
NIST IR-7658

Guide to SIMfill Use and
Development

Wayne Jansen
Aurélien Delaitre

 Guide to SIMfill Use and Development

Wayne Jansen
Aurélien Delaitre

NIST IR-7658

C O M P U T E R S E C U R I T Y

Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

February 2010

U.S. Department of Commerce
Gary Locke, Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Director

 ii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analysis to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of technical, physical, administrative, and management standards and guidelines for
the cost-effective security and privacy of sensitive unclassified information in Federal computer
systems. This Interagency Report discusses ITL’s research, guidance, and outreach efforts in
computer security, and its collaborative activities with industry, government, and academic
organizations.

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency Report
58 pages (2010)

 iii

Abstract

SIMfill is a proof-of-concept, open source, application developed by NIST to populate
identity modules with test data, as a way to assess the recovery capability of mobile
forensic tools. An initial set of test data is also provided with SIMfill as a baseline for
creating other test cases. This report describes the design and organization of SIMfill in
sufficient detail to allow informed use and experimentation with the software and test data
provided, including the option to modify and extend the program and data provided to
meet specific needs.

Keywords: Computer Forensics; Reference Materials; Tool Validation

 iv

Table of Contents

1. Introduction...1

2. Overview ..3

3. Installation and Operation...6

3.1 User Interface ..6
3.2 Reference Data..7
3.3 Population Process ..9

4. Data and Schema Definitions ...10

4.1 Standard EF Definition...10
4.2 XML Schema Definition ...11
4.3 XML Data Representation..14

5. Design and Implementation..16

5.1 Thread Processing...17
5.2 Logging ..17

6. Code Modifications...19

7. References ...21

Appendix A: XML Data Representation Examples..22

Appendix B: Dataset Content Examples ...49

 v

1. Introduction

Reference materials are vital in forensic laboratories and similar settings, where quality
assurance is a major issue. Reference material refers to material, sufficiently homogeneous
and stable with respect to one or more specified properties, which has been established to
be fit for its intended use in a measurement process. One area of application is in the
validation of forensic tools to identify inaccuracies that might exist and establish overall
suitability for use. New versions of forensic software tools are issued regularly by a tool
manufacturer to broaden the range of existing functions, provide new features, and correct
identified problems. After the laboratory successfully validates a tool, it can be safely put
into use for its intended purpose.

Reference materials, such as handsets and identity modules containing populated data, are
typically used to validate forensic tools targeting mobile handheld devices. However,
populating such devices with data that exhibit the needed properties, including a broad
range of character sets, data structures, and file content, is difficult. Populating a device
with a representative data to create suitable reference material can be done in various ways:

 Manually – Using manual means to populate a group of individual items onto
devices is typically a time-consuming and error-prone process, since it is
normally done through the user interface of a handset.

 Semi-automated – Using a semi-automated process typically preserves
manually populated data for reuse by copying or transferring the data to
another device with the same or very similar characteristics.

 Automated – Using an automated means to populate devices through a well-
defined interface can greatly expedite validation, once the initial effort to
construct the test data is completed.

SIMfill is a proof-of-concept application developed to expedite validation by populating
certain devices automatically with test data, to create reference material for tool
assessment.1 SIMfill works with Subscriber Identity Modules (SIMs) found in many
present-day mobile phones. Universal Mobile Telecommunications System (UMTS) SIMs
(USIMs) being deployed in 3G networks are often backwards-compatible with SIMs and
able to be populated by SIMfill as well [3GPP09c]. (U)SIMs are highly standardized
devices with well-defined interfaces. The vast majority of forensic tools for cell phones
provides the functionality to recover (U)SIM-resident data, making SIMfill a potentially
useful means for use in assessing their capabilities.

This report describes the design and organization of SIMfill in sufficient detail to allow
informed use and experimentation with the software distribution, including the option to
modify the program and test dataset provided to meet specific needs. The reader is
presumed to have a fundamental understanding of the SIM file system (e.g., see [3GPP07,

1 The reference material described in this report is not to be confused with NIST Standard Reference
Materials - http://ts.nist.gov/measurementservices/referencematerials/index.cfm.

http://ts.nist.gov/measurementservices/referencematerials/index.cfm

Jan09]). The reader is advised to review the disclaimer file included in the distribution
before attempting to use SIMfill or any of its components.

 2

2. Overview

SIMfill is open source software written in the Java programming language. It was
developed using Eclipse 3.2.1 on Windows XP SP3 and uses the Jaccal library to
communicate with the (U)SIM card. Jaccal is compliant with the Personal
Computer/Smart Card (PC/SC) interface specifications and is also open source.

Two different types of input data are needed for SIMfill to perform its tasks, as illustrated
in Figure 1:

 A data file containing the test cases to be written to the Elementary Files (EFs)
of interest in the SIM file system.

 A card file containing any codes needed to satisfy the various access
conditions of a target (U)SIM and establish the access required to populate
EFs of interest.

The baseline test data and card data provided with SIMfill are represented as Extensible
Markup Language (XML) files. XML schema definition files are also provided that
specify in detail how the input data are to be represented. The choice of XML
representation allows the input to be easily modified by users to suit their needs using a
freely available XML editor, such as Microsoft’s XML Notepad.

The test data and card data must be both well-formed and valid XML documents. The
former means that the syntax meets the XML standard, while latter means that the well-
formed content also conforms to the XML schema definitions provided. By definition, all
XML editors perform syntax checks. Many of them also perform XML schema validation
dynamically during editing, which greatly simplifies the task of preparing conforming
documents. SIMfill also checks the card and data files during execution.

Figure 1: SIMfill Overview

The dataset provided with SIMfill can be used to get started. Note that the data content to
be populated is kept separate from device programming commands. Instead, populating an

identity module is data driven, guided entirely by the reference test data specified and done
in accordance with the established access conditions.

During the population process, SIMfill makes detailed entries to an event log, including the
Application Protocol Data Units (APDUs) exchanged and success or failure of the
operation, as shown in Figure 1. Various levels of filtering can be selected for the entries
in the event log to allow the contents of the log to be viewed at different levels of detail
and captured as a report.

Table 1 list the abbreviations for EFs that are used in the Global System for Mobile
Communications (GSM) specifications [e.g., 3GPP07, 3GPP09a, 3GPP09b] and are able to
be specified by name in the reference test data. The required access conditions needed to
write to an EF given in the body of the table are listed across the top of the table:

 Card Holder Verification 1 (CHV1) - Update can be performed only after a
successful verification of the user’s PIN, or if PIN verification is disabled

 Card Holder Verification 2 (CHV2) - Update can be performed only after a
successful verification of the user’s PIN2, or if PIN2 verification is disabled

 Administrative (ADM) - Update can be performed only after prescribed
requirements for administrative access are fulfilled

 Never - Access of the file over the SIM interface to the handset is forbidden.2

Table 1: Elementary Files Populated by SIMfill

CHV1 CHV2 ADM NEVER
ADN FDN IMSI ICCID
EXT1 EXT2 SDN
LND EXT3
SMS SPN
LOCI AD
LOCIGPRS PHASE
MSISDN SST
FPLMN
PLMNsel

In addition to these named EFs, a generic EF is supported that can be used to identify and
populate the contents of any file in the directory structure, using its16-bit file identifier.

A common alternative to SIMfill for populating a (U)SIM is to use an editor tool designed
specifically for smart cards or identity modules. Commands normally follow a simple
format with keywords and parameters that the tool understands to perform associated
activities, such as locating an EF in the file system of the module and writing data to it.
The commands are translated into APDUs that are used to communicate with the identity
module to carry out a function.

2 Note that with some developer identity modules, it is possible to update the ICCID, contrary to the
standardized access condition for that EF.

 4

Such editor tools often allow several commands to be linked together in a script and
executed, using additional commands used to control the flow of execution. For example,
if a referenced EF does not exist or a command fails for some other reason, the flow of
control needs to be programmed to catch such conditions and debugged, much like a
programming language. Gaining expertise with a new command language and preparing
scripts is a drawback with this approach. Another drawback is the representation of data;
typically the data to be populated is embedded within the script, making creation and
update problematic.

 5

3. Installation and Operation

Installing SIMfill is fairly straightforward. The SIMfill distribution package can be found
at http://csrc.nist.gov/groups/SNS/mobile_security/mobile_forensics_software.html.
Download and unzip the file on the target computer. Please note the disclaimer for the
distribution. Then, download and install the java runtime needed for SIMfill to execute, if
it is not already installed. The java runtime can be found at
http://www.java.com/en/download/index.jsp.

Jaccal, which is used to communicate with a smart card, is available from the sourceforge
Web site at http://jaccal.sourceforge.net/. The Win32 binary release contains a collection
of files, including Windows executables, Java Archive (jar) files and a Windows dynamic-
link library (dll) file. Only the jaccal-core.jar and jaccal-pcsc.dll files from the Jaccal
release package are required for SIMfill to function. Copy the jaccal-core.jar file to the
same directory as the simfill-1.2.jar file. Also, copy the jaccal-pcsc.dll file to
c:\windows\system32 or other system-path accessible dll directory. Since Jaccal works
with a PC/SC-compatible smart card reader, one of them also must also be installed.

At this stage installation is finished. To execute SIMfill, simply navigate to the simfill.jar
file and double click it.

3.1 User Interface

When SIMfill begins execution, it presents the user with a very simple interface illustrated
in Figure 2. Its main functions are represented by three buttons across the top of the user
interface.

Figure 2: SIMfill User Interface

http://csrc.nist.gov/groups/SNS/mobile_security/mobile_forensics_software.html
http://www.java.com/en/download/index.jsp
http://jaccal.sourceforge.net/

The two active buttons shown, labeled Load data, Load card info, allow the user to select
and load the test data file to populate and the card information for the target (U)SIM to be
populated. As selections are made, entries appear in the filtered event log window at the
bottom of the user interface. During loading, the files are validated against their respective
schema definitions and any errors are logged. In the Figure 2 example, the data file has
been successfully loaded and validated, and the card information file is about to be
selected.

