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FOREWORD 

The Federal Information Processing Standards Publication Series of the National Institute 
of Standards and Technology (NIST) is the official series of publications relating to 
standards and guidelines adopted and promulgated under the provisions of the Federal 
Information Security Management Act (FISMA) of 2002.  

Comments concerning FIPS publications are welcomed and should be addressed to the 
Director, Information Technology Laboratory, National Institute of Standards and 
Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900. 

Cita Furlani, Director 
Information Technology Laboratory 

Abstract 

This Standard specifies a suite of algorithms that can be used to generate a digital signature.  
Digital signatures are used to detect unauthorized modifications to data and to authenticate the 
identity of the signatory. In addition, the recipient of signed data can use a digital signature as 
evidence in demonstrating to a third party that the signature was, in fact, generated by the 
claimed signatory.  This is known as non-repudiation, since the signatory cannot easily repudiate 
the signature at a later time. 

Key words: computer security, cryptography, digital signatures, Federal Information Processing 
Standards, public key cryptography. 



 

 

 

 

 

 

 

 

Federal Information Processing Standards Publication 186-3 

June 2009 

Announcing the 

DIGITAL SIGNATURE STANDARD (DSS) 

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National 
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce 
pursuant to Section 5131 of the Information Technology Management Reform Act of 1996 
(Public Law 104-106), and the Computer Security Act of 1987 (Public Law 100-235). 

1. Name of Standard: Digital Signature Standard (DSS) (FIPS 186-3). 

2. Category of Standard: Computer Security. Subcategory. Cryptography. 

3. Explanation: This Standard specifies algorithms for applications requiring a digital 
signature, rather than a written signature. A digital signature is represented in a computer as a 
string of bits. A digital signature is computed using a set of rules and a set of parameters that 
allow the identity of the signatory and the integrity of the data to be verified.  Digital signatures 
may be generated on both stored and transmitted data. 

Signature generation uses a private key to generate a digital signature; signature verification uses 
a public key that corresponds to, but is not the same as, the private key.  Each signatory 
possesses a private and public key pair. Public keys may be known by the public; private keys 
are kept secret. Anyone can verify the signature by employing the signatory’s public key.  Only 
the user that possesses the private key can perform signature generation. 

A hash function is used in the signature generation process to obtain a condensed version of the 
data to be signed; the condensed version of the data is often called a message digest. The 
message digest is input to the digital signature algorithm to generate the digital signature. The 
hash functions to be used are specified in the Secure Hash Standard (SHS), FIPS 180-3. FIPS 
approved digital signature algorithms shall be used with an appropriate hash function that is 
specified in the SHS. 

The digital signature is provided to the intended verifier along with the signed data. The 
verifying entity verifies the signature by using the claimed signatory’s public key and the same 
hash function that was used to generate the signature. Similar procedures may be used to 
generate and verify signatures for both stored and transmitted data. 

4. Approving Authority: Secretary of Commerce. 
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5. Maintenance Agency: Department of Commerce, National Institute of Standards and 
Technology, Information Technology Laboratory, Computer Security Division. 

6. Applicability: This Standard is applicable to all Federal departments and agencies for the 
protection of sensitive unclassified information that is not subject to section 2315 of Title 10, 
United States Code, or section 3502 (2) of Title 44, United States Code. This Standard shall be 
used in designing and implementing public key-based signature systems that Federal 
departments and agencies operate or that are operated for them under contract. The adoption and 
use of this Standard is available to private and commercial organizations. 

7. Applications: A digital signature algorithm allows an entity to authenticate the integrity of 
signed data and the identity of the signatory. The recipient of a signed message can use a digital 
signature as evidence in demonstrating to a third party that the signature was, in fact, generated 
by the claimed signatory. This is known as non-repudiation, since the signatory cannot easily 
repudiate the signature at a later time. A digital signature algorithm is intended for use in 
electronic mail, electronic funds transfer, electronic data interchange, software distribution, data 
storage, and other applications that require data integrity assurance and data origin 
authentication. 

8. Implementations: A digital signature algorithm may be implemented in software, firmware, 
hardware or any combination thereof.  NIST has developed a validation program to test 
implementations for conformance to the algorithms in this Standard.  Information about the 
validation program is available at http://csrc.nist.gov/cryptval. Examples for each digital 
signature algorithm are available at http://csrc.nist.gov/groups/ST/toolkit/examples.html. 

Agencies are advised that digital signature key pairs shall not be used for other purposes. 

9. Other Approved Security Functions: Digital signature implementations that comply with 
this Standard shall employ cryptographic algorithms, cryptographic key generation algorithms, 
and key establishment techniques that have been approved for protecting Federal government 
sensitive information. Approved cryptographic algorithms and techniques include those that are 
either: 

a. specified in a Federal Information Processing Standard (FIPS), 

b. adopted in a FIPS or a NIST Recommendation, or 

c. specified in the list of approved security functions for FIPS 140-2. 

10. Export Control: Certain cryptographic devices and technical data regarding them are 
subject to Federal export controls. Exports of cryptographic modules implementing this Standard 
and technical data regarding them must comply with these Federal regulations and be licensed by 
the Bureau of Industry and Security of the U.S. Department of Commerce. Information about 
export regulations is available at: http://www.bis.doc.gov. 

11. Patents: The algorithms in this Standard may be covered by U.S. or foreign patents. 
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12. Implementation Schedule: This Standard becomes effective immediately upon 
approval by the Secretary of Commerce. A transition strategy for validating algorithms 
and cryptographic modules will be posted on NIST’s Web page at 
http://csrc.nist.gov/groups/STM/cmvp/index.html under Notices. The transition plan 
addresses the transition by Federal agencies from modules tested and validated for 
compliance to FIPS 186-2 to modules tested and validated for compliance to FIPS 186-3 
under the Cryptographic Module Validation Program. The transition plan allows Federal 
agencies and vendors to make a smooth transition to FIPS 186-3. 
13. Specifications: Federal Information Processing Standard (FIPS) 186-3 Digital Signature 
Standard (affixed). 

14. Cross Index: The following documents are referenced in this Standard. 

a. 	 FIPS PUB 140-2, Security Requirements for Cryptographic Modules. 

b. 	 FIPS PUB 180-3, Secure Hash Standard. 

c. 	 ANS X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the 
Financial Services Industry (rDSA). 

d. 	 ANS X9.62-2005, Public Key Cryptography for the Financial Services Industry: The 
Elliptic Curve Digital Signature Algorithm (ECDSA). 

e. 	 ANS X9.80, Prime Number Generation, Primality Testing and Primality Certificates. 

f. 	 Public Key Cryptography Standard (PKCS) #1, RSA Encryption Standard. 

g. 	 Special Publication (SP) 800-57, Recommendation for Key Management. 

h. 	 Special Publication (SP) 800-89, Recommendation for Obtaining Assurances for Digital 
Signature Applications. 

i. 	 Special Publication (SP) 800-90, Recommendation for Random Number Generation 
Using Deterministic Random Bit Generators. 

j. 	 Special Publication (SP) 800-102, Recommendation for Digital Signature Timeliness 

k. 	 IEEE Std. 1363-2000, Standard Specifications for Public Key Cryptography. 

15. Qualifications: The security of a digital signature system is dependent on maintaining the 
secrecy of the signatory’s private keys. Signatories shall, therefore, guard against the disclosure 
of their private keys. While it is the intent of this Standard to specify general security 
requirements for generating digital signatures, conformance to this Standard does not assure that 
a particular implementation is secure.  It is the responsibility of an implementer to ensure that 
any module that implements a digital signature capability is designed and built in a secure 
manner. 

Similarly, the use of a product containing an implementation that conforms to this Standard does 
not guarantee the security of the overall system in which the product is used. The responsible 
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authority in each agency or department shall assure that an overall implementation provides an 
acceptable level of security. 

Since a standard of this nature must be flexible enough to adapt to advancements and 
innovations in science and technology, this Standard will be reviewed every five years in order 
to assess its adequacy. 

16. Waiver Procedure: The Federal Information Security Management Act (FISMA) does not 
allow for waivers to Federal Information Processing Standards (FIPS) that are made mandatory 
by the Secretary of Commerce.    

17. Where to Obtain Copies of the Standard: This publication is available by accessing 
http://csrc.nist.gov/publications/. Other computer security publications are available at the same 
web site. 
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Federal Information Processing Standards Publication 186-3 

June 2009 

Specifications for the 

DIGITAL SIGNATURE STANDARD (DSS) 


1. Introduction 
This Standard defines methods for digital signature generation that can be used for the protection 
of binary data (commonly called a message), and for the verification and validation of those 
digital signatures. Three techniques are approved. 

(1) The Digital Signature Algorithm (DSA) is specified in this Standard. The specification 
includes criteria for the generation of domain parameters, for the generation of public and 
private key pairs, and for the generation and verification of digital signatures. 

(2) The RSA digital signature algorithm is specified in American National Standard (ANS) 
X9.31 and Public Key Cryptography Standard (PKCS) #1. FIPS 186-3 approves the use 
of implementations of either or both of these standards, but specifies additional 
requirements. 

(3) The Elliptic Curve Digital Signature Algorithm (ECDSA) is specified in ANS X9.62. 
FIPS 186-3 approves the use of ECDSA, but specifies additional requirements. 
Recommended elliptic curves for Federal Government use are provided herein. 

This Standard includes requirements for obtaining the assurances necessary for valid digital 
signatures. Methods for obtaining these assurances are provided in NIST Special Publication 
(SP) 800-89, Recommendation for Obtaining Assurances for Digital Signature Applications. 
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2.1 

2. Glossary of Terms, Acronyms and Mathematical Symbols 

Terms and Definitions 

Approved 	 FIPS-approved and/or NIST-recommended. An algorithm or technique 
that is either 1) specified in a FIPS or NIST Recommendation, or 2) 
adopted in a FIPS or NIST Recommendation or 3) specified in a list of 
NIST approved security functions. 

Assurance of domain Confidence that the domain parameters are arithmetically correct. 
parameter validity 

Assurance of Confidence that an entity possesses a private key and any associated 
possession keying material. 

Assurance of public Confidence that the public key is arithmetically correct. 
key validity 

Bit string 	 An ordered sequence of 0’s and 1’s. The leftmost bit is the most 
significant bit of the string. The rightmost bit is the least significant bit 
of the string. 

Certificate 	 A set of data that uniquely identifies a key pair and an owner that is 
authorized to use the key pair. The certificate contains the owner’s 
public key and possibly other information, and is digitally signed by a 
Certification Authority (i.e., a trusted party), thereby binding the 
public key to the owner. 

Certification Authority The entity in a Public Key Infrastructure (PKI) that is responsible for 
(CA) issuing certificates and exacting compliance with a PKI policy. 

Claimed signatory 	 From the verifier’s perspective, the claimed signatory is the entity that 
purportedly generated a digital signature. 

Digital signature 	 The result of a cryptographic transformation of data that, when 
properly implemented, provides a mechanism for verifying origin 
authentication, data integrity and signatory non-repudiation. 

Domain parameter seed  	 A string of bits that is used as input for a domain parameter generation 
or validation process. 

Domain parameters 	 Parameters used with cryptographic algorithms that are usually 
common to a domain of users. A DSA or ECDSA cryptographic key 
pair is associated with a specifc set of domain parameters. 
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Entity An individual (person), organization, device or process. Used 
interchangeably with “party”. 

Equivalent process Two processes are equivalent if, when the same values are input to 
each process (either as input parameters or as values made available 
during the process or both), the same output is produced. 

Hash function A function that maps a bit string of arbitrary length to a fixed length 
bit string. Approved hash functions are specified in FIPS 180-3 and 
are designed to satisfy the following properties: 

1. (One-way) It is computationally infeasible to find any input that 
maps to any new pre-specified output, and 

2. (Collision resistant) It is computationally infeasible to find any 
two distinct inputs that map to the same output. 

Hash value See “message digest”. 

Intended signatory An entity that intends to generate digital signatures in the future.  

Key A parameter used in conjunction with a cryptographic algorithm that 
determines its operation. Examples applicable to this Standard 
include: 

1. The computation of a digital signature from data, and 

2. The verification of a digital signature. 

Key pair A public key and its corresponding private key. 

Message The data that is signed. Also known as “signed data” during the 
signature verification and validation process. 

Message digest The result of applying a hash function to a message. Also known as 
“hash value”. 

Non-repudiation A service that is used to provide assurance of the integrity and origin 
of data in such a way that the integrity and origin can be verified and 
validated by a third party as having originated from a specific entity in 
possession of the private key (i.e., the signatory). 

Owner A key pair owner is the entity that is authorized to use the private key 
of a key pair. 

Party An individual (person), organization, device or process. Used 
interchangeably with “entity”. 

Per-message secret 
number 

A secret random number that is generated prior to the generation of 
each digital signature. 
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Public Key A framework that is established to issue, maintain and revoke public 
Infrastructure (PKI) key certificates. 

Prime number A string of random bits that is used to determine a prime number with 
generation seed the required characteristics. 

Private key A cryptographic key that is used with an asymmetric (public key) 
cryptographic algorithm. For digital signatures, the private key is 
uniquely associated with the owner and is not made public.  The 
private key is used to compute a digital signature that may be verified 
using the corresponding public key. 

Probable prime An integer that is believed to be prime, based on a probabilistic 
primality test. There should be no more than a negligible probability 
that the so-called probable prime is actually composite.  

Provable prime An integer that is either constructed to be prime or is calculated to be 
prime using a primality-proving algorithm. 

Pseudorandom A process or data produced by a process is said to be pseudorandom 
when the outcome is deterministic, yet also effectively random as long 
as the internal action of the process is hidden from observation. For 
cryptographic purposes, “effectively” means “within the limits of the 
intended security strength.” 

Public key A cryptographic key that is used with an asymmetric (public key) 
cryptographic algorithm and is associated with a private key. The 
public key is associated with an owner and may be made public. In the 
case of digital signatures, the public key is used to verify a digital 
signature that was signed using the corresponding private key. 

Random number A device or algorithm that can produce a sequence of random numbers 
generator that appears to be statistically independent and unbiased. 

Security strength A number associated with the amount of work (that is, the number of 
operations) that is required to break a cryptographic algorithm or 
system. Sometimes referred to as a security level. 

Shall Used to indicate a requirement of this Standard. 

Should Used to indicate a strong recommendation, but not a requirement of 
this Standard. 

Signatory The entity that generates a digital signature on data using a private 
key. 

Signature generation The process of using a digital signature algorithm and a private key to 
generate a digital signature on data. 
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Signature validation The (mathematical) verification of the digital signature and obtaining 
the appropriate assurances (e.g., public key validity, private key 
possession, etc.). 

Signature verification The process of using a digital signature algorithm and a public key to 
verify a digital signature on data. 

Signed data The data or message upon which a digital signature has been 
computed. Also, see “message”. 

Subscriber An entity that has applied for and received a certificate from a 
Certificate Authority. 

Trusted third party An entity other than the owner and verifier that is trusted by the owner 
(TTP) or the verifier or both. Sometimes shortened to “trusted party”. 

Verifier The entity that verifies the authenticity of a digital signature using the 
public key. 

2.2 Acronyms 
ANS American National Standard. 

CA Certification Authority. 

DSA Digital Signature Algorithm; specified in this Standard.  

ECDSA Elliptic Curve Digital Signature Algorithm; specified in ANS X9.62. 

FIPS Federal Information Processing Standard. 

NIST National Institute of Standards and Technology. 

PKCS Public Key Cryptography Standard. 

PKI Public Key Infrastructure. 

RBG Random Bit Generator; specified in SP 800-90. 

RSA Algorithm developed by Rivest, Shamir and Adelman; specified in 
ANS X9.31 and PKCS #1. 

SHA Secure Hash Algorithm; specified in FIPS 180-3. 

SP NIST Special Publication 

TTP Trusted Third Party. 
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2.3 Mathematical Symbols 
a mod n 

b ≡ a mod n 

counter 

d 

domain_parameter_seed 

e 

g 

GCD (a, b) 

Hash (M) 

index 

k 

(L, N) 


LCM (a, b) 


len (a) 


M 


m 


N 

The unique remainder r, 0 ≤ r ≤  (n – 1), when integer a is divided by 
the positive integer n. For example, 23 mod 7 = 2. 

There exists an integer k such that b – a = kn; equivalently, a mod n 
= b mod n. 

The counter value that results from the domain parameter generation 
process when the domain parameter seed is used to generate DSA 
domain parameters. 

1. For RSA, the private signature exponent of a private key. 


2. For ECDSA, the private key. 


A seed used for the generation of domain parameters. 


The public verification exponent of an RSA public key. 


One of the DSA domain parameters; g is a generator of the q-order 

cyclic group of GF(p)*; that is, an element of order q in the 

multiplicative group of GF(p). 


Greatest common divisor of the integers a and b. 


The result of a hash computation (message digest or hash value) on 

message M using an approved hash function. 


A value used in the generation of g to indicate its intended use (e.g., 

for digital signatures). 


For DSA and ECDSA, a per-message secret number. 


For DSA, the length of the parameter p in bits. 


The associated pair of length parameters for a DSA key pair, where L
 
is the length of p, and N is the length of q. 


The least common multiple of the integers a and b. 


The length of a in bits. 


The message that is signed using the digital signature algorithm.
 

For ECDSA, the degree of the finite field GF .
m2 

For DSA, the length of the parameter q in bits. 
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n 1. For RSA, the modulus; the bit length of n is considered to be the 
key size. 

2. 	For ECDSA, the order of the base point of the elliptic curve; the 
bit length of n is considered to be the key size. 

(n, d) 	 An RSA private key, where n is the modulus, and d is the private 
signature exponent. 

(n, e) 	 An RSA public key, where n is the modulus, and e is the public 
verification exponent. 

nlen 	 The length of the RSA modulus n in bits. 

p 	 1. For DSA, one of the DSA domain parameters; a prime number 
that defines the Galois Field GF(p) and is used as a modulus in the 
operations of GF(p). 

2. For RSA, a prime factor of the modulus n. 

q 	 1. For DSA, one of the DSA domain parameters; a prime factor of  
p – 1. 

2. For RSA, a prime factor of the modulus n. 

Q An ECDSA public key. 

r One component of a DSA or ECDSA digital signature. See the 
definition of (r, s). 

(r, s) A DSA or ECDSA digital signature, where r and s are the digital 
signature components. 

s One component of a DSA or ECDSA digital signature. See the 
definition of (r, s). 

seedlen The length of the domain_parameter_seed in bits. 

SHAx(M) The result when M is the input to the SHA-x hash function, where 
SHA-x is specified in FIPS 180-3. 

The DSA private key. 

y The DSA public key. 

⊕ Bitwise logical “exclusive-or” on bit strings of the same length; for 
corresponding bits of each bit string, the result is determined as 
follows: 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, or 1 ⊕ 1 = 0. 

Example:  01101 ⊕ 11010 = 10111 
+ 	 Addition. 
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∗ Multiplication. 


/ Division. 


a || b The concatenation of two strings a and b. Either a and b are both bit 

strings, or both are byte strings. 

⎡a⎤ The ceiling of a: the smallest integer that is greater than or equal to 
a. For example, ⎡5⎤  = 5, ⎡5.3⎤ = 6, and ⎡–2.1⎤  = –2. 

⎣a⎦ The floor of a; the largest integer that is less than or equal to a. For 
example, ⎣5⎦ = 5, ⎣5.3⎦ = 5, and ⎣-2.1⎦. = -3. 

|a| The absolute value of a; |a| is – a if a < 0; otherwise, it is simply a. 
For example, |2| = 2, and |–2| = 2. 

[a, b] The interval of integers between and including a and b. For example, 
[1, 4] consists of the integers 1, 2, 3 and 4. 

{, a, b, …} Used to indicate optional information. 

0x The prefix to a bit string that is represented in hexadecimal characters. 
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3. General Discussion 
A digital signature is an electronic analogue of a written signature; the digital signature can be 
used to provide assurance that the claimed signatory signed the information. In addition, a 
digital signature may be used to detect whether or not the information was modified after it was 
signed (i.e., to detect the integrity of the signed data). These assurances may be obtained whether 
the data was received in a transmission or retrieved from storage. A properly implemented 
digital signature algorithm that meets the requirements of this Standard can provide these 
services. 

Private 
Key 

Public 
KeySignature 

Generation 

Message/Data 

Signature 
Verification 

Message/Data 

Hash FunctionHash Function Hash FunctionHash Function 

Message Digest Message Digest 

Signature Generation Signature Verification 

Signature 
Valid or 
Invalid 

Figure 1: Digital Signature Processes 

A digital signature algorithm includes a signature generation process and a signature verification 
process. A signatory uses the generation process to generate a digital signature on data; a verifier 
uses the verification process to verify the authenticity of the signature. Each signatory has a 
public and private key and is the owner of that key pair. As shown in Figure 1, the private key is 
used in the signature generation process. The key pair owner is the only entity that is authorized 
to use the private key to generate digital signatures. In order to prevent other entities from 
claiming to be the key pair owner and using the private key to generate fraudulent signatures, the 
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private key must remain secret. The approved digital signature algorithms are designed to 
prevent an adversary who does not know the signatory’s private key from generating the same 
signature as the signatory on a different message.  In other words, signatures are designed so that 
they cannot be forged. A number of alternative terms are used in this Standard to refer to the 
signatory or key pair owner. An entity that intends to generate digital signatures in the future 
may be referred to as the intended signatory. Prior to the verification of a signed message, the 
signatory is referred to as the claimed signatory until such time as adequate assurance can be 
obtained of the actual identity of the signatory.  

The public key is used in the signature verification process (see Figure 1). The public key need 
not be kept secret, but its integrity must be maintained. Anyone can verify a correctly signed 
message using the public key. 

For both the signature generation and verification processes, the message (i.e., the signed data) is 
converted to a fixed-length representation of the message by means of an approved hash 
function. Both the original message and the digital signature are made available to a verifier.  

A verifier requires assurance that the public key to be used to verify a signature belongs to the 
entity that claims to have generated a digital signature (i.e., the claimed signatory). That is, a 
verifier requires assurance that the signatory is the actual owner of the public/private key pair 
used to generate and verify a digital signature. A binding of an owner’s identity and the owner’s 
public key shall be effected in order to provide this assurance. 

A verifier also requires assurance that the key pair owner actually possesses the private key 
associated with the public key, and that the public key is a mathematically correct key. 

By obtaining these assurances, the verifier has assurance that if the digital signature can be 
correctly verified using the public key, the digital signature is valid (i.e., the key pair owner 
really signed the message). Digital signature validation includes both the (mathematical) 
verification of the digital signature and obtaining the appropriate assurances. The following are 
reasons why such assurances are required. 

1.	 If a verifier does not obtain assurance that a signatory is the actual owner of the key pair 
whose public component is used to verify a signature, the problem of forging a signature 
is reduced to the problem of falsely claiming an identity.  For example, anyone in 
possession of a mathematically consistent key pair can sign a message and claim that the 
signatory was the President of the United States. If a verifier does not require assurance 
that the President is actually the owner of the public key that is used to mathematically 
verify the message’s signature, then successful signature verification provides assurance 
that the message has not been altered since it was signed, but does not provide assurance 
that the message came from the President (i.e., the verifier has assurance of the data’s 
integrity, but source authentication is lacking). 

2.	 If the public key used to verify a signature is not mathematically valid, the arguments 
used to establish the cryptographic strength of the signature algorithm may not apply. 
The owner may not be the only party who can generate signatures that can be verified 
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with that public key. 

3.	 If a public key infrastructure cannot provide assurance to a verifier that the owner of a 
key pair has demonstrated knowledge of a private key that corresponds to the owner’s 
public key, then it may be possible for an unscrupulous entity to have their identity (or an 
assumed identity) bound to a public key that is (or has been) used by another party. The 
unscrupulous entity may then claim 
to be the source of certain messages 
signed by that other party. Or, it 
may be possible that an 
unscrupulous entity has managed to 
obtain ownership of a public key 
that was chosen with the sole 
purpose of allowing for the 
verification of a signature on a 
specific message. 

Technically, a key pair used by a digital 
signature algorithm could also be used for 
purposes other than digital signatures (e.g., 
for key establishment). However, a key pair 
used for digital signature generation and 
verification as specified in this Standard 
shall not be used for any other purpose. See 
SP 800-57 on Key Usage for further 
information. 

A number of steps are required to enable a 
digital signature generation or verification 
capability in accordance with this Standard. 
All parties that generate digital signatures 
shall perform the initial setup process as 
discussed in Section 3.1. Digital signature 
generation shall be performed as discussed 
in Section 3.2. Digital signature verification 
and validation shall be performed as 
discussed in Section 3.3. 

3.1 Initial Setup 
Figure 2 depicts the steps that are 
performed prior to generating a digital 
signature by an entity intending to act as a 

Obtain
Assurance of Possession

of the
DS Private Key

Obtain 
Assurance of Possession 

of the 
DS Private Key 

Obtain
Assurance of

Public Key Validity

Obtain 
Assurance of 

Public Key Validity 

Obtain
DS Key Pair

Obtain 
DS Key Pair 

Obtain Assurance of
Domain Parameter 

Validity

Obtain Assurance of 
Domain Parameter 

Validity 

Obtain
Domain Parameters

Obtain 
Domain Parameters 

Intended Signatory Ready for 
Generating Digital Signatures 

Intended 
signatory 

OR 
another 

entity 
generates 

Intended 
signatory 

OR 
a TTP 

generates 

Register the Public Key 
and Identity with a 

TTP 
Optional 

DSA 
and 
ECDSA 

Figure 2: Initial Setup by an Intended 
Signatory 
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signatory. 

For the DSA and ECDSA algorithms, the intended signatory shall first obtain appropriate 
domain parameters, either by generating the domain parameters itself, or by obtaining domain 
parameters that another entity has generated. Having obtained the set of domain parameters, the 
intended signatory shall obtain assurance of the validity of those domain parameters; approved 
methods for obtaining this assurance are provided in SP 800-89. Note that the RSA algorithm 
does not use domain parameters. 

