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Executive Summary 

 

Today’s information systems face sophisticated attackers who combine multiple vulnerabilities to 

penetrate networks with devastating impact. The overall security of an enterprise network cannot be 

determined by simply counting the number of vulnerabilities. To more accurately assess the security of 

enterprise systems, one must understand how vulnerabilities can be combined and exploited to stage an 

attack. Composition of vulnerabilities can be modeled using probabilistic attack graphs, which show all 

paths of attacks that allow incremental network penetration.  Attack likelihoods are propagated through 

the attack graph, yielding a novel way to measure the security risk of enterprise systems.  This metric for 

risk mitigation analysis is used to maximize the security of enterprise systems. This methodology based 

on probabilistic attack graphs can be used to evaluate and strengthen the overall security of enterprise 

networks. 

 

 

 

Audience 

This document is intended for three primary audiences: 

 Federal agencies seeking information on how to use probabilistic attack graphs for security risk 

analysis of their enterprise networks; 

 Vendor communities seeking to understand the methodology of security risk analysis using 

probabilistic attack graphs and to build new tools in this area; and 

 Research communities seeking to understand some of the challenges in the area of enterprise 

network security and new research opportunities to address  problems in this area. 
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1. Introduction 

At present, computer networks constitute the core component of information technology infrastructures in 

areas such as power grids, financial data systems, and emergency communication systems. Protection of 

these networks from malicious intrusions is critical to the economy and security of our nation. 

Vulnerabilities are regularly discovered in software applications which are exploited to stage cyber 

attacks. Currently, management of security risk of an enterprise network is more an art than a science. 

System administrators operate by instinct and experience rather than relying on objective metrics to guide 

and justify decision making. In this report, we develop models and metrics that can be used to objectively 

assess the security risk in an enterprise network, and techniques on how to use such metrics to guide 

decision making in cyber defense. 

 

To improve the security of enterprise networks, it is necessary to measure the amount of security provided 

by different network configurations. The objective of our research was to develop a standard model for 

measuring security of computer networks. A standard model will enable us to answer questions such as 

“Are we more secure than yesterday?” or “How does the security of one network configuration compare 

with another?” Also, having a standard model to measure network security will bring together users, 

vendors, and researchers to evaluate methodologies and products for network security.  

Some of the challenges for security risk analysis of enterprise networks are: 

a)  Security vulnerabilities are rampant: CERT1 reports about a hundred new security vulnerabilities 

each week. It becomes difficult to manage the security of an enterprise network (with hundreds of 

hosts and different operating systems and applications on each host) in the presence of software 

vulnerabilities that can be exploited. 

b) Attackers launch complex multistep cyber attacks: Cyber attackers can launch multistep and 

multi-host attacks that can incrementally penetrate the network with the goal of eventually 

compromising critical systems. It is a challenging task to protect the critical systems from such 

attacks. 

c) Current attack detection methods cannot deal with the complexity of attacks:  Computer systems 

are increasingly under attack. When new vulnerabilities are reported, attack programs are 

available in a short amount of time. Traditional approaches to detecting attacks (using an 

Intrusion Detection System) have problems such as too many false positives, limited scalability, 

and limits on detecting attacks. 

 

Good metrics should be measured consistently, inexpensive to collect, expressed numerically, have units 

of measure, and have specific context [1]. We meet this challenge by capturing vulnerability 

interdependencies and measuring security in the exact way that real attackers penetrate the network. We 

analyze all attack paths through a network, providing a metric of overall system risk. Through this metric, 

we analyze trade-offs between security costs and security benefits.  Decision makers can therefore avoid 

over investing in security measures that do not pay off, or under investing and risk devastating 

consequences. Our metric is consistent, unambiguous, and provides context for understanding security 

risk of computer networks. 

This report is organized as follows. Section 2 presents attack graphs and tools for generating attack 

graphs. Section 3 discusses past work in the area of security risk analysis. Section 4 discusses the 

Common Vulnerability Scoring System (CVSS). Section 5 discusses security risk analysis of enterprise 

                                                      
1 Computer Emergency Response Team, http://www.cert.org/ 
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networks using attack graphs. Section 6 presents some of the challenges for security risk analysis and, 

finally, Section 7 gives the conclusions. 

2. Attack Graphs 

Attack graphs model how multiple vulnerabilities may be combined for an attack. They represent 

system states using a collection of security-related conditions, such as the existence of vulnerability on a 

particular host or the connectivity between different hosts. Vulnerability exploitation is modeled as a 

transition between system states. 

As an example, consider Figure 1. The left side shows a network configuration, and the right side shows 

the attack graph for compromise of the database server by a malicious workstation user. In the network 

configuration, the firewall is intended to help protect the internal network. The internal file server offers 

file transfer (ftp), secure shell (ssh), and remote shell (rsh) services. The internal database server offers ftp 

and rsh services. The firewall allows ftp, ssh, and rsh traffic from a user workstation to both servers, and 

blocks all other traffic. 

In the attack graph, attacker exploits are blue ovals, with edges for their preconditions and postconditions. 