The population of the (U)SIM cannot begin until both files are successfully loaded and
validated. Once that occurs, the third button, labeled Proceed, is activated to allow the
population process to be initiated upon its selection. It is important to insert (U)SIM into
the smart card reader before initiating the population process. Otherwise an error occurs
immediately. Population of the (U)SIM should then proceed automatically through to
completion and continue to fill the event log window with event entries.

Note that six levels of filtering are available to allow viewing of log entries at an
appropriate level of detail, including a full listing of each APDU exchanged with the
(U)SIM. The choice of filtering level is selectable via a pull-down menu, as illustrated in
Figure 3. For speedier processing, it is recommended that detailed views of the event log
(i.e., Report, Debug, and All) remain off until processing is completed. All log
information is captured regardless of the filtering level, but displaying the details more
fully during processing incurs delay. The filtering level can be changed to a more detailed
view, once processing is completed, and the information captured for a report.

Figure 3: Filtering Level Selection

When SIMfill completes processing it posts a notification in the event log and deactivates
the button labeled Proceed. At the bottom of the user interface, two buttons labeled Clear
and Save are activated. Typically the user selects a filtering level and reviews the events
displayed. If satisfied with the results, the Save button can be used to capture the events as
a report file for later use in the assessment process; otherwise, the Clear button can be used
to empty the event log for another attempt, once corrections to the dataset are done.

3.2 Reference Data

The baseline reference data provided in the SIMfill distribution contains several predefined
card information and test data files as a starting point. Three card files are included:
GemXplore.xml, USIMeraIII.xml, and Standard.xml. They are shown in the pop-up menu
in Figure 2. The GemXplorer.xml and USIMeraIII.xml are associated with specific
developer SIMs, which can be used to enable ADM access, as well as CHV1 and CHV2

 7

access, and provide the means to specify the broadest range of possible test cases,
including all EFs listed in Table 1.3 They serve mainly as a model for preparing card files
for other developer SIMs. Standard.xml is for use with common SIMs issued by cellular
carriers. The file can be used to supply CHV1 and CHV2 values and gain access, if those
settings are enabled.

The reference test data includes three XML files, each containing data to populate a single
(U)SIM. They are referred to as SIM1, SIM2, and SIM3. The SIM1.xml and SIM2.xml
files contain the basic reference data cases, while SIM3.xml contains unconventional data
cases used primarily for experimentation. Figure 4 illustrates the situation.

Figure 4: Reference Test Data

SIM1 and SIM2 are structured similarly and contain similar content. The test cases are
intended to be fairly basic, but comprehensive. The main difference between the two files
is that SIM1 uses the 7-bit GSM character set encoding, including 2-septet extended
characters, while SIM2 uses the 16-bit Universal Character Set 2 (UCS2) type 80 encoding
wherever possible. In keeping with the choice of languages supported by the respective
character sets, the languages used for SIM1 are English and French and for SIM2 are
English and Japanese. SIM1 encodes language preferences in the LP EF, and SIM2 uses
the ELP EF. Both single segment and long multi-segment concatenated Short Message
Service (SMS) messages are included in the reference data as well as Enhanced Message
Service (EMS) messages containing black and white graphics. Appendix B illustrates the
SIM1 and SIM2 data entries for ADN and SMS EFs, highlighting the similarities and
characteristics of the content.

SIM3 contains both 7-bit GSM and 16-bit UCS2 character sets. The data cases are more
uncommon or unusual and some can be considered to be of an anti-forensic nature.
Examples of the former include concatenated messages comprising more than four
segments and ADN entries with an alpha-identifier encoded entirely in 7-bit GSM

3 The GemXplore.xml file is provided for Gemplus GemXplore 3G identity modules, and the
USIMeraIII.xml file for Axalto SIMagination (USIMERA Classic 3) identity modules, both of which are
now out of production.

 8

extended characters. Examples of the latter include LND entries with a circularly linked
EXT1 extension chain, which can throw some forensic tools into an indefinite loop.

3.3 Population Process

SIMfill populates a (U)SIM on an EF by EF basis in the order data appears in the test data
file. It uses the codes (e.g., PIN1 and PIN2) given in the card data file to satisfy the access
condition of the EFs and gain the ability to write to them. Before an EF gets populated,
SIMfill erases its contents completely. Generally this means that all bits in the file are set
to 1. Exceptions may exist, however. For example, the flag for SMS entries containing
“free space” must instead be set to zero.

SIMfill attempts to erase and process only those EFs specified in the test data file. All
other EFs are ignored. If sufficient access to update an EF is not granted either through the
access codes specified in the card file or the settings of the identity module, an error
occurs. SIMfill reports the error and continues with the next EF specified. Because the
characteristics of identity modules can vary, in particular the length of a field or number of
records in a linear fixed file, test data may sometimes exceed those limits. To
accommodate such situations, data written to a shorter field is truncated and excess records
are dropped. SIMfill logs such events as a warning message for the user.

The implications of the procedure used by SIMfill are important to understand when using
or modifying the baseline test data provided, or creating new test data. The process allows
the freedom to experiment with simple test data cases, involving only a single EF, while
not affecting other EFs on a (U)SIM. However, any EF intended to be empty (i.e., erased
and not populated with any test data) must be specified explicitly in the data file as a null
entry. Otherwise, the content remains unchanged. Similarly, one must be aware of the
field length and record number limits of (U)SIMs being populated when constructing test
data. If not careful, important parts of a test case could be truncated or dropped.

 9

4. Data and Schema Definitions

The choice of XML as a representation for the data used by SIMfill has several advantages.
XML is a well-known and well-defined standard, similar to the Hypertext Markup
Language (HTML). Most users are likely to be familiar with it or with HTML, which
lessens the learning curve. XML scheme definitions can also be specified for a document
to exert control over its contents. Schema-sensitive XML editors are widely available, and
many of them are free. With such an editor, it is fairly easy to modify existing or create
new reference test data conforming to the schema definition.

Changes to the XML schema definitions provided in the SIMfill distribution normally are
not needed unless an error is discovered or the capabilities of SIMfill are modified to
accommodate additional EFs or other types of identity modules. Nevertheless, some basic
understanding is helpful, particularly if using an XML editor to modify or create test data.

Two schema definition files are provided in the SIMfill distribution: one for the test data
and the other for the card information. They are respectively called data.xsd and card.xsd.
Schema definition files are in and of themselves XML files. The schema definition files
are used to define a set of elements, their attributes, and their relationship to one another.
In the case of data.xsd, the schema elements closely reflect the elements in the GSM
standards for the SIM file system [3GPP07, 3GPP09a, 3GPP09b, 3GPP07b]. Therefore,
familiarity with the GSM standards simplifies reading the schema definition and the data
represented using it.

To illustrate the relationship between the standard definition of an EF, its XML scheme
definition, and the encoding of test data for the EF, the Abbreviated Dialing Numbers
(ADN) is used as an example. ADN entries essentially provide a phonebook of numbers
and identifiers for the user and are a valuable source of data for an investigator. While
conceptually simple, the encodings used and supplemental information can be quite
detailed.

4.1 Standard EF Definition

Figure 5 is a simplified excerpt taken from the GSM standard defining the contents of the
ADN EF [3GPP07].

Identifier: '6F3A' Structure: linear fixed
Record length: X+14 bytes Update access condition: CHV1

Bytes Description Length
1 to X Alpha Identifier X bytes
X+1 Length of BCD number 1 byte
X+2 TON and NPI 1 byte

X+3 to X+12 Dialing Number 10 bytes
X+13 Capability/Configuration Identifier 1 byte
X+14 Extension1 Record Identifier 1 byte

Figure 5: ADN EF Record Description

In this definition, the length of each record in the linear fixed file is X+14 bytes, where X
is the number of bytes in the Alpha Identifier (i.e., a descriptor) for the Dialing Number
and may range from 0 to 241. The Alpha Identifier can be encoded using either one of the
UCS2 encoding options, or the GSM default 7-bit coded alphabet with bit 8 set to 0, left
justified, and unused bytes set to FF.

The Dialing Number has 10 bytes allocated for it, leaving the remaining 4 bytes of the
record for attributes and identifiers associated with the Dialing Number.

The Length of Binary Coded Decimal (BCD) number/ Supplementary Service Control
strings (SSC) contents indicates the number of bytes used for the data item containing the
actual BCD number or SSC information.

The type of number (TON) and numbering plan identification (NPI) follow and are
encoded in one byte as shown in Figure 6.

 b8 b7 b6 b5 b4 b3 b2 b1
 NPI
 TON
 1

Figure 6: TON and NPI Representation in Byte X+2

The Dialing Number/SSC String contains up to 20 digits of the phone number or SSC
information, encoded using 4-bit extended BCD. The ordering of the first two BCD digits
is illustrated in Figure 7, including the least and most significant (i.e., LSB and MSB)
layout. The pattern continues for additional digits. If the phone number or SSC is longer
than 20 digits, only the first 20 digits are stored in this field; the remainder are stored in an
associated record in the EXT1 EF and its index is placed the Extension1 Record Identifier
field. Unused digits are set to F, for ADN/SSC numbers with less than 20 digits.

 b8 b7 b6 b5 b4 b3 b2 b1
 LSB of Digit 1
 :
 :
 MSB of Digit 1
 LSB of Digit 2
 :
 :
 MSB of Digit 2

Figure 7: Dialing Number Representation in Bytes X+3 to X+12

The Capability/Configuration Identifier identifies the number of a record in the CCP EF,
which contains capability/configuration parameters required for the call. This field is
optional and set to FF, if unused.