Each intended signatory shall obtain a digital signature key pair that is generated as specified for 
the appropriate digital signature algorithm, either by generating the key pair itself or by 
obtaining the key pair from a trusted party. The intended signatory is authorized to use the key 
pair and is the owner of that key pair. Note that if a trusted party generates the key pair, that 
party needs to be trusted not to masquerade as the owner, even though the trusted party knows 
the private key. 

After obtaining the key pair, the intended signatory (now the key pair owner) shall obtain (1) 
assurance of the validity of the public key and (2) assurance that he/she actually possesses the 
associated private key. Approved methods for obtaining these assurances are provided in SP 
800-89. 

A digital signature verifier requires assurance of the identity of the signatory. Depending on the 
environment in which digital signatures are generated and verified, the key pair owner (i.e., the 
intended signatory) may register the public key and establish proof of identity with a mutually 
trusted party. For example, a certification authority (CA) could sign credentials containing an 
owner’s public key and identity to form a certificate after being provided with proof of the 
owner’s identity. Systems for certifying 
credentials and distributing certificates are 
beyond the scope of this Standard. Other means 
of establishing proof of identity (e.g., by 
providing identity credentials along with the 
public key directly to a prospective verifier) are 
allowed. 

3.2 Digital Signature Generation 
Figure 3 depicts the steps that are performed by 
an intended signatory (i.e., the entity that 
generates a digital signature). 

Prior to the generation of a digital signature, a 
message digest shall be generated on the 
information to be signed using an appropriate 
approved hash function. 

Generate a Digital Signature 

Obtain Additional
Information for the

Digital Signature Process

Obtain Additional 
Information for the 

Digital Signature Process 

Digital Signature Generation Complete 

DSA 
and 

ECDSA 

Generate a Message Digest 

Verify the Digital SignatureOptional 

Figure 3: Digital Signature Generation 
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Depending on the digital signature algorithm to be used, additional information shall be 
obtained. For example, a random per-message secret number shall be obtained for DSA and 
ECDSA. 

Using the selected digital signature algorithm, the signature private key, the message digest, and 
any other information required by the digital signature process, a digital signature shall be 
generated in accordance with this Standard. 

The signatory may optionally verify the digital signature using the signature verification process 
and the associated public key. This optional verification serves as a final check to detect 
otherwise undetected signature generation computation errors; this verification may be prudent 
when signing a high-value message, when multiple users are expected to verify the signature, or 
if the verifier will be verifying the signature at a much later time. 

3.3 Digital Signature Verification and Validation 
Figure 4 depicts the digital signature verification and validation process that are performed by a 
verifier (e.g., the intended recipient of the signed data and associated digital signature). Note that 
the figure depicts a successful verification and validation process (i.e., no errors are detected). 

In order to verify a digital signature, the verifier shall obtain the public key of the claimed 
signatory, (usually) based on the claimed identity. If DSA or ECDSA has been used to generate 
the digital signature, the verifier shall also obtain the domain parameters. The public key and 
domain parameters may be obtained, for example, from a certificate created by a trusted party 
(e.g., a CA) or directly from the claimed signatory. A message digest shall be generated on the 
data whose signature is to be verified (i.e., not on the received digital signature) using the same 
hash function that was used during the digital signature generation process. Using the 
appropriate digital signature algorithm, the domain parameters (if appropriate), the public key 
and the newly computed message digest, the received digital signature is verified in accordance 
with this Standard. If the verification process fails, no inference can be made as to whether the 
data is correct, only that in using the specified public key and the specified signature format, the 
digital signature cannot be verified for that data. 

Before accepting the verified digital signature as valid, the verifier shall have (1) assurance of 
the signatory’s claimed identity, (2) assurance of the validity of the domain parameters (for DSA 
and ECDSA), (3) assurance of the validity of the public key, and (4) assurance that the claimed 
signatory actually possessed the private key that was used to generate the digital signature at the 
time that the signature was generated. Methods for the verifier to obtain these assurances are 
provided in SP 800-89. Note that assurance of domain parameter validity may have been 
obtained during initial setup (see Section 3.1). 

If the verification and assurance processes are successful, the digital signature and signed data 
shall be considered valid. However, if a verification or assurance process fails, the digital 
signature should be considered invalid. An organization’s policy shall govern the action to be 
taken for an invalid digital signature. Such policy is outside the scope of this Standard. 
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Obtain the Domain 
Parameters and Public Key 

Get the Claimed 
Signatory’s Identifier

Get the Claimed 
Signatory’s Identifier 

Generate a Message Digest 

Verify the Digital Signature 

Obtain Assurance of the Claimed 
Signatory’s Identity 

Obtain Assurance of Domain 
Parameter Validity 

Obtain Assurance of the Validity 
of the Owner’s Public Key 

Obtain Assurance that the Owner 
Possesses the Private Key 

Digital Signature Validation Complete 

Actions Assurances 

Figure 4: Digital Signature Verification and Validation 
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4 The Digital Signature Algorithm (DSA) 

4.1 DSA Parameters 
A DSA digital signature is computed using a set of domain parameters, a private key x, a per-
message secret number k, data to be signed, and a hash function. A digital signature is verified 
using the same domain parameters, a public key y that is mathematically associated with the 
private key x used to generate the digital signature, data to be verified, and the same hash 
function that was used during signature generation. These parameters are defined as follows: 

p a prime modulus, where 2L–1 < p < 2L, and L is the bit length of p. Values for L are 
provided in Section 4.2. 

q a prime divisor of (p – 1), where 2N–1 < q < 2 N, and N is the bit length of q. Values for N 
are provided in Section 4.2. 

g a generator of the subgroup of order q mod p, such that 1 < g < p. 

x the private key that must remain secret; x is a randomly or pseudorandomly generated 
integer, such that 0 < x < q, i.e., x is in the range [1, q–1]. 

y the public key, where y = gx mod p. 

k  a secret number that is unique to each message; k is a randomly or pseudorandomly 
generated integer, such that 0 < k < q, i.e., k is in the range [1, q–1]. 

4.2 Selection of Parameter Sizes and Hash Functions for DSA 
This Standard specifies the following choices for the pair L and N (the bit lengths of p and q, 
respectively): 

L = 1024, N = 160 

L = 2048, N = 224 

L = 2048, N = 256 

L = 3072, N = 256 

Federal Government entities shall generate digital signatures using use one or more of these 
choices. 

An approved hash function, as specified in FIPS 180-3, shall be used during the generation of 
digital signatures. The security strength associated with the DSA digital signature process is no 
greater than the minimum of the security strength of the (L, N) pair and the security strength of 
the hash function that is employed. Both the security strength of the hash function used and the 
security strength of the (L, N) pair shall meet or exceed the security strength required for the 
digital signature process. The security strength for each (L, N) pair and hash function is provided 
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in SP 800-57. 

SP 800-57 provides information about the selection of the appropriate (L, N) pair in accordance 
with a desired security strength for a given time period for the generation of digital signatures. 
An (L, N) pair shall be chosen that protects the signed information during the entire expected 
lifetime of that information. For example, if a digital signature is generated in 2009 for 
information that needs to be protected for five years, and a particular (L, N) pair is invalid after 
2010, then a larger (L, N) pair shall be used that remains valid for the entire period of time that 
the information needs to be protected. 

It is recommended that the security strength of the (L, N) pair and the security strength of the 
hash function used for the generation of digital signatures be the same unless an agreement has 
been made between participating entities to use a stronger hash function. When the length of the 
output of the hash function is greater than N (i.e., the bit length of q), then the leftmost N bits of 
the hash function output block shall be used in any calculation using the hash function output 
during the generation or verification of a digital signature. A hash function that provides a lower 
security strength than the (L, N) pair ordinarily should not be used, since this would reduce the 
security strength of the digital signature process to a level no greater than that provided by the 
hash function. 

A Federal Government entity other than a Certification Authority (CA) should use only the first 
three (L, N) pairs (i.e., the (1024, 160), (2048, 224) and (2048, 256) pairs). A CA shall use an (L, 
N) pair that is equal to or greater than the (L, N) pairs used by its subscribers. For example, if 
subscribers are using the (2048, 224) pair, then the CA shall use either the (2048, 224), (2048, 
256) or (3072, 256) pair. Possible exceptions to this rule include cross certification between 
CAs, certifying keys for purposes other than digital signatures and transitioning from one key 
size or algorithm to another. See SP 800-57 for further guidance. 

4.3 DSA Domain Parameters 
DSA requires that the private/public key pairs used for digital signature generation and 
verification be generated with respect to a particular set of domain parameters. These domain 
parameters may be common to a group of users and may be public. A user of a set of domain 
parameters (i.e., both the signatory and the verifier) shall have assurance of their validity prior to 
using them (see Section 3). Although domain parameters may be public information, they shall 
be managed so that the correct correspondence between a given key pair and its set of domain 
parameters is maintained for all parties that use the key pair.  A set of domain parameters may 
remain fixed for an extended time period.  

The domain parameters for DSA are the integers p, q, and g, and optionally, the 
domain_parameter_seed and counter that were used to generate p and q (i.e., the full set of 
domain parameters is (p, q, g {, domain_parameter_seed, counter})). 
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4.3.1 Domain Parameter Generation 
Domain parameters may be generated by a trusted third party (a TTP, such as a CA) or by an 
entity other than a TTP. Assurance of domain parameter validity shall be obtained prior to key 
pair generation, digital signature generation or digital signature verification (see Section 3). 

The integers p and q shall be generated as specified in Appendix A.1. The input to the 
generation process is the selected values of L and N (see Section 4.2); the output of the 
generation process is the values for p and q, and optionally, the values of the 
domain_parameter_seed and counter. 

The generator g shall be generated as specified in Appendix A.2. 

The security strength of a hash function used during the generation of the domain parameters 
shall meet or exceed the security strength associated with the (L, N) pair. Note that this is more 
restrictive than the hash function that can be used for the digital signature process (see Section 
4.2). 

4.3.2 Domain Parameter Management 
Each digital signature key pair shall be correctly associated with one specific set of domain 
parameters (e.g., by a public key certificate that identifies the domain parameters associated with 
the public key). The domain parameters shall be protected from unauthorized modification until 
the set is deactivated (if and when the set is no longer needed). The same domain parameters 
may be used for more than one purpose (e.g., the same domain parameters may be used for both 
digital signatures and key establishment). However, using different values for the generator g 
reduces the risk that key pairs generated for one purpose could be accidentally used 
(successfully) for another purpose. 

4.4 Key Pairs 
Each signatory has a key pair: a private key x and a public key y that are mathematically related 
to each other. The private key shall be used for only a fixed period of time (i.e., the private key 
cryptoperiod) in which digital signatures may be generated; the public key may continue to be 
used as long as digital signatures that were generated using the associated private key need to be 
verified (i.e., the public key may continue to be used beyond the cryptoperiod of the associated 
private key). See SP 800-57 for further guidance. 

4.4.1 DSA Key Pair Generation 
A digital signature key pair x and y is generated for a set of domain parameters (p, q, g {, 
domain_parameter_seed, counter}). Methods for the generation of x and y are provided in 
Appendix B.1. 
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4.4.2 Key Pair Management 
Guidance on the protection of key pairs is provided in SP 800-57. The secure use of digital 
signatures depends on the management of an entity’s digital signature key pair as follows:  

1. The validity of the domain parameters shall be assured prior to the generation of the key 
pair, or the verification and validation of a digital signature (see Section 3). 

2. 	 Each key pair shall be associated with the domain parameters under which the key pair 
was generated. 

3. 	 A key pair shall only be used to generate and verify signatures using the domain 

parameters associated with that key pair. 


4. 	 The private key shall be used only for signature generation as specified in this Standard 
and shall be kept secret; the public key shall be used only for signature verification and 
may be made public. 

5. 	 An intended signatory shall have assurance of possession of the private key prior to or 
concurrently with using it to generate a digital signature (see Section 3.1). 

6. 	 A private key shall be protected from unauthorized access, disclosure and modification. 

7. 	 A public key shall be protected from unauthorized modification (including substitution). 
For example, public key certificates that are signed by a CA may provide such protection. 

8. A verifier shall be assured of a binding between the public key, its associated domain 
parameters and the key pair owner (see Section 3). 

9. A verifier shall obtain public keys in a trusted manner (e.g., from a certificate signed by a 
CA that the entity trusts, or directly from the intended or claimed signatory, provided that 
the entity is trusted by the verifier and can be authenticated as the source of the signed 
information that is to be verified).  

10. Verifiers shall be assured that the claimed signatory is the key pair owner, and that the 
owner possessed the private key that was used to generate the digital signature at the time 
that the signature was generated (i.e., the private key that is associated with the public 
key that will be used to verify the digital signature) (see Section 3.3). 

11. A signatory and a verifier shall have assurance of the validity of the public key (see 
Sections 3.1 and 3.3). 

4.5 DSA Per-Message Secret Number 
A new secret random number k shall be generated prior to the generation of each digital 
signature for use during the signature generation process. This secret number shall be protected 
from unauthorized disclosure and modification. 

k −1	 k −1 is the multiplicative inverse of k with respect to multiplication modulo q; i.e., 0 < < q 
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k −1and 1 = ( k) mod q. This inverse is required for the signature generation process (see Section 
k −14.6). A technique is provided in Appendix C.1 for deriving from k. 

k −1k and  may be pre-computed, since knowledge of the message to be signed is not required for 
k −1the computations. When k and  are pre-computed, their confidentiality and integrity shall be 

protected. 

Methods for the generation of the per-message secret number are provided in Appendix B.2. 

4.6 DSA Signature Generation 
The intended signatory shall have assurances as specified in Section 3.1. 


Let N be the bit length of q. Let min(N, outlen) denote the minimum of the positive integers N
 
and outlen, where outlen is the bit length of the hash function output block. 


The signature of a message M consists of the pair of numbers r and s that is computed according 

to the following equations: 


r = (gk mod p) mod q. 

z = the leftmost min(N, outlen) bits of Hash(M). 

k −1s = ( (z + xr)) mod q. 

When computing s, the string z obtained from Hash(M) shall be converted to an integer. The 
conversion rule is provided in Appendix C.2. 

Note that r may be computed whenever k, p, q and g are available, e.g., whenever the domain 
parameters p, q and g are known, and k has been pre-computed (see Section 4.5), r may also be 
pre-computed, since knowledge of the message to be signed is not required for the computation 
of r. Pre-computed k, k-1 and r values shall be protected in the same manner as the the private 
key x until s has been computed (see SP 800-57). 

The values of r and s shall be checked to determine if r = 0 or s = 0. If either r = 0 or s = 0, a 
new value of k shall be generated, and the signature shall be recalculated. It is extremely 
unlikely that r = 0 or s = 0 if signatures are generated properly. 

The signature (r, s) may be transmitted along with the message to the verifier. 

4.7 DSA Signature Verification and Validation 
Signature verification may be performed by any party (i.e., the signatory, the intended recipient 
or any other party) using the signatory’s public key. A signatory may wish to verify that the 
computed signature is correct, perhaps before sending the signed message to the intended 
recipient. The intended recipient (or any other party) verifies the signature to determine its 
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authenticity. 

Prior to verifying the signature of a signed message, the domain parameters, and the claimed 
signatory’s public key and identity shall be made available to the verifier in an authenticated 
manner. The public key may, for example, be obtained in the form of a certificate signed by a 
trusted entity (e.g., a CA) or in a face-to-face meeting with the public key owner.  

Let M ′, r′, and s′ be the received versions of M, r, and s, respectively; let y be the public key of 
the claimed signatory; and let N be the bit length of q. Also, let min(N, outlen) denote the 
minimum of the positive integers N and outlen, where outlen is the bit length of the hash 
function output block. 

The signature verification process is as follows: 

1. The verifier shall check that 0 < r′ < q and 0 < s′ < q; if either condition is violated, the 
signature shall be rejected as invalid. 

2. 	 If the two conditions in step 1 are satisfied, the verifier computes the following: 

w  = (s′)–1 mod q. 

z = the leftmost min(N, outlen) bits of Hash(M′ ). 

u1 = (zw) mod q. 

u2 = ((r′)w) mod q. 

v = (((g)u1 (y)u2) mod p) mod q. 

A technique is provided in Appendix C.1 for deriving (s′ )–1 (i.e., the multiplicative 
inverse of s′ mod q). 


The string z obtained from Hash(M′) shall be converted to an integer. The conversion 

rule is provided in Appendix C.2. 


3. If v = r′, then the signature is verified. For a proof that v = r′ when M′ = M, r′ = r, and s′ 
= s, see Appendix E. 

4. If v does not equal r′, then the message or the signature may have been modified, there 
may have been an error in the signatory’s generation process, or an imposter (who did not 
know the private key associated with the public key of the claimed signatory) may have 
attempted to forge the signature.  The signature shall be considered invalid. No inference 
can be made as to whether the data is valid, only that when using the public key to verify 
the signature, the signature is incorrect for that data. 

5. 	 Prior to accepting the signature as valid, the verifier shall have assurances as specified in 
Section 3.3. 

An organization’s policy may govern the action to be taken for invalid digital signatures. Such 
policy is outside the scope of this Standard. Guidance about determining the timeliness of 
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digitally signed messages is addressed in SP 800-102, Recommendation for Digital Signature 
Timeliness.  
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5. The RSA Digital Signature Algorithm 
The use of the RSA algorithm for digital signature generation and verification is specified in 
American National Standard (ANS) X9.31 and Public Key Cryptography Standard (PKCS) #1. 
While each of these standards uses the RSA algorithm, the format of the ANS X9.31 and PKCS 
#1 data on which the digital signature is generated differs in details that make the algorithms 
non-interchangeable. 

5.1 RSA Key Pair Generation 
An RSA digital signature key pair consists of an RSA private key, which is used to compute a 
digital signature, and an RSA public key, which is used to verify a digital signature. An RSA key 
pair used for digital signatures shall only be used for one digital signature scheme (e.g., ANS 
X9.31, RSASSA-PKCS1 v1.5 or RSASSA-PSS; see Sections 5.4 and 5.5). In addition, an RSA 
digital signature key pair shall not be used for other purposes (e.g., key establishment). 

An RSA public key consists of a modulus n, which is the product of two positive prime integers 
p and q (i.e., n = pq), and a public key exponent e. Thus, the RSA public key is the pair of values 
(n, e) and is used to verify digital signatures. The size of an RSA key pair is commonly 
considered to be the length of the modulus n in bits (nlen). 

The corresponding RSA private key consists of the same modulus n and a private key exponent d 
that depends on n and the public key exponent e. Thus, the RSA private key is the pair of values 
(n, d) and is used to generate digital signatures. Note that an alternative method for representing 
(n, d) using the Chinese Remainder Theorem (CRT) is allowed. 

In order to provide security for the digital signature process, the two integers p and q, and the 
private key exponent d shall be kept secret. The modulus n and the public key exponent e may 
be made known to anyone. Guidance on the protection of these values is provided in SP 800-57. 

This Standard specifies three choices for the length of the modulus (i.e., nlen): 1024, 2048 and 
3072 bits. Federal Government entities shall generate digital signatures using one or more of 
these choices. 

An approved hash function, as specified in FIPS 180-3, shall be used during the generation of 
key pairs and digital signatures. When used during the generation of an RSA key pair (as 
specified in this Standard), the length in bits of the hash function output block shall meet or 
exceed the security strength associated with the bit length of the modulus n (see SP 800-57). 

The security strength associated with the RSA digital signature process is no greater than the 
minimum of the security strength associated with the bit length of the modulus and the security 
strength of the hash function that is employed. The security strength for each modulus length and 
hash function used during the digital signature process is provided in SP 800-57. Both the 
security strength of the hash function used and the security strength associated with the bit length 
of the modulus n shall meet or exceed the security strength required for the digital signature 
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process. 

It is recommended that the security strength of the modulus and the security strength of the hash 
function be the same unless an agreement has been made between participating entities to use a 
stronger hash function. A hash function that provides a lower security strength than the security 
strength associated with the bit length of the modulus ordinarily should not be used, since this 
would reduce the security strength of the digital signature process to a level no greater than that 
provided by the hash function. 

Federal Government entities other than CAs should use only the first two choices (i.e., nlen = 
1024 or 2048) during the timeframes indicated in SP 800-57. A CA should use a modulus whose 
length nlen is equal to or greater than the moduli used by its subscribers. For example, if the 
subscribers are using nlen = 2048, then the CA should use nlen ≥ 2048. SP 800-57 provides 
further information about the selection of the bit length of n. Possible exceptions to this rule 
include cross certification between CAs, certifying keys for purposes other than digital 
signatures and transitioning from one key size or algorithm to another. 

Criteria for the generation of RSA key pairs are provided in Appendix B.3.1. 

When RSA parameters are randomly generated (i.e., the primes p and q, and optionally, the 
public key exponent e), they shall be generated using an approved random or pseudorandom 
number generator (see SP 800-90). The resulting (pseudo) random numbers shall be used as 
seeds for generating RSA parameters (e.g., the (pseudo) random number is used as a prime 
number generation seed).  Prime number generation seeds shall be kept secret or destroyed when 
the modulus n is computed. If the prime number generation seeds are retained, they shall only be 
used as evidence that the generated values (i.e., p and q) were determined in an arbitrary manner, 
and the seeds shall be protected in a manner that is (at least) equivalent to the protection required 
for the private key. 

5.2 Key Pair Management 
The secure use of digital signatures depends on the management of an entity’s digital signature 
key pair. Key pair management requirements for RSA are provided in Section 4.4.2, 
requirements 4 – 11. Note that the first three requirements in Section 4.4.2, which address the 
relationship between domain parameters and key pairs, are not applicable to RSA. 

5.3 Assurances 
The intended signatory shall have assurances as specified in Section 3.1. Prior to accepting a digital 
signature as valid, the verifier shall have assurances as specified in Section 3.3. 

5.4 ANS X9.31 
ANS X9.31, Digital Signatures Using Reversible Public Key Cryptography for the Financial 
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Services Industry (rDSA), was developed for the American National Standards Institute by the 
Accredited Standards Committee on Financial Services, X9. See http://www.x9.org for 
information about obtaining copies of ANS X9.31 and any associated errata. The following 
discussions are based on the version of ANS X9.31 that was approved in 1998. 

Methods for the generation of the private prime factors p and q are provided in Appendix B.3. 

In ANS X9.31, the length of the modulus n is allowed in increments of 256 bits beyond a 
minimum of 1024 bits. Implementations claiming conformance to FIPS 186-3 shall include one 
or more of the modulus sizes specified in Section 5.1. 

Two methods for the generation of digital signatures are included in ANS X9.31. When the 
public signature verification exponent e is odd, the digital signature algorithm is commonly 
known as RSA; when the public signature verification exponent e is even, the digital signature 
algorithm is commonly known as Rabin-Williams. This Standard (i.e., FIPS 186-3) adopts the 
use of RSA, but does not adopt the use of Rabin-Williams. 

During signature verification, the extraction of the hash value H(M)′ from the data structure IR′ 
shall be accomplished by either: 

•	 Selecting the hashlen bytes of the data structure IR′ that immediately precedes the two 
bytes of trailer information, where hashlen is the length in bytes of the hash function 
used, regardless of the length of the padding, or 

•	 If the hash value H(M)′ is selected by its location with respect to the last byte of padding 
(i.e., 0xBA), including a check that the hash value is followed by only two bytes 
containing the expected trailer value. 

ANS X9.31 contains an annex on random number generation. However, implementations of 
ANS X9.31 shall use the approved random number generation methods specified in SP 800-90.  

Annexes in ANS X9.31 provide informative discussions of security and implementation 
considerations. 

5.5 PKCS #1 
Public-Key Cryptography Standard (PKCS) #1, RSA Cryptography Standard, defines 
mechanisms for encrypting and signing data using the RSA algorithm. PKCS #1 v2.1 specifies 
two digital signature processes and corresponding formats: RSASSA-PKCS1-v1.5 and 
RSASSA-PSS. Both signature schemes are approved for use, but additional constraints are 
imposed beyond those specified in PKCS #1 v2.1. 

(a) Implementations that generate RSA key pairs shall use the criteria and methods in 
Appendix B.3 to generate those key pairs, 

(b) Only approved hash functions shall be used. 

(c) Only two prime factors p and q shall be used to form the modulus n. 
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(d) Random numbers shall be generated in accordance with SP 800-90. 

(e) For RSASSA-PSS, the length of the salt (sLen) shall be: 0 ≤ sLen ≤ hlen, where hlen is 
the length of the hash function output block. 

(f) For RSASSA-PKCS-v1.5, when the hash value is recovered from the encoded message 
EM during the verification of the digital signature1, the extraction of the hash value shall 
be accomplished by either: 

•	 Selecting the rightmost (least significant) bits of EM, based on the size of the hash 
function used, regardless of the length of the padding, or 

•	 If the hash value is selected by its location with respect to the last byte of padding, 
including a check that the hash value is located in the rightmost (least significant) 
bytes of EM (i.e., no other information follows the hash value in the encoded 
message). 

Note: PKCS #1 was initially developed by RSA Laboratories in 1991 and has been revised as 
multiple versions. At the time of the approval of FIPS 186-3, three versions of PKSC #1 were 
available: version 1.5, version 2.0 and version 2.1. This Standard references only version 2.1. 

1 PKCS #1, v2.1 provides two methods for comparing the hash values:  by comparing the encoded messages EM and 
EM′, and by extracting the hash value from the decoding of the encoded message (see the Note in PKCS #1, v2.1). 
Step (f) above applies to the latter case. 
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6. The Elliptic Curve Digital Signature Algorithm (ECDSA) 
ANS X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve 
Digital Signature Standard (ECDSA), was developed for the American National Standards 
Institute by the Accredited Standards Committee on Financial Services, X9. Information about 
obtaining copies of ANS X9.62 is available at http://www.x9.org. The following discussions are 
based on the version of ANS X9.62 that was approved in 2005. This version of ANS X9.62 shall 
be used, subject to the transition period referenced in the implementation schedule of this 
Standard. 