The numbers inside parentheses denote source and destination hosts. Yellow boxes are initial network 

conditions, and the green triangle is the attacker’s initial capability. Conditions induced by attacker 

exploits are plain text. The overall attack goal is a red octagon. The figure also shows the direct impact of 

blocking ssh or rsh traffic (to the fileserver) through the firewall, i.e., preventing certain exploits in the 

attack graph. 

`

Workstation
Machine 0

Firewall Router

Database

Server
Machine 2

File

Server
Machine 1

rsh

rsh

sshftp

ftp

Block

rsh

Block

ssh

 

Figure 1:  Example network, attack graph, and network hardening choices 
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The attack graph includes these attack paths: 

a) sshd_bof(0,1) → ftp_rhosts(1,2) → rsh(1,2) → local_bof(2) 

b) ftp_rhosts(0,1) → rsh(0,1) → ftp_rhosts(1,2) → rsh(1,2) → local_bof(2) 

c) ftp_rhosts(0,2) → rsh(0,2) → local_bof(2) 

The first attack path starts with sshd_bof(0,1). This indicates a buffer overflow exploit executed from 

Machine 0 (the workstation) against Machine 1 (the file server), i.e., against its secure shell service.  

In a buffer overflow attack, a program is made to erroneously store data beyond a fixed-length buffer, 

overwriting adjacent memory that holds program control-flow data. The result of the sshd_bof(0,1) 

exploit is that the attacker can execute arbitrary code on the file server. The ftp_rhosts(1,2) exploit is 

now possible, meaning that the attacker exploits a particular ftp vulnerability to anonymously upload 

a list of trusted hosts from Machine 1 (the file server) to Machine 2 (the database server). The attacker 

can leverage this new trust to remotely execute shell commands on the database server, without 

providing a password, i.e., the rsh(1,2) exploit. This exploit establishes the attacker’s control over the 

database server as a user with regular privileges. A local buffer overflow exploit is then possible on 

the database server, which runs in the context of a privileged process. The result is that the attacker 

can execute code on the database server with full privileges. 

2.1 Tools for Generating Attack Graphs 

This section describes briefly the tools available for generating attack graphs for enterprise networks. 

 TVA (Topological Analysis of Network Attack Vulnerability)  

In [12] [13] [22], the authors describe a tool for generation of attack graphs. This approach 

assumes the monotonicity property of attacks, and it has polynomial time complexity. The central 

idea is to use an exploit dependency graph to represent the pre- and postconditions for an exploit. 

Then a graph search algorithm is used to chain the individual vulnerabilities and find attack paths 

that involve multiple vulnerabilities. 

 NETSPA (A Network Security Planning Architecture)  

In [29] [30], the authors use attack graphs to model adversaries and the effect of simple counter 

measures. It creates a network model using firewall rules and network vulnerability scans. It then 

uses the model to compute network reachability and attack graphs representing potential attack 

paths for adversaries exploiting known vulnerabilities. This discovers all hosts that can be 

compromised by an attacker starting from one or more locations. NETSPA typically scales as 

O(nlogn) as the number of hosts in a typical network increases. Risk is assessed for different 

adversaries by measuring the total assets that can be captured by an attacker. 

 MULVAL (Multihost, multistage, Vulnerability Analysis) 

In [31] [32], a network security analyzer based on Datalog is described. The information in 

vulnerability databases, the configuration information for each machine, and other relevant 

information are all encoded as Datalog facts. The reasoning engine captures the interaction 

among various components in the network. The reasoning engine in MULVAL scales well 

(O(n2)) with the size of the network. 

In [19] [20] [23] [24], some recent commercial tools for vulnerability analysis and attack graph 

generation are described. Skybox security [19] and Red Seal Systems [20] have developed a tool 

that can generate attack graphs. Risk is calculated using the probability of success of an attack 

path multiplied by the loss associated with the compromised target. Nessus [23] and Retina [24] 

are vulnerability management systems that can help organizations with vulnerability assessment, 

mitigation, and protection.  
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All the tools for attack graph generation that are mentioned here are similar in capabilities. We 

will use the MULVAL tool in this document to illustrate our methodology of security risk 

analysis using attack graphs. 

 

3. Past Work in Security Risk Analysis 

 

Modelers generally think about security in terms of threats, risks, and losses [1]. Good models provide a 

rationale for measurements, and these models can be updated and calibrated as new data becomes 

available. A data model can also be used to automate security calculations. Some of the benefits of 

automating security metrics calculations are: 

 Accuracy: Accuracy is required to trust the data that is collected and to develop consensus about the 

results. 

 Repeatability: This is another important component of trust. If two measurements of a target can 

give the same consistent result, then the data can be trusted. 

 Reliability: Automation of data collection will result in more reliability as it is not prone to human 

errors. 

 Transparency: The steps used to derive the metrics are readily apparent, and they are accurately 

documented. 

 

Security metrics have been suggested based on criteria compliance, intrusion detection, security policy, 

security incidents, and actuarial modeling. Statistical methods (Markov modeling, Bayesian networks, 

etc.) have been used in measuring network security. Complementary to our approach, measurements of 

attack resistance [2] and weakest successful adversary [3] have been proposed. 