4.2 XML Schema Definition

The XML schema definition for a phonebook entry is shown in Figure 8. It specifies the
main elements of the record that makes up the Abbreviated Dialing Numbers (ADN) EF

 11

(i.e., a contact list or phonebook): the description (i.e., Alpha Identifier), number (i.e., a
Dialing Number, including Type of Number (TON) and Numbering Plan Identifier (NPI)
designators), and two optional identifiers (i.e., Capability/Configuration Identifier and
Extension1 Record Identifier). SIMfill computes the length of these items for the user.

The definition uses the XML schema elements defined by the World Wide Web
Consortium’s (W3C) XML Schema namespace and denoted with the “xs” prefix. The
schema elements appearing in Figure 8 are identifiable as red characters. The name of the
phonebook entry definition is typeContact. It is defined as a complex type consisting of a
sequence of four other elements: description, address, capability, and extension.

Figure 8: Phonebook Entry Definition

It is not important to be able to understand the schema definitions fully. However, it is
useful to gain some appreciation of what they entail. Note that the schema definition for
the phonebook entry relies on other elements to be defined, including typeEncoding,
typeAddress, and typeByte. Their definitions appear in Figure 9.

<!-- Phonebook entry -->
<xs:complexType name="typeContact">
 <xs:sequence>

 <!-- Description of the contact -->
 <xs:element name="description">
 <xs:complexType mixed="true">
 <!-- Encoding of the name -->
 <xs:attribute name="enc" type="typeEncoding" />
 </xs:complexType>
 </xs:element>

 <!-- Address of the contact, i.e. the phone number, including TON and NPI -->
 <xs:element name="address" type="typeAddress" />

 <!-- Capability/configuration identifier - optional -->
 <xs:element name="capability" type="typeByte" minOccurs="0" />

 <!-- Extension record identifier - optional -->
 <xs:element name="extension" type="typeByte" minOccurs="0" />

 </xs:sequence>
</xs:complexType>

<!-- Type describing the encoding used in various text fields, including contact names -->
<xs:simpleType name="typeEncoding">
 <xs:restriction base="xs:string">
 <xs:enumeration value="default" />
 <xs:enumeration value="ucs2" />
 </xs:restriction>
</xs:simpleType>

 12

<!-- Type describing the address of a subscriber, i.e. the phone number -->
<xs:complexType name="typeAddress">
 <xs:sequence>

 <!-- Type of number -->
 <xs:element name="ton">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="unknown" />
 <xs:enumeration value="international" />
 <xs:enumeration value="national" />
 <xs:enumeration value="network specific" />
 <xs:enumeration value="subscriber" />
 <xs:enumeration value="alphanumeric" />
 <xs:enumeration value="abbreviated" />
 <xs:enumeration value="reserved" />
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

 <!-- Number plan identifier -->
 <xs:element name="npi">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="unknown" />
 <xs:enumeration value="telephone" />
 <xs:enumeration value="data" />
 <xs:enumeration value="telex" />
 <xs:enumeration value="service center specific 1" />
 <xs:enumeration value="service center specific 2" />
 <xs:enumeration value="national" />
 <xs:enumeration value="private" />
 <xs:enumeration value="ermes" />
 <xs:enumeration value="reserved" />
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

<!-- Type describing a decimal number between 0 and 255 -->
<xs:simpleType name="typeByte">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0" />
 <xs:maxInclusive value="255" />
 </xs:restriction>
</xs:simpleType>

Figure 9: Definitions of Supporting Elements

 13

The schema definition can be quite detailed, as seen from these excerpts. Note, for
example, how all the possible values for the TON and NPI are explicitly enumerated. This
level of detail allows any corresponding document to be validated accordingly. Note too
that the character set for text strings defaults to 7-bit GSM, for the typeEncoding element.

4.3 XML Data Representation

Once the schema is defined, using it to represent actual content is relatively straightforward
by comparison. Figure 10 illustrates an instance of a basic phonebook entry (i.e., contact).
The description containing the name “John Smith” is to be encoded using UCS2, which
SIMfill does automatically for the user. Similarly the TON and NPI choices are encoded
into a single byte, as indicated in Figure 6, and the digits of the 10-digit number are
encoded using extended BCD, as indicated in Figure 7.

Appendix A gives an extensive list of examples for other elements that can be used to
populate a (U)SIM.

<!-- Example entry with a 10-digit number -->
<contact>
 <description enc="ucs2">John Smith</description>
 <address>
 <ton>national</ton>
 <npi>telephone</npi>
 <number>3019758000</number>
 </address>
</contact>

Figure 10: Example Phonebook Entry

Using the phonebook entry in Figure 10 as a template, it should be easy for most readers to
define additional entries that contain the same four elements of information. Figure 11
illustrates an example of another instance of contact entry for an individual in France.
Note that accented characters and other special characters can appear in the description.

<!-- Additional entry with a 10-digit number -->
<contact>
 <description enc="ucs2">Clément [cell]</description>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>
 <number>33139148000</number>
 </address>
</contact>

Figure 11: Additional Phonebook Entry Example

The full schema definition for the ADN EF allows an empty entry to be specified as an
alternate to a contact entry. It is represented as <empty/>. Empty entries are defined for
most linear fixed files, such as ADN, which are used to hold a list of records that are
accessible individually. When SIMfill populates linear fixed files, it takes the first XML

 14

element encountered and associates it with the first record slot in the EF. If the element is
an empty entry, the record is skipped; otherwise, the data specified in the entry is written to
the record.

The actual content to employ when creating test cases can come from a variety of sources,
including previously acquired data that caused problems for some forensic tools and
existing manually generated test cases used to assess tools. Despite the constraints
imposed by the schema definition, for some elements, it is possible to specify content that
is inconsistent with the content specified for other related elements and with the GSM
standards. While SIMfill does restrict input to standard values, generally it is important to
specify data that overall is self-consistent and can occur in practice. The one exception
that may apply is testing the resiliency of forensic tools to handle anti-forensic data. That
is, some (U)SIM EFs, such as those for phonebook entries and SMS messages, are under
control of the user and may pose problems, if the contents have been manipulated to thwart
recovery by a forensic tool [Jan09]. A generic EF called RAW allows considerable
freedom in populating data, including anti-forensic data, and is discussed further in
Appendix A.

 15

5. Design and Implementation

SIMfill incorporates the Model-View-Controller (MVC) paradigm in its design. The view
renders the content of the model in the user interface. The user interacts with a graphical
user interface (GUI). The controller handles events from the view and notifies the model
of the user action. The model embodies the behavior and the data of the application,
responding to inquiries for data and to requests that affect the data.

SIMfill’s structure employs two controllers for two respective models: the MainModel and
the LogModel. The main model characterizes the reference data and (U)SIM population
logic, while the log model characterizes the log events and filtering. A controller and its
associated model form a distinct subsystem. The software is event-driven, carrying out
operations only in reaction to user actions on the user interface, which are handled by the
controllers. The view renders the data represented in these two models and receives
notifications from them when their contents change. Figure 12 illustrates the overall
organization.

Figure 12: Model-View-Controller Components

The main method for SIMfill begins by initializing the registry, followed by the logging
sub-system and the main sub-system, and finally the user interface. When the user
interface is up and running, the program switches inherently from sequential to event-
driven.

When the user selects the Load data button on the user interface, shown in Figure 2, the
MainController instructs the MainModel to load the data file. Doing so, it validates the
file's content against the corresponding XML schema. A similar procedure is followed to
load the card data. Once both files are loaded and validated, the Proceed button is enabled.

When the user selects it, the MainModel creates a new thread to populate the (U)SIM.
While this thread is running, the Proceed button is again disabled and the actions the user
can take on the interface are limited.

5.1 Thread Processing

When the thread is created, it first parses the validated XML card information and stores it
in the registry. It then parses and processes the validated XML data entries, writing them
to the (U)SIM. During the data parsing process, the thread requests different information
from the registry, like the PIN codes or other characteristics of (U)SIM being populated.
Figure 13 illustrates the process.

Figure 13: Thread Processing

When the data parser encounters a new entry, it creates a new object to contain the data.
For example, if an entry <ef_imsi> is read, the parser creates a java object IMSI (i.e.,
“IMSI.java”) and populates it with the data from the entry. When the end of the entry,
“</ef_imsi>,” is encountered, the parser requests the IMSI object for an APDU-formatted
version of the IMSI to send to the (U)SIM via the Jaccal API. It also requests a human-
readable version of the IMSI to record into the log model, which in turn stores it for
potential rendering in the user interface.

5.2 Logging

The logging system consists of storage space for events, plus a filter determining which of
these events, depending on their severity, are made available to other components of the
application. Elements running in different threads may want to log events simultaneously.
Therefore, the methods of the LogModel are synchronized (i.e., thread-safe).

The filter is initialized at start up and the different levels of severity are registered. A label
is assigned to each severity level, for eventual display in the user interface. The smaller
the number is, the higher the level of severity.

 17

Internal namespace identifiers are then registered. They are used to build a map between
internally used, severity level identifiers and attributes of the severity level (i.e., mainly for
a code to indicate text color). Components of the application can start logging events once
registration is done, using the internal severity level identifiers to describe the severity of
the event. Figure 14 summarizes the coding steps involved.

LogModel logModel = new LogModel();

logModel.registerSeverity("Severity Label", 1);

logModel.registerNamespace("err", "#FF0000", 1);

logModel.log("err", "Error message”, true);

Figure 14: Coding Example

 18

6. Code Modifications

SIMfill can be modified by users to fit their specific needs. The java classfiles are
included in the distribution. They can also be studied to gain further insight into SIMfill’s
operation. The key components of SIMfill are listed in Figure 15. Note that modifications
made to the code may also require changes to the schema definitions and reference test
data.