ANS X9.62 defines methods for digital signature generation and verification using the Elliptic 
Curve Digital Signature Algorithm (ECDSA). Specifications for the generation of the domain 
parameters used during the generation and verification of digital signatures are also included in 
ANS X9.62. ECDSA is the elliptic curve analog of DSA. ECDSA keys shall not be used for any 
other purpose (e.g., key establishment). 

6.1 ECDSA Domain Parameters 
ECDSA requires that the private/public key pairs used for digital signature generation and 
verification be generated with respect to a particular set of domain parameters. These domain 
parameters may be common to a group of users and may be public. Domain parameters may 
remain fixed for an extended time period. 

Domain parameters for ECDSA are of the form (q, FR, a, b {, domain_parameter_seed}, G, n, 
h), where q is the field size; FR is an indication of the basis used; a and b are two field elements 
that define the equation of the curve; domain_parameter_seed is the domain parameter seed and 
is an optional bit string that is present if the elliptic curve was randomly generated in a verifiable 
fashion, G is a base point of prime order on the curve (i.e., G = (xG, yG)), n is the order of the 
point G, and h is the cofactor (which is equal to the order of the curve divided by n). 

6.1.1 Domain Parameter Generation 
This Standard specifies five ranges for n (see Table 1). For each range, a maximum cofactor size 
is also specified. Note that the specification of a cofactor h in a set of domain parameters is 
optional in ANS X9.62, whereas implementations conforming to this Standard (i.e., FIPS 186-3) 
shall specify the cofactor h in the set of domain parameters. Table 1 provides the maximum sizes 
for the cofactor h. 
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Table 1: ECDSA Security Parameters 

Bit length of n 

⎡log 2 n⎤ 

Maximum 
Cofactor (h) 

160 - 223 210 

224 - 255 214 

256 - 383 216 

384 - 511 224 

≥ 512 232 

ECDSA is defined for two arithmetic fields: the finite field GFp  and the finite field GF . Form2 

the field GFp , p is required to be an odd prime.  

NIST Recommended curves are provided in Appendix D of this Standard (i.e., FIPS 186-3). 
Three types of curves are provided: 

1. Curves over prime fields, which are identified as P-xxx, 

2. Curves over Binary fields, which are identified as B-xxx, and 

3. Koblitz curves, which are identified as K-xxx, 

where xxx indicates the bit length of the field size. 

Alternatively, ECDSA domain parameters may be generated as specified in ANS X9.62; when 
ECDSA domain parameters are generated (i.e., the NIST Recommended curves are not used), 
the value of G should be generated canonically (verifiably random). An approved hash function, 
as specified in FIPS 180-3, shall be used during the generation of ECDSA domain parameters. 
When generating these domain parameters, the security strength of a hash function used shall 
meet or exceed the security strength associated with the bit length of n (see footnote 2 below). 

An approved hash function, as specified in FIPS 180-3, is required during the generation of 
domain parameters. The security strength of the hash function used shall meet or exceed the 
security strength associated with the bit length of n. The security strengths for the ranges of n 
and the hash functions are provided in SP 800-57. It is recommended that the security strength 
associated with the bit length of n and the security strength of the hash function be the same 

2 The NIST Recommended curves were generated prior to the formulation of this guidance and using SHA-1, which 
was the only approved hash function available at that time. Since SHA-1 was considered secure at the time of 
generation, the curves were made public, and SHA-1 will only be used to validate those curves, the NIST 
Recommended curves are still considered secure and appropriate for Federal government use. 
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unless an agreement has been made between participating entities to use a stronger hash 
function; a hash function that provides a lower security strength than is associated with the bit 
length of n shall not be used. If the length of the output of the hash function is greater than the 
bit length of n, then the leftmost n bits of the hash function output block shall be used in any 
calculation using the hash function output during the generation or verification of a digital 
signature. 

Normally, a CA should use a bit length of n whose assessed security strength is equal to or 
greater than the assessed security strength associated with the bit length of n used by its 
subscribers. For example, if subscribers are using a bit length of n with an assessed security 
strength of 112 bits, then CAs should use a bit length of n whose assessed security strength is 
equal to or greater than 112 bits. SP 800-57 provides further information about the selection of a 
bit length of n. Possible exceptions to this rule include cross certification between CAs, 
certifying keys for purposes other than digital signatures and transitioning from one key size or 
algorithm to another. However, these exceptions require further analysis. 

6.1.2 Domain Parameter Management 
Each ECDSA key pair shall be correctly associated with one specific set of domain parameters 
(e.g., by a public key certificate that identifies the domain parameters associated with the public 
key). The domain parameters shall be protected from unauthorized modification until the set is 
deactivated (if and when the set is no longer needed). The same domain parameters may be used 
for more than one purpose (e.g., the same domain parameters may be used for both digital 
signatures and key establishment). However, using different domain parameters reduces the risk 
that key pairs generated for one purpose could be accidentally used (successfully) for another 
purpose. 

6.2 Private/Public Keys 
An ECDSA key pair consists of a private key d and a public key Q that is associated with a 
specific set of ECDSA domain parameters; d, Q and the domain parameters are mathematically 
related to each other. The private key is normally used for a period of time (i.e., the 
cryptoperiod); the public key may continue to be used as long as digital signatures that have been 
generated using the associated private key need to be verified (i.e., the public key may continue 
to be used beyond the cryptoperiod of the associated private key). See SP 800-57 for further 
guidance. 

ECDSA keys shall only be used for the generation and verification of ECDSA digital signatures. 

6.2.1 Key Pair Generation 
A digital signature key pair d and Q is generated for a set of domain parameters (q, FR, a, b {, 
domain_parameter_seed}, G, n, h). Methods for the generation of d and Q are provided in 
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Appendix B.4. 

6.2.2 Key Pair Management 
The secure use of digital signatures depends on the management of an entity’s digital signature 
key pair as specified in Section 4.4.2. 

6.3 Secret Number Generation 
A new secret random number k shall be generated prior to the generation of each digital 
signature for use during the signature generation process. This secret number shall be protected 
from unauthorized disclosure and modification. Methods for the generation of the per-message 
secret number are provided in Appendix B.5. 

k −1 k −1 is the multiplicative inverse of k with respect to multiplication modulo n; i.e., 0 < < n 
k −1and 1 = ( k) mod n. This inverse is required for the signature generation process. A technique 

k −1is provided in Appendix C.1 for deriving from k. 

k −1k and  may be pre-computed, since knowledge of the message to be signed is not required for 
k −1the computations. When k and  are pre-computed, their confidentiality and integrity shall be 

protected. 

6.4 ECDSA Digital Signature Generation and Verification 
An ECDSA digital signature (r, s) shall be generated as specified in ANS X9.62, using: 

1. Domain parameters that are generated in accordance with Section 6.1.1,  

2. A private key that is generated as specified in Section 6.2.1, 

3. A per-message secret number that is generated as specified in Section 6.3, 

4. An approved hash function as discussed below, and 

5. An approved random number generator as specified in SP 800-90. 

An ECDSA digital signature shall be verified as specified in ANS X9.62, using the same domain 
parameters and hash function that were used during signature generation. 

An approved hash function, as specified in FIPS 180-3, shall be used during the generation of 
digital signatures. The security strength associated with the ECDSA digital signature process is 
no greater than the minimum of the security strength associated with the bit length of n and the 
security strength of the hash function that is employed. Both the security strength of the hash 
function used and the security strength associated with the bit length of n shall meet or exceed 
the security strength required for the digital signature process. The security strengths for the 
ranges of the bit lengths of n and for each hash function is provided in SP 800-57. 
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It is recommended that the security strength associated with the bit length of n and the security 
strength of the hash function be the same unless an agreement has been made between 
participating entities to use a stronger hash function. When the length of the output of the hash 
function is greater than the bit length of n, then the leftmost n bits of the hash function output 
block shall be used in any calculation using the hash function output during the generation or 
verification of a digital signature. A hash function that provides a lower security strength than 
the security strength associated with the bit length of n ordinarily should not be used, since this 
would reduce the security strength of the digital signature process to a level no greater than that 
provided by the hash function. 

6.5 Assurances 
The intended signatory shall have assurances as specified in Section 3.1. Prior to accepting a 
signature as valid, the verifier shall have assurances as specified in Section 3.3. 
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APPENDIX A:  Generation and Validation of FFC Domain Parameters  
Finite field cryptography (FFC) is a method of implementing discrete logarithm cryptography 
using finite field mathematics. DSA, as specified in this Standard, is an example of FFC. The 
Diffie-Hellman and MQV key establishment algorithms specified in SP 800-56A can also be 
implemented as FFC.  

The domain parameters for FFC consist of the set of values (p, q, g {, domain_parameter_seed, 
counter}). This appendix specifies techniques for the generation of the FFC domain parameters 
p, q and g and performing an explicit domain parameter validation. During the generation 
process, the values for domain_parameter_seed and counter are obtained. 

A.1 Generation of the FFC Primes p and q 
This section provides methods for generating the primes p and q that fulfill the criteria specified 
in Sections 4.1 and 4.2. One of these methods shall be used when generating these primes. A 
method is provided in Appendix A.1.1 to generate random candidate integers and then test them 
for primality using a probabilistic algorithm. A second method is provided in Appendix A.1.2 
that constructs integers from smaller integers so that the constructed integer is guaranteed to be 
prime.  

During the generation, validation and testing processes, conversions between bit strings and 
integers are required. Appendix C.2 provides methods for these conversions. 

A.1.1 Generation and Validation of Probable Primes 
Previous versions of this Standard contained a method for the generation of the domain 
parameters p and q using SHA-1 and probabilistic methods. This method is no longer approved 
for domain parameter generation; however, the validation process for this method is provided in 
Appendix A.1.1.1 to validate previously generated domain parameters. 

A method for the generation and validation of the primes p and q using probabilistic methods is 
provided in Appendix A.1.1.2 and is based on the use of an approved hash function; this method 
shall be used for generating probable primes. The validation process for this method is provided 
in Appendix A.1.1.3. 

The probabilistic methods use a hash function and an arbitrary seed (domain_parameter_seed). 
Arbitrary seeds could be anything, e.g., a user’s favorite number or a random or pseudorandom 
number output by a random number generator (see SP 800-90). The domain_parameter_seed 
determines a sequence of candidates for p and q in the required intervals that are then tested for 
primality using a probabilistic primality test (see Appendix C.3). The test determines that the 
candidate is either not a prime (i.e., it is a composite integer) or is “probably a prime” (i.e., there 
is a very small probability that a composite integer will be declared to be a prime). p and q shall 
be the first candidate set that passes the primality tests. Note that the domain_parameter_seed 
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shall be unique for every unique set of domain parameters that are generated using the same 
method. 

A.1.1.1 	 Validation of the Probable Primes p and q that were Generated Using SHA-1 as 
Specified in Prior Versions of this Standard 

This prime validation algorithm is used to validate that the primes p and q that were generated by 
the prime generation algorithm specified in previous versions of this Standard. The algorithm 
requires the values of p, q, domain_parameter_seed and counter, which were output from the 
prime generation algorithm. 

Let SHA1( ) be the SHA-1 hash function specified in FIPS 180-3. The following process or its 
equivalent shall be used to validate p and q for this method.  

Input: 

1. p, q	 The generated primes p and q. 

2. domain_parameter_seed 	A seed that was used to generate p and q. 

3. counter	 A count value that was determined during generation. 

Output: 

1. 	 status The status returned from the validation procedure, where 
status is either VALID or INVALID. 

Process: 

1. If (len (p) ≠ 1024) or (len (q) ≠ 160), then return INVALID. 

2. If (counter > 4095), then return INVALID. 

3. 	 seedlen = len (domain_parameter_seed). 

4. If (seedlen < 160), then return INVALID. 

5. 	 computed_q = SHA1(domain_parameter_seed) ⊕ SHA1((domain_parameter_seed + 
1) mod 2seedlen). 

6. 	 Set the first and last bits of computed_q equal to 1 (i.e., the 159th and 0th bits). 

7. 	 Test whether or not computed_q is prime as specified in Appendix C.3. If 
(computed_q ≠ q) or (computed_q is not prime), then return INVALID. 

8. 	 offset = 2. 

9. For i = 0 to counter do 

9.1 	For j = 0 to 6 do 

Vj = SHA1((domain_parameter_seed + offset + j) mod 2seedlen). 

9.2 	 W = V0 + (V1 ∗ 2160) + (V2 ∗ 2320) + (V3 ∗ 2480) + (V4 ∗ 2640) + (V5 ∗ 2800) + 

32
 



 

 

 

 

 

 

 

    
 

 

 

 
  

 

 

 

  

  

 

((V6 mod 263) ∗ 2960). 

9.3 	 X = W + 21023. Comment: 0 ≤ W < 2L–1. 

9.4 	 c = X mod 2q. 

9.5 	 computed_p = X – (c – 1). Comment: computed_p ≡ 1 (mod 2q). 

9.6 	If (computed_p < 21023), then go to step 9.8. 

9.7 	 Test whether or not computed_p is prime as specified in Appendix C.3. If 
computed_p is determined to be prime, then go to step 10. 

9.8 	 offset = offset + 7. 

10. If ((i ≠ counter) or (computed_p ≠ p) or (computed_p is not prime)), then return 
INVALID. 

11. Return VALID. 

A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function 

This method uses an approved hash function and may be used for the generation of the primes p 
and q for any application (e.g., digital signatures or key establishment). The security strength of 
the hash function shall be equal to or greater than the security strength associated with the (L, N) 
pair. 

An arbitrary domain_parameter_seed of seedlen bits is also used, where seedlen shall be equal 
to or greater than N. 

The generation process returns a set of integers p and q that have a very high probability of being 
prime. For another entity to validate that the primes were generated correctly using the validation 
process in Appendix A.1.1.3, the value of the domain_parameter_seed and the counter used to 
generate the primes must also be returned and made available to the validating entity; the 
domain_parameter_seed and counter need not be kept secret. Let Hash( ) be the selected hash 
function, and let outlen be the bit length of the output block, where outlen shall be equal to or 
greater than N. 

The following process or its equivalent shall be used to generate p and q for this method.  

Input: 

1. L	 The desired length of the prime p (in bits). 

2. N	 The desired length of the prime q (in bits). 

3. 	 seedlen The desired length of the domain parameter seed; seedlen shall be 
equal to or greater than N. 

Output: 

1. status The status returned from the generation procedure, where status is 
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either VALID or INVALID. If INVALID is returned as the status, 
either no values for the other output parameters shall be returned, or 
invalid values shall be returned (e.g., zeros or Null strings). 

2. p, q	 The generated primes p and q. 

3. 	 domain_parameter_seed 


(Optional) A seed that was used to generate p and q. 


4. counter	 (Optional) A count value that was determined during generation. 

Process: 

1. 	 Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If 
the pair is not in the list, then return INVALID. 

2. If (seedlen < N), then return INVALID. 

3. 	 n = ⎡L ⁄ outlen⎤ – 1. 

4. 	 b = L – 1 – (n ∗ outlen). 

5. 	 Get an arbitrary sequence of seedlen bits as the domain_parameter_seed. 

6. 	 U = Hash (domain_parameter_seed) mod 2N–1. 

7. 	 q = 2N–1 + U + 1 – ( U mod 2). 

8. 	 Test whether or not q is prime as specified in Appendix C.3. 

9. If q is not a prime, then go to step 5. 

10. offset = 1. 

11. For counter = 0 to (4L – 1) do 

11.1 	For j = 0 to n do 

Vj = Hash ((domain_parameter_seed + offset + j) mod 2seedlen). 

11.2 	 W = V0 + (V1 ∗ 2outlen) + … + (Vn–1 ∗ 2(n–1) ∗ outlen) + ((Vn mod 2b) ∗ 2n ∗ outlen). 

11.3 	 X = W + 2L–1. Comment: 0 ≤ W < 2L–1; hence, 2L–1 ≤ X < 2L . 

11.4 	 c = X mod 2q. 

11.5 	 p = X – (c – 1). Comment: p ≡ 1 (mod 2q). 

11.6 	If (p < 2L–1), then go to step 11.9. 

11.7 	 Test whether or not p is prime as specified in Appendix C.3. 

11.8 	If p is determined to be prime, then return VALID and the values of p, q and 
(optionally) the values of domain_parameter_seed and counter. 
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11.9 	 offset = offset + n + 1. Comment: Increment offset; then, as part of 
the loop in step 11, increment counter; if 
counter < 4L, repeat steps 11.1 through 11.8. 

12. Go to step 5. 

A.1.1.3 	 Validation of the Probable Primes p and q that were Generated Using an 
Approved Hash Function 

This prime validation algorithm is used to validate that the integers p and q were generated by 
the prime generation algorithm given in Appendix A.1.1.2. The validation algorithm requires the 
values of p, q, domain_parameter_seed and counter, which were output from the prime 
generation algorithm. Let Hash( ) be the hash function used to generate p and q, and let outlen 
be its output block length. 

The following process or its equivalent shall be used to validate p and q for this method.  

Input: 

1. p, q	 The generated primes p and q. 

3. domain_parameter_seed 	The domain parameter seed that was used to generate p and 
q. 

4. counter	 A count value that was determined during generation. 

Output: 

1. 	 status The status returned from the validation procedure, where 
status is either VALID or INVALID. 

Process: 

1. 	 L = len (p). 

2. 	 N = len (q). 

3. 	 Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If the 
pair is not in the list, return INVALID. 

4. If (counter > (4L – 1)), then return INVALID. 

5. 	 seedlen = len (domain_parameter_seed). 

6. If (seedlen < N), then return INVALID. 

7. 	 U = Hash(domain_parameter_seed) mod 2N–1. 

8. 	 computed_q = 2N–1 + U + 1 – ( U mod 2). 

9. 	 Test whether or not computed_q is prime as specified in Appendix C.3. If (computed_q ≠ 
q) or (computed_q is not prime), then return INVALID. 
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10. n = ⎡L ⁄ outlen⎤ – 1. 

11. b = L – 1 – (n ∗ outlen). 

12. offset = 1. 

13. For i = 0 to counter do 

13.1 For j = 0 to n do 


Vj = Hash((domain_parameter_seed + offset + j) mod 2seedlen). 


13.2 W = V0 + (V1 ∗ 2outlen) + … + (Vn–1 ∗ 2(n–1) ∗ outlen) + ((Vn mod 2b) ∗ 2n ∗ outlen). 

13.3 X = W + 2L–1. 

13.4 c = X mod 2q. 

13.5 computed_p = X – (c – 1). 

13.6 If (computed_p < 2L–1), then go to step 13.9 

13.7 Test whether or not computed_p is prime as specified in Appendix C.3. 

13.8 If computed_p is determined to be a prime, then go to step 14. 

13.9 offset = offset + n + 1. 

14. If ((i ≠ counter) or (computed_p ≠ p) or (computed_p is not a prime)), then return 
INVALID. 

15. Return VALID. 

A.1.2 Construction and Validation of the Provable Primes p and q 
Primes can be generated so that they are guaranteed to be prime. The following algorithm for 
generating p and q uses an approved hash function and an arbitrary seed (firstseed) to construct p 
and q in the required intervals. The security strength of the hash function shall be equal to or 
greater than the security strength associated with the (L, N) pair. 

Arbitrary seeds can be anything, e.g., a user’s favorite number or a random or pseudorandom 
number that is output from a random number generator. Note that the firstseed must be unique to 
produce a unique set of domain parameters. Candidate primes are tested for primality using a 
deterministic primality test that proves whether or not the candidate is prime. The resulting p and 
q are guaranteed to be primes. 

A.1.2.1 Construction of the Primes p and q Using the Shawe-Taylor Algorithm 

For each set of domain parameters generated, an arbitrary initial seed (firstseed) of at least 
seedlen bits shall be determined, where seedlen shall be ≥ N. 

The generation process returns a set of integers p and q that are guaranteed to be prime. For 
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another entity to validate that the primes were generated correctly (using the validation process 
in Appendix A.1.2.2), the value of the firstseed, the two computed seeds (pseed and qseed) and 
the counters used to generate the primes (pgen_counter and qgen_counter) must be made 
available to the validating entity; the seeds and the counters need not be kept secret. The domain 
parameters for DSA are identified in Section 4.3 as (p, q, g {, domain_parameter_seed, 
counter}). When using the Shawe-Taylor algorithm for generating p and q, the 
domain_parameter_seed consists of three seed values (firstseed, pseed, and qseed), and the 
counter consists of the pair of counter values (pgen_counter and qgen_counter). 

Let Hash( ) be the selected hash function (see Appendix A.1.2), and let outlen be the bit length 
of the output block of that hash function. 

A.1.2.1.1 Get the First Seed 
The following process or its equivalent shall be used to generate firstseed for this constructive 
method. 

Input: 

1. N	 The length of q in bits. 

2. seedlen	 The length of firstseed, where seedlen ≥ N. 

Output: 

1. 	 status The status returned from the generation procedure, where status is 
either SUCCESS or FAILURE. If FAILURE is returned, then 
either no firstseed value shall be provided or an invalid value shall 
be returned. 

2. firstseed 	 The first seed generated. 

Process: 

1. firstseed = 0. 

2. Check that N is in the list of acceptable (L, N) pairs (see Section 4.2). If not, then 
return FAILURE. 

3. If (seedlen < N), then return FAILURE. 

4. While firstseed < 2N–1. 


Get an arbitrary sequence of seedlen bits as firstseed.
 

5. Return SUCCESS and the value of firstseed. 

Note: This routine could be incorporated into the beginning of the constructive prime generation 
procedure in Appendix A.1.2.1.2. However, this was not done in this specification so that the 
validation process in Appendix A.1.2.2 could also call the constructive prime generation 
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procedure and provide the value of firstseed as input. 

A.1.2.1.2 Constructive Prime Generation 
The following process or its equivalent shall be used to generate p and q for this constructive 
method.  

Input: 

1. L	 The requested length for p (in bits). 

2. N 	 The requested length for q (in bits). 

3. 	 firstseed The first seed to be used. This was obtained as specified in 
Appendix A.1.2.1.1. 

Output: 

1. 	 status The status returned from the generation procedure, where status is 
either SUCCESS or FAILURE. If FAILURE is returned, then 
either no other values shall be returned, or invalid values shall be 
returned. 

2. p, q	 The requested primes. 

3. pseed, qseed	 (Optional) Computed seed values that were used to generate p and 
q. The entire seed for the generation of p and q consists of 
firstseed, pseed and qseed. 

4. 	 pgen_counter, qgen_counter 

(Optional) The count values that were determined during generation. 

Process: 

1. 	 Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If 
the pair is not in the list, return FAILURE. 

Comment: Use the Shawe-Taylor random 
prime routine in Appendix C.6 to generate 
random primes. 

2.	 Using N as the length and firstseed as the input_seed, use the random prime 
generation routine in Appendix C.6 to obtain q, qseed and qgen_counter. If 
FAILURE is returned, then return FAILURE. 

3. Using ⎡L / 2 + 1⎤ as the length and qseed as the input_seed, use the random prime 
routine in Appendix C.6 to obtain p0 , pseed, and pgen_counter. If FAILURE is 
returned, then return FAILURE. 

4. 	 iterations = ⎡L / outlen⎤ –1. 
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5. old_counter = pgen_counter. 

Comment: Generate a (pseudo) random x in 
the interval [2L−1, 2L]. 

6. x = 0. 

7. For i = 0 to iterations do 


x = x + (Hash(pseed + i) ∗ 2 i * outlen). 


8. pseed = pseed + iterations + 1. 

9. x = 2L−1 + (x mod 2L–1). 

Comment: Generate p, a candidate for the 
prime, in the interval [2L−1, 2L]. 

10. t = ⎡x / (2qp0)⎤. 

11. If (2tqp0 + 1) > 2L, then t = ⎡2L−1 / (2qp0)⎤. 

12. p = 2tqp0 + 1. 

13. pgen_counter = pgen_counter + 1. 

Comment: Test p for primality; choose an 
integer a in the interval [2, p–2]. 

14. a = 0 

15. For i = 0 to iterations do 


a = a + (Hash(pseed + i) ∗ 2 i * outlen). 


16. pseed = pseed + iterations + 1. 

17. a = 2 + (a mod (p–3)). 

18. z = a2tq mod p. 

19. If ((1 = GCD(z–1, p) ) and ( 1 = z p0 mod p )), then return SUCCESS and the values 
of p, q and (optionally) pseed, qseed, pgen_counter, and qgen_counter. 

20. If (pgen_counter > (4L + old_counter)), then return FAILURE. 

21. t = t + 1. 

22. Go to step 11. 

A.1.2.2 	 Validation of the DSA Primes p and q that were Constructed Using the Shawe-
Taylor Algorithm 

The validation of the primes p and q that were generated by the method described in Appendix 
A.1.2.1.2 may be performed if the values of firstseed, pseed, qseed, pgen_counter and 
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qgen_counter were saved and are provided for use in the following algorithm. 

The following process or its equivalent shall be used to validate p and q for this constructive 
method. 

Input: 

1. p, q	 The primes to be validated. 

2. firstseed, pseed, qseed	 Seed values that were used to generate p and q. 

3. 	 pgen_counter, qgen_counter 

The count values that were determined during generation. 

Output: 

1. 	 status The status returned from the validation procedure, where 
status is either SUCCESS or FAILURE. 

Process: 

1. L = len (p). 

2. N = len (q). 

3. Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If 
the pair is not in the list, then return FAILURE. 

4. If (firstseed < 2N–1), then return FAILURE. 

5. If (2N ≤ q), then return FAILURE). 

6. If (2L ≤ p), then return FAILURE. 

7. If ((p – 1) mod q ≠ 0), then return FAILURE. 

8. Using L, N and firstseed, perform the constructive prime generation procedure in 
Appendix A.1.2.1.2 to obtain p_val, q_val, pseed_val, qseed_val, pgen_counter_val, 
and qgen_counter_val. If FAILURE is returned, or if (q_val ≠ q) or (qseed_val ≠ 
qseed) or (qgen_counter_val ≠ qgen_counter) or (p_val ≠ p) or (pseed_val ≠ pseed) 
or (pgen_counter_val ≠ pgen_counter), then return FAILURE. 

