317633 155c9e04 47ba8020 a3c43177 450ee036

d6335014 34cac978

D.1.3.2.2 Curve B-233

n = 	 690174634679056378743475586227702555583981273734501355\

5379383634485463

Polynomial Basis:

b = 066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42

81fe115f 7d8f90ad

G x = 0fa c9dfcbac 8313bb21 39f1bb75 5fef65bc 391f8b36

f8f8eb73 71fd558b

G y = 100 6a08a419 03350678 e58528be bf8a0bef f867a7ca

36716f7e 01f81052

93

Normal Basis:

SEED = 74d59ff0 7f6b413d 0ea14b34 4b20a2db 049b50c3

b = 1a0 03e0962d 4f9a8e40 7c904a95 38163adb 82521260
0c7752ad 52233279

G x = 18b 863524b3 cdfefb94 f2784e0b 116faac5 4404bc91
62a363ba b84a14c5

G y = 049 25df77bd 8b8ff1a5 ff519417 822bfedf 2bbd7526
44292c98 c7af6e02

D.1.3.3 Degree 283 Binary Field

T = 6

p(t) = t 283 + t 12 + t 7 + t 5 + 1

D.1.3.3.1 Curve K-283

a = 0

n = 3885337784451458141838923813647037813284811733793061324

295874997529815829704422603873

Polynomial Basis:

G x = 503213f 78ca4488 3f1a3b81 62f188e5 53cd265f 23c1567a

16876913 b0c2ac24 58492836

G y = 1ccda38 0f1c9e31 8d90f95d 07e5426f e87e45c0 e8184698

e4596236 4e341161 77dd2259

Normal Basis:

G x = 3ab9593 f8db09fc 188f1d7c 4ac9fcc3 e57fcd3b db15024b

212c7022 9de5fcd9 2eb0ea60

G y = 2118c47 55e7345c d8f603ef 93b98b10 6fe8854f feb9a3b3

04634cc8 3a0e759f 0c2686b1

94

D.1.3.3.2 Curve B-283
n = 7770675568902916283677847627294075626569625924376904889

109196526770044277787378692871

Polynomial Basis:

b = 27b680a c8b8596d a5a4af8a 19a0303f ca97fd76 45309fa2

a581485a f6263e31 3b79a2f5

G x = 5f93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8 557eac9c

80e2e198 f8cdbecd 86b12053

G y = 3676854 fe24141c b98fe6d4 b20d02b4 516ff702 350eddb0

826779c8 13f0df45 be8112f4

Normal Basis:

SEED = 77e2b073 70eb0f83 2a6dd5b6 2dfc88cd 06bb84be

b = 157261b 894739fb 5a13503f 55f0b3f1 0c560116 66331022

01138cc1 80c0206b dafbc951

G x = 749468e 464ee468 634b21f7 f61cb700 701817e6 bc36a236

4cb8906e 940948ea a463c35d

G y = 62968bd 3b489ac5 c9b859da 68475c31 5bafcdc4 ccd0dc90

5b70f624 46f49c05 2f49c08c

D.1.3.4 Degree 409 Binary Field

T = 4

p(t) = t 409 + t 87 + 1

D.1.3.4.1 Curve K-409
a = 0

n = 33052798439512429947595765401638551991420234148214060964\

232439502288071128924919105067325845777745801409636659061

7731358671

95

Polynomial Basis:

G x = 060f05f 658f49c1 ad3ab189 0f718421 0efd0987 e307c84c

27accfb8 f9f67cc2 c460189e b5aaaa62 ee222eb1 b35540cf

e9023746

Gy = 1e36905 0b7c4e42 acba1dac bf04299c 3460782f 918ea427

e6325165 e9ea10e3 da5f6c42 e9c55215 aa9ca27a 5863ec48

d8e0286b

Normal Basis:

G x = 1b559c7 cba2422e 3affe133 43e808b5 5e012d72 6ca0b7e6

a63aeafb c1e3a98e 10ca0fcf 98350c3b 7f89a975 4a8e1dc0

713cec4a

G y = 16d8c42 052f07e7 713e7490 eff318ba 1abd6fef 8a5433c8

94b24f5c 817aeb79 852496fb ee803a47 bc8a2038 78ebf1c4

99afd7d6

D.1.3.4.2 Curve B-409

n = 	 6610559687902485989519153080327710398284046829642812192

84648798304157774827374805208143723762179110965979867288

366567526771

Polynomial Basis:

b = 021a5c2 c8ee9feb 5c4b9a75 3b7b476b 7fd6422e f1f3dd67

4761fa99 d6ac27c8 a9a197b2 72822f6c d57a55aa 4f50ae31

7b13545f

G x = 15d4860 d088ddb3 496b0c60 64756260 441cde4a f1771d4d

b01ffe5b 34e59703 dc255a86 8a118051 5603aeab 60794e54

bb7996a7

96

G y = 061b1cf ab6be5f3 2bbfa783 24ed106a 7636b9c5 a7bd198d

0158aa4f 5488d08f 38514f1f df4b4f40 d2181b36 81c364ba

0273c706

Normal Basis:

SEED = 4099b5a4 57f9d69f 79213d09 4c4bcd4d 4262210b

b = 124d065 1c3d3772 f7f5a1fe 6e715559 e2129bdf a04d52f7

b6ac7c53 2cf0ed06 f610072d 88ad2fdc c50c6fde 72843670

f8b3742a

G x = 0ceacbc 9f475767 d8e69f3b 5dfab398 13685262 bcacf22b

84c7b6dd 981899e7 318c96f0 761f77c6 02c016ce d7c548de

830d708f

G y = 199d64b a8f089c6 db0e0b61 e80bb959 34afd0ca f2e8be76

d1c5e9af fc7476df 49142691 ad303902 88aa09bc c59c1573

aa3c009a

D.1.3.5 Degree 571 Binary Field

T = 10

p(t) = t 571 + t 10 + t 5 + t 2 + 1

D.1.3.5.1 Curve K-571
a = 0

n = 1932268761508629172347675945465993672149463664853217499

32861762572575957114478021226813397852270671183470671280

08253514612736749740666173119296824216170925035557336852

76673

Polynomial Basis:

G x = 26eb7a8 59923fbc 82189631 f8103fe4 ac9ca297 0012d5d4

60248048 01841ca4 43709584 93b205e6 47da304d b4ceb08c

97

bbd1ba39 494776fb 988b4717 4dca88c7 e2945283 a01c8972

G y = 349dc80 7f4fbf37 4f4aeade 3bca9531 4dd58cec 9f307a54

ffc61efc 006d8a2c 9d4979c0 ac44aea7 4fbebbb9 f772aedc

b620b01a 7ba7af1b 320430c8 591984f6 01cd4c14 3ef1c7a3

Normal Basis:

G x = 04bb2db a418d0db 107adae0 03427e5d 7cc139ac b465e593

4f0bea2a b2f3622b c29b3d5b 9aa7a1fd fd5d8be6 6057c100

8e71e484 bcd98f22 bf847642 37673674 29ef2ec5 bc3ebcf7

G y = 44cbb57 de20788d 2c952d7b 56cf39bd 3e89b189 84bd124e

751ceff4 369dd8da c6a59e6e 745df44d 8220ce22 aa2c852c

fcbbef49 ebaa98bd 2483e331 80e04286 feaa2530 50caff60

D.1.3.5.2 Curve B-571

n = 	 3864537523017258344695351890931987344298927329706434998

65723525145151914228956042453614399938941577308313388112

19269444862468724628168130702345282883033324113931911052

85703

Polynomial Basis:

b = 2f40e7e 2221f295 de297117 b7f3d62f 5c6a97ff cb8ceff1

cd6ba8ce 4a9a18ad 84ffabbd 8efa5933 2be7ad67 56a66e29

4afd185a 78ff12aa 520e4de7 39baca0c 7ffeff7f 2955727a

G x = 303001d 34b85629 6c16c0d4 0d3cd775 0a93d1d2 955fa80a

a5f40fc8 db7b2abd bde53950 f4c0d293 cdd711a3 5b67fb14

99ae6003 8614f139 4abfa3b4 c850d927 e1e7769c 8eec2d19

G y = 37bf273 42da639b 6dccfffe b73d69d7 8c6c27a6 009cbbca

1980f853 3921e8a6 84423e43 bab08a57 6291af8f 461bb2a8

b3531d2f 0485c19b 16e2f151 6e23dd3c 1a4827af 1b8ac15b

98

Normal Basis:

SEED = 2aa058f7 3a0e33ab 486b0f61 0410c53a 7f132310

b = 3762d0d 47116006 179da356 88eeaccf 591a5cde a7500011
8d9608c5 9132d434 26101a1d fb377411 5f586623 f75f0000
1ce61198 3c1275fa 31f5bc9f 4be1a0f4 67f01ca8 85c74777

G x = 0735e03 5def5925 cc33173e b2a8ce77 67522b46 6d278b65
0a291612 7dfea9d2 d361089f 0a7a0247 a184e1c7 0d417866
e0fe0feb 0ff8f2f3 f9176418 f97d117e 624e2015 df1662a8

G y = 04a3642 0572616c df7e606f ccadaecf c3b76dab 0eb1248d
d03fbdfc 9cd3242c 4726be57 9855e812 de7ec5c5 00b4576a
24628048 b6a72d88 0062eed0 dd34b109 6d3acbb6 b01a4a97

D.2 Implementation of Modular Arithmetic
The prime moduli in the above examples are of a special type (called generalized Mersenne
numbers) for which modular multiplication can be carried out more efficiently than in general.
This section provides the rules for implementing this faster arithmetic for each of the prime
moduli appearing in the examples.

The usual way to multiply two integers (mod m) is to take the integer product and reduce it (mod
m). One therefore has the following problem: given an integer A less than m 2, compute

B = A mod m.

In general, one must obtain B as the remainder of an integer division. If m is a generalized
Mersenne number, however, then B can be expressed as a sum or difference (mod m) of a small
number of terms. To compute this expression, the integer sum or difference can be evaluated and
the result reduced modulo m. The latter reduction can be accomplished by adding or subtracting
a few copies of m.

The prime modulus p for each of the five example curves is a generalized Mersenne number.