Early standardization efforts in the defense community evolved into the system security engineering 

capability maturity model (SSE-CMM) [4], although it does not assign quantitative measures. Lots of risk 

management work has been done at the National Institute of Standards and Technology (NIST) on risk 

identification, assessment and analysis. NIST Special Publication (SP) 800-55 [5] describes the security 

metrics implementation process. NIST SP 800-27 [6] describes the principles for establishing a security 

baseline. NIST SP 800-39 [38] is the document that describes information security standards and 

guidelines developed by NIST. The purpose of NIST SP 800-39 is to provide a guide for an organization-

wide program for managing information security risk. NIST SP 800-55 (Revision 1) [37] provides 

performance measurement guide for information security. NIST SP 800-30 [36] presents a risk 

management guide for information technology systems. There are also standardization efforts for 

vulnerability scoring, such as the Common Vulnerability Scoring System (CVSS) [7], although these treat 

vulnerabilities in isolation, without considering attack interdependencies on target networks. 

In early work in attack graph analysis, model checking was used to enumerate attack sequences linking 

initial and goal states [8][9]. Because of explicit enumeration of attack states, these approaches scale 

exponentially with the size of the network. With a practical assumption of monotonic logic, attack graph 

complexity has been shown to be polynomial rather than exponential [10][11]. Graph complexity has 

been further reduced, to worst-case quadratic in the number of hosts [12]. 

Further improvement is possible by grouping networks into protection domains, in which there is 

unrestricted connectivity among hosts within each domain [13]. With this representation, complexity is 

reduced to linear within each protection domain, and overall quadratic in the number of protection 

domains (which is typically much less than the number of hosts). Such attack graphs have been generated 

for tens of thousands of hosts (hundreds of domains) within a minute, excluding graph visualization [12].  

A detailed description of this approach to attack graph analysis is given in [13] [14] [15]. 



SECURITY RISK ANALYSIS OF ENTERPRISE NETWORKS USING PROBABILISTIC ATTACK GRAPHS    
 

 10 

Beyond improving attack graph complexity, frameworks have been proposed for expressing network 

attack models [16] [17][18]. Capabilities for mapping multistep attacks have begun to appear in some 

commercial products [19] [20], although their limitations include not showing all possible attack paths 

simultaneously as needed for effective risk assessment. A more extensive review of attack graph research 

(as of 2005) is given in [21]. 

There have been some attempts at measuring network security risk by combining attack graphs with 

individual vulnerability metrics. Frigault et al. [27] proposes converting attack graphs and individual 

vulnerability score into Bayesian Network for computing the cumulative probability. Wang et al. [25] 

recognize the existence of cycles in an attack graph and present ideas about how to propagate 

probabilities over cycles. In [26], techniques for enterprise network security metrics are described. In [28] 

[33], the concept of “Measuring the Attack Surface” is used to determine the security risk of software 

systems. In [34], a practical approach to quantifying security risk in enterprise networks is described. 

In this report, we identify two layers in enterprise network security metrics: the component metrics and 

the cumulative metrics. The component metrics are about individual components’ properties, which in 

many cases can be obtained from standard data sources like the National Vulnerability Database (NVD). 

The important feature of the component metrics is that they are only about individual components and do 

not consider interactions among components. As a result, they can be measured or computed separately. 

The cumulative security metrics account for both the baseline metrics of individual components and the 

interactions among components. We propose that the cumulative metrics shall be obtained by composing 

the component metrics through a sound theoretical model with well-defined semantics. 

 

4. Common Vulnerability Scoring System (CVSS) 

CVSS [7] is an industry standard for assessing the severity of computer system security vulnerabilities. It 

attempts to establish a measure of how much concern a vulnerability warrants, compared to other 

vulnerabilities, so efforts can be prioritized. It offers the following benefits: 

 Standardized Vulnerability Scores: When an organization normalizes vulnerability scores across 

all of its software and hardware platforms, it can leverage a single vulnerability management 

policy.  

 Open Framework: Users can be confused when a vulnerability is assigned an arbitrary score. 

With CVSS, anyone can see the individual characteristics used to derive a score. 

 Prioritized Risk: When the environmental score is computed, the vulnerability now becomes 

contextual. That is, vulnerability scores are now representative of the actual risk to an 

organization.  

 

CVSS is composed of three metric groups: Base, Temporal, and Environmental, each consisting of a set 

of metrics, as shown in Figure 2. 

 

 

Figure 2: CVSS Metric Groups 

 



SECURITY RISK ANALYSIS OF ENTERPRISE NETWORKS USING PROBABILISTIC ATTACK GRAPHS    
 

 11 

These metric groups are described as follows: 

 base: representing “intrinsic and fundamental characteristics of a vulnerability that are constant 

over time and user environments”  

 temporal: representing “characteristics of a vulnerability that change over time but not among 

user environments” 

 environmental: representing “characteristics of a vulnerability that are relevant and unique to a 

particular user's environment”  

 

The base metric group captures the characteristics of a vulnerability that do not change with time and 

across user environment. The Access Vector, Access Complexity, and Authentication metrics capture 

how the vulnerability is accessed and whether or not extra conditions are required to exploit it. The three 

impact metrics measure how a vulnerability, if exploited, will directly effect  the degree of loss of 

confidentiality, integrity, and availability. For example, a vulnerability could cause a partial loss of 

integrity and availability, but no loss of confidentiality. We briefly describe the metrics as follows. 