9. Return SUCCESS. 
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A.2 Generation of the Generator g 
The generator g depends on the values of p and q. Two methods for determining the generator g 
are provided; one of these methods shall be used. The first method, discussed in Appendix 
A.2.1, may be used when complete validation of the generator g is not required; it is 
recommended that this method be used only when the party generating g is trusted to not 
deliberately generate a g that has a potentially exploitable relationship to another generator g′. 
For example, it must be hard to determine an exponential relationship between the generators 
such that g = (g′)x mod p for a known value of x. (Note: Read (g′)x as g prime to the x.) 

Appendix A.2.2 provides a method for partial validation when the method of generation in 
Appendix A.2.1 is used. The second method for generating g, discussed in Appendix A.2.3, shall 
be used when validation of the generator g is required; the method for the validation of a 
generator determined using the method in Appendix A.2.3 is provided in Appendix A.2.4. 

A.2.1 Unverifiable Generation of the Generator g 
This method is used to determine a value for g, based on the values of p and q. It may be used 
when validation of the generator g is not required. The correct generation of g cannot be 
completely validated (see Appendix A.2.2). Note that this generation method for g was also 
specified in previous versions of this Standard. 

The following process or its equivalent shall be used to generate the generator g for this method. 

Input: 

1. p, q The generated primes. 

Output: 

1. g The requested value of g. 

Process: 

1. e = (p – 1)/q. 

2. Set h = any integer satisfying 1 < h < ( p – 1), such that h differs from any value 
previously tried. Note that h could be obtained from a random number generator or 
from a counter that changes after each use.  

3. g = he mod p. 

4. If (g = 1), then go to step 2. 

5. Return g. 

A.2.2 Assurance of the Validity of the Generator g 
The order of the generator g that was generated using Appendix A.2.1 can be partially validated 
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by checking the range and order, thereby performing a partial validation of g. 

The following process or its equivalent shall be used when partial validation of the generator g is 
required: 

Input: 

1. p, q, g 	 The domain parameters.  

Output: 

1. 	 status The status returned from the generation routine, where status is either 
PARTIALLY VALID or INVALID. 

Process: 

1. Verify that 2 ≤ g ≤ (p–1). If not true, return INVALID. 

2. If (gq = 1 mod p), then return PARTIALLY VALID. 

3. Return INVALID. 

The non-existence of a potentially exploitable relationship of g to another generator g′ (that is 
known to the entity that generated g, but may not be known by other entities) cannot be checked. 
In this sense, the correct generation of g cannot be completely validated. 

A.2.3 Verifiable Canonical Generation of the Generator g 
The generation of g is based on the values of p, q and domain_parameter_seed (which are 
outputs of the generation processes in Appendix A.1). When p and q were generated using the 
method in Appendix A.1.1.2, the domain_parameter_seed value must have been returned from 
the generation routine. When p and q were generated using the method in Appendix A.1.2.1, the 
firstseed, pseed, and qseed values must have been returned from the generation routine; in this 
case, domain_parameter_seed = firstseed || pseed || qseed shall be used in the following process. 

This method of generating a generator g can be validated (see Appendix A.2.4). 

This generation method supports the generation of multiple values of g for specific values of p 
and q. The use of different values of g for the same p and q may be used to support key 
separation; for example, using the g that is generated with index = 1 for digital signatures and 
with index = 2 for key establishment.  

Let Hash( ) be the hash function used to generate p and q (see Appendix A.1). The following 
process or its equivalent shall be used to generate the generator g. 

Input: 

1. p, q 	 The primes. 

2. domain_parameter_seed The seed used during the generation of p and q. 
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3. 	 index The index to be used for generating g. index is a bit string 
of length 8 that represents an unsigned integer. 

Output: 

1. 	 status The status returned from the generation routine, where status is either 
VALID or INVALID. 

2. g The value of g that was generated.
 

Process: Note: count is an unsigned 16-bit integer. 


Comment: Check that a valid value of the index has 
been provided (see above). 

1. If (index is incorrect), then return INVALID. 

2. N = len(q). 

3. e = (p – 1)/q. 

4. count = 0. 

5. count = count + 1. 

Comment: Check that count does not wrap around 
to 0. 

6. If (count = 0), then return INVALID. 

Comment: the length of the 
domain_parameter_seed has already been checked. 
“ggen” is the bit string 0x6767656E. 

7. U = domain_parameter_seed || “ggen” || index || count. 

8. W = Hash(U). 

9. g = We mod p. 

10. If (g < 2), then go to step 5. Comment: If a generator has not been found. 

11. Return VALID and the value of g. 

A.2.4 Validation Routine when the Canonical Generation of the Generator g 
Routine Was Used 

This algorithm shall be used to validate the value of g that was generated using the process in 
Appendix A.2.3, based on the values of p, q, domain_parameter_seed, and the appropriate value 
of index. It is assumed that the values of p and q have been previously validated according to 
Appendix A.1. Note that the method specified in Appendix A.2.3 for the generation of g was not 
included in previous versions of this Standard; therefore, this validation method is not 
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appropriate for that case. 

The domain_parameter_seed is an output from the generation of p and q. When p and q were 
generated using the method in Appendix A.1.1.2, the domain_parameter_seed must have been 
returned from the generation routine and made available to the validating party. When p and q 
were generated using the method in Appendix A.1.2.1, the firstseed, pseed, and qseed values 
must have been returned from the generation routine and made available; firstseed, pseed, and 
qseed shall be concatenated to form the domain_parameter_seed used in the following process. 
Let Hash( ) be the hash function used to generate g (i.e., the hash function also used to generate 
p and q). 

The input index is the index number for the generator g. See Appendix A.2.3 for more details. 

The following process or its equivalent shall be used to validate the generator g for this method. 

Input: 

1. p, q 	 The primes. 

2. domain_parameter_seed	 The seed used to generate p and q. 

3. 	 index The index used in Appendix A.2.3 to generate x. index is 
a bit string of length 8 that represents an unsigned 
integer. 

4. g	 The value of g to be validated. 

Output: 

1. 	 status The status returned from the generation routine, where 
status is either VALID or INVALID. 

Process: 	 Note: count is an unsigned 16-bit integer. 

Comment: Check that a valid value of the index has been 
provided (see above). 

1. If (index is incorrect), then return INVALID. 

2. Verify that 2 ≤ g ≤ (p–1). If not true, return INVALID. 

3. If (gq ≠ 1 mod p), then return INVALID. 

4. N = len(q). 

5. e = (p – 1)/q. 

6. count = 0. 

7. count = count + 1. 

Comment: Check that count does not wrap around 
to 0. 
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8. If (count = 0), then return INVALID. 

Comment: “ggen” is the bit string 0x6767656E. 

9. U = domain_parameter_seed || “ggen” || index || count. 

10. W = Hash(U). 

11. computed_g = We mod p. 

12. If (computed_g < 2), then go to step 7. Comment: If a generator has not been found. 

13. If (computed_g = g), then return VALID, else return INVALID. 
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APPENDIX B: Key Pair Generation 
Discrete logarithm cryptography (DLC) is divided into finite field cryptography (FFC) and 
elliptic curve cryptography (ECC); the difference between the two is the type of math that is 
used. DSA is an example of FFC; ECDSA is an example of ECC. Other examples of DLC are 
the Diffie-Hellman and MQV key agreement algorithms, which have both FFC and ECC forms. 

The most common example of integer factorization cryptography (IFC) is RSA. 

This appendix specifies methods for the generation of FFC and ECC key pairs and secret 
numbers, and the generation of IFC key pairs. All generation methods require the use of an 
approved, properly instantiated random bit generator (RBG) as specified in SP 800-90; the RBG 
shall have a security strength equal to or greater than the security strength associated with the 
key pairs and secret numbers to be generated. See SP 800-57 for guidance on security strengths 
and key sizes. 

This appendix does not indicate the required conversions between bit strings and integers. When 
required by a process in this appendix, the conversion shall be accomplished as specified in 
Appendix C.2. 

B.1 FFC Key Pair Generation 
An FFC key pair (x, y) is generated for a set of domain parameters (p, q, g {, 
domain_parameter_seed, counter}). Two methods are provided for the generation of the FFC 
private key x and public key y; one of these two methods shall be used. Prior to generating DSA 
key pairs, assurance of the validity of the domain parameters (p, q and g) shall have been 
obtained as specified in Section 3.1. 

For DSA, the valid values of L and N are provided in Section 4.2. 

B.1.1 Key Pair Generation Using Extra Random Bits 
In this method, 64 more bits are requested from the RBG than are needed for x so that bias 
produced by the mod function in step 6 is negligible.  

The following process or its equivalent may be used to generate an FFC key pair. 

Input: 

(p, q, g) 	 The subset of the domain parameters that are used for this process. p, q 
and g shall either be provided as integers during input, or shall be 
converted to integers prior to use. 
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Output: 

1. 	 status The status returned from the key pair generation process. The status will 
indicate SUCCESS or an ERROR. 

2. 	(x, y) The generated private and public keys. If an error is encountered during 
the generation process, invalid values for x and y should be returned, as 
represented by Invalid_x and Invalid_y in the following specification. x 
and y are returned as integers. The generated private key x is in the range 
[1, q–1], and the public key is in the range [1, p–1]. 

Process: 

1. 	 N = len(q); L = len(p). 

Comment: Check that the (L, N) pair is specified in 
Section 4.2. 

2. 	 If the (L, N) pair is invalid, then return an ERROR indicator, Invalid_x, and 
Invalid_y. 

3. 	 requested_security_strength = the security strength associated with the (L, N) pair; 
see SP 800-57. 

4. 	 Obtain a string of N+64 returned_bits from an RBG with a security strength of 
requested_security_strength or more. If an ERROR indication is returned, then 
return an ERROR indication, Invalid_x, and Invalid_y. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. 	 x = (c mod (q–1)) + 1. Comment: 0 ≤ c mod (q–1) ≤ q–2 and implies that   
1 ≤ x ≤ q–1. 

7. 	 y = gx mod p. 

8. Return SUCCESS, x, and y. 

B.1.2 Key Pair Generation by Testing Candidates 
In this method, a random number is obtained and tested to determine that it will produce a value 
of x in the correct range. If x is out-of-range, another random number is obtained (i.e., the 
process is iterated until an acceptable value of x is obtained. 

The following process or its equivalent may be used to generate an FFC key pair. 

Input: 

(p, q, g) 	 The subset of the domain parameters that are used for this process. p, q 
and g shall either be provided as integers during input, or shall be 
converted to integers prior to use. 
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Output: 

1. 	 status The status returned from the key pair generation process. The status will 
indicate SUCCESS or an ERROR. 

2. 	(x, y) The generated private and public keys. If an error is encountered during 
the generation process, invalid values for x and y should be returned, as 
represented by Invalid_x and Invalid_y in the following specification. x 
and y are returned as integers. The generated private key x is in the range 
[1, q–1], and the public key is in the range [1, p–1]. 

Process: 

1. 	 N = len(q); L = len(p). 

Comment: Check that the (L, N) pair is specified in 
Section 4.2. 

2. 	 If the (L, N) pair is invalid, then return an ERROR indication, Invalid_x, and 
Invalid_y. 

3. 	 requested_security_strength = the security strength associated with the (L, N) pair; 
see SP 800-57. 

4. 	 Obtain a string of N returned_bits from an RBG with a security strength of 
requested_security_strength or more. If an ERROR indication is returned, then 
return an ERROR indication, Invalid_x, and Invalid_y. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. If (c > q–2), then go to step 4. 

7. 	 x = c + 1. 

8. 	 y = gx mod p. 

9. Return SUCCESS, x, and y. 

B.2 FFC Per-Message Secret Number Generation 
DSA requires the generation of a new random number k for each message to be signed. Two 
methods are provided for the generation of k; one of these two methods shall be used. 

The valid values of N are provided in Section 4.2. Let inverse(k, q) be a function that computes 
the inverse of a (non-negative) integer k with respect to multiplication modulo the prime number 
q. A technique for computing the inverse is provided in Appendix C.1. 

B.2.1 Per-Message Secret Number Generation Using Extra Random Bits 
In this method, 64 more bits are requested from the RBG than are needed for k so that bias 
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produced by the mod function in step 6 is not readily apparent. 


The following process or its equivalent may be used to generate a per-message secret number.  


Input: 

(p, q, g) DSA domain parameters that are generated as specified in Section 4.3.1. 

Output: 

1. 	 status The status returned from the secret number generation process. The status 
will indicate SUCCESS or an ERROR. 

k −1	 k −12. 	(k, ) The per-message secret number k and its mod q inverse, . If an error is 
k −1encountered during the generation process, invalid values for k and 

should be returned, as represented by Invalid_k and Invalid_k_inverse in 
k −1the following specification. k and are in the range [1, q–1]. 

Process: 

1. 	 N = len(q); L = len(p). 

Comment: Check that the (L, N) pair is specified in 
Section 4.2. 

2. 	 If the (L, N) pair is invalid, then return an ERROR indication, Invalid_k, and 
Invalid_k_inverse. 

3. 	 requested_security_strength = the security strength associated with the (L, N) pair; 
see SP 800-57. 

4. 	 Obtain a string of N+64 returned_bits from an RBG with a security strength of 
requested_security_strength or more. If an ERROR indication is returned, then 
return an ERROR indication, Invalid_k, and Invalid_k_inverse. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. k = (c mod (q–1)) + 1. 

7. (status, k–1) = inverse (k, q). 


k −1
8. Return status, k, and . 

B.2.2 Per-Message Secret Number Generation by Testing Candidates 
In this method, a random number is obtained and tested to determine that it will produce a value 
of k in the correct range. If k is out-of-range, another random number is obtained (i.e., the 
process is iterated until an acceptable value of k is obtained. 

The following process or its equivalent may be used to generate a per-message secret number.  
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Input: 

(p, q, g) DSA domain parameters that are generated as specified in Section 4.3.1. 

Output: 

1. 	 status The status returned from the secret number generation process. The status 
will indicate SUCCESS or an ERROR. 

k −1	 k −12. (k, ) The per-message secret number k and its inverse, . If an error is 
encountered during the generation process, invalid values for k and 
k −1 should be returned, as represented by Invalid_k and Invalid_k_inverse 

k −1in the following specification. k and are in the range [1, q–1]. 

Process: 

1. 	 N = len(q); L = len(p). 

Comment: Check that the (L, N) pair is specified in 
Section 4.2). 

2. 	 If the (L, N) pair is invalid, then return an ERROR indication, Invalid_k, and 
Invalid_k_inverse. 

3. 	 requested_security_strength = the security strength associated with the (L, N) pair; 
see SP 800-57. 

4. 	 Obtain a string of N returned_bits from an RBG with a security strength of 
requested_security_strength or more. If an ERROR indication is returned, then 
return an ERROR indication, Invalid_k, and Invalid_k_inverse. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6.	 If (c > q–2), then go to step 4. 

7. 	 k = c + 1. 


k −1
8. (status, ) = inverse(k, q). 


k −1
9. Return status, k, and . 

B.3 IFC Key Pair Generation 

B.3.1 Criteria for IFC Key Pairs 
Key pairs for IFC consist of a public key (n, e), and a private key (n, d), where n is the modulus 
and is the product of two prime numbers p and q. The security of IFC depends on the quality and 
secrecy of these primes and the private exponent d. The primes p and q shall be generated using 
one of the following methods: 
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A. Both p and q are randomly generated prime numbers (Random Primes), where p and q 
shall both be either : 

1. 	 Provable primes (see Appendix B.3.2), or 

2. 	  Probable primes (see Appendix B.3.3).  

Using these methods, primes of 2048 or 3072 bits may be generated; primes of 1024 bits 
shall not be generated using these methods. Primes of 1024 bits shall be generated using 
conditions based on auxiliary primes (see Appendices B.3.4, B.3.5, or B.3.6). 

B. Both p and q are randomly generated prime numbers that satisfy the following additional 
conditions (Primes with Conditions): 

•	  (p–1) has a prime factor p1 

•	 (p+1) has a prime factor p2 

•	 (q–1) has a prime factor q1 

• (q+1) has a prime factor q2
 

where p1, p2, q1 and q2 are called auxiliary primes of p and q. 


Using this method, one of the following cases shall apply: 


1. The primes p1, p2, q1, q2, p and q shall all be provable primes (see Appendix 
B.3.4), 

2. The primes p1, p2, q1 and q2 shall be provable primes, and the primes p and q 
shall be probable primes (see Appendix B.3.5), or 

3 	The primes p1, p2, q1, q2, p and q shall all be probable primes (see Appendix 
B.3.6). 

The minimum lengths for each of the auxiliary primes p1, p2, q1 and q2 are dependent on 
nlen, where nlen is the length of the modulus n in bits. Note that nlen is also called the 
key size. The lengths of the auxiliary primes may be fixed or randomly chosen, subject to 
the restrictions in Table B.1. The maximum length is determined by nlen (the sum of the 
length of each auxiliary prime pair) and whether the primes p and q are probable primes 
or provable primes (e.g., for the auxiliary prime pair p1 and p2, len(p1) + len(p2) shall be 
less than a value determined by nlen, whether p1 and p2 are generated to be probable or 
provable primes)3. 

3 For the probable primes p and q: len(p1) + len(p2) < len(p) – log2(len(p)) – 6; similarly for len(q1) + len(q2) and 
len(q). For the provable primes p and q: len(p1) + len(p2) < len(p)/2 – log2(len(p)) – 7; similarly for len(q1) + len(q2) 
and len(q). In each case, len(p) = len(q) = nlen/2. 
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Table B.1. Minimum and maximum lengths of p1, p2, q1 and q2 

nlen Min. length of 
auxiliary primes 

Max. length of len(p1) + len(p2) and 
len(q1) + len(q2) 

p1, p2, q1 and q2 p, q Probable primes p, q Provable primes 

1024 > 100 bits < 496 bits < 239 bits 

2048 > 140 bits < 1007 bits < 494 bits 

3072 > 170 bits < 1518 bits < 750 bits 

For different values of nlen  (i.e., different key sizes), the methods allowed for the generation of 
p and q are specified in Table B.2. 

Table B.2. Allowable Prime Generation Methods 

nlen Random Primes Primes with Conditions 

1024 No Yes 

2048 Yes Yes 

3072 Yes Yes 

In addition, all IFC keys shall meet the following criteria in order to conform to FIPS 186-3: 

1. The public exponent e shall be selected with the following constraints: 

(a) The public verification exponent e shall be selected prior to generating the primes 
p and q, and the private signature exponent d. 

(b) The exponent e shall be an odd positive integer such that: 


216 < e < 2256. 


Note that the value of e may be any value that meets constraint 1(b), i.e., e may be 
either a fixed value or a random value. 

2. The primes p and q shall be selected with the following constraints: 

(a) (p–1) and (q–1) shall be relatively prime to the public exponent e. 

(b) The private prime factor p shall be selected randomly and shall satisfy 
( 2 )(2(nlen / 2) – 1) ≤ p ≤  (2nlen / 2– 1), where nlen is the appropriate length for the 
desired security_strength. 

(c) The private prime factor q shall be selected randomly and shall satisfy 
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( 2 )(2(nlen / 2) – 1) ≤ q ≤  (2nlen / 2– 1), where nlen is the appropriate length for the 
desired security_strength. 

(d) |p – q| > 2(nlen / 2) – 100. 

3.	 The private signature exponent d shall be selected with the following constraints after the 
generation of p and q: 

(a) The exponent d shall be a positive integer value such that 

2nlen/ 2 < d < LCM(p–1, q–1), and 


(b) d = e–1 mod (LCM(p–1, q–1)). 

That is, the inequality in (a) holds, and 1 ≡ (ed) (mod LCM(p–1, q–1)). 

In the extremely rare event that d ≤ 2nlen / 2, then new values for p, q and d shall be 
determined. A different value of e may be used, although this is not required. 

Any hash function used during the generation of the key pair shall be approved (i.e., specified in 
FIPS 180-3). 

B.3.2 Generation of Random Primes that are Provably Prime 
An approved method that satisfies the constraints of Appendix B.3.1 shall be used for the 
generation of IFC random primes p and q that are provably prime (see case A.1). One such 
method is provided in Appendix B.3.2.1 and B.3.2.2. For this method, a random seed is initially 
required (see Appendix B.3.2.1); the length of the seed is equal to twice the security strength 
associated with the modulus n. After the seed is obtained, the primes can be generated (see 
Appendix B.3.2.2). 

B.3.2.1 Get the Seed 


The following process or its equivalent shall be used to generate the seed for this method. 


Input: 


nlen The intended bit length of the modulus n. 

Output: 

status The status to be returned, where status is either SUCCESS or FAILURE. 

seed The seed. If status = FAILURE, a value of zero is returned as the seed. 

Process: 

1. If nlen is not valid (see Section 5.1), then Return (FAILURE, 0). 

2. Let security_strength be the security strength associated with nlen, as specified in SP 
800-57, Part 1. 

3. 	 Obtain a string seed of (2 * security_strength) bits from an RBG that supports the 
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security_strength. 

4. Return (SUCCESS, seed). 

B.3.2.2 Construction of the Provable Primes p and q 

The following process or its equivalent shall be used to construct the random primes p and q (to 
be used as factors of the RSA modulus n) that are provably prime: 

Input: 

nlen The intended bit length of the modulus n. 


e The public verification exponent. 


seed The seed obtained using the method in Appendix B.3.2.1. 


Output: 

status	 The status of the generation process, where status is either SUCCESS or 
FAILURE. When FAILURE is returned, zero values shall be returned as the 
other parameters. 

p and q	 The private prime factors of n. 

Process: 

1. If nlen is neither 2048 nor 3072, then return (FAILURE, 0, 0). 

2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0). 

3. 	 Set the value of security_strength in accordance with the value of nlen, as specified in SP 
800-57, Part 1. 

4. If (len(seed) ≠ 2 * security_strength), then return (FAILURE, 0, 0). 

5. 	 working_seed = seed. 

6. Generate p: 

6.1 	Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the provable 
prime construction method in Appendix C.10 to obtain p and pseed. If FAILURE 
is returned, then return (FAILURE, 0, 0). 

6.2 	 working_seed = pseed. 

7. Generate q: 

7.1 	Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the provable 
prime construction method in Appendix C.10 to obtain q and qseed. If FAILURE 
is returned, then return (FAILURE, 0, 0). 

7.2 	 working_seed = qseed. 
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8. 	 If ( |p – q| ≤ 2nlen/2 – 100), then go to step 7. 

9. 	 Zeroize the internally generated seeds: 

9.1 pseed = 0; 

9.2 qseed = 0; 

9.3 working_seed = 0. 

10. Return (SUCCESS, p, q). 

B.3.3 Generation of Random Primes that are Probably Prime 
An approved method that satisfies the constraints of Appendix B.3.1 shall be used for the 
generation of IFC random primes p and q that are probably prime (see case A.2).  

The following process or its equivalent shall be used to construct the random probable primes p 
and q (to be used as factors of the RSA modulus n): 

Input: 

nlen The intended bit length of the modulus n. 


e The public verification exponent. 


Output: 

status	 The status of the generation process, where status is either SUCCESS or 

FAILURE. 


p and q	 The private prime factors of n. When FAILURE is returned, zero values shall be 
returned as p and q. 

Process: 

1. If nlen is neither 2048 nor 3072, return (FAILURE, 0, 0). 

2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0). 

3. 	 Set the value of security_strength in accordance with the value of nlen, as specified in SP 
800-57, Part 1. 

4. Generate p: 

4.1 i = 0. 

4.2 Obtain a string p of (nlen/2) bits from an RBG that supports the security_strength. 

4.3 If (p is not odd), then p = p + 1. 

4.4 If ((p < ( 2 )(2(nlen / 2) – 1)), then go to step 4.2. 

4.5 If (GCD(p−1, e) = 1), then 
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4.5.1 Test p for primality as specified in Appendix C.3, using an appropriate 
value from Table C-2 or C-3 in Appendix C.3 as the number of iterations.  

4.5.2 If p is PROBABLY PRIME, then go to step 5. 

4.6 	 i= i + 1. 

4.7 	If (i ≥ 5(nlen/2)), then return (FAILURE, 0, 0) 


Else go to step 4.2. 


5. Generate q: 

5.1 	 i = 0. 

5.2 	 Obtain a string q of (nlen/2) bits from an RBG that supports the security_strength 

5.3 	If (q is not odd), then q = q + 1. 

5.4 	If (|p – q| ≤ 2nlen/2 – 100), then go to step 5.2. 

5.5 If ((q < ( 2 )(2(nlen / 2) – 1)), then go to step 5.2. 

5.6 	If (GCD(q−1, e) = 1) then 

5.6.1 Test q for primality as specified in Appendix C.3, using an appropriate 
value from Table C-2 or C-3 in Appendix C.3 as the number of iterations.  

5.6.2 If q is PROBABLY PRIME, then return (SUCCESS, p, q). 

5.7 	 i = i + 1. 

5.8 	If (i ≥ 5(nlen/2)), then return (FAILURE, 0, 0) 


Else go to step 5.2. 


B.3.4 Generation of Provable Primes with Conditions Based on Auxiliary 
Provable Primes 

This section specifies an approved method for the generation of the IFC primes p and q with the 
additional conditions specified in Appendix B.3.1, case B.1, where p, p1, p2, q, q1 and q2 are all 
provable primes. For this method, a random seed is initially required (see Appendix B.3.2.1); the 
length of the seed is equal to twice the security strength associated with the modulus n. After the 
first seed is obtained, the primes can be generated. 

Let bitlen1, bitlen2, bitlen3, and bitlen4  be the bit lengths for p1, p2, q1 and q2, respectively, in 
accordance with Table B.1. The following process or its equivalent shall be used to generate the 
provable primes: 

Input: 

nlen The intended bit length of the modulus n. 
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e The public verification exponent. 


seed The seed obtained using the method in Appendix B.3.2.1. 