Table 2: Key SIMfill Components

Identifier Component
com.simfill.gui The classes for the model, controller, and view

components comprising the user interface
com.simfill The classes for the registry and the parser thread
com.simfill.SimFill The entry point of the application
com.simfill.PCSC The PC/SC abstraction layer
com.simfill.gsm The classes for internal data objects

One foreseeable change is to have SIMfill support an EF directly as a named EF, such as
those shown in Table 1, in lieu of using the generic EF, RAW, which is identified and
populated through its16-bit file identifier. To make such a change, several steps are
required. The first step is to define the schema description for the new XML data entry,
using the W3C conventions. Updating the XML schema file, data.xsd, with that definition
allows an XML file containing the new data to be created and validated, and sets the
foundation for the remaining steps.

The second step is to add new states to the parsing automaton embodied in the
DataXMLHandler class. These states are required to provide the means to parse the new
data entries and translate them into internal data objects. Parsing is performed using a
Simple API for XML (SAX) parser, which is event based. When XML features are
encountered, such as the start and end tags of XML elements, an event is triggered, which
can be reported via an interface routine. For instance, SIMfill implements the
startElement() and endElement() interface routines to keep track of the state of the parsing
via a pushdown stack. The startElement() routine pushes a token on the stack for opening
tags, and the endElement() pops off a token and matches it with closing tags. Depending
on the element, other operations, such as change of directory, data object creation, or
writing to the identity module, can also be performed before returning control to the SAX
parser. Similarly, SIMfill also implements the characters() routine to read and process data
encountered by the SAX parser. Perhaps the easiest way to prepare new states for parsing
is to review the cases already coded and use them as a starting point.

The final step is to prepare a new internal data object for the EF in question. If the file is
transparent, then the object must inherit the TransparentFile class. Otherwise, the file is
linear fixed or cyclic and must inherit the LinearFixedFile class, which is applicable to
both of them. Methods inherited from these classes, toHex and toString, must then be
implemented in SIMfill. These two methods are used respectively to return the data in the
GSM APDU format and to return the data in a human-readable format suitable for logging.

Another possible area for change may be to support other types of developer identity
modules. As mentioned earlier, developer identity modules provide the means to populate
a broader range of EFs, once Administrative access is gained through authentication. Note
that by default Jaccal supports only CHV reference identifiers (CHVRefIds) for PIN1 and
PIN2 verification. An extended class was created for SIMfill to convey additional
parameters containing ADM authentication values 1 to 4 (see GSMVerifiyCHVEx.java).
This change was used for the Gemplus GemXplore (U)SIM and should also work for other
developer identity modules that use this non-proprietary method for ADM authentication.

Developer identity modules may use a proprietary method for authentication, which in turn
will require a more substantial extension to Jaccal to convey the proprietary APDU
content. For example, to support the Axalto SIMagination (U)SIM, a proprietary ADPU
was implemented for SIMfill (see AxaltoVerifyKey.java). Information needed to
implement ADM authentication is typically available from the (U)SIM manufacturer. As
suggested previously, the existing code can also be followed as a model for adding support
for other types of identity modules.

 20

7. References

[3GPP07] Specification of the Subscriber Identity Module - Mobile Equipment (SIM -

ME) interface, 3rd Generation Partnership Project, TS 11.11 V8.14.0 (Release
1999), Technical Specification, June 2007, <URL:
http://www.3gpp.org/ftp/Specs/archive/11_series/11.11/1111-8e0.zip>.

[3GPP09a] Technical Specification Group Core Network and Terminals - Technical

realization of the Short Message Service (SMS), 3rd Generation Partnership
Project, TS 23.040 V9.0.0 (Release 9), Technical Specification, June 2009,
<URL: http://www.3gpp.org/ftp/Specs/archive/23_series/23.040/23040-
900.zip>.

[3GPP09b] Technical Specification Group Core Network and Terminals - Numbering,

addressing and identification, 3rd Generation Partnership Project, TS 23.003
V8.5.0 (Release 8), Technical Specification, June 2009, <URL:
http://www.3gpp.org/ftp/Specs/archive/23_series/23.003/23003-850.zip>.

[3GPP09c] Technical Specification Group Core Network and Terminals - SIM/USIM

internal and external interworking aspects, 3rd Generation Partnership Project,
TR 31.900 V8.0.0 (Release 8), Technical Specification, February 2009, <URL:
http://www.3gpp.org/ftp/Specs/archive/31_series/31.900/31900-800.zip>.

[3GPP09d]Technical Specification Group Core Network and Terminals - Alphabets and

language-specific information, 3rd Generation Partnership Project, TS 23.038
V9.0.0 (Release 9), Technical Specification, September 2009, <URL:
http://www.3gpp.org/ftp/Specs/archive/23_series/23.038/23038-900.zip >.

[IS10646] Information technology — Universal Multiple-Octet Coded Character Set

(UCS), International Standard (IS), ISO/IEC 10646, December 15, 2003,
<URL: http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html>.

[ISO639] Codes for the Representation of Names of Languages-Part 2, ISO 639-2,

November 7, 2008, <URL: http://www.loc.gov/standards/iso639-
2/php/code_list.php>.

[Jan06] Wayne Jansen, Rick Ayers, Forensic Software Tools for Cell Phone Subscriber

Identity Modules, Conference on Digital Forensics, Association of Digital
Forensics, Security, and Law (ADFSL), April 2006, <URL:
http://csrc.nist.gov/groups/SNS/mobile_security/documents/mobile_forensics/J
DFSL-proceedings2006-fin.pdf>.

[Jan09] Wayne Jansen, Aurélien Delaitre, Mobile Forensic Reference Materials: A

Methodology and Reification, NIST IR 7617, October 2009, <URL:
http://csrc.nist.gov/publications/nistir/ir7617/nistir-7617.pdf>

Appendix A: XML Data Representation Examples

This appendix explains, through a series of examples, the XML representation used by
SIMfill for specifying the contents of elementary files to be populated. It also provides a
brief overview of the organization of SIM file system. As an aid to the reader, specific
references to the relevant section of the prevailing GSM SIM standard (i.e., [3GPP07]) are
given in braces throughout this appendix (e.g., {10.1.1}).

A.1.0 File Hierarchy

The file system for Subscriber Identity Modules consists of the following elements defined
in the GSM specifications:

 The root directory or Master File (MF)

 Directories under the MF called Dedicated Files (DF)

 Elementary Files (EF)

SIMfill can populate the following EFs, which are listed below under their respective
directories to reflect the hierarchy defined in the standard [3GPP07]:

MF (Master file {10.1})

 EF_ICCID (ICC Identification {10.1.1})
 EF_ELP (Extended Language Preference {10.1.2})

 DF_GSM (for both DF_GSM and DF_DCS1800 {10.3})
 EF_LP (Language Preference {10.3.1})
 EF_IMSI (International Mobile Subscriber Identity {10.3.2})
 EF_PLMNsel (PLMN selector {10.3.4})
 EF_SST (SIM Service Table {10.3.7})
 EF_SPN (Service Provider Name {10.3.11})
 EF_FPLMN (Forbidden PLMNs {10.3.16})
 EF_LOCI (Location Information {10.3.17})
 EF_AD (Administrative Data {10.3.18})
 EF_PHASE (Phase identification {10.3.19})
 EF_LOCIGPRS (GPRS Location Information {10.3.33})

 DF_TELECOM ({10.5})
 EF_ADN (Abbreviated Dialing Numbers {10.5.1})
 EF_FDN (Fixed Dialing Numbers {10.5.2})
 EF_SMS (Short Message Service {10.5.3})
 EF_MSISDN (MSISDN {10.5.5})
 EF_LND (Last Number Dialed {10.5.8})
 EF_SDN (Service Dialing Numbers {10.5.9})

 EF_EXT1 (Extension 1 {10.5.10})
 EF_EXT2 (Extension 2 {10.5.11})
 EF_EXT3 (Extension 3 {10.5.12})
 EF_EXT4 (Extension 4 {10.5.14})

SIMfill can also populate any EF defined in the GSM specifications, including the ones
listed above, using the following generic pseudo EF:

 EF_RAW (See section A.5.0)

The XML content representation required by SIMfill to populate these EFs is discussed in
the sections that follow.

A.2.0 Master File

The MF forms the root of the XML document, just as it represents the root of the SIM's file
system {10.1}. The MF takes the following optional subnodes in any order:

 "ef_iccid": Describes the ICCID of the SIM.
 "ef_elp": Describes the extended language preferences.
 "df_gsm": Subdirectory containing network information (used for both

DF_GSM and DF_DCS1800).
 "df_telecom": Subdirectory containing service information.

 Basic example of structure:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <ef_elp></ef_elp>
 <df_gsm>
 </df_gsm>
 </mf>

A.2.1 EF_ICCID

EF_ICCID {10.1.1} is used to specify the identification number of the SIM. It takes a
decimal number between 0 and 20 digits long. For example:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <ef_iccid>00112233445566778899</ef_iccid>
 </mf>

A.2.2 EF_ELP

EF_ELP {10.1.2} is used to specify the preferred languages of the user in order of priority.
It takes two different subnodes, which can be mixed and repeated arbitrarily:

 23

 "elp": A 2-letter language code encoded in the GSM 7-bit alphabet
[3GPP09d].

 "empty": Used to insert an empty record in the file.

In this example, the preferred languages are English, followed by an empty slot, and then
French:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <ef_elp>
 <elp>en</elp>
 <empty/>
 <elp>fr</elp>
 </ef_elp>
 </mf>

The list of language codes is described in ISO 639-2 [ISO639].

A.3.0 DF_GSM and DF_DCS1800

DF_GSM {10.3} contains network related information. Note that specifying data in
DF_GSM writes only to DF_GSM on the SIM. Nonetheless, the SIM is expected to mirror
DF_GSM and DF_DCS1800, making the latter identical to the former.