D.2.1 Curve P-192
The modulus for this curve is p = 2 192 – 2 64 – 1. Every integer A less than p2 can be written as

320 256 192 128 64A = A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ,5 4 3 2 1 0

where each Ai is a 64-bit integer. As a concatenation of 64-bit words, this can be denoted by

A = (A5 || A4 || A3 || A2 || A0).

The expression for B is

B = T + S1 + S2 + S3 mod p,

99

where the 192-bit terms are given by

T = (A2 || A1 || A0)

S1 = (A3 || A3)

S2 = (A4 || A4 || 0)

S3 = (A5 || A5 || A5).

D.2.2 Curve P-224
224 96 2 The modulus for this curve is p = 2 − 2 +1. Every integer A less than p can be written as:

416 384 352 320 288 256 224 192A = A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 +13 12 11 10 9 8 7 6
160 128 96 64 32A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ,5 4 3 2 1 0

where each Ai is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by:

A = (A13 || A12 || … || A0).

The expression for B is:

B = T + S 1 + S 2 – D1 – D2 mod p,

where the 224-bit terms are given by:

T = (A6 || A5 || A4 || A3 || A2 || A1 || A0)

S1 = (A10 || A9 || A8 || A7 || 0 || 0 || 0)

S2 = (0 || A13 || A12 || A11 || 0 || 0 || 0)

D1 = (A13 || A12 || A11 || A10 || A9 || A8 || A7)

D2 = (0 || 0 || 0 || 0 || A13 || A12 || A11).

D.2.3 Curve P-256
The modulus for this curve is p = 2256 – 2224 + 2192 + 296 – 1. Every integer A less than p2 can be
written as:

480 448 416 384 352 320 288 256A = A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 +15 14 13 12 11 10 9 8
224 192 160 128 96 64 32A7 ⋅ 2 + A6 ⋅ 2 + A5 ⋅ 2 + A4 ⋅ 2 + A3 ⋅ 2 + A2 ⋅ 2 + A1 ⋅ 2 + A0 ,

where each A i is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by

A = (A15 || A14 || ⋅ ⋅ ⋅ || A0).

The expression for B is:

100

B = T + 2S1 + 2S2 + S3 + S4 – D1 – D2 – D3 – D4 mod p,

where the 256-bit terms are given by:

T = (A7 || A6 || A5 || A4 || A3 || A2 || A1 || A0)

S1 = (A15 || A14 || A13 || A12 || A11 || 0 || 0 || 0)

S2 = (0 || A15 || A14 || A13 || A12 || 0 || 0 || 0)

S3 = (A15 || A14 || 0 || 0 || 0 || A10 || A9 || A8)

S4 = (A8 || A13 || A15 || A14 || A13 || A11 || A10 || A9)

D1 = (A10 || A8 || 0 || 0 || 0 || A13 || A12 || A11)

D2 = (A11 || A9 || 0 || 0 || A15 || A14 || A13 || A12)

D3 = (A12 || 0 || A10 || A9 || A8 || A15 || A14 || A13)

D4 = (A13 || 0 || A11 || A10 || A9 || 0 || A15 || A14)

D.2.4 Curve P-384
The modulus for this curve is p = 2 384 – 2 128 – 2 96 + 2 32 – 1. Every integer A less than p2 can
be written as:

736 704 672 640 608 576 544 512A = A	23 ⋅ 2 + A22 ⋅ 2 + A21 ⋅ 2 + A20 ⋅ 2 + A19 ⋅ 2 + A18 ⋅ 2 + A17 ⋅ 2 + A16 ⋅ 2 +
480 448 416 384 352 320 288 256A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 +15 14 13 12 11 10 9 8

224 192 160 128 96 64 32
A7 ⋅ 2 + A6 ⋅ 2 + A5 ⋅ 2 + A4 ⋅ 2 + A3 ⋅ 2 + A2 ⋅ 2 + A1 ⋅ 2 + A0 ,

where each A i is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by

A = (A23 || A22 || ⋅ ⋅ ⋅ || A0).

The expression for B is:

B = T + 2S1 + S2 + S3 + S4 + S5 + S6 – D1 – D2 – D3 mod p,

where the 384-bit terms are given by:

T = (A11 || A10 || A9 || A8 || A7 || A6 || A5 || A4 || A3 || A2 || A1 || A0)

S1 = (0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || 0 || 0 || 0 || 0)

S2 = (A23 || A22 || A21 || A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13 || A12)

S3 = (A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13 || A12 || A23|| A22|| A21)

S4 = (A19 || A18 || A17 || A16 || A15 || A14 || A13 || A12 || A20 || 0 || A23 || 0)

S5 = (0 || 0 || 0 || 0 || A23 || A22 || A21 || A20 || 0 || 0 || 0 || 0)

101

S6 = (0 || 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || 0 || 0 || A20)

D1 = (A22 || A21 || A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13 || A12 || A23)

D2 = (0 || 0 || 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || A20 || 0)

D3 = (0 || 0 || 0 || 0 || 0 || 0 || 0 || A23 || A23 || 0 || 0 || 0).

D.2.5 Curve P-521
The modulus for this curve is p = 2 521 – 1. Every integer A less than p2 can be written

A = A1 ⋅ 2521 + A0,

where each A i is a 521-bit integer. As a concatenation of 521-bit words, this can be denoted by

A = (A1 || A0).