Output: 

status	 The status of the generation process, where status is either SUCCESS or 
FAILURE. If FAILURE is returned then zeros shall be returned as the values 
for p and q. 

p and q	 The private prime factors of n. 

Process: 

1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0). 

2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0). 

3. 	 Set the value of security_strength in accordance with the value of nlen, as specified in SP 
800-57, Part 1. 

4. If (len(seed) ≠ 2 * security_strength), then return (FAILURE, 0, 0). 

5. 	 working_seed = seed. 

6. Generate p: 

6.1 Using L = nlen/2, N1 = bitlen1, N2 = bitlen2, firstseed = working_seed and e, use the 
provable prime construction method in Appendix C.10 to obtain p, p1, p2 and pseed. 
If FAILURE is returned, return (FAILURE, 0, 0). 

6.2 working_seed = pseed. 

7. Generate q: 

7.1 Using L = nlen/2, N1 = bitlen3, N2 = bitlen4 and firstseed = working_seed and e, use 
the provable prime construction method in Appendix C.10 to obtain q, q1, q2 and 
qseed. If FAILURE is returned, return (FAILURE, 0, 0). 

7.2 working_seed = qseed. 

8. 	 If ( |p – q| ≤ 2nlen/2 – 100), then go to step 7. 

9. 	 Zeroize the internally generated seeds: 

9.1 pseed = 0. 

9.2 qseed = 0. 

9.3 working_seed = 0. 

10. Return (SUCCESS, p, q). 
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B.3.5 Generation of Probable Primes with Conditions Based on Auxiliary 
Provable Primes 

This section specifies an approved method for the generation of the IFC primes p and q with the 
additional conditions specified in Appendix B.3.1, case B.2, where p1, p2, q1 and q2 are provably 
prime, and p and q are probably prime. For this method, a random seed is initially required (see 
Appendix B.3.2.1); the length of the seed is equal to twice the security strength associated with 
the modulus n. After the first seed is obtained, the primes can be generated. 

Let bitlen1, bitlen2, bitlen3, and bitlen4  be the bit lengths for p1, p2, q1 and q2, respectively in 
accordance with Table B.1. The following process or its equivalent shall be used to construct p 
and q. 

Input: 

nlen	 The intended bit length of the modulus n. 

e	 The public verification exponent. 

seed 	 The seed obtained using the method in Appendix B.3.2.1. 

Output: 

status	 The status of the generation process, where status is either SUCCESS or 
FAILURE. If FAILURE is returned then zeros shall be returned as the 
values for p and q. 

p and q	 The private prime factors of n. 

Process: 

1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0). 

2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0). 

3. 	 Set the value of security_strength in accordance with the value of nlen, as specified in 
SP 800-57, Part 1. 

4. If (len(seed) ≠ 2 * security_strength), then return (FAILURE, 0, 0). 

Comment: Generate four primes p1, p2, q1 and q2 
that are provably prime. 

5. Generate p: 

5.1 	Using bitlen1 as the length, and seed as the input_seed, use the random prime 
generation routine in Appendix C.6 to obtain p1 and prime_seed. If FAILURE 
is returned, the return (FAILURE, 0, 0). 

5.2 	Using bitlen2 as the length, and prime_seed as the input_seed, use the random 
prime generation routine in Appendix C.6 to obtain p2 and a new value for 
prime_seed. If FAILURE is returned, the return (FAILURE, 0, 0). 
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5.3 	 Generate a prime p using the routine in Appendix C.9 with inputs of p1, p2, nlen, 
e and security_strength, also obtaining Xp. If FAILURE is returned, return 
(FAILURE, 0, 0). 

6. Generate q: 

6.1. Using bitlen3 as the length, and prime_seed as the input_seed, use the random 
prime generation routine in Appendix C.6 to obtain q1 and a new value for 
prime_seed. If FAILURE is returned, the return (FAILURE, 0, 0). 

6.2 	Using bitlen4 as the length, and prime_seed as the input_seed, use the random 
prime generation routine in Appendix C.6 to obtain q2 and a new value for 
prime_seed. If FAILURE is returned, the return (FAILURE, 0, 0). 

6.3 	 Generate a prime q using the routine in Appendix C.9 with inputs of q1, q2, nlen, 
e and security_strength, also obtaining Xq. If FAILURE is returned, return 
(FAILURE, 0, 0). 

7. If ((|p – q| ≤ 2nlen/2 –100) OR (|Xp – Xq| ≤ 2nlen/2 – 100)), then go to step 6. 

8. Zeroize the internally generated that are not returned: 

8.1 	 Xp = 0. 

8.2 	 Xq = 0. 

8.3 	 prime_seed = 0. 

8.4 	 p1 = 0. 

8.5	 p2 = 0. 

8.6 	 q1 = 0. 

8.7 	 q2 = 0. 

9. Return (SUCCESS, p, q). 

B.3.6 Generation of Probable Primes with Conditions Based on Auxiliary 
Probable Primes 

An approved method that satisfies the constraints of Appendix B.3.1 shall be used for the 
generation of IFC primes p and q that are probably prime and meet the additional constraints of 
Appendix B.3.1 (see case B.3). For this case, the prime factors p1, p2, q1 and q2 are also probably 
prime. 

Four random numbers Xp1, Xp2, Xq1 and Xq2 are generated, from which the prime factors p1, p2, q1 
and q2 are determined. p1 and p2, and an additional random number Xp are then used to determine 
p, and q1 and q2 and a random number Xq are used to obtain q. Let bitlen1, bitlen2, bitlen3, and 
bitlen4 be the bit lengths for p1, p2, q1 and q2, respectively chosen in accordance with Table B.1. 
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The following process or its equivalent shall be used to generate p and q: 

Input: 

nlen The intended bit length of the modulus n. 

e The public verification exponent. 

Output: 

status The status of the generation process, where status is either SUCCESS or 
FAILURE. If FAILURE is returned then zeros shall be returned as the 
values for p and q. 

p and q The private prime factors of n. 

Process: 

1. If nlen is neither 1024, 2048, nor 3072, then return (FAILURE, 0, 0). 

2. If ((e ≤ 216) OR (e ≥ 2256) OR (e is not odd)), then return (FAILURE, 0, 0). 

3. 	 Set the value of security_strength in accordance with the value of nlen, as specified in 
SP 800-57, Part 1. 

4. Generate p: 

4.1 	 Generate an odd integer Xp1 of length bitlen1 bits, and a second odd integer Xp2 
of length bitlen2 bits, using an approved random number generator that supports 
the security_strength. 

4.2 	 Sequentially search successive odd integers, starting at Xp1 until the first 
probable prime p1 is found. Candidate integers shall be tested for primality as 
specified in Appendix C.3. Repeat the process to find p2, starting at Xp2. The 
probable primes p1 and p2 shall be the first integers that pass the primality test. 

4.3 	 Generate a prime p using the routine in Appendix C.9 with inputs of p1, p2, nlen, 
e and security_ strength, also obtaining Xp. If FAILURE is returned, return 
(FAILURE, 0, 0). 

5. Generate q: 

5.1 	 Generate an odd integer Xq1 of length bitlen3 bits, and a second odd integer Xq2 
of length bitlen4 bits, using an approved random number generator that supports 
the security_strength. 

5.2 	 Sequentially search successive odd integers, starting at Xq1 until the first 
probable prime q1 is found. Candidate integers shall be tested for primality as 
specified in Appendix C.3. Repeat the process to find q2, starting at Xq2. The 
probable primes q1 and q2 shall be the first integers that pass the primality test. 

5.3 	 Generate a prime q using the routine in Appendix C.9 with inputs of q1, q2, nlen, 
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e and security_ strength, also obtaining Xq. If FAILURE is returned, return 
(FAILURE, 0, 0). 

6. If ((|Xp – Xq| ≤ 2nlen/2 –100) OR (|p – q| ≤ 2nlen/2 – 100))), then go to step 5. 

7. Zeroize the internally generated values that are not returned: 

7.1 Xp = 0. 

7.2 Xq = 0. 

7.3 Xp1 = 0. 

7.4 Xp2 = 0. 

7.5 Xq1 = 0. 

7.6 Xq2 = 0. 

7.7 p1 = 0. 

7.8 p2 = 0. 

7.9 q1 = 0. 

7.10 q2 = 0. 

8. Return (SUCCESS, p, q). 

B.4 ECC Key Pair Generation 
An ECC key pair d and Q is generated for a set of domain parameters (q, FR, a, b {, 
domain_parameter_seed}, G, n, h). Two methods are provided for the generation of the ECC 
private key d and public key Q; one of these two methods shall be used to generate d and Q. 
Prior to generating ECDSA key pairs, assurance of the validity of the domain parameters (q, FR, 
a, b {, domain_parameter_seed}, G, n, h) shall have been obtained as specified in Section 3.1. 

For ECDSA, the valid bit-lengths of n are provided in Section 6.1.1. See ANS X9.62 for 
definitions of the elliptic curve math and the conversion routines. 

B.4.1 Key Pair Generation Using Extra Random Bits 
In this method, 64 more bits are requested from the RBG than are needed for d so that bias 
produced by the mod function in step 6 is negligible.  

The following process or its equivalent may be used to generate an ECC key pair. 

Input: 

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h) 

The domain parameters that are used for this process. n is a prime number, 
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and G is a point on the elliptic curve. 

Output: 

1. 	 status The status returned from the key pair generation procedure. The status will 
indicate SUCCESS or an ERROR. 

2. 	(d, Q) The generated private and public keys. If an error is encountered during 
the generation process, invalid values for d and Q should be returned, as 
represented by Invalid_d and Invalid_Q in the following specification. d is 
an integer, and Q is an elliptic curve point. The generated private key d is 
in the range [1, n–1]. 

Process: 

1. 	 N = len(n). 

Comment: Check that N is included in Table 1 of 
Section 6.1.1. 

2. If N is invalid, then return an ERROR indication, Invalid_d, and Invalid_Q. 

3. 	 requested_security_strength = the security strength associated with N; see SP 800-57, 
Part 1. 

4. 	 Obtain a string of N+64 returned_bits from an RBG with a security strength of 
requested_security_strength or more. If an ERROR indication is returned, then 
return an ERROR indication, Invalid_d, and Invalid_Q. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. 	 d = (c mod (n–1)) + 1. 

7. 	 Q = dG. 

8. Return SUCCESS, d, and Q. 

B.4.2 Key Pair Generation by Testing Candidates 
In this method, a random number is obtained and tested to determine that it will produce a value 
of d in the correct range. If d is out-of-range, another random number is obtained (i.e., the 
process is iterated until an acceptable value of d is obtained. 

The following process or its equivalent may be used to generate an ECC key pair. 

Input: 

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h) 

The domain parameters that are used for this process. n is a prime number, 
and G is a point on the elliptic curve. 
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Output: 

1. 	 status The status returned from the key pair generation procedure. The status will 
indicate SUCCESS or an ERROR. 

2. 	(d, Q) The generated private and public keys. If an error is encountered during 
the generation process, invalid values for d and Q should be returned, as 
represented by Invalid_d and Invalid_Q in the following specification. d is 
an integer, and Q is an elliptic curve point. The generated private key d is 
in the range [1, n–1]. 

Process: 

1. 	 N = len(n). 

Comment: Check that N is included in Table 1 of 
Section 6.1.1. 

2. If N is invalid, then return an ERROR indication, Invalid_d, and Invalid_Q. 

3. 	 requested_security_strength = the security strength associated with N; see SP 800-57, 
Part 1. 

4. 	 Obtain a string of N returned_bits from an RBG with a security strength of 
requested_security_strength or more. If an ERROR indication is returned, then 
return an ERROR indication, Invalid_d, and Invalid_Q. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6.	 If (c > n–2), then go to step 4. 

7.	 d = c + 1. 

8. 	 Q = dG. 

9. Return SUCCESS, d, and Q. 

B.5 ECC Per-Message Secret Number Generation 
ECDSA requires the generation of a new random number k for each message to be signed. Two 
methods are provided for the generation of k; one of these two methods shall be used. 

The valid values of n are provided in Section 6.1.1. See ANS X9.62 for definitions of the elliptic 
curve math and the conversion routines. 

Let inverse(k, n) be a function that computes the inverse of a (non-negative) integer k with 
respect to multiplication modulo the prime number n. A technique for computing the inverse is 
provided in Appendix C.1. 
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B.5.1 Per-Message Secret Number Generation Using Extra Random Bits 
In this method, 64 more bits are requested from the RBG than are needed for k so that bias 
produced by the mod function in step 6 is not readily apparent. 

The following process or its equivalent may be used to generate a per-message secret number.  

Input: 

1. 	(q, FR, a, b {, domain_parameter_seed}, G, n, h) 

The domain parameters that are used for this process. n is a prime 
number, and G is a point on the elliptic curve. 

Output: 

1. 	 status The status returned from the key pair generation procedure. The status will 
indicate SUCCESS or an ERROR. 

2. (k, k −1 ) 	 The generated secret number k and its inverse k–1. If an error is 
encountered during the generation process, invalid values for k and 
k −1 should be returned, as represented by Invalid_k and Invalid_k_inverse 

k −1in the following specification. k and are integers in the range [1, n–1]. 

Process: 

1. 	 N = len(q). 

Comment: Check that N is included in Table 1 of 
Section 6.1.1. 

2. If N is invalid, then return an ERROR indication, Invalid_k, and Invalid_k_inverse. 

3. 	 requested_security_strength = the security strength associated with N; see SP 800-57, 
Part 1. 

4. 	 Obtain a string of N+64 returned_bits from an RBG with a security strength of 
requested_security_strength or more. If an ERROR indication is returned, then 
return an ERROR indication, Invalid_k, and Invalid_k_inverse. 

5. Convert returned_bits to the non-negative integer c (see Appendix C.2.1). 

6. k = (c mod (n–1)) + 1. 


k −1
7. (status, ) = inverse(k, n). 


k −1
8. Return status, k, and . 

B.5.2 Per-Message Secret Number Generation by Testing Candidates 
In this method, a random number is obtained and tested to determine that it will produce a value 
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of k in the correct range. If k is out-of-range, another random number is obtained (i.e., the 
process is iterated until an acceptable value of k is obtained. 

The following process or its equivalent may b used to generate a per-message secret number.  

Input: 

1. 	(q, FR, a, b {, domain_parameter_seed}, G, n, h) 

The domain parameters that are used for this process. n is a prime number, 
and G is a point on the elliptic curve. 

Output: 

1. 	 status The status returned from the key pair generation procedure. The status will 
indicate SUCCESS or an ERROR. 

2. 	(k, k −1 ) The generated secret number k and its inverse k–1. If an error is 
k −1encountered during the generation process, invalid values for k and 

should be returned, as represented by Invalid_k and Invalid_k_inverse in 
k −1the following specification. k and are integers in the range [1, n–1]. 

Process: 

1. 	 N = len(q). 

Comment: Check that N is included in Table 1 of 
Section 6.1.1. 

2. If N is invalid, then return an ERROR indication, Invalid_k, and Invalid_k_inverse. 

3. 	 requested_security_strength = the security strength associated with N; see SP 800-57, 
Part 1. 

4. 	 Obtain a string of N returned_bits from an RBG with a security strength of 
requested_security_strength or more. If an ERROR indication is returned, then 
return an ERROR indication, Invalid_k, and Invalid_k_inverse. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6.	 If (c > n–2), then go to step 4. 

7. 	 k = c + 1. 

8. (status, k–1) = inverse(k, n). 


k −1
9. Return status, k, and . 
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Appendix C: Generation of Other Quantities 
This appendix contains routines for supplementary processes required for the implementation of 
this Standard. Appendix C.1 is needed to produce the inverse of the per-message secret k (see 
Section 4.5, and Appendices B.2.1, B.2.2, B.5.1 and B.5.2) and the inverse of the signature 
portion s that is used during signature verification (see Section 4.7). The routines in Appendix 
C.2 are required to convert between bit strings and integers where required in implementing this 
Standard. Appendix C.3 contains probabilistic primality tests to be used during the generation of 
DSA domain parameters and RSA key pairs. Appendices C.4 and C.5 contain algorithms 
required during the Lucas probabilistic primality test of Appendix C.3.3 to check for a perfect 
square and to compute the Jacobi symbol. Appendix C.6 contains the Shawe-Taylor algorithm 
for the construction of primes. Appendix C.7 provides a process to perform trial division, as 
required by the random prime generation routine in Appendix C.6.  The sieve procedure in 
Appendix C.8 is needed by the trial division routine in Appendix C.7. The trial division process 
in Appendix C.7 and the sieve procedure in Appendix C.8 have been extracted from ANS X9.80, 
Prime Number Generation, Primality Testing, and Primality Certificates. Appendix C.9 is 
required during the generation of RSA key pairs. Appendix C.10 provides a method for 
constructing provable primes for RSA (see Appendix B.3.2.2 and B.3.4). 

C.1 Computation of the Inverse Value 
This algorithm or an algorithm that produces an equivalent result shall be used to compute the 
multiplicative inverse z–1 mod a, where 0 < z < a, 0 < z–1 < a, and a is a prime number. In this 
Standard, z is either k or s, and a is either q or n. 

Input: 

1. z	 The value to be inverted mod a (i.e., either k or s). 

2. a	 The domain parameter and (prime) modulus (i.e., either q or n). 

Output: 

1. 	 status The status returned from this function, where the status is either 
SUCCESS or ERROR. 

2. z–1	 The multiplicative inverse of z mod a, if it exists. 

Process: 

1. Verify that a and z are positive integers such that z < a; if not, return an ERROR 
indication. 

2. Set i = a, j = z, y2 = 0, and y1 = 1. 

3. quotient = ⎣ i/j⎦. 
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4. remainder = i –( j * quotient). 

5. y = y2 –(y1 * quotient). 

6. Set i = j, j = remainder, y2 = y1, and y1 = y. 

7. If (j > 0), then go to step 3. 

8. If (i ≠ 1), then return an ERROR indication. 

9. Return SUCCESS and y2 mod a. 

C.2 Conversion Between Bit Strings and Integers 

C.2.1 Conversion of a Bit String to an Integer 

An n-long sequence of bits { x1, …, xn } is converted to an integer by the rule 

n–1 n–2
{ x1, … , xn } → (x1 ∗ 2 ) + (x2 ∗ 2 ) + … + (n1 ∗ 2) + xn . 

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding 
integer, and the last bit corresponds to the least significant bit. 

Input: 

1. b1, b2, … , bn The bit string to be converted. 

Output: 

1. C The requested integer representation of the bit string. 

Process: 

1. Let (b1, b2, … , bn) be the bits of b from leftmost to rightmost. 
n
 

n−i)
2. C = ∑2( bi 
i=1 

3. Return C. 

In this Standard, the binary length of an integer C is defined as the smallest integer n satisfying C 
< 2n . 

C.2.2 Conversion of an Integer to a Bit String 
An integer x in the range 0 ≤ x < 2n may be converted to an n-long sequence of bits by using its 
binary expansion as shown below: 
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x = (x1 ∗ 2n–1) + (x2 ∗ 2n–2) + … + (xn–1 ∗ 2) + xn → {x1, … , xn} 

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding 
integer, and the last bit corresponds to the least significant bit. 

Input: 

1. C The non-negative integer to be converted. 

Output: 

1. b1, b2, …, bn The bit string representation of the integer C. 

Process: 

1. Let (b1, b2, …, bn) represent the bit string, where bi = 0 or 1, and b1 is the most 
significant bit, while bn is the least significant bit. 

2. For any integer n that satisfies C < 2n, the bits bi shall satisfy: 

( n−i )C = ∑ 
n 

2 bi 
i=1 

3. Return b1, b2, …, bn. 

In this Standard, the binary length of the integer C is defined as the smallest integer n that 
satisfies C < 2n . 

C.3 Probabilistic Primality Tests 
A probabilistic primality test may be required during the generation and validation of prime 
numbers. An approved robust probabilistic primality test shall be selected and used. 

There are several probabilistic algorithms available.  The Miller-Rabin probabilistic primality 
tests described in Appendices C.3.1 and C.3.2 are versions of a procedure due to M.O. Rabin, 
based in part on ideas of Gary L. Miller; one of these versions shall be used as the Miller-Rabin 
test discussed below.  For more information, see [4]. For these tests, let RBG be an approved 
random bit generator (see SP 800-90). 

There are several Lucas probabilistic primality tests available; the version provided in [5] is 
specified in Appendix C.3.3. 

This Standard allows two alternatives for testing primality: either using several iterations of only 
the Miller-Rabin test, or using the iterated Miller-Rabin test, followed by a single Lucas test. The 
value of iterations (as used in Appendices C.3.1 and C.3.2) depends on the algorithm being used, 
the security strength, the error probability used, the length (in bits) of the candidate prime and 
the type of tests to be performed. Tables C.1, C.2 and C.3 list the minimum number of iterations 
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of the Miller-Rabin tests that shall be performed. 

As stated in Appendix F, if the definition of the error probability that led to the values of the 
number of Miller-Rabin tests for p and q in Tables C.1, C.2 and C.3 is not conservative enough, 
the prescribed number of Miller-Rabin tests can be followed by a single Lucas test. Since there 
are no known non-prime values that pass the two test combination (i.e., the indicated number of 
rounds of the Miller-Rabin test with randomly selected bases, followed by one round of the 
Lucas test), the two test combination may provide additional assurance of primality over the use 
of only the Miller-Rabin test. For DSA, the two-test combination may provide better 
performance. However, the Lucas test is not required when testing the p1, p2, q1 and q2 values for 
primality when generating RSA primes. See Appendix F for further information. 

Table C.1. Minimum number of Miller-Rabin iterations for DSA 

Parameters M-R Tests Only M-R Tests when followed 
by One Lucas test 

p: 1024 bits 
q: 160 bits 

Error probability = 2−80 

For p and q: 40 For p: 3 

For q: 19 

p: 2048 bits 
q: 224 bits 

Error probability = 2−112 

For p and q: 56 For p: 3 

For q: 24 

p: 2048 bits 
q: 256 bits 

Error probability = 2−112 

For p and q: 56 For p: 3 

For q: 27 

p: 3072 bits 
q: 256 bits 

Error probability = 2−128 

For p and q: 64 For p: 2 

For q: 27 

Table C.2. Minimum number of rounds of M-R testing when generating primes for use in 
RSA Digital Signatures 

Parameters M-R Tests Only 

p1 , p2 , q1  and q2  > 100 bits 

p and q: 512 bits 

Error probability = 2−80 

For p1 , p2 , q1  and q2 : 28 

For p and q: 5 
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p1 , p2 , q1  and q2  > 140 bits 

p and q: 1024 bits 

Error probability = 2−112 

For p1 , p2 , q1  and q2 : 38 

For p and q: 5 

p1 , p2 , q1  and q2  > 170 bits 

p and q: 1536 bits 

Error probability = 2 –128 

For p1 , p2 , q1  and, q2 : 41 

For p and q: 4 

Table C.3. Minimum number of rounds of M-R testing when generating primes for use in 
RSA Digital Signatures using an error probability of 2–100 

Parameters M-R Tests Only 

p1 , p2 , q1  and q2  > 100 bits 

p and q: 512 

For p1 , p2 , q1  and q2 : 38 

For p and q: 7 

p1 , p2 , q1  and q2  > 140 bits 

p and q: 1024 bits 

For p1 , p2 , q1  and q2 : 32 

For p and q: 4 

p1 , p2 , q1 and q2  > 170 bits 

p and q: 1536 bits 

For p1 , p2 , q1  and q2 : 27 

For p and q: 3 

C.3.1 Miller-Rabin Probabilistic Primality Test 
Let RBG be an approved random bit generator (see SP 800-90). 

Input: 

1. 	 w The odd integer to be tested for primality. This will be either p or 
q, or one of the auxiliary primes p1, p2, q1 or q2. 

2. 	 iterations The number of iterations of the test to be performed; the value 
shall be consistent with Table C.1, C.2 or C.3. 

Output: 

1. 	 status The status returned from the validation procedure, where status is 
either PROBABLY PRIME or COMPOSITE. 

Process: 

1. Let a be the largest integer such that 2a divides w−1. 
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2. m = (w−1) / 2a. 

3. wlen = len (w). 

4. For i = 1 to iterations do 

4.1 	 Obtain a string b of wlen bits from an RBG.  

Comment: Ensure that 1 < b < w−1. 

4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1. 

4.3 z = bm mod w. 

4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7. 

4.5 For j = 1 to a − 1 do. 

4.5.1 z = z2 mod w. 

4.5.2 If (z = w−1), then go to step 4.7. 

4.5.3 If (z = 1), then go to step 4.6. 

4.6 Return COMPOSITE. 

4.7 Continue. 	Comment: Increment i for the do-loop in 
step 4. 

5. Return PROBABLY PRIME. 

C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test 
This method provides additional information when an error is encountered that may be useful 
when generating or validating RSA moduli. Let RBG be an approved random bit generator (see 
SP 800-90). 

Input: 

1. 	 w The odd integer to be tested for primality. This will be either p or 
q, or one of the auxiliary primes p1, p2, q1 or q2. 

2. 	 iterations The number of iterations of the test to be performed; the value 
shall be consistent with Table C.1, C.2 or C.3. 

Output: 

1. 	 status The status returned from the validation procedure, where status is 
either PROBABLY PRIME, PROVABLY COMPOSITE 
WITH FACTOR (returned with the factor), and PROVABLY 
COMPOSITE AND NOT A POWER OF A PRIME. 

71
 



 

 

 

 

  

   

 

    

 

   

  

 

 

 

Process: 

1. Let a be the largest integer such that 2a divides w–1. 

2. m = (w–1) / 2a. 

3. wlen = len (w). 

4. For i = 1 to iterations do 

4.1 	 Obtain a string b of wlen bits from an RBG. 

Comment: Ensure that 1 < b < w–1. 