This node takes the following subnodes, in any order:

 "ef_lp": Language Preference of the user.
 "ef_imsi": International Mobile Subscriber Identity.
 "ef_plmnsel": PLMN selector.
 "ef_sst": SIM Service Table.
 "ef_spn": Service Provider Name.
 "ef_fplmn": Forbidden PLMNs.
 "ef_loci": Location Information.
 "ef_ad": Administrative Data.
 "ef_phase": Phase identification.
 "ef_locigprs": GPRS Location data.

Basic example of structure:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_imsi></ef_imsi>
 <ef_plmnsel></ef_plmnsel>
 </df_gsm>
 </mf>

 24

A.3.1 EF_LP

EF_LP {10.3.1} is used to specify the preferred languages of the user in order of priority.
It takes two different subnodes, which can be mixed and repeated arbitrarily:

 "lp": A language name, as listed below.
 "empty": Used to insert an empty record in the file.

In this example, the favorite language is left empty, the second favorite is German, then
another empty slot, followed by English and Hebrew:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_lp>
 <empty/>
 <lp>german</lp>
 <empty/>
 <lp>english</lp>
 <lp>hebrew</lp>
 </ef_lp>
 </df_gsm>
 </mf>

The list of language codes is described in [3GPP09d] 5. The aliases for these codes are:

 "german"
 "english"
 "italian"
 "french"
 "spanish"
 "dutch"
 "swedish"
 "danish"
 "portuguese"
 "finnish"
 "norwegian"
 "greek"
 "turkish"
 "hungarian"
 "polish"
 "unspecified"
 "czech"
 "hebrew"

 25

 "arabic"
 "russian"

A.3.2 EF_IMSI

EF_IMSI {10.3.2} is used to specify the International Mobile Subscriber Identity. It takes
a decimal number between 0 and 15 digits long. For example:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_imsi>887766554433221</ef_imsi>
 </df_gsm>
 </mf>

A.3.3 EF_PLMNsel

EF_PLMNsel {10.3.4} is used to specify the preferred networks of the user in order of
priority. It takes two subnodes, which can be mixed and repeated arbitrarily:

 "plmn": Public Land Mobile Network, described below.
 "empty": Used to insert an empty record in the file.

In this example, one PLMN is specified, followed by an empty slot, and then another
PLMN:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_plmnsel>
 <plmn></plmn>
 <empty/>
 <plmn></plmn>
 </ef_plmnsel>
 </df_gsm>
 </mf>

Each PLMN subnode describes one network. It has two subnodes:

 "mcc": Mobile Country Code, a 3-digit decimal number.
 "mnc": Mobile Network Code, a 2- or 3-digit decimal number.

Below is a more complete example. The first PLMN belongs to T-Mobile USA, followed
by an empty slot, and by a PLMN belonging to Orange France:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_plmnsel>

 26

 <plmn>
 <mcc>310</mcc>
 <mnc>26</mnc>
 </plmn>
 <empty/>
 <plmn>
 <mcc>208</mcc>
 <mnc>01</mnc>
 </plmn>
 </ef_plmnsel>
 </df_gsm>
 </mf>

A.3.4 EF_SST

EF_SST {10.3.7} is used to set up the SIM Service Table. It takes a sequence of the
subnode "service", which can be repeated arbitrarily:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_sst>
 <service></service>
 <service></service>
 <service></service>
 </ef_sst>
 </df_gsm>
 </mf>

Each "service" subnode describes one service. It takes three subnodes:

 "number": Number of the service. A table associating the service to its
number is provided in the standard {10.3.7}.

 "allocated": Describes whether a service is allocated or not.
 "activated": Describes whether an allocated service is activated or not.

In the following example, service number 1 (CHV disable function) is allocated, but not
activated. Service number 2 (Abbreviated Dialing Numbers) is allocated an activated. All
other services are automatically set to unallocated and deactivated.

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_sst>
 <service>
 <number>1</number>
 <allocated>true</allocated>
 <activated>false</activated>
 </service>
 <service>
 <number>2</number>
 <allocated>true</allocated>

 27

 <activated>true</activated>
 </service>
 </ef_sst>
 </df_gsm>
 </mf>

Note: A service must be allocated to be activated. By default, a service which is not
explicitly specified is set to unallocated and deactivated.

A.3.5 EF_SPN

EF_SPN {10.3.11} is used to specify the Service Provider Name. It takes two subnodes:

 "display": Display condition. It can be either "required" or "not required".
 "spn": Service Provider Name. It is a string that can be encoded either in the

default GSM 7-bit alphabet or in UCS2. To specify which encoding to use,
one can set the XML attribute "enc" to "default" for 7-bit encoding or "ucs2"
for UCS2 encoding. If no encoding is explicitly specified, the 7-bit encoding
is used by default.

In this example, the display of the SPN is required. The SPN is set to "NIST" and encoded
in UCS2:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_spn>
 <display>required</display>
 <spn enc="ucs2">NIST</spn>
 </ef_spn>
 </df_gsm>
 </mf>

In this example, the display of the SPN is not required. The SPN is set to "NIST" and
encoded in the default 7-bit alphabet:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_spn>
 <display>not required</display>
 <spn>NIST</spn>
 </ef_spn>
 </df_gsm>
 </mf>

A.3.6 EF_FPLMN

EF_FPLMN {10.3.16} is used to specify the forbidden PLMNs the mobile equipment (i.e.,
the phone handset) should not try to access. It has the same structure as EF_PLMNsel (see
section A.3.3).

 28

In this example, the first forbidden PLMN belongs to T-Mobile USA, followed by an
empty slot, and by a forbidden PLMN belonging to Orange France:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_fplmn>
 <plmn>
 <mcc>310</mcc>
 <mnc>26</mnc>
 </plmn>
 <empty/>
 <plmn>
 <mcc>208</mcc>
 <mnc>01</mnc>
 </plmn>
 </ef_fplmn>
 </df_gsm>
 </mf>

A.3.7 EF_LOCI

EF_LOCI {10.3.17} is used to specify the location information. It takes four subnodes:

 "tmsi": The Temporary Mobile Subscriber Identity is an 8-digit hexadecimal
number.

 "lai": The Location Area Information is described below.
 "time": TMSI time is a 2-digit hexadecimal number.
 "status": Location update status, as described below.

The subnode "lai" takes three subnodes:

 "mcc": Mobile Country Code, a 3-digit decimal number.
 "mnc": Mobile Network Code, a 2- or 3-digit decimal number.
 "lac": Location Area Code, a 4-digit hexadecimal number.

The subnode "status" can take the following values:

 "updated"
 "not updated"
 "plmn not allowed"
 "location area not allowed"
 "reserved"

Below is an example representation:

 29

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_loci>
 <tmsi>a1b2c3d4</tmsi>
 <lai>
 <mcc>310</mcc>
 <mnc>26</mnc>
 <lac>a1b2</lac>
 </lai>
 <time>00</time>
 <status>updated</status>
 </ef_loci>
 </df_gsm>
 </mf>

A.3.8 EF_AD

EF_AD {10.3.18} is used to specify miscellaneous administrative information. It takes
three subnodes:

 "opmode": The operation mode, which is described below.
 "ofm": The Operational Feature Monitor (OFM), described below.
 "mnclen": The length of the MNC in the IMSI. It takes a number, either "2" or

"3". If another value needs to be used, it can be done within the "ef_raw"
section of "ef_gsm".

The subnode "opmode" describes the mode in which the mobile station (MS) is working. It
can take one of the following values:

 "normal"
 "type approval"
 "normal specific"
 "type approval specific"
 "maintenance"
 "celltest"

The subnode "ofm" can be either "activated" or "disabled". Refer to {10.3.18} for more
information.

In the following example, the MS works in normal mode, with OFM disabled and the
MNC in the IMSI is 3 digits long:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_ad>
 <opmode>normal</opmode>

 30

 <ofm>disabled</ofm>
 <mnclen>3</mnclen>
 </ef_ad>
 </df_gsm>
 </mf>

A.3.9 EF_PHASE

EF_PHASE {10.3.19} is used to specify the phase of the SIM. It takes a 2-digit
hexadecimal value.

In this example, the SIM's phase is set to 2+:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_phase>03</ef_phase>
 </df_gsm>
 </mf>

A.3.10 EF_LOCIGPRS

EF_LOCIGPRS {10.3.33} is used to specify the location information related to GPRS. It
takes four subnodes:

 "ptmsi": The Packet Temporary Mobile Subscriber Identity (P-TMSI) is an 8-
digit hexadecimal number.

 "signature": The P-TMSI signature. It takes a 6-digit hexadecimal value.
 "rai": The Routing Area Information is described below.
 "status": Location update status, as described below.

The subnode "rai" takes four subnodes:

 "mcc": Mobile Country Code, a 3-digit decimal number.
 "mnc": Mobile Network Code, a 2- or 3-digit decimal number.
 "lac": Location Area Code, a 4-digit hexadecimal number.
 "rac": Routing Area Code, a 2-digit hexadecimal number.

The subnode "status" can take the following values:

 "updated"
 "not updated"
 "plmn not allowed"
 "location area not allowed"
 "reserved"

 31

Below is an example representation:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_locigprs>
 <ptmsi>a1b2c3d4</ptmsi>
 <signature>ffffff</signature>
 <rai>
 <mcc>310</mcc>
 <mnc>26</mnc>
 <lac>a1b2</lac>
 <rac>a1</rac>
 </rai>
 <status>updated</status>
 </ef_locigprs>
 </df_gsm>
 </mf>

A.4.0 DF_TELECOM

DF_TELECOM {10.5} contains service related information. It takes the following
subnodes, in any order:

 "ef_adn": Abbreviated Dialing Numbers.
 "ef_fdn": Fixed Dialing Numbers.
 "ef_sms: Short Messages.
 "ef_msisdn": MS International ISDN Number.
 "ef_lnd": Last Number Dialed.
 "ef_sdn": Service Dialing Numbers.
 "ef_ext1": Extension 1.
 "ef_ext2": Extension 2.
 "ef_ext3": Extension 3.
 "ef_ext4": Extension 4.