The expression for B is:

B = (A0 + A1) mod p.

D.3 Normal Bases
The elements of GF(2m) are expressed in terms of the type T normal basis5 B for GF(2m), for
some T. Each element has a unique representation as a bit string:

(a0 a1 … am–1).

The arithmetic operations are performed as follows.

Addition: addition of two elements is implemented by bit-wise addition modulo 2. Thus, for
example,

(1100111) + (1010010) = (0110101).

Squaring: if

α = (a0 a1 … am–1)

then

α2 = (am–1 a0 a1 … am–2).

Multiplication: to perform multiplication, a function F(u,v) is constructed on inputs

5 It is assumed in this section that m is odd and T is even, since this is the only case considered in this Standard.

102

u = (u0 u1 … um–1) and v = (v0 v1 … vm–1)

as follows.

1. Set p ← Tm + 1.

2. Let u be an integer having order T modulo p.

3. Compute the sequence F (1), F (2), … ,F (p–1) as follows:

3.1 	Set w← 1.

3.2 	For j from 0 to T–1 do

3.2.1 Set n ← w.

3.2.2 For i = 0 to m–1 do

3.2.2.1 Set F(n) ← i.

3.2.2.2 Set n ← 2n mod p.

3.2.3 Set w ← uw mod p.

4. Output the formula:
p−2

F (u,v) := ∑uF (k +1) vF (p−k) .
k =1

This computation need only be performed once per basis.

Given the function F for B, the product

(c0 c1 … cm–1) = (a0 a1 … am–1) * (b0 b1 … bm–1)

is computed as follows:

1. Set (u0 u1 … um–1) ← (a0 a1 . . . am–1).

2. Set (v0 v1 … vm–1) ← (b0 b1 . . . bm–1).

3. For k = 0 to m – 1 do

3.1 	Compute

ck = F(u, v).

3.2 	Set u ← LeftShift (u) and v ← LeftShift (v), where LeftShift denotes the circular
left shift operation.

4. Output c = (c0 c1 … cm–1).

103

Example: For the type 4 normal basis for GF(27), p = 29 and u = 12 or 17. Thus, the values of F
are given by:

F (1) = 0 F (8) = 3 F (15) = 6 F (22) = 5

F (2) = 1 F (9) = 3 F (16) = 4 F (23) = 6

F (3) = 5 F (10) = 2 F (17) = 0 F (24) = 1

F (4) = 2 F (11) = 4 F (18) = 4 F (25) = 2

F (5) = 1 F (12) = 0 F (19) = 2 F (26) = 5

F (6) = 6 F (13) = 4 F (20) = 3 F (27) = 1

F (7) = 5 F (14) = 6 F (21) = 3 F (28) = 0

Therefore,

F (u, v) = u0 v1 + u1 (v0 + v2 + v5 + v6) + u2 (v1 + v3 + v4 + v5) + u3 (v2 + v5) +

u4 (v2 + v6) + u5 (v1 + v2 + v3 + v6) + u6 (v1 + v4 + v5 + v6).

Thus, if

a = (1 0 1 0 1 1 1) and b = (1 1 0 0 0 0 1),

then

c0 = F ((1 0 1 0 1 1 1), (1 1 0 0 0 0 1)) = 1,

c1 = F ((0 1 0 1 1 1 1), (1 0 0 0 0 1 1)) = 0,

M

c6 = F ((1 1 0 1 0 1 1), (1 1 1 0 0 0 0)) = 1,

so that c = ab = (1 0 1 1 0 0 1).

D.4 Scalar Multiplication on Koblitz Curves
This section describes a particularly efficient method of computing the scalar multiple nP on the

Koblitz curve Ea over GF(2m).

The operation τ is defined by:

τ (x, y) = (x2, y2).

When the normal basis representation is used, then the operation τ is implemented by performing
right circular shifts on the bit strings representing x and y.

Given m and a, define the following parameters:

• C is some integer greater than 5.

104

• μ = (–1)1–a.

• For i = 0 and i = 1, define the sequence si(m) by:

si(0) = 0, si(1) = 1 – i,

si(m) = μ • si(m – 1) – 2 si(m – 2) + (–1)i

•	 Define the sequence V(m)

V(0) = 2, V(1) = μ

V(m) = μ • v(m –1) – 2V(m – 2).

For the example curves, the quantities si(m) and V(m) are as follows.

Curve K-163:

s0(163) = 2579386439110731650419537

s1(163) = –755360064476226375461594

V(163) = –4845466632539410776804317

Curve K-233:

s0(233) = –27859711741434429761757834964435883

s1(233) = –44192136247082304936052160908934886

V(233) = –137381546011108235394987299651366779

Curve K-283:

s0(283) = –665981532109049041108795536001591469280025

s1(283) = 1155860054909136775192281072591609913945968

V(283) = 7777244870872830999287791970962823977569917

Curve K-409:

s0(409) = –18307510456002382137810317198756461378590542487556869338419259

s1(409) = –8893048526138304097196653241844212679626566100996606444816790

V(409)= 10457288737315625927447685387048320737638796957687575791173829

Curve K-571:

s0(571) = –3737319446876463692429385892476115567147293964596131024123406420\

235241916729983261305

s1(571) = –3191857706446416099583814595948959674131968912148564658610565117\

58982848515832612248752

105

V(571)= –1483809269816914138996191402970514903645425741804939362329123395\

34208516828973111459843

The following algorithm computes the scalar multiple nP on the Koblitz curve Ea over GF(2m).
The average number of elliptic additions and subtractions is at most ∼ 1 + (m/3), and is at most ∼
m/3 with probability at least 1 – 25–C .