 

Access Vector (AV): This metric reflects how the vulnerability is exploited. The possible values 

for this metrics are: Local (L), Adjacent Network (A), and Network (N). The more remote an attacker can 

attack a host, the greater the vulnerability score. 

 

Access Complexity (AC): This metric measures the complexity of the attack required to exploit the 

vulnerability once an attacker has gained access to the target system. The possible values for this metric 

are: High (H), Medium (M), and Low (L). For example, consider a buffer overflow in an Internet service. 

Once the target system is located, the attacker can launch and exploit it at will. The lower the required 

complexity, the higher the vulnerability score. 

 

Authentication (AU): This metric measures the number of times an attacker must authenticate in order to 

exploit a vulnerability. This metric does not gauge the strength complexity of the authentication process, 

but only that an attacker is required to provide credentials before an exploit is launched. The possible 

values for this metric are: Multiple (M), Single (S), and None (N). The fewer authentication instances that 

are required, the higher the vulnerability scores. 

 

Confidentiality Impact (C): This metric measures the impact on confidentiality of a successfully exploited 

vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, 

as well as preventing access by, or disclosure to, unauthorized ones. The possible values for this metric 

are: None (N), Partial (P), and Complete (C). Increased confidentiality impact increases the vulnerability 

score. 

 

Integrity Impact (I): This metric measures the impact to integrity of a successfully exploited vulnerability. 

Integrity refers to the trustworthiness and guaranteed veracity of information. The possible values for this 

metric are: None (N), Partial (P), and Complete (C). Increased integrity impact increases the vulnerability 

score. 

 

Availability Impact (A): This metric measures the impact to availability caused by a successfully 

exploited vulnerability. Availability refers to the accessibility of information resources. Attacks that 

consume network bandwidth, processor cycles, or disk space all impact the availability of a system. The 

possible values for this metric are: None (N), Partial (P), and Complete (C). Increased availability impact 

increases the vulnerability score. 
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AN EXAMPLE  

 

Consider CVE-2003-0062: Buffer Overflow in NOD32 Antivirus. NOD32 is an antivirus software 

application developed by Eset. In February 2003, a buffer overflow vulnerability was discovered in Linux 

and Unix versions prior to 1.013 that could allow local users to execute arbitrary code with the privileges 

of the user executing NOD32. To trigger the buffer overflow, the attacker must wait for (or coax) another 

user (possible root) to scan a directory path of excessive length. 

   

Since the vulnerability is exploitable only to a user locally logged into the system, the Access Vector is 

“Local.” The Access Complexity is “High” because this vulnerability can be exploited only under 

specialized access conditions. There is an additional layer of complexity because the attacker must wait 

for another user to run the virus-scanning software. Authentication is set to “None” because the attacker 

does not need to authenticate to any additional system. Together, these metrics produce a base score of 

6.2. 

 

The base vector for this vulnerability is :AV:L/AC:H/Au:N/C:C/I:C/A:C  

 

---------------------------------------------------------------------------------------------------------------------Base 

Metric    Evaluation            Score 

--------------------------------------------------------------------------------------------------------------------- 

Access Vector   [Local]           (0.395) 

Access Complexity  [High]           (0.35) 

Authentication   [None]           (0.704) 

Confidentiality Impact             [Complete]          (0.66) 

Integrity Impact              [Complete]          (0.66) 

Availability Impact             [Complete]          (0.66) 

---------------------------------------------------------------------------------------------------------------------

---- 

Formula        Base Score 

------------------------------------------------------------------------------------------------------------ 

 Impact = 10.41 * (1 – (0.34 * 0.34 * 0.34)) = =10.0 

 Exploitability = 20 * 0.35 * 0.704 * 0.395 = = 1.9 

             f(Impact) = 1.176 

             Base Score = ((0.6*10) +(0.4*1.9)-1.5)*1.176 = 6.2 

 

 

Basically, for each metric group, an equation is used to weigh the corresponding metrics and produce a 

score (ranged from 0 to 10) based on a series of measurements and security experts’ assessment, and the 

score 10 represents the most severe vulnerability. Specifically, when the base metrics are assigned values, 

the base equation calculates a score ranging from 0 to 10, and creates a vector. This vector is a text string 

that contains the values assigned to each metric. It is used to communicate exactly how the score for each 

vulnerability is derived, so that anyone can understand how the score was derived and, if desired, confirm 

the validity of each metric.  

 

Optionally, the base score can be refined by assigning values to the temporal and environmental metrics. 

This is useful in order to provide additional context for a vulnerability by more accurately reflecting the 

risk posed by the vulnerability to a user’s environment. Depending on one’s purpose, the base score and 

vector may be sufficient. If a temporal score is needed, the temporal equation will combine the temporal 

metrics with the base score to produce a temporal score ranging from 0 to 10. Similarly, if an 

environmental score is needed, the environmental equation will combine the environmental metrics with 
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the base score to produce an environmental score ranging from 0 to 10. More details on base, temporal, 

and environmental equations, and the calculations can be found in the CVSS standards guide [8]. 