Below is a basic example of the structure:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_raw></ef_raw>
 <ef_adn></ef_adn>
 </df_telecom>
 </mf>

 32

A.4.1 EF_ADN

EF_ADN {10.5.1} is used to specify the abbreviated dialing number (i.e., the phone book).
It takes two different subnodes, which can be mixed and repeated arbitrarily:

 "contact": A contact contains a set of information, as described below.
 "empty": Used to insert an empty record in the file.

The subnode "contact" has three or four subnodes:

 "description": The name of the contact. It is a string that can be encoded
either in the default GSM 7-bit alphabet or in UCS2. To specify which
encoding to use, one can set the XML attribute "enc" to "default" for 7-bit
encoding or "ucs2" for UCS2 encoding. If no encoding is explicitly specified,
the 7-bit encoding is used by default.

 "address": Contains the phone number information of the contact, as described
below.

 "capability": Index pointing to a record of EF_CCP. It take a decimal number
between 0 and 255. This subnode is optional.

 "extension": The index of additional data that are stored in EF_EXT1 (see the
example below). It takes a decimal number between 0 and 255. This subnode
is optional.

The subnode "address" takes three subnodes:

 "ton": The Type of Number. The possible values are listed below.
 "npi": Numbering Plan Identifier. The possible values are listed below.
 "number": The phone number of the contact. It takes a 0- to 20-digit decimal

number.

The subnode "ton" can take one of the following values:

 "unknown"
 "international"
 "national"
 "network specific"
 "subscriber"
 "alphanumeric"
 "abbreviated"
 "reserved"

The subnode "npi" can take one of the following values:

 33

 "unknown"
 "telephone"
 "data"
 "telex"
 "service center specific 1"
 "service center specific 2"
 "national"
 "private"
 "ermes"
 "reserved"

Detailed information about these values is available in the standard {10.5.1}.

In the following example, the phone book contains three entries. The first is labeled
"Contact 1" (encoded using the default 7-bit alphabet) and its phone number is
"3019758000" (national). The second entry is an empty slot. The third is labeled "Contact
2" (encoded in UCS2) and its phone number is "13019758000" (international), with extra
data in the second record of EF_EXT1 (to be specified separately).

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_adn>
 <contact>
 <description>Contact 1</description>
 <address>
 <ton>national</ton>
 <npi>telephone</npi>
 <number>3019758000</number>
 </address>
 </contact>
 <empty/>
 <contact>
 <description enc="ucs2">Contact
2</description>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>
 <number>13019758000</number>
 </address>
 <extension>2</extension>
 </contact>
 </ef_adn>
 </df_telecom>
 </mf>

 34

A.4.2 EF_FDN

EF_FDN {10.5.2} is used to specify the fixed dialed numbers. It has the same structure as
EF_ADN (see section A.4.1).

In the following example, the phone book contains three entries. The first is labeled "Fixed
number 1" (encoded using the default 7-bit alphabet) and its phone number is
"3019758000" (national). The second entry is an empty slot. The third is labeled "Fixed
number 2" (encoded in UCS2) and its phone number is "13019758000" (international),
with extra data in the second record of EF_EXT2 (to be specified separately).

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_fdn>
 <contact>
 <description>Fixed number 1</description>
 <address>
 <ton>national</ton>
 <npi>telephone</npi>
 <number>3019758000</number>
 </address>
 </contact>
 <empty/>
 <contact>
 <description enc="ucs2">Fixed number
2</description>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>
 <number>13019758000</number>
 </address>
 <extension>2</extension>
 </contact>
 </ef_fdn>
 </df_telecom>
 </mf>

A.4.3 EF_SMS

EF_SMS {10.5.3} is used to specify short messages. It takes three different subnodes,
which can be mixed and repeated arbitrarily:

 "deliver": For incoming messages, as described below.
 "submit": For outgoing messages, as described below.
 "empty": Used to insert an empty record in the file.

Example structure:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>

 35

 <df_telecom>
 <ef_sms>
 <deliver></deliver>
 <empty/>
 <submit></submit>
 <deliver></deliver>
 </ef_sms>
 </df_telecom>
 </mf>

The subnode "deliver" takes the following subnodes:

 "status": Status of the message, as described below.
 "sca": Service Center Address. It takes one subnode of type "address", as

described in EF_ADN (see section A.4.1).
 "mms": Flag indicating if there are More Messages to Send. It takes either

"true" or "false".
 "sri": The Status Report Indicator indicates whether a report is requested or

not. It takes either "true" or "false".
 "rp": This flag indicates if a Reply Path is specified. It takes either "true" or

"false".
 "oa": Originated Address or address of the sender. It takes one subnode of

type "address", as described in EF_ADN (see section A.4.1).
 "dcs": The Data Encoding Scheme is used to specify which encoding is used

for the text data. It can be either "default" for the 7-bit alphabet or "ucs2" for
UCS2 encoding.

 "scts": The Service Center Time Stamp is a date set by the service center. Its
format is "YYYY-MM-DD hh:mm:ss +OOoo", where "YYYY" is the year,
"MM" the month of the year, "DD" the day of the month, "hh" the hour of the
day, "mm" the minute of the hour, "ss" the second of the minute, and
"+OOoo" the time difference compared to GMT, "OO" being the number of
hours and "oo" the number of minutes. If the time difference is negative, the
"+" should be replaced by a "-".

 "udh": User Data Header, as described below. This node is optional.
 "ud": User Data, a string containing the message. Its maximum length

depends on the encoding used (see "dcs" above), on the user data header
included and on the size of other parameters in the header.

In the example below, an incoming message is specified. It has not been read. The service
center's number is "+19703769313". No more messages are waiting to be delivered, no
report is requested, no reply path has been specified. The sender's phone number is
"3019750000". The message is encoded using the default 7-bit alphabet. The service
center's time stamp is June 24, 2005 at 00:13:24 GMT-4. And the text message is "This is
an incoming message."

 36

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_sms>
 <deliver>
 <status>not read</status>
 <sca>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>
 <number>19703769313</number>
 </address>
 </sca>
 <mms>false</mms>
 <sri>false</sri>
 <rp>false</rp>
 <oa>
 <address>
 <ton>national</ton>
 <npi>telephone</npi>
 <number>3019750000</number>
 </address>
 </oa>
 <dcs>default</dcs>
 <scts>2005-06-24 00:13:24 -0400</scts>
 <ud>This is an incoming message.</ud>
 </deliver>
 </ef_sms>
 </df_telecom>
 </mf>

The subnode "submit" takes the following subnodes:

 "status": Status of the message, as described below.
 "sca": Service Center Address. It takes one subnode of type "address", as

described in EF_ADN (see section A.4.1).
 "rd": This flag indicates whether or not duplicate messages should be rejected.

It takes either "true" or "false".
 "srr": Indicates if a Status Report is Requested. It takes either "true" of "false".
 "rp": This flag indicates if a Reply Path is specified. It takes either "true" or

"false".
 "mr": Message reference. It takes a decimal number between 0 and 255.
 "da": Destination Address or address of the receiver. It takes one subnode of

type "address", as described in EF_ADN (see section A.4.1).
 "dcs": The Data Encoding Scheme is used to specify which encoding is used

for the text data. It can be either "default" for the 7-bit alphabet or "ucs2" for
UCS2 encoding.

 "udh": User Data Header, as described below. This node is optional.

 37

 "ud": User Data, a string containing the message. Its maximum length
depends on the encoding used (see "dcs" above), on the user data header
included, and on the size of other parameters in the header.

In the example below, an outgoing message is specified. It has been sent. The service
center's number is "+19703769313". The service center is asked to reject duplicates, no
status report is requested, and no reply path has been specified. The message reference is
122. The receiver's phone number is "+33123456789". The message is encoded in UCS2.
And the text message is "This is an outgoing message."

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_sms>
 <submit>
 <status>sent</status>
 <sca>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>
 <number>19703769313</number>
 </address>
 </sca>
 <rd>true</rd>
 <srr>false</srr>
 <rp>false</rp>
 <mr>122</mr>
 <da>
 <address>
 <ton>international</ton>
 <npi>data</npi>
 <number>33123456789</number>
 </address>
 </da>
 <dcs>ucs2</dcs>
 <ud>This is an outgoing message.</ud>
 </submit>
 </ef_sms>
 </df_telecom>
 </mf>

The subnode "status" describes de status of the message. It can take one of the following
values:

 "free" or "deleted": The message will be stored in the record, but will be
marked as deleted.

 "read": The message has been read.
 " not read": The message has not been read.
 "sent": The message has been sent.
 "not sent": The message has not been sent.

 38

Note that both types of message ("submit" and "deliver") can take any of these values,
even though it would not make much sense to have an unread outgoing message or a sent
incoming message.

The subnode "udh", listing the user data headers, can take the following subnodes, which
can be repeated and mixed arbitrarily:

 "concat": This header indicates that the message is split into several segments.
 "smlimg": This header is used to insert an small image (16x16) in the

message.
 "lrgimg": This header is used to insert an large image (32x32) in the message.

The subnode "concat" has three attributes:

 "ref": The reference of the message. It takes a decimal number between 0 and
255.

 "max": Is the total number of segments in the concatenated message. It takes a
decimal number between 0 and 255.

 "seq": Is the sequence number of the current segment. It takes a decimal
number between 0 and 255.