1. For i = 0 to 1 do

⎣ n / 2a–C + (m–9) / 2⎦ .
1.1 n′ ←

1.2 g′ ← si(m) · n′.

1.3 h′ ← ⎣ g′ / 2m ⎦ .

1.4 j′ ← V(m) · h′.

1.5 l′ ← Round((g′ + j′) / 2(m+5) / 2).

1.6 λi ← l′ / 2C.

1.7 fi ← Round(λi).

1.8 ηi ← λi – fi..

1.9 hi ← 0.

2.	 η ← 2 η0 + μ η1.

3.	 If (η ≥ 1),

then

if (ηo – 3 μη1 < –1)

then set h1 ← μ

else set h0 ← 1.

else

if (η0 + 4 μ η1 ≥ 2)

then set h1 ← μ.

4. If (η < –1)

then

if (η0 – 3 μ η1 ≥ 1)

then set h1 ← – μ

else set h0 ← –1.

106

else

if (η0 + 4 μ η1 < –2)

then set h1 ← – μ.

5. q0 ← f0 + h0.

6. q1 ← f1 + h1.

7. r0 ← n – (s0 + μ s1) q0 – 2s1 q1.

8. r1 ← s1 q0 – s0 q1.

9. Set Q ← O.

10. P0 ← P.

11. While ((r0 ≠ 0) or (r1 ≠ 0))

11.1 If (r0 odd), then

11.1.1 set u ← 2 – (r0 – 2 r1 mod 4).

11.1.2 set r0 ← r0 – u.

11.1.3 if (u = 1), then set Q ← Q + P0.

11.1.4 if (u = –1), then set Q ← Q – P0.

11.2 Set P0 ← τP0.

11.3 Set (r0 , r1) ← (r1 + μr0 /2, – r0 /2).

Endwhile

12. Output Q.

D.5 Generation of Pseudo-Random Curves (Prime Case)
Let l be the bit length of p, and define

v = ⎣ (l – 1) /160⎦

w = l – 160v – 1.

1. Choose an arbitrary 160-bit string s as the domain parameter seed.

2. Compute h = SHA-1(s).

3. Let h0 be the bit string obtained by taking the w rightmost bits of h.

4. Let z be the integer whose binary expansion is given by the 160-bit string s.

5. For i from 1 to v do:

107

5.1 	Define the 160-bit string si to be binary expansion of the integer

(z + i) mod (2 160).

5.2 Compute hi = SHA-1(si).

6. Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:

h = h0 || h1 || … || hv.

7. Let c be the integer whose binary expansion is given by the bit string h.

8. If ((c = 0 or 4c + 27 ≡ 0 (mod p))), then go to Step 1.

9. Choose integers a, b ∈GF(p) such that

c b2 ≡ a3 (mod p).

(The simplest choice is a = c and b = c. However, one may want to choose differently for
performance reasons.)

10. Check that the elliptic curve E over GF(p) given by y 2 = x3 + ax + b has suitable order. If
not, go to Step 1.

D.6 Verification of Curve Pseudo-Randomness (Prime Case)
Given the 160-bit domain parameter seed value s, verify that the coefficient b was obtained from
s via the cryptographic hash function SHA-1 as follows.

Let l be the bit length of p, and define

v = ⎣ (l – 1) /160⎦

w = l – 160v – 1.

1. Compute h = SHA-1(s).

2. Let h0 be the bit string obtained by taking the w rightmost bits of h.

3. Let z be the integer whose binary expansion is given by the 160-bit string s.

4. For i = 1 to v do

4.1 	Define the 160-bit string si to be binary expansion of the integer

(z + i) mod (2160).

4.2 Compute hi = SHA-1(si).

5. Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:

h = h0 || h1 || … || hv.

108

6. Let c be the integer whose binary expansion is given by the bit string h.

7. Verify that b2 c ≡ –27 (mod p).

D.7 Generation of Pseudo-Random Curves (Binary Case)
Let:

v = ⎣ (m – 1) /B⎦

w = m – Bv.

1. 	Choose an arbitrary 160-bit string s as the domain parameter seed.

2. 	Compute h = SHA-1(s).

3. 	Let h0 be the bit string obtained by taking the w rightmost bits of h.

4. 	Let z be the integer whose binary expansion is given by the 160-bit string s.

5. For i from 1 to v do:

5.1 	Define the 160-bit string si to be binary expansion of the integer

(z + i) mod (2160).

5.2 	Compute hi = SHA-1(si).

6. 	Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:

h = h0 || h1 || … || hv.

7. 	 Let b be the element of GF(2m) which binary expansion is given by the bit string h.

8. 	 Choose an element a of GF(2m).

9. 	 Check that the elliptic curve E over GF(2m) given by y2 + xy = x3 + ax2 + b has suitable
order. If not, go to Step 1.