 

5. Security Risk Analysis of Enterprise Networks Using Attack Graphs 

In this section, we present our methodology for security risk analysis of Enterprise Networks using Attack 

Graphs. We will use the MULVAL tool for attack graph generation to illustrate our approach. We explain 

our methodology using three examples. Example one presents the methodology using a single 

vulnerability. Examples two and three present the methodology for a system containing multiple 

vulnerabilities. 

Attack graphs provide the cumulative effect of attack steps to show how each of these steps can 

potentially enable an attacker to reach their goal. However, one limitation of an attack graph is that it 

assumes that a vulnerability can always be exploited. In reality, there is a wide range of probabilities that 

different steps can be exploited. It is dependent on the skill of the attacker and the difficulty of the exploit. 

Attack graphs show what is possible without any indication of what is likely. In this section, we present a 

methodology to estimate the security risk using the CVSS scores of individual vulnerabilities. 

Example 1 

 

Figure 3 

In the simple example of Figure 3, there is a firewall controlling network access from the Internet to the 

DMZ subnet of an enterprise network. The Demilitarized Zone (DMZ) is typically used to place publicly 

accessible servers, in this case the web server. The firewall protects the host in DMZ and only allows 

external access to ports necessary for the service. In this example, Internet is allowed to access the web 

server through TCP port 80, the standard HTTP protocol and port.  

 

Suppose a vulnerability scan is performed on the web server, and a vulnerability is identified. The CVE 

ID of the discovered vulnerability is CVE-2006-3747. Using this ID as a key, one can query the National 

Vulnerability Database (NVD) and obtain a number of important properties of the vulnerability. Below is 

an excerpt from the information retrieved from NVD about CVE-2006-3747: 

 
Overview 

Off-by-one error in the ldap scheme handling in the Rewrite module (mod_rewrite) in Apache 1.3 from 1.3.28, 

2.0.46 and other versions before 2.0.59, and 2.2, when RewriteEngine is enabled, allows remote attackers to cause a 

denial of service (application crash) and possibly execute arbitrary code via crafted URLs that are not properly 

handled using certain rewrite rules. 

 

Impact 

CVSS Severity (version 2.0): 
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CVSS v2 Base Score:7.6 (HIGH) (AV:N/AC:H/Au:N/C:C/I:C/A:C) (legend) 

Impact Subscore: 10.0 

Exploitability Subscore: 4.9 

CVSS Version 2 Metrics: 

Access Vector: Network exploitable 

Access Complexity: High 

Authentication: Not required to exploit 

Impact Type: Provides administrator access, Allows complete confidentiality, integrity, and availability violation; 

Allows unauthorized disclosure of information; Allows disruption of service 

 

The “Overview” section gives a number of key features of the vulnerability, including the relevant 

software modules and versions and what security impact the vulnerability poses to a system. The latter is 

further displayed in the “Impact” section. Most of the impact factors are expressed in the CVSS metric 

vector, which is “AV:N/AC:H/Au:N/C:C/I:C/A:C” in this case.  

 

These CVSS metrics provide crucial information regarding the pre- and postconditions for exploiting the 

vulnerability. Such information can then be used to construct an attack graph, which shows all possible 

attack paths in a network. The attack graph for this simple network is shown in Figure 4. 

 

Figure 4 

The meaning of the node labels are explained below: 

 

1: hacl(internet,webServer,httpProtocol,httpPort) 

2: attackerLocated(internet) 

3: direct network access 

4: netAccess(webServer,httpProtocol,httpPort) 

5: networkServiceInfo(webServer,httpd,httpProtocol,httpPort,apache) 

6: vulExists(webServer,'CVE-2006-3747',httpd,remote,privEscalation) 

7: remote exploit of a server program 

8: execCode(webServer,apache) 

 

The above graph is computed from the MulVAL network security analyzer [31, 32]. The square vertices 

represent configuration of the system, e.g., the existence of a software vulnerability on a machine (node 

6), firewall rules that allow Internet to access the web server through the HTTP protocol and port (node 

1), and services running on a host (node 5). The diamond vertices represent potential privileges an 

attacker could gain in the system, e.g., code execution privilege on web server (node 8). The elliptical 

vertices are “attack nodes” which link preconditions to postconditions of an attack. For example, node 7 

represents the attack “remote exploit of a server program.” Its preconditions are: the attacker has network 

access to the target machine for the specific protocol and port (node 4), the service on that port is running 
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(node 5), and the service is vulnerable (node 6). The postcondition of the attack is that the attacker gains 

the specific privilege on the machine (node 8).  

 

An attack graph can help a system administrator understand what could happen in their network, through 

analyzing the configuration of an enterprise network system. When the size of the system increases, it 

becomes increasingly difficulty for a human to keep track of and correlate all relevant information. An 

automatic attack-graph generator has its unique advantage in that it can identify non-obvious attack 

possibilities arising from intricate security interactions within an enterprise network, which can be easily 

missed by a human analyst. It achieves this through building up a knowledge base (KB) about generic 

security knowledge independent of any specific scenarios. For example, the KB rule that generated part of 

the attack graph in Figure 4 is shown below. 
 

execCode(H, Perm) :- 

 vulExists(H, VulID, Software, remote, privEscalation), 

 networkServiceInfo(H, Software, Protocol, Port, Perm), 

 netAccess(H, Protocol, Port). 