4.2 	If ((b ≤ 1) or (b ≥ w–1)), then go to step 4.1. 

4.3 	 g = GCD(b, w). 

4.4 	If (g > 1), then return PROVABLY COMPOSITE WITH FACTOR and the 
value of g. 

4.5 	 z = bm mod w. 

4.6 	If ((z = 1) or (z = w – 1)), then go to step 4.15. 

4.7 	For j = 1 to a – 1 do. 

4.7.1 x = z.	 Comment: x ≠ 1 and x ≠ w–1. 

4.7.2 z = x2 mod w. 

4.7.3 If (z = w–1), then go to step 4.15. 

4.7.4 If (z = 1), then go to step 4.12. 

4.8 x = z.	 Comment: x = b(w–1)/2 mod w and x ≠ w–1. 

4.9 	 z = x2 mod w. 

4.10 If (z = 1), then go to step 4.12. 

4.11 x = z.	 Comment: x = b(w–1) mod w and x ≠ 1. 

4.12 	g = GCD(x–1, w). 

4.13 If (g > 1), then return PROVABLY COMPOSITE WITH FACTOR and the 
value of g. 

4.14 Return PROVABLY COMPOSITE AND NOT A POWER OF A PRIME. 

4.15 Continue. 	Comment: Increment i for the do-loop in 
step 4. 

5. Return PROBABLY PRIME. 
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C.3.3 (General) Lucas Probabilistic Primality Test 
The following process or its equivalent shall be used as the Lucas test. 

Input: 

C The candidate odd integer to be tested for primality. 

Output:
 

status Where status is either PROBABLY PRIME or COMPOSITE. 


Process: 


1. Test whether C is a perfect square (see Appendix C.4). If so, return (COMPOSITE). 

2. Find the first D in the sequence {5, –7, 9, –11, 13, –15, 17, …} for which the Jacobi 
Dsymbol ( )  = –1. See Appendix C.5 for an approved method to compute the Jacobi 
C
 

D
Symbol. If ( ) = 0 for any D in the sequence, return (COMPOSITE).
C 

3. K = C+1. 

4. Let Kr Kr – 1 … K0 be the binary expansion of K, with Kr = 1. 

5. Set Ur = 1 and Vr = 1. 

6. For i = r–1 to 0, do 

6.1 Utemp = Ui+1 Vi+1 mod C. 

Vi+1
2 + DU i+1

2 

6.2 Vtemp = mod C. 
2 

6.3 	If (Ki = 1), then Comment: If Ki = 1, then do steps 6.3.1 and 6.3.2; 
otherwise, do steps 6.3.3 and 6.3.4. 

U +Vtemp temp6.3.1 Ui = 	  mod C. 
2 

V + DUtemp temp6.3.2 Vi = 	 mod C. 
2
 

Else 


6.3.3 Ui = Utemp. 

6.3.4 Vi = Vtemp. 

7. If (U0 = 0), then return (PROBABLY PRIME). Otherwise, return (COMPOSITE). 

Steps 6.2, 6.3.1 and 6.3.2 contain expressions of the form A/2 mod C, where A is an integer, and 
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C is an odd integer. If A/2 is not an integer (i.e., A is odd), then A/2 mod C may be calculated as 
(A+C)/2 mod C. Alternatively, A/2 mod C = A·(C+1)/2 mod C, for any integer A, without regard 
to A being odd or even. 

C.4 Checking for a Perfect Square 
The following algorithm may be used to determine whether an n-bit positive integer C is a 
perfect square: 

Input: 

C The integer to be checked. 

Output: 

status Where status is either PERFECT SQUARE or NOT A PERFECT SQUARE. 

Process: 

1. Set n, such that 2n > C ≥ 2(n−1). 

2. 	 m = ⎡n/2⎤. 

3. 	 i = 0. 

4. Select X0, such that 2m > X0 ≥ 2(m−1). 

5. Repeat 

5.1 i = i + 1. 

5.2 Xi = ((Xi–1)2 + C)/(2Xi–1). 


Until (Xi)2 < 2m + C.
 

6. If C = ⎣ Xi ⎦ 2, then 


status = PERFECT SQUARE. 


Else 


status = NOT A PERFECT SQUARE. 


7. Return status. 

Notes: 

1. 	 By starting with X0 > (1/2) Sqrt(C), ⎪X0 − Sqrt(C)⎪is guaranteed to be less than X0 . 
This inequality is maintained in step 5; i.e., ⎪Xi − Sqrt(C)⎪< Xi for all i. 

2. For i ≥ 1, 0 ≤ Xi − Sqrt(C) = (Xi–1 − Sqrt(C))2 / (2 Xi–1) < X0/2i . 

In particular, 0 ≤ Xm − Sqrt(C) < 1. If Sqrt(C) were an integer, then it would 
be equal to the floor of Xm . 
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3. 	 In general, the inequality Xi − Sqrt(C) < 1 will occur for values of i that are much less 
than m. To detect this, the fact that 2(m−1) ≤ Sqrt(C) < Xi for all i ≥ 1 can be used, 

Xi − Sqrt(C) = ((Xi)2 − C)/( Xi + Sqrt(C)) 

≤ ((Xi)2 − C)/( 2 Sqrt(C)) 

≤  ((Xi)2 − C)/(2m) 

Thus, the condition (Xi)2 < 2m + C  implies that Xi − Sqrt(C) < 1. 

C.5 Jacobi Symbol Algorithm 

⎛ a ⎞This routine computes the Jacobi symbol ⎜ ⎟ . 
⎠⎝ n 

Jacobi( ): 

Input: 

a Any integer. For this Standard, the initial value is in the sequence {5, –7, 9, –11, 

13, –15, 17, …}, as determined by Appendix C.3.3.  

n Any integer. For this Standard, the initial value is the candidate being tested, as 
determined by Appendix C.3.3. 

Output: 

result The calculated Jacobi symbol. 

Process: 

1. 	 a = a mod n. Comment: a will be in the range 0 ≤ a < n. 

2. If a = 1, or n = 1, then return (1). 

3. If a = 0, then return (0). 

4. Define e and a1 such that a = 2e a1, where a1 is odd. 

5. If e is even, then s = 1. 

Else if ((n ≡ 1 (mod 8)) or (n ≡ 7 (mod 8))), then s = 1. 

Else if ((n ≡ 3 (mod 8)) or (n ≡ 5 (mod 8)), then s = –1. 

6. If ((n ≡ 3 (mod 4)) and (a1 ≡ 3 (mod 4))), then s = –s. 

7. 	 n1 = n mod a1. 

8. Return (s * Jacobi (n1, a1)). Comment: Call this routine recursively. 
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Example: Compute the Jacobi symbol for a = 5 and n = 3439601197: 

1. 	 n is not 1, and a is not 1, so proceed to Step 2. 

2. 	 a is not 0, so proceed to Step 3. 

3. 	 5 = 20 * 5, so e = 0, and a1 = 5. 

4.	  e is even, so s = 1. 

5. 	 a1 is not congruent to 3 mod 4, so do not change s. 

6. 	 n1 = 2 = n mod 5. 

7. 	 Compute and return (1 * Jacobi(2, 5)). This calls Jacobi recursively.  Compute the Jacobi 
symbol for a = 2 and n = 5: 

7.1 	 n is not 1, and a is not 1, so proceed to Step 7.2. 

7.2 	 a is not 0, so proceed to Step 7.3. 

7.3 	 2 = 21 * 1, so e = 1, and a1 = 1. 

7.4 	 e is odd, and n ≡ 5 (mod 8), so set s = –1. 

7.5 	 n is not 3 mod 4, and a1 is not 3 mod 4, so proceed to step 7.6. 

7.6 	 n1 = 0 = n mod 1. 

7.7 	 Return (–1 * Jacobi(0, 1) = –1). This calls Jacobi recursively. Compute the Jacobi 
symbol for a = 0 and n = 1: 

7.7.1 n = 1, so return 1. 

Thus, Jacobi (0,1) = 1, so Jacobi (2,5) = –1*(1) = –1, and Jacobi (5, 3439601197) = 1* (–1) = –1. 

C.6 Shawe-Taylor Random_Prime Routine 
This routine is recursive and may be used to construct a provable prime number using a hash 
function. 

Let Hash( ) be the selected hash function, and let outlen be the bit length of the hash function 
output block. The following process or its equivalent shall be used to generate a prime number 
for this constructive method. 

ST_Random_Prime ( ): 

Input: 

1. 	 length The length of the prime to be generated. 

2. 	 input_seed The seed to be used for the generation of the requested prime. 
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Output: 

1. 	 status The status returned from the generation routine, where status is 
either SUCCESS or FAILURE. If FAILURE is returned, then 
zeros are returned as the other output values. 

2. prime The requested prime. 


3 prime_seed A seed determined during generation. 


4. 	 prime_gen_counter (Optional) A counter determined during the generation of the 
prime. 

Process: 

1. If (length < 2), then return (FAILURE, 0, 0 {, 0}). 

2. If (length ≥ 33), then go to step 14. 

3. prime_seed = input_seed. 

4. prime_gen_counter = 0. 

Comment: Generate a pseudorandom integer 
c of length bits. 

5. c = Hash(prime_seed) ⊕ Hash(prime_seed + 1). 

6. c = 2length – 1 + (c mod 2length – 1). 

7. c = (2 ∗ ⎣c / 2⎦ ) + 1. 

Comment: Set prime to the least odd 
integer greater than or equal to c. 

8. prime_gen_counter = prime_gen_counter + 1. 

9. prime_seed = prime_seed + 2. 

10. Perform a deterministic primality test on c. For example, since c is small, its primality 
can be tested by trial division. See Appendix C.7. 

11. If (c is a prime number), then  

11.1 prime = c. 

11.2 Return (SUCCESS, prime, prime_seed {, prime_gen_counter}). 

12. If (prime_gen_counter > (4 ∗ length)), then return (FAILURE, 0, 0 {, 0}). 

13. Go to step 5. 

14. (status, c0, prime_seed, prime_gen_counter) = (ST_Random_Prime (( ⎡length / 2⎤ + 
1), input_seed). 
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15. If FAILURE is returned, return (FAILURE, 0, 0 {, 0}). 

16. iterations = ⎡length / outlen⎤ – 1. 

17. old_counter = prime_gen_counter. 

Comment: Generate a pseudorandom integer 
x in the interval [2length – 1, 2length]. 

18. x = 0. 

19. For i = 0 to iterations do 

x = x + (Hash(prime_seed + i) ∗ 2i × outlen). 

20. prime_seed = prime_seed + iterations + 1. 

21. x = 2length – 1 + (x mod 2length – 1). 

Comment: Generate a candidate prime c in 
the interval [2length – 1, 2length]. 

22. t = ⎡x / (2c0)⎤. 

23. If (2tc0 + 1 > 2length), then t = ⎡2length – 1 / (2c0)⎤. 

24. c = 2tc0 + 1. 

25. prime_gen_counter = prime_gen_counter + 1. 

Comment: Test the candidate prime c for 
primality; first pick an integer a between 2 
and c – 2. 

26. a = 0. 

27. For i = 0 to iterations do 

a = a + (Hash(prime_seed + i) ∗ 2 i * outlen). 

28. prime_seed = prime_seed + iterations + 1. 

29. a = 2 + (a mod (c – 3)). 

30. z = a2t mod c. 

31. If ((1 = GCD(z – 1, c)) and (1 = zc0  mod c)), then 

31.1 prime = c. 

31.2 Return (SUCCESS, prime, prime_seed {, prime_gen_counter}). 

32. If (prime_gen_counter ≥ ((4 ∗ length) + old_counter)), then return (FAILURE, 0, 0 
{, 0}). 
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33. t = t + 1. 
34. Go to step 23. 

C.7 Trial Division 
An integer is proven to be prime by showing that it has no prime factors less than or equal to its 
square root. This procedure is not recommended for testing any integers longer than 10 digits. 

To prove that c is prime:  

1. 	 Prepare a table of primes less than c . This can be done by applying the sieve procedure in 
Appendix C.8. 

2. Divide c by every prime in the table. If c is divisible by one of the primes, then declare that c 
is composite and exit. If convenient, c may be divided by composite numbers. For example, 
rather than preparing a table of primes, it might be more convenient to divide by all integers 
except those divisible by 3 or 5. 

3. 	 Otherwise, declare that c is prime and exit. 

C.8 Sieve Procedure 

A sieve procedure is described as follows: Given a sequence of integers Y0, Y0 + 1, … , Y0 + J, a 
sieve will identify the integers in the sequence that are divisible by primes up to some selected 
limit. 

Note that the definitions of the mathematical symbols in this process (e.g., h, L, M, p) are 
internal to this process only, and should not be confused with their use elsewhere in this 
Standard. 

Start by selecting a factor base of all the primes pj, from 2 up to some selected limit L. The value 
of L is arbitrary and may be determined by computer limitations. A good, typical value of L 
would be anywhere from 103 to 105. 

1. Compute Sj =Y0 mod pj for all pj in the factor base. 

2. 	 Initialize an array of length J + 1 to zero. 

3. Starting at Y0 – Sj + pj , let every pj
th element of the array be set to 1. Do this for the entire 

length of the array and for every j. 

4. 	 When finished, every location in the array that has the value 1 is divisible by some small 
prime, and is therefore a composite. 

The array can be either a bit array for compactness when memory is small, or a byte array for 
speed when memory is readily available. There is no need to sieve the entire sieve interval at 
once. The array can be partitioned into suitably small pieces, sieving each piece before going on 
to the next piece. When finished, every location with the value 0 is a candidate for prime testing. 
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The amount of work for this procedure is approximately M log log L, where M is the length of 
the sieve interval; this is a very efficient procedure for removing composite candidates for 
primality testing. If L = 105, the sieve will remove about 96% of all composites. 

In some cases, rather than having a set of consecutive integers to sieve, the set of integers to be 
tested consists of integers lying in an arithmetic progression Y0, Y0 + h, Y0 + 2h, …, Y0 + Jh, 
where h is large and not divisible by any primes in the factor base. 

1. 	 Select a factor base and initialize an array of length J + 1 to 0. 

2. Compute Sj =Y0 mod pj for all pj in the factor base. 

3. Compute Tj = h mod pj and r = – Sj Tj
 – 1 mod pj. 

4. Starting at Y0 + r, let every pj
th element of the array be set to 1. Do this for the entire 

length of the array and for every j. Note that the position Y0 + r in the array actually 
denotes the number Y0 + rh. 

5. 	 When finished, every location in the array that has the value 1 is divisible by some small 
prime and is therefore composite. 

Note: The prime “2” takes the longest amount of time (M/2) to sieve, since it touches the most 
locations in the sieve array. An easy optimization is to combine the initialization of the sieve 
array with the sieving of the prime “2”. It is also possible to sieve the prime “3” during 
initialization. These optimizations can save about 1/3 of the total sieve time. 

C.9 Compute a Probable Prime Factor Based on Auxiliary Primes 
This routine constructs a probable prime (a candidate for p or q) using two auxiliary prime 
numbers and the Chinese Remainder Theorem (CRT). 

Input: 

r1 and r2 Two odd prime numbers satisfying  
log2(r1r2) ≤ (nlen/2) – log2(nlen/2) – 6. 

nlen The desired length of n, the RSA modulus. 

e The public verification exponent. 

security_strength The minimum security strength required for random number 
generation. 

Output: 

status 	 The status returned from the generation procedure, where status is 
either SUCCESS or FAILURE. If FAILURE is returned, then 
zeros are returned as the other output values. 

private_prime_factor	 The prime factor of n. 
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X The random number used during the generation of the 
private_prime_factor. 

Process: 

1. If (GCD(2r1, r2) ≠ 1), then return (FAILURE, 0, 0). 

2. R = ((r2
–1 mod 2r1) * r2) – (((2r1)–1 mod r2) * 2r1). 

Comment: Apply the CRT, so that R ≡ 1 (mod 2r1) 
and R ≡ –1 (mod r2). 

3. Generate a random number X using an approved random number generator that 
nlen / 2−1 nlen / 2supports the security_ strength, such that ( 2 )(2 ) ≤ X ≤ (2 −1). 

4. 	 Y = X + ((R – X) mod 2r1r2). Comment: Y is the first odd integer ≥ X, such that r1 
is a prime factor of Y–1, and r2 is a prime factor of 
Y+1. 

Comment: Determine the requested prime number 
by constructing candidates from a sequence and 
performing primality tests. 

5. i = 0. 

6. If (Y ≥ 2nlen/2), then go to step 3. 

7. If (GCD(Y–1, e) = 1), then 

7.1 	 Check the primality of Y as specified in Appendix C.3. If PROBABLY PRIME 
is not returned, go to step 8. 

7.2 	 private_prime_factor = Y. 

7.3 	Return (SUCCESS, private_prime_factor, X). 

8. i = i + 1. 

9. If (i ≥ 5(nlen/2)), then return (FAILURE, 0, 0). 

10. Y = Y + (2r1r2). 

11. Go to step 6. 

C.10 	 Construct a Provable Prime (possibly with Conditions), Based on 
Contemporaneously Constructed Auxiliary Provable Primes 

The following process (or its equivalent) shall be used to generate an L-bit provable prime p (a 
candidate for one of the prime factors of an RSA modulus). Note that the use of p in this 
specification is used generically; both RSA prime factors p and q may be generated using this 
method. 
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If a so-called “strong prime” is required, this process can generate primes p1 and p2 (of specified 
bit-lengths N1 and N2) that divide p−1 and p+1, respectively. The resulting prime p will satisfy 
the conditions traditionally required of a strong prime, provided that the requested bit-lengths for 
p1 and p2 have appropriate sizes. 
Regardless of the bit-lengths selected for p1 and p2, the quantity p−1 will have a prime divisor p0 
whose bit-length is slightly more than half that of p. In addition, the quantity 
p0 −1 will have a prime divisor whose bit-length is slightly more than half that of p0. 

This algorithm requires that N1 + N2 ≤ L – ⎡L/2⎤ – 4. Values for N1 and N2 should be chosen such 
that N1 + N2 ≤ (L/2) – log2(L) – 7, to ensure that the algorithm can generate as many as 5L 
distinct candidates for p. 

Let Hash be the selected hash function to be used, and let outlen be the bit length of the hash 
function output block. 

Provable_Prime_Construction(): 

Input: 

1. 	 L A positive integer equal to the requested bit-length for p. Note that 
acceptable values for L= nlen/2 are computed as specified in 
Appendix B.3.1, criteria 2(b) and (c), with nlen assuming a value 
specified in Table B.1. 

2. 	 N1 A positive integer equal to the requested bit-length for p1. If N1 ≥ 
2, then p1 is an odd prime of N1 bits; otherwise, p1 = 1. Acceptable 
values for N1 ≥ 2 are provided in Table B.1 

3. 	 N2 A positive integer equal to the requested bit-length for p2. If N2 ≥ 
2, then p2 is an odd prime of N2 bits; otherwise, p2 = 1. 
Acceptable values for N2 ≥ 2 are provided in Table B.1 

4. firstseed	 A bit string equal to the first seed to be used. 

5. e	 The public verification exponent. 

Output: 

1. 	 status The status returned from the generation procedure, where status is 
either SUCCESS or FAILURE. If FAILURE is returned, then 
zeros are returned as the other output values. 

2. 	 p, p1, p2 The required prime p, along with p1 and p2 having the property that 
p1 divides p−1 and p2 divides p+1. 

3. pseed	 A seed determined during generation. 
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Process: 

1. If L, N1, and N2 are not acceptable, then, return (FAILURE, 0, 0, 0, 0). 

Comment: Generate p1 and p2, as well as the prime 
p0. 

2. If N1 = 1, then 

2.1 p1 = 1. 

2.2 p2seed = firstseed. 

3. If N1 ≥ 2, then 

3.1 Using N1 as the length and firstseed as the input_seed, use the random prime 
generation routine in Appendix C.6 to obtain p1 and p2seed. 

3.2 If FAILURE is returned, then return (FAILURE, 0, 0, 0, 0). 

4. If N2 = 1, then 

4.1 p2 = 1. 

4.2 p0seed = p2seed. 

5. If N2 ≥ 2, then 

5.1 Using N2 as the length and p2seed as the input_seed, use the random prime 
generation routine in Appendix C.6 to obtain p2 and p0seed. 

5.2 If FAILURE is returned, then return (FAILURE, 0, 0, 0, 0). 

6. Using ⎡L / 2⎤ + 1 as the length and p0seed as the input_seed, use the random prime 
generation routine in Appendix C.6 to obtain p0 and pseed. If FAILURE is returned, 
then return (FAILURE, 0, 0, 0, 0). 

Comment: Generate a (strong) prime p in the 
interval [( 2 )(2L−1), 2L −1]. 

7. iterations = ⎡L / outlen⎤ −1. 

8. pgen_counter = 0. 

Comment: Generate pseudo-random x in the 
interval [( 2 )(2L−1)−1, 2L −1]. 

9. x = 0. 

10. For i = 0 to iterations do 


x = x + (Hash(pseed + i))∗ 2 i * outlen
 . 

11. pseed = pseed + iterations + 1. 
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12. x = ⎣( 2 )(2L−1)⎦ + ( x mod (2L − ⎣( 2 )(2L−1)⎦ ) ). 

Comment: Generate a candidate for the prime p. 

13. If (GCD(p0p1, p2) ≠ 1), then return (FAILURE, 0, 0, 0, 0). 

14. Compute y in the interval [1, p2] such that 0 = ( y p0 p1–1) mod p2. 

15. t = ⎡((2 y p0 p1) + x)/(2 p0 p1 p2)⎤. 

16. If ((2(t p2 − y) p0 p1 + 1) > 2L), then 

t = ⎡( (2 y p0 p1) + ⎣( 2 )(2L−1)⎦ ) / (2 p0 p1 p2)⎤. 

Comment: p satisfies 
0 = ( p–1) mod (2p0 p1) and 
0 = ( p+1) mod p2. 

17. p = 2(t p2 − y) p0 p1 + 1. 

18. pgen_counter = pgen_counter + 1. 

19. If (GCD(p–1, e) = 1), then 

Comment: Choose an integer a in the interval [2, p– 
2]. 

19.1 a = 0 

19.2 	For i = 0 to iterations do 


a = a + (Hash(pseed + i))∗ 2 i * outlen
 . 

19.3 pseed = pseed + iterations + 1. 

19.4 	 a = 2 + (a mod (p–3)). 


Comment: Test p for primality: 

2(t p2 − y) p119.5 z = a  mod p. 

19.6 	 If ((1 = GCD(z–1, p)) and (1 = (z p0 mod p)), then return (SUCCESS, p, p1, p2, 
pseed). 

20. If (pgen_counter ≥ 5L), then return (FAILURE, 0, 0, 0, 0). 

21. t = t + 1. 

22. Go to step 16. 
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Appendix D: Recommended Elliptic Curves for Federal Government 
Use 

This collection of elliptic curves is recommended for Federal government use and contains 
choices for the private key length and underlying fields. These curves were generated using 
SHA-1 and the method given in the ANS X9.62 and IEEE Standard 1363-2000 standards. This 
appendix describes the process that was used. Note that these curves are the same as those 
included in the previous version of this Standard. 

D.1 NIST Recommended Elliptic Curves 

D.1.1 Choices 
D.1.1.1 Choice of Key Lengths 

The principal parameters for elliptic curve cryptography are the elliptic curve E and a designated 
point G on E called the base point. The base point has order n, which is a large prime. The 
number of points on the curve is hn for some integer h (the cofactor), which is not divisible by n. 
For efficiency reasons, it is desirable to have the cofactor be as small as possible. 

All of the curves given below have cofactors 1, 2, or 4. As a result, the private and public keys 
for a curve are approximately the same length.  

D.1.1.2 Choice of Underlying Fields 

For each key length, two kinds of fields are provided. 

•	 A prime field is the field GF(p), which contains a prime number p of elements.  The 
elements of this field are the integers modulo p, and the field arithmetic is implemented 
in terms of the arithmetic of integers modulo p. 

•	 A binary field is the field GF(2m), which contains 2m elements for some m (called the 
degree of the field). The elements of this field are the bit strings of length m, and the field 
arithmetic is implemented in terms of operations on the bits.  

The security strengths for five ranges of the bit length of n is provided in SP 800-57. For the 
field GF(p), the security strength is dependent on the length of the binary expansion of p. For the 
field GF(2m), the security strength is dependent on the value of m. Table E-1 provides the bit 
lengths of the various underlying fields of the curves provided in this appendix. Column 1 lists 
the ranges for the bit length of n (also see Table 1 in Section 6.1.1). Column 2 identifies the 
value of p used for the curves over prime fields, where len(p) is the length of the binary 
expansion of the integer p. Column 3 provides the value of m for the curves over binary fields. 
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Table D-1: Bit Lengths of the Underlying Fields of the Recommended Curves 

Bit Length of n Prime Field Binary Field 

161 – 223 len(p) = 192 m = 163 

224 – 255 len(p) = 224 m = 233 

256 – 383 len(p) = 256 m = 283 

384 – 511 len(p) = 384 m = 409 

≥ 512 len(p) = 521 m = 571 

D.1.1.3 Choice of Basis for Binary Fields 

To describe the arithmetic of a binary field, it is first necessary to specify how a bit string is to be 
interpreted. This is referred to as choosing a basis for the field. There are two common types of 
bases: a polynomial basis and a normal basis. 

•	 A polynomial basis is specified by an irreducible polynomial modulo 2, called the field 
polynomial. The bit string (am–1 … a2 a1 a0) is taken to represent the polynomial 

am–1 t m–1 + …+ a2 t2 + a1 t + a0 

over GF(2). The field arithmetic is implemented as polynomial arithmetic modulo p(t), 
where p(t) is the field polynomial. 

•	 A normal basis is specified by an element θ of a particular kind. The bit string (a0  a1  a2 
… am–1) is taken to represent the element 

a0θ + a1θ 2 + a2θ 2 2
 + … + am–1θ 2 m–1

 . 