D.8 Verification of Curve Pseudo-Randomness (Binary Case)
Given the 160-bit domain parameter seed value s, verify that the coefficient b was obtained from
s via the cryptographic hash function SHA-1 as follows.

Define

v = ⎣ (m – 1) /160⎦

w= m – 160v

1. Compute h = SHA-1(s).

2. 	 Let h0 be the bit string obtained by taking the w rightmost bits of h.

109

3. Let z be the integer whose binary expansion is given by the 160-bit string s.

4. For i = 1 to v do

4.1 Define the 160-bit string si to be binary expansion of the integer (z + i) mod (2160).

4.2 Compute hi = SHA-1(si).

5. Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:

h = h0 || h1 || … || hv.

6. Let c be the element of GF(2m) which is represented by the bit string h.

7. Verify that c = b.

D.9 Polynomial Basis to Normal Basis Conversion
Suppose that α is an element of the field GF(2m). Let p be the bit string representing α with
respect to a given polynomial basis. It is desired to compute n, the bit string representing α with
respect to a given normal basis. This is done via the matrix computation

p Γ = n,

where Γ is an m-by-m matrix with entries in GF(2). The matrix Γ, which depends only on the
bases, can be computed easily given its second-to-last row. The second-to-last row for each
conversion is given the below.

Degree 163:
3 e173bfaf 3a86434d 883a2918 a489ddbd 69fe84e1

Degree 233:
0be 19b89595 28bbc490 038f4bc4 da8bdfc1 ca36bb05 853fd0ed

0ae200ce

Degree 283:
3347f17 521fdabc 62ec1551 acf156fb 0bceb855 f174d4c1 7807511c
9f745382 add53bc3

Degree 409:
0eb00f2 ea95fd6c 64024e7f 0b68b81f 5ff8a467 acc2b4c3 b9372843
6265c7ff a06d896c ae3a7e31 e295ec30 3eb9f769 de78bef5

Degree 571:
7940ffa ef996513 4d59dcbf e5bf239b e4fe4b41 05959c5d 4d942ffd
46ea35f3 e3cdb0e1 04a2aa01 cef30a3a 49478011 196bfb43 c55091b6
1174d7c0 8d0cdd61 3bf6748a bad972a4

110

Given the second-to-last row r of Γ, the rest of the matrix is computed as follows. Let β be the
element of GF(2m) whose representation with respect to the normal basis is r. Then the rows of
Γ, from top to bottom, are the bit strings representing the elements

β m–1, β m–2 , …, β 2, β, 1

with respect to the normal basis. (Note that the element 1 is represented by the all-1 bit string.)

Alternatively, the matrix is the inverse of the matrix described in Appendix D.10.

More details of these computations can be found in Annex A.7 of the IEEE Standard 1363-2000
standard.

D.10 Normal Basis to Polynomial Basis Conversion
Suppose that α is an element of the field GF(2m). Let n be the bit string representing α with
respect to a given normal basis. It is desired to compute p, the bit string representing α with
respect to a given polynomial basis. This is done via the matrix computation

n Γ = p,

where Γ is an m-by-m matrix with entries in GF(2). The matrix Γ, which depends only on the
bases, can be computed easily given its top row. The top row for each conversion is given
below.

Degree 163:
7 15169c10 9c612e39 0d347c74 8342bcd3 b02a0bef

Degree 233:
149 9e398ac5 d79e3685 59b35ca4 9bb7305d a6c0390b cf9e2300

253203c9

Degree 283:
31e0ed7 91c3282d c5624a72 0818049d 053e8c7a b8663792 bc1d792e

ba9867fc 7b317a99

Degree 409:
0dfa06b e206aa97 b7a41fff b9b0c55f 8f048062 fbe8381b 4248adf9
2912ccc8 e3f91a24 e1cfb395 0532b988 971c2304 2e85708d

Degree 571:
452186b bf5840a0 bcf8c9f0 2a54efa0 4e813b43 c3d41496 06c4d27b
487bf107 393c8907 f79d9778 beb35ee8 7467d328 8274caeb da6ce05a
eb4ca5cf 3c3044bd 4372232f 2c1a27c4

Given the top row r of Γ, the rest of the matrix is computed as follows. Let β be the element of

111

GF(2 m) whose representation with respect to the polynomial basis is r. Then the rows of Γ, from
top to bottom, are the bit strings representing the elements

β, β 2 , β 22
, … , β 2m–1

with respect to the polynomial basis.

Alternatively, the matrix is the inverse of the matrix described in Appendix D.9.

More details of these computations can be found in Annex A.7 of the IEEE Std 1363-2000

standard.

112

Appendix E: A Proof that v = r in the DSA
(Informative)

The purpose of this appendix is to show that if M′ = M, r′ = r and s′ = s in the signature
verification, then v = r′. Let Hash be an approved hash function. The following result is needed.

Lemma: Let p and q be primes such that q divides (p – 1), let h be a positive integer less
(p–1)/q

than p, and let g = (h mod p). Then (gq mod p) = 1, and if (m mod q) = (n
mod q), then (g

m
mod p) = (g

n
mod p).