Example of a concatenated message divided in two segments is given below (note that they
can be stored in any order in EF_SMS):

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_sms>
 <submit>
 <status>sent</status>
 <sca>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>
 <number>19703769313</number>
 </address>
 </sca>
 <rd>true</rd>
 <srr>false</srr>
 <rp>false</rp>
 <mr>122</mr>
 <da>
 <address>
 <ton>international</ton>
 <npi>data</npi>
 <number>33123456789</number>
 </address>
 </da>

 39

 <dcs>default</dcs>
 <udh>
 <concat ref='21' max='2' seq='1'/>
 </udh>
 <ud>Concatenated message 21 part 1/2</ud>
 </submit>
 <submit>
 <status>sent</status>
 <sca>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>
 <number>19703769313</number>
 </address>
 </sca>
 <rd>true</rd>
 <srr>false</srr>
 <rp>false</rp>
 <mr>123</mr>
 <da>
 <address>
 <ton>international</ton>
 <npi>data</npi>
 <number>33123456789</number>
 </address>
 </da>
 <dcs>default</dcs>
 <udh>
 <concat ref='21' max='2' seq='2'/>
 </udh>
 <ud>Concatenated message 21 part 2/2</ud>
 </submit>
 </ef_sms>
 </df_telecom>
 </mf>

The subnodes "smlimg" and "lrgimg" takes the following attributes:

 "pos": The position at which the image should be inserted in the text. It takes a
positive integer.

 "file": Path to the image to be included in the text message.

The example below shows an incoming message in which a large image is inserted:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_sms>
 <deliver>
 <status>not read</status>
 <sca>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>

 40

 <number>19703769313</number>
 </address>
 </sca>
 <mms>false</mms>
 <sri>false</sri>
 <rp>false</rp>
 <oa>
 <address>
 <ton>national</ton>
 <npi>telephone</npi>
 <number>3019750000</number>
 </address>
 </oa>
 <dcs>default</dcs>
 <scts>2005-06-24 00:13:24 -0400</scts>
 <udh>
 <lrgimg pos='1'
file='./data/lrgimg.bmp'/>
 </udh>
 <ud>()</ud>
 </deliver>
 </ef_sms>
 </df_telecom>
 </mf>

A.4.4 EF_MSISDN

EF_MSISDN {10.5.5} is used to specify MSISDNs related to the subscriber. It has the
same structure as EF_ADN (see section A.4.1).

In the following example, the phone book contains three entries. The first is labeled
"MSISDN 1" (encoded using the default 7-bit alphabet) and its phone number is
"3019758000" (national). The second entry is an empty slot. The third is labeled "MSISDN
2" (encoded in UCS2) and its phone number is "13019758000" (international), with extra
data in the second record of EF_EXT1 (to be specified separately).

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_msisdn>
 <contact>
 <description>MSISDN 1</description>
 <address>
 <ton>national</ton>
 <npi>telephone</npi>
 <number>3019758000</number>
 </address>
 </contact>
 <empty/>
 <contact>
 <description enc="ucs2">MSISDN
2</description>
 <address>
 <ton>international</ton>

 41

 <npi>telephone</npi>
 <number>13019758000</number>
 </address>
 <extension>2</extension>
 </contact>
 </ef_msisdn>
 </df_telecom>
 </mf>

A.4.5 EF_LND

EF_LND {10.5.8} is used to specify the list of last dialed numbers. It has the same
structure as EF_ADN (see section A.4.1), except it does not accept the "empty" subnode.
This is due to the fact the EF_LND is a cyclic file, unlike EF_ADN, which is a linear file.

In the following example, the call log contains two entries. The first is labeled "2nd call"
(encoded using the default 7-bit alphabet) and its phone number is "3019758000"
(national). The second is labeled "1st call" (encoded in UCS2) and its phone number is
"13019758000" (international), with extra data in the second record of EF_EXT1 (to be
specified separately).

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_lnd>
 <contact>
 <description>2nd call</description>
 <address>
 <ton>national</ton>
 <npi>telephone</npi>
 <number>3019758000</number>
 </address>
 </contact>
 <contact>
 <description enc="ucs2">1st
call</description>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>
 <number>13019758000</number>
 </address>
 <extension>2</extension>
 </contact>
 </ef_lnd>
 </df_telecom>
 </mf>

A.4.6 EF_SDN

EF_SDN {10.5.9} is used to specify the special service numbers. It has the same structure
as EF_ADN (see section A.4.1).

 42

In the following example, the phone book contains three entries. The first is labeled
"Special number 1" (encoded using the default 7-bit alphabet) and its phone number is
"3019758000" (national). The second entry is an empty slot. The third is labeled "Special
number 2" (encoded in UCS2) and its phone number is "13019758000" (international),
with extra data in the second record of EF_EXT3 (to be specified separately).

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_sdn>
 <contact>
 <description>Special number 1</description>
 <address>
 <ton>national</ton>
 <npi>telephone</npi>
 <number>3019758000</number>
 </address>
 </contact>
 <empty/>
 <contact>
 <description enc="ucs2">Special number
2</description>
 <address>
 <ton>international</ton>
 <npi>telephone</npi>
 <number>13019758000</number>
 </address>
 <extension>2</extension>
 </contact>
 </ef_sdn>
 </df_telecom>
 </mf>

A.4.7 EF_EXT1

EF_EXT1 {10.5.10} is used to specify extension data from EF_ADN, EF_MSISDN or
EF_LND. It takes two subnodes, which can be mixed and repeated arbitrarily:

 "additional": Used to specify additional data, as described below.
 "empty": Used to insert an empty record in the file.

The subnode "additional" takes two subnodes:

 "data": The extra data, a decimal number up to 20 digits.
 "extension": An index to another record of EF_EXT1, which means entries

can be chained. It takes a decimal number between 0 and 255. This subnode is
optional.

 43

In this example, the first entry is an empty slot. The second has the extra data "9999". The
third contains the extra data "00112233445566778899" and is pointing to the second entry
for even more data:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_ext1>
 <empty/>
 <additional>
 <data>9999</data>
 </additional>
 <additional>
 <data>00112233445566778899</data>
 <extension>2</extension>
 </additional>
 </ef_ext1>
 </df_telecom>
 </mf>

A.4.8 EF_EXT2

EF_EXT2 {10.5.11} is used to specify extension data from EF_FDN. It has the same
structure as EF_EXT1 (see section A.4.7).

In this example, the first entry is an empty slot. The second holds extra data "9999". The
third contains the extra data "00112233445566778899" and is pointing to the second entry
for even more data:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_ext2>
 <empty/>
 <additional>
 <data>9999</data>
 </additional>
 <additional>
 <data>00112233445566778899</data>
 <extension>2</extension>
 </additional>
 </ef_ext2>
 </df_telecom>
 </mf>

A.4.9 EF_EXT3

EF_EXT3 {10.5.12} is used to specify extension data from EF_SDN. It has the same
structure as EF_EXT1 (see section A.4.7).

 44

In this example, the first entry is an empty slot. The second has the extra data "9999". The
third contains the extra data "00112233445566778899" and is pointing to the second entry
for even more data:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_ext3>
 <empty/>
 <additional>
 <data>9999</data>
 </additional>
 <additional>
 <data>00112233445566778899</data>
 <extension>2</extension>
 </additional>
 </ef_ext3>
 </df_telecom>
 </mf>

A.4.10 EF_EXT4

EF_EXT4 {10.5.14} is used to specify extension data from EF_BDN. It has the same
structure as EF_EXT1 (see section A.4.7).

In this example, the first entry is an empty slot. The second has the extra data "9999". The
third contains the extra data "00112233445566778899" and is pointing to the second entry
for even more data:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_ext4>
 <empty/>
 <additional>
 <data>9999</data>
 </additional>
 <additional>
 <data>00112233445566778899</data>
 <extension>2</extension>
 </additional>
 </ef_ext4>
 </df_telecom>
 </mf>

A.5.0 EF_RAW

EF_RAW is a pseudo file supported in the XML document structure to allow one to
populate any file in the directory structure. It is normally reserved for special cases not
covered by the other file specifications discussed earlier this document. An EF_RAW
entry can be used for EFs at the MF, DF_GSM, and DF_TELECOM levels. Because

 45

EF_RAW is a universal, generic type of subnode, it requires a firm understanding of the
SIM file system conventions defined in the GSM standards to apply it correctly.

The following example illustrates the basic structure for employing EF_RAW to populate
a file in the DF_GSM directory:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_raw></ef_raw>
 </df_gsm>
 </mf>

To fully specify EF_RAW for any files in question, additional information is needed. One
can populate any type of file supported by the identity module’s file system. Three types of
files can be specified:

 "transparent" for transparent files {6.4.1}
 "fixed" for linear fixed files {6.4.2}
 "cyclic" for cyclic files {6.4.3}.

These entries can be mixed and repeated arbitrarily to accommodate the structure of any
targeted files. For example:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_raw>
 <transparent></transparent>
 <fixed></fixed>
 <transparent></transparent>
 <cyclic></cyclic>
 </ef_raw>
 </df_gsm>
 </mf>

A transparent file's entry has two nodes:

 "id": The 16-bit file identifier encoded in hexadecimal.
 "data": The data to store in the file, in hexadecimal. It must match the size of

the file on the SIM.

Below is an example instance to populate EF_Kc (Ciphering Key {10.3.3}):

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_gsm>
 <ef_raw>
 <transparent>

 46

 <id>6F20</id>
 <data>0011223344556677EE</data>
 </transparent>
 </ef_raw>
 </df_gsm>
 </mf>

Fixed and cyclic file entries have the same three nodes:

 "id": The 16-bit file identifier encoded in hexadecimal.
 "record": The data to store in the current record, in hexadecimal. It must

match the size of a file record on the SIM. Several repetitions of this entry are
allowed. The files are populated sequentially, starting at the first record.

 "empty": Used to insert an empty record in the file. It can be repeated.