Normal basis field arithmetic is not easy to describe or efficient to implement in general, 
except for a special class called Type T low-complexity normal bases.  For a given field 
degree m, the choice of T specifies the basis and the field arithmetic (see Appendix D.3).  

There are many polynomial bases and normal bases from which to choose.  The following 
procedures are commonly used to select a basis representation.   

•	 Polynomial Basis: If an irreducible trinomial tm + tk + 1 exists over GF (2), then the field 
polynomial p(t) is chosen to be the irreducible trinomial with the lowest-degree middle 
term tk . If no irreducible trinomial exists, then a pentanomial t m + t a + t b + t c + 1 is 
selected. The particular pentanomial chosen has the following properties: the second term 
ta has the lowest degree m; the third term tb has the lowest degree among all irreducible 
pentanomials of degree m and second term ta; and the fourth term tc has the lowest degree 
among all irreducible pentanomials of degree m, second term ta, and third term tb . 
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• Normal Basis: Choose the Type T low-complexity normal basis with the smallest T. 

For each binary field, the parameters are given for the above basis representations.  

D.1.1.4 Choice of Curves 

Two kinds of curves are given: 

•	 Pseudo-random curves are those whose coefficients are generated from the output of a 
seeded cryptographic hash function. If the domain parameter seed value is given along 
with the coefficients, it can be easily verified that the coefficients were generated by that 
method.  

•	 Special curves are those whose coefficients and underlying field have been selected to 
optimize the efficiency of the elliptic curve operations.  

For each curve size range, the following curves are given: 

→	 A pseudo-random curve over GF(p). 

→	 A pseudo-random curve over GF(2m). 

→ A special curve over GF(2m) called a Koblitz curve or anomalous binary curve. 

The pseudo-random curves were generated as specified in ANS X9.62 using SHA-1. 

D.1.1.5 Choice of Base Points 

Any point of order n can serve as the base point. Each curve is supplied with a sample base 
point G = (Gx , Gy ).  Users may want to generate their own base points to ensure cryptographic 
separation of networks. See ANS X9.62 or IEEE Standard 1363-2000. 

D.1.2 Curves over Prime Fields 
For each prime p, a pseudo-random curve  

E : y2 ≡ x3 – 3x +b (mod p) 

of prime order n is listed4. (Thus, for these curves, the cofactor is always h = 1.) The following 
parameters are given:  

•	 The prime modulus p 

•	 The order n 

•	 The 160-bit input seed SEED to the SHA-1 based algorithm (i.e., the domain parameter 
seed) 

•	 The output c of the SHA-1 based algorithm 

4 The selection a ≡ -3 for the coefficient of x was made for reasons of efficiency; see IEEE Std 1363-2000. 
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• The coefficient b (satisfying b2 c ≡ –27 (mod p)) 

• The base point x coordinate Gx 

• The base point y coordinate Gy 

The integers p and n are given in decimal form; bit strings and field elements are given in 
hexadecimal.  

D.1.2.1 Curve P-192 

p = 6277101735386680763835789423207666416083908700390324961279 

n = 6277101735386680763835789423176059013767194773182842284081 

SEED = 3045ae6f c8422f64 ed579528 d38120ea e12196d5 

c = 3099d2bb bfcb2538 542dcd5f b078b6ef 5f3d6fe2 c745de65 

b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1 

G x = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012 

G y = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811 

D.1.2.2 Curve P-224 

p = 2695994666715063979466701508701963067355791626002630814351 

0066298881 

n = 2695994666715063979466701508701962594045780771442439172168 

2722368061 

SEED = bd713447 99d5c7fc dc45b59f a3b9ab8f 6a948bc5 

c = 5b056c7e 11dd68f4 0469ee7f 3c7a7d74 f7d12111 6506d031 

218291fb 

b = b4050a85 0c04b3ab f5413256 5044b0b7 d7bfd8ba 270b3943 

2355ffb4 

G x = b70e0cbd 6bb4bf7f 321390b9 4a03c1d3 56c21122 343280d6 

115c1d21 

G y = bd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199 

85007e34 
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D.1.2.3 Curve P-256 

p = 1157920892103562487626974469494075735300861434152903141955 

33631308867097853951 

n = 115792089210356248762697446949407573529996955224135760342 

422259061068512044369 

SEED = c49d3608 86e70493 6a6678e1 139d26b7 819f7e90 

c = 7efba166 2985be94 03cb055c 75d4f7e0 ce8d84a9 c5114abc 

af317768 0104fa0d 

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 

3bce3c3e 27d2604b 

G x = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 

f4a13945 d898c296 

G y = 	 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece 

cbb64068 37bf51f5 

D.1.2.4 Curve P-384 

p = 3940200619639447921227904010014361380507973927046544666794 

8293404245721771496870329047266088258938001861606973112319 

n = 3940200619639447921227904010014361380507973927046544666794 

6905279627659399113263569398956308152294913554433653942643 

SEED = a335926a a319a27a 1d00896a 6773a482 7acdac73 

c = 79d1e655 f868f02f ff48dcde e14151dd b80643c1 406d0ca1 

0dfe6fc5 2009540a 495e8042 ea5f744f 6e184667 cc722483 

b = b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112 

0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef 

G x = aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98 

59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7 

G y = 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c 

e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f 
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D.1.2.5 Curve P-521 

p = 686479766013060971498190079908139321726943530014330540939 

446345918554318339765605212255964066145455497729631139148 

0858037121987999716643812574028291115057151 

n = 686479766013060971498190079908139321726943530014330540939 

446345918554318339765539424505774633321719753296399637136 

3321113864768612440380340372808892707005449 

SEED = d09e8800 291cb853 96cc6717 393284aa a0da64ba 

c = 0b4 8bfa5f42 0a349495 39d2bdfc 264eeeeb 077688e4 

4fbf0ad8 f6d0edb3 7bd6b533 28100051 8e19f1b9 ffbe0fe9 

ed8a3c22 00b8f875 e523868c 70c1e5bf 55bad637 

b = 051 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b 

99b315f3 b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd 

3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00 

G x = c6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139 

053fb521 f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127 

a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66 

G y = 118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 

579b4468 17afbd17 273e662c 97ee7299 5ef42640 c550b901 

3fad0761 353c7086 a272c240 88be9476 9fd16650 

D.1.3 Curves over Binary Fields  
For each field degree m, a pseudo-random curve is given, along with a Koblitz curve. The 
pseudo-random curve has the form 

E: y 2 + x y = x 3 + x 2 + b, 

and the Koblitz curve has the form 

Ea: y2 + x y = x 3 + ax 2 + 1, 

where a = 0 or 1. 

For each pseudorandom curve, the cofactor is h = 2. The cofactor of each Koblitz curve is h = 2 
if a = 1, and h = 4 if a = 0. 
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The coefficients of the pseudo-random curves, and the coordinates of the base points of both 
kinds of curves, are given in terms of both the polynomial and normal basis representations 
discussed in Appendix D.1.1.3. 

For each m, the following parameters are given:  

Field Representation: 

•	 The normal basis type T 

•	 The field polynomial (a trinomial or pentanomial)  

Koblitz Curve:  

•	 The coefficient a 

•	 The base point order n 

•	 The base point x coordinate G x 

• The base point y coordinate G y 

Pseudo-random curve: 

• The base point order n 

Pseudo-random curve (Polynomial Basis representation):  

•	 The coefficient b 

•	 The base point x coordinate G x 

• The base point y coordinate G y 

Pseudo-random curve (Normal Basis representation):  

•	 The 160-bit input seed SEED to the SHA-1 based algorithm  (i.e., the domain parameter 
seed) 

•	 The coefficient b (i.e., the output of the SHA-1 based algorithm) 

•	 The base point x coordinate G x 

•	 The base point y coordinate G y 

Integers (such as T, m, and n) are given in decimal form; bit strings and field elements are given 
in hexadecimal.  

D.1.3.1 Degree 163 Binary Field 

T  = 4 

p(t) = t 163 + t 7 + t 6 + t 3 + 1 
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D.1.3.1.1 Curve K-163 
a = 1 

n = 5846006549323611672814741753598448348329118574063 

Polynomial Basis: 

G x = 2 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8 

G y = 2 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9 

Normal Basis: 

G x = 0 5679b353 caa46825 fea2d371 3ba450da 0c2a4541 

G y = 2 35b7c671 00506899 06bac3d9 dec76a83 5591edb2 

D.1.3.1.2 Curve B-163 

n = 5846006549323611672814742442876390689256843201587 

Polynomial Basis:  

b = 2 0a601907 b8c953ca 1481eb10 512f7874 4a3205fd 

G x = 3 f0eba162 86a2d57e a0991168 d4994637 e8343e36 

G y = 0 d51fbc6c 71a0094f a2cdd545 b11c5c0c 797324f1 

Normal Basis: 

SEED = 85e25bfe 5c86226c db12016f 7553f9d0 e693a268 

b = 6 645f3cac f1638e13 9c6cd13e f61734fb c9e3d9fb 

G x = 0 311103c1 7167564a ce77ccb0 9c681f88 6ba54ee8 

G y = 3 33ac13c6 447f2e67 613bf700 9daf98c8 7bb50c7f 

D.1.3.2 Degree 233 Binary Field 

T  = 2 


p(t) = t 233 + t 74 + 1 
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D.1.3.2.1 Curve K-233 

a = 0 

n = 345087317339528189371737793113851276057094098886225212\ 

6328087024741343 

Polynomial Basis: 

G x = 172 32ba853a 7e731af1 29f22ff4 149563a4 19c26bf5 

0a4c9d6e efad6126 

G y = 1db 537dece8 19b7f70f 555a67c4 27a8cd9b f18aeb9b 

56e0c110 56fae6a3 

Normal Basis: 

G x = 0fd e76d9dcd 26e643ac 26f1aa90 1aa12978 4b71fc07 

22b2d056 14d650b3 

G y = 064 3e317633 155c9e04 47ba8020 a3c43177 450ee036 

d6335014 34cac978 

D.1.3.2.2 Curve B-233 

n = 	 690174634679056378743475586227702555583981273734501355\ 

5379383634485463 

Polynomial Basis:  

b = 066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42 

81fe115f 7d8f90ad 

G x = 0fa c9dfcbac 8313bb21 39f1bb75 5fef65bc 391f8b36 

f8f8eb73 71fd558b 

G y = 100 6a08a419 03350678 e58528be bf8a0bef f867a7ca 

36716f7e 01f81052 
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Normal Basis: 

SEED = 74d59ff0 7f6b413d 0ea14b34 4b20a2db 049b50c3 

b = 1a0 03e0962d 4f9a8e40 7c904a95 38163adb 82521260 
0c7752ad 52233279 

G x = 18b 863524b3 cdfefb94 f2784e0b 116faac5 4404bc91 
62a363ba b84a14c5 

G y = 049 25df77bd 8b8ff1a5 ff519417 822bfedf 2bbd7526 
44292c98 c7af6e02 

D.1.3.3 Degree 283 Binary Field 

T  = 6 

p(t) = t 283 + t 12 + t 7 + t 5 + 1 

D.1.3.3.1 Curve K-283 

a = 0 

n = 3885337784451458141838923813647037813284811733793061324 

295874997529815829704422603873 

Polynomial Basis: 

G x = 503213f 78ca4488 3f1a3b81 62f188e5 53cd265f 23c1567a 

16876913 b0c2ac24 58492836 

G y = 1ccda38 0f1c9e31 8d90f95d 07e5426f e87e45c0 e8184698 

e4596236 4e341161 77dd2259 

Normal Basis: 

G x = 3ab9593 f8db09fc 188f1d7c 4ac9fcc3 e57fcd3b db15024b 

212c7022 9de5fcd9 2eb0ea60 

G y = 2118c47 55e7345c d8f603ef 93b98b10 6fe8854f feb9a3b3 

04634cc8 3a0e759f 0c2686b1 
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D.1.3.3.2 Curve B-283 
n = 7770675568902916283677847627294075626569625924376904889 

109196526770044277787378692871 

Polynomial Basis:  

b = 27b680a c8b8596d a5a4af8a 19a0303f ca97fd76 45309fa2 

a581485a f6263e31 3b79a2f5 

G x = 5f93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8 557eac9c 

80e2e198 f8cdbecd 86b12053 

G y = 3676854 fe24141c b98fe6d4 b20d02b4 516ff702 350eddb0 

826779c8 13f0df45 be8112f4 

Normal Basis: 

SEED = 77e2b073 70eb0f83 2a6dd5b6 2dfc88cd 06bb84be 

b = 157261b 894739fb 5a13503f 55f0b3f1 0c560116 66331022 

01138cc1 80c0206b dafbc951 

G x = 749468e 464ee468 634b21f7 f61cb700 701817e6 bc36a236 

4cb8906e 940948ea a463c35d 

G y = 62968bd 3b489ac5 c9b859da 68475c31 5bafcdc4 ccd0dc90 

5b70f624 46f49c05 2f49c08c 

D.1.3.4 Degree 409 Binary Field 

T = 4 

p(t) = t 409 + t 87 + 1 

D.1.3.4.1 Curve K-409 
a = 0 

n = 33052798439512429947595765401638551991420234148214060964\ 

232439502288071128924919105067325845777745801409636659061 

7731358671 
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Polynomial Basis: 

G x = 060f05f 658f49c1 ad3ab189 0f718421 0efd0987 e307c84c 

27accfb8 f9f67cc2 c460189e b5aaaa62 ee222eb1 b35540cf 

e9023746 

Gy = 1e36905 0b7c4e42 acba1dac bf04299c 3460782f 918ea427 

e6325165 e9ea10e3 da5f6c42 e9c55215 aa9ca27a 5863ec48 

d8e0286b 

Normal Basis: 

G x = 1b559c7 cba2422e 3affe133 43e808b5 5e012d72 6ca0b7e6 

a63aeafb c1e3a98e 10ca0fcf 98350c3b 7f89a975 4a8e1dc0 

713cec4a 

G y = 16d8c42 052f07e7 713e7490 eff318ba 1abd6fef 8a5433c8 

94b24f5c 817aeb79 852496fb ee803a47 bc8a2038 78ebf1c4 

99afd7d6 

D.1.3.4.2 Curve B-409 

n = 	 6610559687902485989519153080327710398284046829642812192 

84648798304157774827374805208143723762179110965979867288 

366567526771 

Polynomial Basis:  

b = 021a5c2 c8ee9feb 5c4b9a75 3b7b476b 7fd6422e f1f3dd67 

4761fa99 d6ac27c8 a9a197b2 72822f6c d57a55aa 4f50ae31 

7b13545f 

G x = 15d4860 d088ddb3 496b0c60 64756260 441cde4a f1771d4d 

b01ffe5b 34e59703 dc255a86 8a118051 5603aeab 60794e54 

bb7996a7 
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G y = 061b1cf ab6be5f3 2bbfa783 24ed106a 7636b9c5 a7bd198d 

0158aa4f 5488d08f 38514f1f df4b4f40 d2181b36 81c364ba 

0273c706 

Normal Basis: 

SEED = 4099b5a4 57f9d69f 79213d09 4c4bcd4d 4262210b 

b = 124d065 1c3d3772 f7f5a1fe 6e715559 e2129bdf a04d52f7 

b6ac7c53 2cf0ed06 f610072d 88ad2fdc c50c6fde 72843670 

f8b3742a 

G x = 0ceacbc 9f475767 d8e69f3b 5dfab398 13685262 bcacf22b 

84c7b6dd 981899e7 318c96f0 761f77c6 02c016ce d7c548de 

830d708f 

G y = 199d64b a8f089c6 db0e0b61 e80bb959 34afd0ca f2e8be76 

d1c5e9af fc7476df 49142691 ad303902 88aa09bc c59c1573 

aa3c009a 

D.1.3.5 Degree 571 Binary Field 

T  = 10 

p(t) = t 571 + t 10 + t 5 + t 2 + 1 

D.1.3.5.1 Curve K-571 
a = 0 

n = 1932268761508629172347675945465993672149463664853217499 

32861762572575957114478021226813397852270671183470671280 

08253514612736749740666173119296824216170925035557336852 

76673 

Polynomial Basis: 

G x = 26eb7a8 59923fbc 82189631 f8103fe4 ac9ca297 0012d5d4 

60248048 01841ca4 43709584 93b205e6 47da304d b4ceb08c 
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bbd1ba39 494776fb 988b4717 4dca88c7 e2945283 a01c8972 

G y = 349dc80 7f4fbf37 4f4aeade 3bca9531 4dd58cec 9f307a54 

ffc61efc 006d8a2c 9d4979c0 ac44aea7 4fbebbb9 f772aedc 

b620b01a 7ba7af1b 320430c8 591984f6 01cd4c14 3ef1c7a3 

Normal Basis: 

G x = 04bb2db a418d0db 107adae0 03427e5d 7cc139ac b465e593 

4f0bea2a b2f3622b c29b3d5b 9aa7a1fd fd5d8be6 6057c100 

8e71e484 bcd98f22 bf847642 37673674 29ef2ec5 bc3ebcf7 

G y = 44cbb57 de20788d 2c952d7b 56cf39bd 3e89b189 84bd124e 

751ceff4 369dd8da c6a59e6e 745df44d 8220ce22 aa2c852c 

fcbbef49 ebaa98bd 2483e331 80e04286 feaa2530 50caff60 

D.1.3.5.2 Curve B-571 

n = 	 3864537523017258344695351890931987344298927329706434998 

65723525145151914228956042453614399938941577308313388112 

19269444862468724628168130702345282883033324113931911052 

85703 

Polynomial Basis:  

b = 2f40e7e 2221f295 de297117 b7f3d62f 5c6a97ff cb8ceff1 

cd6ba8ce 4a9a18ad 84ffabbd 8efa5933 2be7ad67 56a66e29 

4afd185a 78ff12aa 520e4de7 39baca0c 7ffeff7f 2955727a 

G x = 303001d 34b85629 6c16c0d4 0d3cd775 0a93d1d2 955fa80a 

a5f40fc8 db7b2abd bde53950 f4c0d293 cdd711a3 5b67fb14 

99ae6003 8614f139 4abfa3b4 c850d927 e1e7769c 8eec2d19 

G y = 37bf273 42da639b 6dccfffe b73d69d7 8c6c27a6 009cbbca 

1980f853 3921e8a6 84423e43 bab08a57 6291af8f 461bb2a8 

b3531d2f 0485c19b 16e2f151 6e23dd3c 1a4827af 1b8ac15b 
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Normal Basis: 

SEED = 2aa058f7 3a0e33ab 486b0f61 0410c53a 7f132310 

b = 3762d0d 47116006 179da356 88eeaccf 591a5cde a7500011 
8d9608c5 9132d434 26101a1d fb377411 5f586623 f75f0000 
1ce61198 3c1275fa 31f5bc9f 4be1a0f4 67f01ca8 85c74777 

G x = 0735e03 5def5925 cc33173e b2a8ce77 67522b46 6d278b65 
0a291612 7dfea9d2 d361089f 0a7a0247 a184e1c7 0d417866 
e0fe0feb 0ff8f2f3 f9176418 f97d117e 624e2015 df1662a8 

G y = 04a3642 0572616c df7e606f ccadaecf c3b76dab 0eb1248d 
d03fbdfc 9cd3242c 4726be57 9855e812 de7ec5c5 00b4576a 
24628048 b6a72d88 0062eed0 dd34b109 6d3acbb6 b01a4a97 

D.2 Implementation of Modular Arithmetic 
The prime moduli in the above examples are of a special type (called generalized Mersenne 
numbers) for which modular multiplication can be carried out more efficiently than in general. 
This section provides the rules for implementing this faster arithmetic for each of the prime 
moduli appearing in the examples.  

The usual way to multiply two integers (mod m) is to take the integer product and reduce it (mod 
m). One therefore has the following problem: given an integer A less than m 2, compute  

B = A mod m. 

In general, one must obtain B as the remainder of an integer division.  If m is a generalized 
Mersenne number, however, then B can be expressed as a sum or difference (mod m) of a small 
number of terms. To compute this expression, the integer sum or difference can be evaluated and 
the result reduced modulo m. The latter reduction can be accomplished by adding or subtracting 
a few copies of m. 

The prime modulus p for each of the five example curves is a generalized Mersenne number.  

D.2.1 Curve P-192 
The modulus for this curve is p = 2 192 – 2 64 – 1. Every integer A less than p2 can be written as 

320 256 192 128 64A = A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ,5 4 3 2 1 0 

where each Ai is a 64-bit integer. As a concatenation of 64-bit words, this can be denoted by 

A = (A5 || A4 || A3 || A2 || A0). 

The expression for B is 

B = T + S1 + S2 + S3 mod p, 
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where the 192-bit terms are given by  

T  = (A2 || A1 || A0) 

S1 = (A3 || A3) 

S2 = (A4 || A4 || 0) 

S3 = (A5 || A5 || A5). 

D.2.2 Curve P-224 
224 96 2 The modulus for this curve is p = 2 − 2 +1. Every integer A less than p  can be written as: 

416 384 352 320 288 256 224 192A = A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 +13 12 11 10 9 8 7 6 
160 128 96 64 32A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ,5 4 3 2 1 0 

where each Ai is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by: 

A = ( A13 || A12 || … || A0 ). 

The expression for B is: 

B = T + S 1 + S 2 – D1 – D2 mod p, 

where the 224-bit terms are given by: 

T = ( A6 || A5 || A4 || A3 || A2 || A1 || A0 ) 

S1 = ( A10 || A9 || A8 || A7 || 0 || 0 || 0 ) 

S2 = ( 0 || A13 || A12 || A11 || 0 || 0 || 0 ) 

D1 = ( A13 || A12 || A11 || A10 || A9 || A8 || A7 ) 

D2 = ( 0 || 0 || 0 || 0 || A13 || A12 || A11 ). 

D.2.3 Curve P-256 
The modulus for this curve is p = 2256 – 2224 + 2192 + 296 – 1. Every integer A less than p2 can be 
written as: 

480 448 416 384 352 320 288 256A = A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 +15 14 13 12 11 10 9 8 
224 192 160 128 96 64 32A7 ⋅ 2 + A6 ⋅ 2 + A5 ⋅ 2 + A4 ⋅ 2 + A3 ⋅ 2 + A2 ⋅ 2 + A1 ⋅ 2 + A0 , 

where each A i is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by 

A = (A15 || A14 || ⋅ ⋅ ⋅ || A0 ). 

The expression for B is: 
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B = T + 2S1 + 2S2 + S3 + S4 – D1 – D2 – D3 – D4 mod p, 

where the 256-bit terms are given by: 

T  = ( A7 || A6 || A5  || A4 || A3 || A2 || A1 || A0 ) 


S1 = ( A15 || A14  || A13 || A12 || A11 || 0 || 0 || 0 ) 


S2 = ( 0 || A15 || A14  || A13 || A12 || 0 || 0 || 0 ) 


S3 = ( A15 || A14  || 0 || 0 || 0 || A10 || A9 || A8 ) 


S4 = ( A8 || A13 || A15 || A14 || A13 || A11 || A10 || A9 ) 


D1 = ( A10 || A8 || 0 || 0 || 0 || A13 || A12 || A11 ) 


D2 = ( A11 || A9 || 0 || 0 || A15 || A14 || A13 || A12  ) 


D3 = ( A12  || 0 || A10 || A9 || A8 || A15 || A14 || A13 ) 


D4 = ( A13 || 0 || A11 || A10 || A9 || 0 || A15 || A14 ) 


D.2.4 Curve P-384 
The modulus for this curve is p = 2 384 – 2 128 – 2 96 + 2 32 – 1. Every integer A less than p2 can 
be written as: 

736 704 672 640 608 576 544 512A = A	23 ⋅ 2 + A22 ⋅ 2 + A21 ⋅ 2 + A20 ⋅ 2 + A19 ⋅ 2 + A18 ⋅ 2 + A17 ⋅ 2 + A16 ⋅ 2 + 
480 448 416 384 352 320 288 256A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 + A ⋅ 2 +15 14 13 12 11 10 9 8
 

224 192 160 128 96 64 32
A7 ⋅ 2 + A6 ⋅ 2 + A5 ⋅ 2 + A4 ⋅ 2 + A3 ⋅ 2 + A2 ⋅ 2 + A1 ⋅ 2 + A0 , 

where each A i is a 32-bit integer. As a concatenation of 32-bit words, this can be denoted by 

A = (A23 || A22 || ⋅ ⋅ ⋅ || A0 ). 

The expression for B is: 

B = T + 2S1 + S2 + S3 + S4 + S5 + S6 – D1 – D2 – D3 mod p, 

where the 384-bit terms are given by: 

T  = (A11 || A10 || A9 || A8 || A7 || A6 || A5 || A4 || A3 || A2 || A1 || A0 ) 

S1 = ( 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || 0 || 0 || 0 || 0 ) 

S2 = (A23 || A22 || A21 || A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13 || A12) 

S3 = (A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13 || A12 || A23|| A22|| A21) 

S4 = ( A19 || A18 || A17 || A16 || A15 || A14 || A13 || A12 || A20 || 0 || A23 || 0 ) 

S5 = ( 0 || 0 || 0 || 0 || A23 || A22 || A21 || A20 || 0 || 0 || 0 || 0 ) 
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S6 = ( 0 || 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || 0 || 0 || A20 ) 


D1 = (A22 || A21 || A20 || A19 || A18 || A17 || A16 || A15 || A14 || A13 || A12 || A23 ) 


D2 = ( 0 || 0 || 0 || 0 || 0 || 0 || 0 || A23 || A22 || A21 || A20 || 0 ) 


D3 = ( 0 || 0 || 0 || 0 || 0 || 0 || 0 || A23 || A23 || 0 || 0 || 0 ). 


D.2.5 Curve P-521 
The modulus for this curve is p = 2 521 – 1. Every integer A less than p2 can be written 

A = A1 ⋅ 2521 + A0, 


where each A i is a 521-bit integer. As a concatenation of 521-bit words, this can be denoted by 


A = (A1 || A0). 


The expression for B is: 

B = (A0 + A1) mod p. 