Proof:

gqmod p = (h(p–1) / q mod p)q mod p

= h(p – 1) mod p

= 1

by Fermat’s Little Theorem. Now let (m mod q) = (n mod q), i.e., m = (n + kq) for some integer
k. Then

n + kq mod pgm mod p = g
n= (g gkq) mod p

= ((gn mod p) (gq mod p)k) mod p

= gn mod p,

since (gq mod p) = 1.

Proof of the main result:

Theorem: If M′ = M, r′ = r, and s′ = s in the signature verification, then v = r′.

Proof:

w = (s′)–1 mod q = s–1 mod q

u1 = ((Hash(M ′))w) mod q = ((Hash(M))w) mod q

u2 = ((r′)w) mod q = (rw) mod q.

Now y = (g
x

mod p), so that by the lemma,

v = ((gu1 yu2) mod p) mod q

Hash(M)w= ((g yrw) mod p) mod q

Hash(M)w
= ((g gxrw) mod p) mod q

= ((g(Hash(M) + xr)w) mod p) mod q.

113

 Also:

s = (k–1 (Hash(M) + xr)) mod q.

Hence:

w = (k (Hash(M) + xr)–1) mod q

(Hash(M) + xr)w mod q = k mod q.

Thus, by the lemma:

v = (gk mod p) mod q = r

114

Appendix F: Calculating the Required Number of Rounds of Testing
Using the Miller-Rabin Probabilistic Primality Test

(Informative)

F.1 The Required Number of Rounds of the Miller-Rabin Primality Tests
The ideas of paper [1] were applied to estimate p k,t , the probability that an odd k-bit integer that
passes t rounds of Miller-Rabin (M-R) testing is actually composite. The probability pk ,t is
understood as the ratio of the number of odd composite numbers of a binary length k that can be
expected to pass t rounds of M-R testing (with randomly generated bases) to the sum of that
value and the number of odd prime integers of binary length k. This is equivalent to assuming
that candidates selected for testing will be chosen uniformly at random from the entire set of odd
k-bit integers. Following Pomerance, et al., pk,t can be (over) estimated by the ratio of the
expected number of odd composite numbers of binary length k that will pass t rounds of M-R
testing (with randomly generated bases) to the total number of odd primes of binary length k.
From the perspective of a party charged with the responsibility of generating a k-bit prime, the
objective is to determine a value of t such that pk ,t is no greater than an acceptably small target
value pt arg et .

Using [1], it is possible to compute an upper bound for pk ,t as a function of k and t. From this,
an upper bound can be computed for t as a function of k and ptarget, the maximum allowed
probability of accidentally generating a composite number. The following is an algorithm for
computing t:

1. For t = 1, 2 … ⎡–log2(ptarget)/2⎤

1.1 For M = 3, 4 … ⎣2 k −1 −1⎦ (1)

1.1.1 Compute pk ,t as in (2).

1.1.2 If pk,t ≤ ptarget

1.1.2.1 Accept t.

1.1.2.2 Stop.

In (1), k is the bit length of the candidate primes and (2) is as follows:

⎡ ⎤2 M m
−k ⎢ k −2− Mt 8(π − 6) k −2 m−(m−1)t 1 ⎥pk ,t = 2.00743 ⋅ ln(2) ⋅ k ⋅ 2 2 + 2 ∑2 ∑ . (2)⎢ ⎛ (k −1) ⎞ ⎥3 m=3 j =2 ⎜⎜ j +

j ⎟⎟
⎠⎢ ⎝ ⎥⎣ 2 ⎦

Using this expression for t, the following methodologies are used for testing the DSA and RSA

115

candidate primes.

F.2 Generating DSA Primes
For DSA, the maximum possible care must be taken when generating the primes p and q that are
used for the domain parameters. The same primes p and q are used by many parties. This means
that any weakness that these numbers may possess would affect multiple users. It also means
that the primes are not generated very often; typically, an entire system uses the same set of
domain parameters for an extended period of time. Therefore, in this case, some additional care
is called for.

With this in mind, it may be too optimistic to simply subject candidate primes to t rounds of M-R
testing, where the minimal acceptable value for t is determined according to (1) and (2) in
Appendix F.1. This might be the case, for example, if there is a reason to doubt that the
assumptions made in [1] have been satisfied during the process of selecting candidates for
primality testing. One may gain more confidence in the process by performing some additional
(different) primality test(s) on the candidates that survive the M-R testing. As another option,
one could, of course, perform additional rounds of M-R testing. These considerations lead to the
following alternatives: either (A) use the number of rounds of M-R testing determined according
to (1) and (2) in Appendix F.1, and follow that with a single Lucas test (as recommended in ANS
X9.31), or (B) use a (much) more conservative approach when determining t (e.g., as described
below) and subject candidate primes to additional rounds of M-R testing.