 

This is a generic Datalog rule for how to reason about remote exploit of a service program. It is easy to 

see that the three subgoals correspond to the three predecessors of node 7, and the head of the rule 

corresponds to its successor. The variables (in upper case-led identifiers) are automatically instantiated 

with the concrete values from a system’s configuration tuples. There are many other rules like the one 

above in the knowledge base. All the rules form a Datalog program, and a Prolog system can efficiently 

evaluate such a program against thousands of input tuples. The evaluation process will find out all 

consequences arising from these rules. Complex multistep, multi-host attack paths are naturally captured 

in this logical reasoning process, even though each rule itself only describes a specific type of attack.  

 

An attack graph is often perceived to have a deterministic semantics: as long as all the preconditions of an 

attack can be achieved, the attack can always succeed resulting in the attacker obtaining the postcondition 

privilege. In reality, it is often not that clear. The “possibly execute arbitrary code” in the vulnerability’s 

overview highlights the uncertainty in the true consequence of exploiting a vulnerability. Depending on 

the difficulty level of the exploit, the attacker’s skills and resources, and how hard it is to get to it, a 

vulnerability may or may not pose a high risk to the system. Since all security hardening measures (e.g., 

patching) inevitably incur cost in terms of human labor, increased inconvenience, or degraded 

performance, security administration is an art of balancing risk and cost. A quantitative model for risk 

assessment is indispensable to make this effort a more scientific process.  

 

Deriving security risk from attack graphs. Since all the attack nodes in an attack graph do not always 

guarantee success, we can attach a component metric to each attack node. The component metric is a 

numeric measure indicating the conditional probability of attack success when all the preconditions are 

met. Such component metrics can be derived from CVSS metric vector. For example, we can map the AC 

metric to probability such that higher AC metric value is mapped to a lower value in probability. Then we 

can aggregate the probabilities over the attack-graph structure to provide a cumulative metric, which 

indicates the absolute probability of attack success in the specific system. The cumulative metrics are not 

only affected by the individual vulnerabilities’ properties, but are also to a large extent affected by how 

the security interactions may happen in the specific system which affects the way an attacker can move 

from one step to another. By combining the component metrics with the attack-graph structure, one can 

obtain a security metric that is tailored to the specific environment, instead of a generic metric such as the 

CVSS Base Score.  

 

In the example attack graph of Figure 4, node 7 is attached a component metric 0.2 which is derived from 

the vulnerability’s AC metric based on the mapping High->0.2, Medium-> 0.6, Low -> 0.9.  Node 3 has a 
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component metric 1 since it represents network access semantics, not a real attack step and thus without 

an uncertainty in its success. Since this attack graph is very simple, we can easily see that the cumulative 

metric for node 8 (compromise of the web server) is also 0.2.  

 

Example 2 

 

Figure 5 

In this example, a new subnet Internal is added, which hosts the database server. The access to the 

Internal subnet is mediated by an internal firewall. Only the web server can access the database server, 

which also has a remote vulnerability in the MySQL DB service (CVE-2009-2446). The attack graph for 

this network is shown in Figure 6. 

 

Figure 6 

1: hacl(webServer,dbServer,dbProtocol,dbPort) 

2: hacl(internet,webServer,httpProtocol,httpPort) 

3: attackerLocated(internet) 

4: direct network access 

5: netAccess(webServer,httpProtocol,httpPort) 

6: networkServiceInfo(webServer,httpd,httpProtocol,httpPort,apache) 

7: vulExists(webServer,'CVE-2006-3747',httpd,remote,privEscalation) 

8: remote exploit of a server program 

9: execCode(webServer,apache) 

10: multi-hop access 

11: netAccess(dbServer,dbProtocol,dbPort) 

12: networkServiceInfo(dbServer,mySQL,dbProtocol,dbPort,root) 
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13: vulExists(dbServer,'CVE-2009-2446',mySQL,remote,privEscalation) 

14: remote exploit of a server program 

15: execCode(dbServer,root) 

 

This attack graph shows a two-stage attack. The attacker can first compromise the web server (node 8). 

Then they can use the web server as a stepping stone to further compromise the database server (node 14). 

The component metric for node 2 is 0.6, since the MySQL vulnerability is easier to exploit than the 

Apache vulnerability. In this attack graph, since there is only one path to reach the compromise of the 

database sever (node 15), it is easy to see that the cumulative metric for node 1 is the multiplication of the 

two component metrics on the path: 0.2x0.6=0.12. This is intuitive since the longer the attack path, the 

lower the risk. 

 

This example highlights the need to account for security interactions in the specific network to fully 

understand the risk a vulnerability brings to a system. Although the vulnerability on the database server 

has a high CVSS score (8.5 in this case), the cumulative risk contributed by the vulnerability to the 

specific system may be marginal, since it is located at a place hard to get to by an attacker.  

 

Example 3 

 

Figure 7 

Example 3 adds another subnet to the network, called “Group 2.” This subnet contains the user desktop 

machines used by the company’s employees. These machines run the Windows operating system and 

Internet Explorer (IE) browser. Vulnerability CVE-2009-1918 was identified in IE that would enable 

execution of arbitrary code on the victim’s machine. To exploit this vulnerability, an attacker must trick a 

user into visiting a maliciously crafted web page. The vulnerability is not a highly complex one to exploit, 

i.e., once a user visits the malicious page, it is highly likely that their machine will be compromised. The 

other two vulnerabilities discussed above also exist on the web server and database server in this example. 