D.3 Normal Bases 
The elements of GF(2m) are expressed in terms of the type T normal basis5 B for GF(2m), for 
some T. Each element has a unique representation as a bit string:  

( a0 a1 … am–1 ). 

The arithmetic operations are performed as follows. 

Addition: addition of two elements is implemented by bit-wise addition modulo 2.  Thus, for 
example,  

(1100111) + (1010010) = (0110101). 

Squaring: if 

α = ( a0 a1 …  am–1 ) 

then 

α2 = (am–1 a0 a1 …  am–2 ). 

Multiplication: to perform multiplication, a function F(u,v) is constructed on inputs 

5 It is assumed in this section that m is odd and T is even, since this is the only case considered in this Standard. 
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u = ( u0 u1 …  um–1 ) and v = ( v0 v1 …  vm–1 ) 

as follows. 

1. Set p ← Tm + 1. 

2. Let u be an integer having order T modulo p. 

3. Compute the sequence F (1), F (2), … ,F (p–1) as follows: 

3.1 	Set w← 1. 

3.2 	For j from 0 to T–1 do 

3.2.1 Set n ← w. 

3.2.2 For i = 0 to m–1 do 

3.2.2.1 Set F(n) ← i. 

3.2.2.2 Set n ← 2n mod p. 

3.2.3 Set w ← uw mod p. 

4. Output the formula: 
p−2 

F (u,v) := ∑uF (k +1) vF ( p−k ) . 
k =1 

This computation need only be performed once per basis. 

Given the function F for B, the product 

( c0 c1 … cm–1 ) = ( a0 a1 … am–1 ) * ( b0 b1 … bm–1 ) 

is computed as follows: 

1. Set ( u0 u1 … um–1 ) ← ( a0 a1 . . . am–1 ). 

2. Set ( v0 v1 … vm–1 ) ← ( b0 b1 . . . bm–1 ). 

3. For k = 0 to m – 1 do 

3.1 	Compute 


ck = F(u, v). 


3.2 	Set u ← LeftShift (u) and v ← LeftShift (v), where LeftShift denotes the circular 
left shift operation. 

4. Output c = ( c0 c1 … cm–1 ). 
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Example: For the type 4 normal basis for GF(27), p = 29 and u = 12 or 17. Thus, the values of F 
are given by: 

F (1) = 0 F (8) = 3 F (15) = 6 F (22) = 5 

F (2) = 1 F (9) = 3 F (16) = 4 F (23) = 6 

F (3) = 5 F (10) = 2 F (17) = 0 F (24) = 1 

F (4) = 2 F (11) = 4 F (18) = 4 F (25) = 2 

F (5) = 1 F (12) = 0 F (19) = 2 F (26) = 5 

F (6) = 6 F (13) = 4 F (20) = 3 F (27) = 1 

F (7) = 5 F (14) = 6 F (21) = 3 F (28) = 0 

Therefore, 

F (u, v) = u0 v1 + u1 (v0 + v2 + v5 + v6 ) + u2 (v1 + v3 + v4 + v5 ) + u3 (v2 + v5 ) + 

u4 (v2 + v6 ) + u5 (v1 + v2 + v3 + v6 ) + u6 (v1 + v4 + v5 + v6 ). 

Thus, if 

a = (1 0 1 0 1 1 1) and b = (1 1 0 0 0 0 1), 

then 

c0 = F ( (1 0 1 0 1 1 1), (1 1 0 0 0 0 1) ) = 1, 

c1 = F ( (0 1 0 1 1 1 1), (1 0 0 0 0 1 1) ) = 0, 

M 

c6 = F ( (1 1 0 1 0 1 1), (1 1 1 0 0 0 0) ) = 1, 

so that c = ab = (1 0 1 1 0 0 1). 

D.4 Scalar Multiplication on Koblitz Curves 
This section describes a particularly efficient method of computing the scalar multiple nP on the 

Koblitz curve Ea over GF(2m).
 

The operation τ is defined by: 


τ (x, y) = (x2, y2). 

When the normal basis representation is used, then the operation τ is implemented by performing 
right circular shifts on the bit strings representing x and y. 

Given m and a, define the following parameters:  

• C is some integer greater than 5. 
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• μ = (–1)1–a. 

• For i = 0 and i = 1, define the sequence si(m) by: 

si(0) = 0, si(1) = 1 – i, 

si(m) = μ •  si(m – 1) – 2 si(m – 2) + (–1)i 

•	 Define the sequence V(m)
 

V(0) = 2, V(1) = μ
 

V(m) = μ • v(m –1) – 2V(m – 2). 

For the example curves, the quantities si(m) and V(m) are as follows. 

Curve K-163: 

s0(163) = 2579386439110731650419537 


s1(163) = –755360064476226375461594 


V(163) = –4845466632539410776804317 


Curve K-233: 

s0(233) = –27859711741434429761757834964435883 

s1(233) = –44192136247082304936052160908934886 

V(233) = –137381546011108235394987299651366779 

Curve K-283: 

s0(283) = –665981532109049041108795536001591469280025 

s1(283) = 1155860054909136775192281072591609913945968 

V(283) = 7777244870872830999287791970962823977569917 

Curve K-409: 

s0(409) = –18307510456002382137810317198756461378590542487556869338419259 

s1(409) = –8893048526138304097196653241844212679626566100996606444816790 

V(409)= 10457288737315625927447685387048320737638796957687575791173829 

Curve K-571: 

s0(571) = –3737319446876463692429385892476115567147293964596131024123406420\ 

235241916729983261305 

s1(571) = –3191857706446416099583814595948959674131968912148564658610565117\ 

58982848515832612248752 
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V(571)= –1483809269816914138996191402970514903645425741804939362329123395\ 

34208516828973111459843 

The following algorithm computes the scalar multiple nP on the Koblitz curve Ea over GF(2m). 
The average number of elliptic additions and subtractions is at most ∼ 1 + (m/3), and is at most ∼ 
m/3 with probability at least 1 – 25–C . 

1. For i = 0 to 1 do 


⎣ n / 2a–C + (m–9) / 2⎦ .
1.1 n′ ← 

1.2 g′ ← si(m) · n′. 

1.3 h′ ← ⎣ g′ / 2m ⎦ . 

1.4 j′ ← V(m) · h′. 

1.5 l′ ← Round((g′ + j′) / 2(m+5) / 2). 

1.6 λi ← l′ / 2C. 

1.7 fi ← Round(λi). 

1.8 ηi ← λi – fi.. 

1.9 hi ← 0. 

2.	 η ← 2 η0 + μ η1. 

3.	 If (η ≥ 1),
 

then 


if (ηo – 3 μη1 < –1)
 

then set h1 ← μ
 

else set h0 ← 1.
 

else 


if (η0 + 4 μ η1 ≥ 2)
 

then set h1 ← μ. 


4. If (η < –1)
 

then 


if (η0 – 3 μ η1 ≥  1)
 

then set h1 ← – μ
 

else set h0 ← –1.
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else 


if (η0 + 4 μ η1 <  –2)
 

then set h1 ← – μ. 


5. q0 ← f0 + h0. 

6. q1 ← f1 + h1. 

7.  r0 ← n – (s0 + μ s1) q0 – 2s1 q1. 

8. r1 ← s1 q0 – s0 q1. 

9. Set Q ← O. 

10. P0 ← P. 

11. While ((r0 ≠ 0) or (r1 ≠ 0)) 

11.1 If (r0 odd), then 

11.1.1 set u ← 2 – (r0 – 2 r1 mod 4). 

11.1.2 set r0 ← r0  – u. 

11.1.3 if (u = 1), then set Q ← Q + P0. 

11.1.4 if (u = –1), then set Q ← Q – P0. 

11.2 Set P0 ← τP0. 

11.3 Set (r0 , r1) ← (r1 + μr0 /2, – r0 /2).
 

Endwhile 


12. Output Q. 

D.5  Generation of Pseudo-Random Curves (Prime Case) 
Let l be the bit length of p, and define 

v = ⎣ ( l – 1) /160⎦ 

w  = l – 160v – 1. 

1. Choose an arbitrary 160-bit string s as the domain parameter seed. 

2. Compute h = SHA-1(s). 

3. Let h0 be the bit string obtained by taking the w rightmost bits of h. 

4. Let z be the integer whose binary expansion is given by the 160-bit string s. 

5. For i from 1 to v do: 
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5.1 	Define the 160-bit string si to be binary expansion of the integer 


(z + i) mod (2 160). 


5.2 Compute hi = SHA-1(si). 

6. Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  

h = h0  || h1 || … || hv. 

7. Let c be the integer whose binary expansion is given by the bit string h. 

8. If ((c = 0 or 4c + 27 ≡ 0 (mod p))), then go to Step 1. 

9. Choose integers a, b ∈GF(p) such that 


c b2 ≡ a3 (mod p). 


(The simplest choice is a = c and b = c. However, one may want to choose differently for 
performance reasons.)  

10. Check that the elliptic curve E over GF(p) given by y 2 = x3 + ax + b has suitable order. If 
not, go to Step 1. 

D.6 Verification of Curve Pseudo-Randomness (Prime Case) 
Given the 160-bit domain parameter seed value s, verify that the coefficient b was obtained from 
s via the cryptographic hash function SHA-1 as follows. 

Let l be the bit length of p, and define 

v = ⎣ ( l – 1) /160⎦ 

w  = l – 160v – 1. 

1. Compute h = SHA-1(s). 

2. Let h0 be the bit string obtained by taking the w rightmost bits of h. 

3. Let z be the integer whose binary expansion is given by the 160-bit string s. 

4. For i = 1 to v do 

4.1 	Define the 160-bit string si to be binary expansion of the integer 


(z + i) mod (2160 ). 


4.2 Compute hi = SHA-1(si). 

5. Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  

h = h0  || h1 || … || hv. 
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6. Let c be the integer whose binary expansion is given by the bit string h. 

7. Verify that b2 c ≡ –27 (mod p). 

D.7 Generation of Pseudo-Random Curves (Binary Case) 
Let: 

v = ⎣ (m – 1) /B⎦ 

w = m – Bv. 

1. 	Choose an arbitrary 160-bit string s as the domain parameter seed. 

2. 	Compute h = SHA-1(s). 

3. 	Let h0 be the bit string obtained by taking the w rightmost bits of h. 

4. 	Let z be the integer whose binary expansion is given by the 160-bit string s. 

5. For i from 1 to v do: 

5.1 	Define the 160-bit string si to be binary expansion of the integer 


(z + i) mod (2160 ). 


5.2 	Compute hi = SHA-1(si). 

6. 	Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  

h = h0 || h1 || … || hv. 

7. 	 Let b be the element of GF(2m) which binary expansion is given by the bit string h. 

8. 	 Choose an element a of GF(2m). 

9. 	 Check that the elliptic curve E over GF(2m) given by y2 + xy = x3 + ax2 + b has suitable 
order. If not, go to Step 1. 

D.8 Verification of Curve Pseudo-Randomness (Binary Case) 
Given the 160-bit domain parameter seed value s, verify that the coefficient b was obtained from 
s via the cryptographic hash function SHA-1 as follows. 

Define 

v = ⎣ (m – 1) /160⎦ 

w= m – 160v 

1. Compute h = SHA-1(s). 

2. 	 Let h0 be the bit string obtained by taking the w rightmost bits of h. 
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3. Let z be the integer whose binary expansion is given by the 160-bit string s. 

4. For i = 1 to v do 

4.1 Define the 160-bit string si to be binary expansion of the integer (z + i) mod (2160 ). 

4.2 Compute hi = SHA-1(si ). 

5. Let h be the bit string obtained by the concatenation of h0 , h1, … , hv as follows:  

h = h0  || h1 || … || hv. 

6. Let c be the element of GF(2m ) which is represented by the bit string h. 

7. Verify that c = b. 

D.9 Polynomial Basis to Normal Basis Conversion 
Suppose that α is an element of the field GF(2m). Let p be the bit string representing α with 
respect to a given polynomial basis. It is desired to compute n, the bit string representing α with 
respect to a given normal basis. This is done via the matrix computation  

p Γ = n, 

where Γ is an m-by-m matrix with entries in GF(2). The matrix Γ, which depends only on the 
bases, can be computed easily given its second-to-last row.  The second-to-last row for each 
conversion is given the below. 

Degree 163: 
3 e173bfaf 3a86434d 883a2918 a489ddbd 69fe84e1 

Degree 233: 
0be 19b89595 28bbc490 038f4bc4 da8bdfc1 ca36bb05 853fd0ed 

0ae200ce 

Degree 283: 
3347f17 521fdabc 62ec1551 acf156fb 0bceb855 f174d4c1 7807511c 
9f745382 add53bc3 

Degree 409: 
0eb00f2 ea95fd6c 64024e7f 0b68b81f 5ff8a467 acc2b4c3 b9372843 
6265c7ff a06d896c ae3a7e31 e295ec30 3eb9f769 de78bef5 

Degree 571: 
7940ffa ef996513 4d59dcbf e5bf239b e4fe4b41 05959c5d 4d942ffd 
46ea35f3 e3cdb0e1 04a2aa01 cef30a3a 49478011 196bfb43 c55091b6 
1174d7c0 8d0cdd61 3bf6748a bad972a4 
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Given the second-to-last row r of Γ, the rest of the matrix is computed as follows.  Let β be the 
element of GF(2m) whose representation with respect to the normal basis is r. Then the rows of 
Γ, from top to bottom, are the bit strings representing the elements 

β m–1, β m–2 , …, β 2, β, 1 

with respect to the normal basis.  (Note that the element 1 is represented by the all-1 bit string.) 

Alternatively, the matrix is the inverse of the matrix described in Appendix D.10. 

More details of these computations can be found in Annex A.7 of the IEEE Standard 1363-2000 
standard. 

D.10 Normal Basis to Polynomial Basis Conversion 
Suppose that α is an element of the field GF(2m). Let n be the bit string representing α with 
respect to a given normal basis.  It is desired to compute p, the bit string representing α with 
respect to a given polynomial basis. This is done via the matrix computation  

n Γ = p, 

where Γ is an m-by-m matrix with entries in GF(2). The matrix Γ, which depends only on the 
bases, can be computed easily given its top row.  The top row for each conversion is given 
below. 

Degree 163: 
7 15169c10 9c612e39 0d347c74 8342bcd3 b02a0bef 

Degree 233: 
149 9e398ac5 d79e3685 59b35ca4 9bb7305d a6c0390b cf9e2300 

253203c9 

Degree 283: 
31e0ed7 91c3282d c5624a72 0818049d 053e8c7a b8663792 bc1d792e 

ba9867fc 7b317a99 

Degree 409: 
0dfa06b e206aa97 b7a41fff b9b0c55f 8f048062 fbe8381b 4248adf9 
2912ccc8 e3f91a24 e1cfb395 0532b988 971c2304 2e85708d 

Degree 571: 
452186b bf5840a0 bcf8c9f0 2a54efa0 4e813b43 c3d41496 06c4d27b 
487bf107 393c8907 f79d9778 beb35ee8 7467d328 8274caeb da6ce05a 
eb4ca5cf 3c3044bd 4372232f 2c1a27c4 

Given the top row r of Γ, the rest of the matrix is computed as follows.  Let β be the element of 
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GF(2 m) whose representation with respect to the polynomial basis is r. Then the rows of Γ, from 
top to bottom, are the bit strings representing the elements 

β, β 2 , β 22 
, … , β 2m–1 

with respect to the polynomial basis. 


Alternatively, the matrix is the inverse of the matrix described in Appendix D.9. 


More details of these computations can be found in Annex A.7 of the IEEE Std 1363-2000 

standard. 
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Appendix E: A Proof that v = r in the DSA 
(Informative) 

The purpose of this appendix is to show that if M′ = M, r′ = r and s′ = s in the signature 
verification, then v = r′. Let Hash be an approved hash function. The following result is needed. 

Lemma: Let p and q be primes such that q divides (p – 1), let h be a positive integer less
(p–1)/q

than p, and let g = (h mod p). Then (gq mod p) = 1, and if (m mod q) = (n 
mod q ), then (g

m 
mod p) = (g

n 
mod p). 

Proof: 

gqmod p = (h(p–1) / q mod p)q mod p 

= h(p – 1) mod p 

= 1 

by Fermat’s Little Theorem. Now let (m mod q) = (n mod q), i.e., m = (n + kq) for some integer 
k. Then 

n + kq mod pgm mod p = g
n= (g  gkq) mod p 

= ((gn mod p) (gq mod p)k) mod p 

= gn mod p, 

since (gq mod p) = 1. 

Proof of the main result: 

Theorem:  If M′ = M, r′ = r, and s′ = s in the signature verification, then v = r′. 

Proof: 

w = (s′)–1 mod q = s–1 mod q 


u1 = ((Hash(M ′))w) mod q = ((Hash(M))w) mod q 


u2 = ((r′)w) mod q = (rw) mod q. 


Now y = (g
x 

mod p), so that by the lemma, 


v = ((gu1 yu2) mod p) mod q 

Hash(M)w= ((g yrw) mod p) mod q
 
Hash(M)w
= ((g gxrw) mod p) mod q 

= ((g(Hash(M) + xr)w) mod p) mod q. 
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 Also: 

s = (k–1 (Hash(M) + xr)) mod q. 

Hence: 

w = (k (Hash(M) + xr)–1) mod q 

(Hash(M) + xr)w mod q = k mod q. 

Thus, by the lemma: 

v = (gk mod p) mod q = r 
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Appendix F: Calculating the Required Number of Rounds of Testing 
Using the Miller-Rabin Probabilistic Primality Test 

(Informative) 

F.1 The Required Number of Rounds of the Miller-Rabin Primality Tests  
The ideas of paper [1] were applied to estimate p k,t , the probability that an odd k-bit integer that 
passes t rounds of Miller-Rabin (M-R) testing is actually composite.  The probability pk ,t  is 
understood as the ratio of the number of odd composite numbers of a binary length k that can be 
expected to pass t rounds of M-R testing (with randomly generated bases) to the sum of that 
value and the number of odd prime integers of binary length k. This is equivalent to assuming 
that candidates selected for testing will be chosen uniformly at random from the entire set of odd 
k-bit integers. Following Pomerance, et al., pk,t can be (over) estimated by the ratio of the 
expected number of odd composite numbers of binary length k that will pass t rounds of M-R 
testing (with randomly generated bases) to the total number of odd primes of binary length k. 
From the perspective of a party charged with the responsibility of generating a k-bit prime, the 
objective is to determine a value of t such that pk ,t  is no greater than an acceptably small target 
value pt arg et . 

Using [1], it is possible to compute an upper bound for pk ,t  as a function of k and t. From this, 
an upper bound can be computed for t as a function of k and ptarget, the maximum allowed 
probability of accidentally generating a composite number.  The following is an algorithm for 
computing t: 

1. For t = 1, 2 … ⎡–log2(ptarget)/2⎤ 

1.1 For M = 3, 4 … ⎣2 k −1 −1⎦ (1) 

1.1.1 Compute pk ,t  as in (2). 

1.1.2 If pk,t ≤ ptarget 

1.1.2.1 Accept t. 

1.1.2.2 Stop. 

In (1), k is the bit length of the candidate primes and (2) is as follows: 

⎡ ⎤2 M m 
−k ⎢ k −2− Mt 8(π − 6) k −2 m−(m−1)t 1 ⎥pk ,t = 2.00743 ⋅ ln(2) ⋅ k ⋅ 2 2 + 2 ∑2 ∑ . (2)⎢ ⎛ (k −1) ⎞ ⎥3 m=3 j =2 ⎜⎜ j + 

j ⎟⎟
⎠⎢ ⎝ ⎥⎣ 2 ⎦ 

Using this expression for t, the following methodologies are used for testing the DSA and RSA 
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candidate primes. 

F.2 Generating DSA Primes 
For DSA, the maximum possible care must be taken when generating the primes p and q that are 
used for the domain parameters.  The same primes p and q are used by many parties.  This means 
that any weakness that these numbers may possess would affect multiple users.  It also means 
that the primes are not generated very often; typically, an entire system uses the same set of 
domain parameters for an extended period of time.  Therefore, in this case, some additional care 
is called for. 

With this in mind, it may be too optimistic to simply subject candidate primes to t rounds of M-R 
testing, where the minimal acceptable value for t is determined according to (1) and (2) in 
Appendix F.1. This might be the case, for example, if there is a reason to doubt that the 
assumptions made in [1] have been satisfied during the process of selecting candidates for 
primality testing. One may gain more confidence in the process by performing some additional 
(different) primality test(s) on the candidates that survive the M-R testing. As another option, 
one could, of course, perform additional rounds of M-R testing. These considerations lead to the 
following alternatives: either (A) use the number of rounds of M-R testing determined according 
to (1) and (2) in Appendix F.1, and follow that with a single Lucas test (as recommended in ANS 
X9.31), or (B) use a (much) more conservative approach when determining t (e.g., as described 
below) and subject candidate primes to additional rounds of M-R testing. 

One approach for strategy (B) would be to adopt the viewpoint of the majority of system users, 
who have no part in generating the (supposed) prime, but who must rely upon its primality for 
their security. Such parties may be concerned that the candidates for M-R testing have been 
selected in a fashion that deviates significantly from the uniform distribution – which was 
assumed when determining t according to (1) and (2) in Appendix F.1. In cases where the 
selection process could be unusually biased in some way, it is important to minimize the 
probability that a composite number will survive testing.  It can be shown that for any k-bit odd 
composite number (regardless of how it was selected), the probability that it will pass t rounds of 

4−tM-R testing with randomly chosen bases is less than (although this is not a particularly tight 
bound). Selecting t such that 4–t ≤ ptarget is equivalent to choosing t ≥ −log2(ptarget)/2. To ensure 
that a composite number has a probability no greater than ptarget of surviving the M-R tests, the 
number of rounds can be set at t = ⎡–log2(ptarget)/2⎤. Even if the method of selecting candidates 
were so biased that it offered nothing but composite numbers for testing, it is reasonable to 
expect that it would take at least 1/ ptarget attempts (which is greater than 4t ) before a composite 
number would slip through the t-round M-R testing process. 

WARNING: As the discussion above illustrates, care must be taken when using the phrase 
“error probability” in connection with the recommended number of rounds of M-R testing. The 
probability that a composite number survives t rounds of Miller-Rabin testing is not the same as 
p k,t , which is the probability that a number surviving t rounds of Miller-Rabin testing is 
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composite. Ordinarily, the latter probability is the one that should be of most interest to a party 
responsible for generating primes, while the former may be more important to a party 
responsible for validating the primality of a number generated by someone else. However, for 
sufficiently large k (e.g., k ≥ 51), it can be shown that p k,t ≤ 4–t  under the same assumptions 
concerning the selection of candidates as those made to obtain formula (2) in Appendix F.1 (see 
[1].) In such cases, t = ⎡–log2(ptarget)/2⎤ rounds of Miller-Rabin testing can be used both in 
generating and validating primes, with ptarget serving as an upper bound on both the probability 
that the generation process yields a composite number and the probability that a composite 
number would survive an attempt to validate its primality. 

Table C.1 in Appendix C.3 identifies the minimum values for t when generating the primes p and 
q for DSA using either strategy (A) or (B) above. To obtain the t values shown in the column 
titled “M-R Tests Only”, the conservative strategy (B) was followed; those t values are sufficient 
to validate the primality of p and q. The t values shown in the column titled “M-R Tests when 
followed by One Lucas Test” result from following strategy (A) using computations (1) and (2) 
in Appendix F.1. 

F.3 Generating Primes for RSA Signatures 
When generating primes for the RSA signature algorithm, it is still very important to reduce the 
probability of errors in the M-R testing procedure. However, since the (probable) primes are 
used to generate a user’s key pair, if a composite number survives the testing process, the 
consequences of the error may be less dramatic than in the case of generating DSA domain 
parameters; only one user’s transactions are affected, rather than a domain of users. Furthermore, 
if the p or q value generated for some user is composite, the problem will not be undiscovered 
for long, since it is almost certain that signatures generated by that user will not be verifiable. 

Therefore, when generating the RSA primes p and q, it is sufficient to use the number of rounds 
derived from (1) and (2) in Appendix F.1 as the minimum number of M-R tests to be performed. 
However, if the definition of pk, t is not considered to be sufficiently conservative when testing p 
and q, it is recommended that the t rounds of Miller-Rabin tests be followed by a single Lucas 
test. 

The lengths for p and q that are recommended for use in RSA signature algorithms are 512, 1024 
and 1536 bits; recall that n = pq, so the corresponding lengths for n are 1024, 2048 and 3072 bits, 
respectively. As currently specified in SP 800-57, Part 1, these lengths correspond to security 
strengths of 80, 112 and 128 bits, respectively. Hence, it makes sense to match the number of 
rounds of Miller-Rabin testing to the target error probability values of 2–80, 2–112, and 2–128. A 
probability of 2–100 is included for all prime lengths, since this probability has often been used in 
the past and may be acceptable for many applications.  

When generating the RSA primes p and q with conditions, it is sufficient to use the value t 
derived from (1) and (2) as the minimum number of M-R tests to be performed when generating 
the auxiliary primes p1, p2, q1 and q2. It is not necessary to use an additional Lucas test on these 
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numbers. In the extremely unlikely event that one of the numbers p1, p2, q1 or q2 is composite, 
there is still a high probability that the corresponding RSA prime (p or q) will satisfy the 
requisite conditions. 

The sizes of p1 , p2 , q1 , and q2 were chosen to ensure that, for an adversary with significant but 
not overwhelming resources, Lenstra’s elliptic curve factoring method [2] (against which there is 
no protection beyond choosing large p and q) is a more effective factoring algorithm than either  
the Pollard P–1 method [2], the Williams P+1 method [3]  or various cycling methods [2]. For an 
adversary with overwhelming resources, the best all-purpose factoring algorithm is assumed to 
be the General Number Field Sieve [2]. 

Tables C.2 and C.3 in Appendix C.3 specify the minimum number of rounds of M-R testing 
when generating primes to be used in the construction of RSA signature key pairs.   
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