One approach for strategy (B) would be to adopt the viewpoint of the majority of system users,
who have no part in generating the (supposed) prime, but who must rely upon its primality for
their security. Such parties may be concerned that the candidates for M-R testing have been
selected in a fashion that deviates significantly from the uniform distribution – which was
assumed when determining t according to (1) and (2) in Appendix F.1. In cases where the
selection process could be unusually biased in some way, it is important to minimize the
probability that a composite number will survive testing. It can be shown that for any k-bit odd
composite number (regardless of how it was selected), the probability that it will pass t rounds of

4−tM-R testing with randomly chosen bases is less than (although this is not a particularly tight
bound). Selecting t such that 4–t ≤ ptarget is equivalent to choosing t ≥ −log2(ptarget)/2. To ensure
that a composite number has a probability no greater than ptarget of surviving the M-R tests, the
number of rounds can be set at t = ⎡–log2(ptarget)/2⎤. Even if the method of selecting candidates
were so biased that it offered nothing but composite numbers for testing, it is reasonable to
expect that it would take at least 1/ ptarget attempts (which is greater than 4t) before a composite
number would slip through the t-round M-R testing process.

WARNING: As the discussion above illustrates, care must be taken when using the phrase
“error probability” in connection with the recommended number of rounds of M-R testing. The
probability that a composite number survives t rounds of Miller-Rabin testing is not the same as
p k,t , which is the probability that a number surviving t rounds of Miller-Rabin testing is

116

composite. Ordinarily, the latter probability is the one that should be of most interest to a party
responsible for generating primes, while the former may be more important to a party
responsible for validating the primality of a number generated by someone else. However, for
sufficiently large k (e.g., k ≥ 51), it can be shown that p k,t ≤ 4–t under the same assumptions
concerning the selection of candidates as those made to obtain formula (2) in Appendix F.1 (see
[1].) In such cases, t = ⎡–log2(ptarget)/2⎤ rounds of Miller-Rabin testing can be used both in
generating and validating primes, with ptarget serving as an upper bound on both the probability
that the generation process yields a composite number and the probability that a composite
number would survive an attempt to validate its primality.

Table C.1 in Appendix C.3 identifies the minimum values for t when generating the primes p and
q for DSA using either strategy (A) or (B) above. To obtain the t values shown in the column
titled “M-R Tests Only”, the conservative strategy (B) was followed; those t values are sufficient
to validate the primality of p and q. The t values shown in the column titled “M-R Tests when
followed by One Lucas Test” result from following strategy (A) using computations (1) and (2)
in Appendix F.1.

F.3 Generating Primes for RSA Signatures
When generating primes for the RSA signature algorithm, it is still very important to reduce the
probability of errors in the M-R testing procedure. However, since the (probable) primes are
used to generate a user’s key pair, if a composite number survives the testing process, the
consequences of the error may be less dramatic than in the case of generating DSA domain
parameters; only one user’s transactions are affected, rather than a domain of users. Furthermore,
if the p or q value generated for some user is composite, the problem will not be undiscovered
for long, since it is almost certain that signatures generated by that user will not be verifiable.

Therefore, when generating the RSA primes p and q, it is sufficient to use the number of rounds
derived from (1) and (2) in Appendix F.1 as the minimum number of M-R tests to be performed.
However, if the definition of pk, t is not considered to be sufficiently conservative when testing p
and q, it is recommended that the t rounds of Miller-Rabin tests be followed by a single Lucas
test.

The lengths for p and q that are recommended for use in RSA signature algorithms are 512, 1024
and 1536 bits; recall that n = pq, so the corresponding lengths for n are 1024, 2048 and 3072 bits,
respectively. As currently specified in SP 800-57, Part 1, these lengths correspond to security
strengths of 80, 112 and 128 bits, respectively. Hence, it makes sense to match the number of
rounds of Miller-Rabin testing to the target error probability values of 2–80, 2–112, and 2–128. A
probability of 2–100 is included for all prime lengths, since this probability has often been used in
the past and may be acceptable for many applications.

When generating the RSA primes p and q with conditions, it is sufficient to use the value t
derived from (1) and (2) as the minimum number of M-R tests to be performed when generating
the auxiliary primes p1, p2, q1 and q2. It is not necessary to use an additional Lucas test on these

117

numbers. In the extremely unlikely event that one of the numbers p1, p2, q1 or q2 is composite,
there is still a high probability that the corresponding RSA prime (p or q) will satisfy the
requisite conditions.

The sizes of p1 , p2 , q1 , and q2 were chosen to ensure that, for an adversary with significant but
not overwhelming resources, Lenstra’s elliptic curve factoring method [2] (against which there is
no protection beyond choosing large p and q) is a more effective factoring algorithm than either
the Pollard P–1 method [2], the Williams P+1 method [3] or various cycling methods [2]. For an
adversary with overwhelming resources, the best all-purpose factoring algorithm is assumed to
be the General Number Field Sieve [2].

Tables C.2 and C.3 in Appendix C.3 specify the minimum number of rounds of M-R testing
when generating primes to be used in the construction of RSA signature key pairs.

118

References
[1] I. Damgard, P. Landrock, and C. Pomerance, C. “Average Case Error Estimates for the

Strong Probable Prime Test,” Mathematics of Computation, v. 61, No, 203, pp. 177-194,

1993.

[2] A.J Menezes, P.C. Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

[3] H.C. Williams. “A p+1 Method of factoring”. Math. Comp. 39, 225-234, 1982.

[4] D.E. Knuth, The Art of Computer Programming, Vol. 2, 3rd Ed., Addison-Wesley, 1998,

Algorithm P, page 395.

[5] R. Baillie and S.S. Wagstaff Jr., Mathematics of Computation, V. 35 (1980), pages 1391 –
1417.

119