The attack graph for this network is shown in Figure 8. 
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Figure 8 

1: hacl(webServer,dbServer,dbProtocol,dbPort) 

2: hacl(workStation,webServer,httpProtocol,httpPort) 

3: attackerLocated(internet) 

4: hacl(workStation,internet,httpProtocol,httpPort) 

5: isClient('IE') 

6: inCompetent(secretary) 

7: Browsing a malicious website 

8: isWebServer(webServer) 

9: Browsing a compromised website 

10: accessMaliciousInput(workStation,secretary,'IE') 

11: hasAccount(secretary,workStation,normalAccount) 

12: vulExists(workStation,'CVE-2009-1918','IE',remote,privEscalation) 
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13: remote exploit of a client program 

14: execCode(workStation,normalAccount) 

15: multi-hop access 

16: hacl(internet,webServer,httpProtocol,httpPort) 

17: direct network access 

18: netAccess(webServer,httpProtocol,httpPort) 

19: networkServiceInfo(webServer,httpd,httpProtocol,httpPort,apache) 

20: vulExists(webServer,'CVE-2006-3747',httpd,remote,privEscalation) 

21: remote exploit of a server program 

22: execCode(webServer,apache) 

23: multi-hop access 

24: hacl(workStation,dbServer,dbProtocol,dbPort) 

25: multi-hop access 

26: netAccess(dbServer,dbProtocol,dbPort) 

27: networkServiceInfo(dbServer,mySQL,dbProtocol,dbPort,root) 

28: vulExists(dbServer,'CVE-2009-2446',mySQL,remote,privEscalation) 

29: remote exploit of a server program 

30: execCode(dbServer,root) 

 

In even such a small network, how security on one machine can affect another can be manifold and non-

obvious. A careful examination of the attack graph reveals a number of potential intrusion paths leading 

to the compromise of the various hosts. An attacker could first compromise the web server and use it as a 

stepping stone to further attack the database server (3, 17, 18, 21, 22, 23, 26, 29, 30). Or they could first 

gain control on a user workstation by tricking a user into clicking a malicious link, and launch attacks 

against the database server from the workstation (3, 7, 10, 13, 14, 25, 26, 29, 30). There are many other 

attack paths. In general, if we enumerate all possible attack paths in a system, the number could be 

exponential. However, the privileges and attacks on all these paths are interdependent on each other, and 

the number of pair-wise inter-dependencies is quadratic to the size of the network. Instead of enumerating 

all attack paths, a logical attack graph like MulVAL enumerates the interdependencies among the attacks 

and privileges. This provides an efficient polynomial-time algorithm for computing a compact 

representation of all attack paths in a system. 

 

There are a number of attack nodes in this graph. Nodes 21 and 29 are the exploit against the web server 

and database server respectively, which have been explained before. An interesting node is 13, which is 

about the exploit of the IE vulnerability. The component metric 0.9 indicates that this exploit has a high 

success rate when all the preconditions are met. Of the three preconditions, one of them is that the user 

(secretary) must access malicious input through the IE program on the host (node 10). This precondition 

is further calculated by two rules. Node 7 is the instantiation of the following rule: 

 
accessMaliciousInput(H, Victim, Software) :- 

     inCompetent(Victim), 

     isClient(Software), 

     hacl(H, MaliciousMachine, httpProtocol, httpPort), 

     attackerLocated(MaliciousMachine). 

 

The predicate “inCompetent” indicates that somebody is not trustworthy for using computers carefully 

and may fall victim of social-engineering attacks, e.g., clicking a malicious url. The predicate “isClient” 

indicates that a piece of software is a client software and as a result, the exploit of the vulnerability will 

need user assistance. This type of information can be obtained from the NVD data as well. Intuitively, the 

clause specifies that if someone is not careful, and their machine can access a malicious host controlled by 

an attacker, they may access malicious input provided by the attacker. The component metric assigned to 
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this likelihood is 0.8 as shown in the graph. Basically, this number will need to be provided by the user of 

the risk analysis tool. Node 9 captures another scenario for the user to access malicious input: they may 

browse to a compromised web site. This could happen in this network since the attacker could 

compromise the corporate web server (node 22), and the firewall allows the user workstation to access the 

corporate web server (node 2). The component metric for node 9 is 0.5, again input by the users. The 

component metrics like those for nodes 7 and 9 are different from those associated with vulnerabilities. 

They are affected by the security awareness of users of the enterprise system and are thus context-

specific. To provide these metric values, the risk analysis tool can conduct an initial survey asking 

multiple-choice questions like “How likely will the user of workstations visit a malicious web site?” 

Based on the answers provided by the system administrator, a set of component metrics representing the 

above likelihood can be derived and used in subsequent analyses.  

 

It is less obvious how to calculate in this attack graph the likelihood that an attacker can obtain a privilege 

(e.g., node 30, code-execution privilege on the database server). The complexity comes from shared 

dependencies and cycles that exist in this attack graph. A number of methods have been developed to 

handle such complexities and to calculate attack success likelihood in arbitrary attack graphs [25, 34]. We 

will use this example to illustrate how to use such calculated metrics to aid in security administration. 