In this example, EF_SDN (Service Dialing Numbers {10.5.9}) is populated with three
entries, one with data, one empty, and another one with data:

 <?xml version='1.0' encoding='UTF-8'?>
 <mf>
 <df_telecom>
 <ef_raw>
 <fixed>
 <id>6F49</id>

 <record>80963F5A465BB691CC97625BF94E8EFFFFFFFFFF0593685703F9FFFFFFF
FFFFFFFFF</record>
 <empty/>

 <record>4E616D65201F7405FFFFFFFFFFFFFFFFFFFFFFFF0BA4212233434414325
476F8FFFF</record>
 </fixed>
 </ef_raw>
 </df_telecom>
 </mf>

A.6.0 Encoding Issues

Because a data file is an XML document, certain characters used in the XML syntax need
to be represented differently when used for input data, as shown in the table below.

Character Name Representation
& Ampersand &
< Lower than <
> Greater than >
“ Quote "
' Apostrophe '

Numeric fields containing data represented using the hexadecimal digits can use either
uppercase or lowercase arbitrarily for the letters A through F.

 47

SIMfill supports two different encoding schemes for textual data: the default GSM 7-bit
alphabet encoding [3GPP09d] and the 16-bit UCS2 encoding [3GPP09d, IS10646]. Only a
certain subset of characters can be encoded using the GSM 7-bit alphabet, which is the
default encoding. They are mostly Latin characters, plus some special characters, as
described in [3GPP09d] 6.2.1. Each of these characters is encoded in a septet (i.e., 7 bits).

Example: This message could be encoded with the 7-bit alphabet.

In addition, extended characters can be used, which are encoded with 2 septets; the first
septet being the escape character (0x1b) and the second one the code for the character in an
extension table. These extended characters are listed in [3GPP09d] 6.2.1.1., and include
such things as the Euro character, left and right braces, and tilde. SIMfill handles extended
characters that appear in the XML content and encodes them using two septets.

Example: [This m€ssag€ would r€nquir€ th€ 7~bit €xt€nd€d alphab€t.]

With SIMfill you can also use the back-quote symbol (i.e., `) before a regular character to
“escape” into a corresponding location in the extended character table. The standard states
that an “escaped” character that is not defined in the extended table should appear as a
regular character. For example, while `e would result in the Euro symbol from the
extended character set, `f results in f, because no corresponding extended character is
defined in the standard.

Example of a mixed string is the following:
 The string: `E`s`c`a`p`e`d` `r`e`g`u`l`a`r `c`h`a`r`a`c`t`e`r`s
 Should appear as: Escap€d r€gular charact€rs

Note that SIMfill does not support Greek characters in GSM 7-bit alphabet due to charset
limitations encountered in its development.

In contrast to the GSM 7-bit encoding, UCS2 can be used to encode almost any possible
character, ideogram, or symbol. Each of these characters (i.e., graphemes) is encoded in
16 bits. The complete list of UCS2 characters is described in [IS10646].

A simple example of text using the Japanese katakana and English alphabet is as follows:
ニスツ – NIST

 48

Appendix B: Dataset Content Examples

This appendix illustrates a portion of the SIM 1 and SIM 2 dataset in the tables that follow.
The tables show the data entries to be populated for the ADN and SMS EFs. Each entry
indicates the slot or record position in the EF to occupy, some key characteristics of the
data entry, and the actual data contents, which correspond to that specified in the XML
representation found in the data files.

Note that the tables list only those record positions to be populated with data; empty
positions are not listed. The main languages involved are English (en), French (fr), and
Japanese (ja). Miscellaneous accented characters from other languages also appear in the
dataset. Extended (Ext.) characters refer to the 2-septet extensions to the GSM 7-bit
alphabet (i.e., ^ { } \ [~] | and €). Null, zero-length record fields are possible and should
not be confused with fields containing only one or more spaces. Other details can be
determined from the XML data files in the SIMfill distribution package, which serve as the
authoritative representation.

SIM1 – 7-bit GSM encoded ADN entries

Slot Text
Length Lang. Special

Char.
Ext.

Char. Type of Num.
Num. Length

short en Y national 0 2 0-digit number
0 national 10 3 3019758000
10 en Y national 10 4 10-char en 3019758000
20 en Y national 10 5 20-char entry paddin 3019758000
30 en Y national 10 6 30-char entry pAaaaaaaaaAdding 3019758000

40 en Y national 10 7 40-char entry pAaaaaaaaaaAaaaaaaaaadding 3019758000
50 en Y national 10

8 50-char entry
pAaaaaaaaaaAaaaaaaaaaaAaaaaaaaadding

3019758000

100 en Y national 10
9 100-char entry

pAaaaaaaaaaAaaaaaaaaaAaaaaaa…aadding
3019758000

275 en Y national 10
10 275-char entry

pAaaaaaaaaaAaaaaaaaaaAaaaaaa…aadding
3019758000

1 space national 10 12
 3019758000

1 Y national 10 13 @ 3019758000
short fr Y national 10 14 En deÇà @ nist.gov 3019758000
short en Y international 11 15 English [ee] entry 13019758000
short fr Y national 20 16 Élément francais 01181337190123456789
short en Y national 20+ 17 Extra data in EF_EXT1 30130197597580008000
short Y unknown 2 19 @£$¥_ !"# 17
short Y unknown 2 20 ¤%&'()*+, 27
short Y unknown 2 21 -./:;<=>? 37
short misc. Y unknown 2 22 ¡§¿èéùìòÇ 47
short misc. unknown 2 23 ØøÅåÆæßÉÄ 57
short misc. unknown 2 24 ÖÑÜäöñüà 67
short Y unknown 2 25 ^{}\[~]|€ 77

 50

SIM1 – 7-bit GSM encoded SMS entries

Slot Direction Read/
Sent Deleted Old

DST
New
DST Length Msg.

Part Lang. Special
Char.

Ext. PictureChar.
incoming Y Y short en 1 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
incoming Y short fr 2 Message court écrit en francais
incoming long 1/2 en Y Y 3 Concatenated long English message part 1/2 }
incoming long 2/2 en Y Y 4 { Concatenated long English message part 2/2
outgoing Y long 1/2 fr Y 5 Long message écrit en francais }
incoming Y short en Y large 6 ()
outgoing Y long 2/2 fr Y small 7 { avec une image []
incoming Y long 3/3 en Y Y 8 { Concatenated long English message part 3/3 with part 1 & 2 erased
incoming Y 0 9

outgoing short misc. Y Y 10 @£$¥èéùìòÇØøÅå_^{}\[~]|€ÆæßÉ !"#¤%&'()*+,-./:;<=>?¡ÄÖÑÜ§¿äöñüà

 51

SIM2 – UCS2 encoded ADN entries

Slot Text
Length Lang. Special

Char.
Ext.

Char. Type of
Num.

Num.
Length

short en Y national 0 2 0-digit number
0 national 10 3 3019758000
10 en Y national 10 4 10-char en 3019758000
20 en Y national 10 5 20-char entry paddin 3019758000
30 en Y national 10 6 30-char entry pAaaaaaaaaAdding 3019758000

40 en Y national 10 7 40-char entry pAaaaaaaaaaAaaaaaaaaadding 3019758000
50 en Y national 10

8 50-char entry
pAaaaaaaaaaAaaaaaaaaaaAaaaaaaaadding

3019758000

100 en Y national 10
9 100-char entry

pAaaaaaaaaaAaaaaaaaaaAaaaaaa…aadding
3019758000

120 en Y national 10
10 120-char entry

pAaaaaaaaaaAaaaaaaaaaAaaaaaa…aadding
3019758000

1 space national 10 12
 3019758000

1 Y national 10 13 @ 3019758000
short fr Y national 10 14 En deÇà @ nist.gov 3019758000
short en Y international 11 15 English [ee] entry 13019758000
short ja Y national 20 16
宮本 武蔵 01181337190123456789
short en Y national 20+ 17 Extra data in EF_EXT1 30130197597580008000
short Y unknown 2 19 @£$¥_ !"# 17
short Y unknown 2 20 ¤%&'()*+, 27
short Y unknown 2 21 -./:;<=>? 37
short misc. Y unknown 2 22 ¡§¿èéùìòÇ 47
short misc. unknown 2 23 ØøÅåÆæßÉÄ 57
short misc. unknown 2 24 ÖÑÜäöñüà 67
short Y unknown 2 25 ^{}\[~]|€ 77

 52

SIM2 – UCS2 encoded SMS entries

Slot Direction Read/
Sent Deleted Old

DST
New
DST Length Msg.

Part Lang. Special
Char.

Ext. PictureChar.
incoming Y Y short en 1 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
incoming Y short ja 2
これは長いメッセージです。

incoming long 1/2 en Y Y 3 Concatenated long English message part 1/2 }
incoming long 2/2 en Y Y 4 { Concatenated long English message part 2/2
outgoing Y long 1/2 ja Y 5
これは長いメッセージです。 }
incoming Y short en Y large 6 ()
outgoing Y long 2/2 ja Y small 7 { これは長いメッセージです。 []
incoming Y long 3/3 en Y Y 8 { Concatenated long English message part 3/3 with part 1 & 2 erased
incoming Y 0 9

outgoing short misc. Y Y 11 @£$¥èéùìòÇØøÅå_^{}\[~]|€ÆæßÉ !"#¤%&'()*+,-./:;<=>?¡ÄÖÑÜ§¿äöñüà

 53

	1. Introduction
	1.
	2. Overview
	1.
	3. Installation and Operation
	3.1 User Interface
	3.2 Reference Data
	3.3 Population Process
	1.
	4. Data and Schema Definitions
	4.1 Standard EF Definition
	4.2 XML Schema Definition
	4.3 XML Data Representation

	1.
	5. Design and Implementation
	5.1 Thread Processing
	5.2 Logging

	1.
	6. Code Modifications
	1.
	7. References
	Appendix A: XML Data Representation Examples
	Appendix B: Dataset Content Examples