 

Using Metrics to Prioritize Risk Mitigation 

When considering improvements in network security, a network administrator can be constrained by a 

variety of factors including money and time. For example, some changes, though preferable, may not be 

feasible because of the time necessary to make the change and the system downtime that would occur 

while the change was made. Considering the network topology in Example 3, it is not immediately clear 

which of the vulnerabilities should be patched first, assuming that a fix is available for each of the three. 

 

Host Initial 

scenario 

Patch web 

server 

Patch db 

server 

Patch 

workstations 

Change 

network 

access 

Database 

server 

0.47 0.43 0 0.12 0.12 

Web server 0.2 0 0.2 0.2 0.2 

Workstations 0.74 0.74 0.74 0 0.74 

Table 1: Probabilities of compromise for hosts in Figure 7 (columns reflect 
different scenarios) 

Table 1 shows the metric calculation results based on the method of Homer et al. [34]. Column 2 shows 

the risk metrics for Example 3. Columns 3-6 show the new risk assessment values based on various 

mitigation options: patching different vulnerabilities or changing the firewall rules so that the user 

workstations cannot access the database server. We try to give intuitive reasons to justify the security risk 

scores for each of the options. 

 

Patching the vulnerability on the web server would eliminate the known risk of compromise for the web 

server, but would have little effect on the other two hosts. The web server does not contain sensitive 

information, so protecting this host may not be the best choice. Even if the web server vulnerability gets 

patched, there are other attack paths. For example, an attacker can first gain control of a user workstation 

and then launch attacks against the database server from the workstation. 

 

Patching the vulnerability on the database server would eliminate the known risk of compromise for the 

database server, but have no effect on the risk in the other two hosts, since privileges on the database 

server do not enable new attacks on the other hosts. This option would secure the sensitive data on the 



SECURITY RISK ANALYSIS OF ENTERPRISE NETWORKS USING PROBABILISTIC ATTACK GRAPHS    
 

 21 

database server, which may be most desirable, but at the cost of having a period of downtime on the 

database server which may affect business revenues. 

 

Patching the vulnerability on the user workstations would eliminate the risk on itself, as well as 

significantly reducing the risk in the database server, though the risk in the web server is unchanged. This 

option secures the workstations and makes the database server more secure, which may be a better 

solution. 

 

Network configuration changes can also have drastic effects on the security risk. The final column in the 

table shows the effect of blocking network access from the workstations to the database server. This 

option eliminates an attack path to the database server that depends on privileges on the workstations, 

lowering the risk of compromise for the database server, but leaving the web server and workstations 

vulnerable. Depending on other resource constraints and asset valuations, this may also be a viable 

solution. There may not be a single “best” option for all organizations. Indeed, different administrators 

could easily make different choices in this same situation, based on the perceived importance of the hosts 

and the expected time necessary to carry out a mediation, as well as human resources available. The 

quantitative risk metrics make clear the effects emerging from each of these possible changes, providing a 

network administrator with objective data beneficial for judging the relative value of each option. 

 

 

6. Challenges 
 

There are many challenges for security risk analysis of enterprise networks using attack graphs. 

 

 Enterprise networks can contain hundreds of hosts, with each host running several applications. 

We need to determine if the current techniques for attack graph generation can scale well for 

networks containing hundreds of hosts and several applications. 

 Obtaining detailed information about exploits is a manual problem. Some of the information 

about each exploit is available in NVD and CVSS. However, gathering detailed information 

about an exploit requires human effort that can be large. New techniques are needed to 

automatically get the exploit information for doing security analysis of enterprise networks. 

 Attack graphs for networks with several hosts can contain cycles. These cycles need to be treated 

properly in security risk analysis. In [25, 34], some preliminary work on how to detect and handle 

such cycles has been done. Assuming monotonicity in the acquisition of network privileges, such 

cycles should be excluded in doing the security risk analysis using attack graphs.  Handling 

cycles correctly is a key challenge in this work. 

 CVSS scores do not have a fine granularity. Currently the scores are coarse-grained in terms of 

High, Medium, and Low. A more precise scoring system will improve the overall results of 

security risk analysis. 

 New techniques are needed to model zero-day vulnerabilities about which we have no prior 

knowledge or experience. New techniques need to be developed for security risk analysis of 

networks against potential zero-day attacks. We have some preliminary results on modeling zero 

day attacks [35]. 

 

7. Conclusions 

 This report explores an approach to solve the system administrator’s problem of how to analyze the 

security risk of enterprise networks. It also shows how to select  security hardening measures from a 

given set of security mechanisms so as to minimize the risk to enterprise systems from network attacks. 
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We have presented a model and a methodology for security risk analysis of enterprise networks using 

probabilistic attack graphs. This model annotates the attack graph with known vulnerabilities and their 

likelihoods of exploitation. By propagating the exploit likelihoods through the attack graph, a metric is 

computed that quantifies the overall security risk of enterprise networks. This methodology can be 

applied to evaluate and improve the security risk of enterprise systems. The experiments discussed in this 

report show the effectiveness of our approach and how it can be used by the system administrators to 

decide among the different risk mitigation options. 
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