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Abstract 
 

Hash functions that compute a fixed-length message digest from arbitrary length 
messages are widely used for many purposes in information security. This document 
provides security guidelines for achieving the required or desired security strengths when 
using cryptographic applications that employ the approved hash functions specified in 
Federal Information Processing Standard (FIPS) 180-4. These include functions such as 
digital signatures, Keyed-hash Message Authentication Codes (HMACs) and Hash-based 
Key Derivation Functions (Hash-based KDFs).   
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Recommendation for Applications Using Approved Hash 

Algorithms 
 

1 Introduction 

A hash algorithm is used to map a message of arbitrary length to a fixed-length message 
digest. Federal Information Processing Standard (FIPS) 180-4, the Secure Hash Standard 
(SHS) [FIPS 180-4], specifies seven approved hash algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256.  

This Recommendation provides security guidelines for supporting the required or desired 
security strengths of several cryptographic applications that employ the approved hash 
functions specified in FIPS 180-4, such as digital signature applications specified in FIPS 
186-3 [FIPS 186-3], Keyed-hash Message Authentication Codes (HMACs) specified in 
FIPS 198-1  [FIPS 198-1] and Hash-based Key Derivation Functions specified in SP 800-
56A [SP 800-56A] and SP 800-56B [SP 800-56B]. While the use of hash functions in 
HMAC-based key derivation functions is specified in SP 800-56C [SP 800-56C] and SP 
800-108 [SP 800-108], these documents sufficiently address the security aspects of their 
use, so discussions of SP 800-56C and SP 800-108 are not included herein.   

2 Authority 

This Recommendation has been developed by the National Institute of Standards and 
Technology (NIST) in furtherance of its statutory responsibilities under the Federal 
Information Security Management Act (FISMA) of 2002, Public Law 107-347.  

NIST is responsible for developing standards and guidelines, including minimum 
requirements, for providing adequate information security for all agency operations and 
assets, but such standards and guidelines shall not apply to national security systems. 
This recommendation is consistent with the requirements of the Office of Management 
and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information 
Systems, as analyzed in A-130, Appendix IV: Analysis of Key Sections. Supplemental 
information is provided in A-130, Appendix III. 

This Recommendation has been prepared for use by Federal agencies. It may be used by 
non-governmental organizations on a voluntary basis and is not subject to copyright 
(attribution would be appreciated by NIST).  

Nothing in this Recommendation should be taken to contradict standards and guidelines 
made mandatory and binding on Federal agencies by the Secretary of Commerce under 
statutory authority. Nor should this Recommendation be interpreted as altering or 
superseding the existing authorities of the Secretary of Commerce, Director of the OMB, 
or any other federal official. 
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Conformance testing for implementations of this Recommendation will be conducted 
within the framework of the Cryptographic Algorithm Validation Program (CAVP) and 
the Cryptographic Module Validation Program (CMVP). The requirements of this 
Recommendation are indicated by the word “shall”. Some of these requirements may be 
out-of-scope for CAVP and CMVP validation testing, and thus are the responsibility of 
entities using, implementing, installing, or configuring applications that incorporate this 
Recommendation.  

3 Glossary of Terms, Acronyms and Mathematical Symbols 

3.1 Terms and Definitions 
   

Adversary An entity that is not authorized to access or modify information, 
or who works to defeat any protections afforded the 
information. 

Algorithm A clearly specified mathematical process for computation; a set 
of rules that, if followed, will give a prescribed result. 

Approved FIPS-approved and/or NIST-recommended. An algorithm or 
technique that is either 1) specified in a FIPS or NIST 
Recommendation, 2) adopted in a FIPS or NIST 
Recommendation or 3) specified in a list of NIST-approved 
security functions. 

Approved hash 
algorithms 

Hash algorithms specified in FIPS 180-4. 

Bit string An ordered sequence of 0 and 1 bits. In this Recommendation, 
the leftmost bit is the most significant bit of the string. The 
rightmost bit is the least significant bit of the string. 

Bits of security See security strength.  

Block cipher An invertible symmetric-key cryptographic algorithm that 
operates on fixed-length blocks of input using a secret key and 
an unvarying transformation algorithm. The resulting output 
block is the same length as the input block. 

Collision An event in which two different messages have the same 
message digest. 

Collision resistance An expected property of a hash function whereby it is 
computationally infeasible to find a collision, See “Collision”.  
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Digital signature The result of applying two cryptographic functions (a hash 
function, followed by a digital signature function; see FIPS 186-
3 for details). When the functions are properly implemented, the 
digital signature provides origin authentication, data integrity 
protection and signatory non-repudiation. 

Hash algorithm See hash function. “Hash algorithm” and “hash function” are 
used interchangeably in this Recommendation.  

Hash function A function that maps a bit string of arbitrary length to a fixed-
length bit string. The function is expected to have the following 
three properties: 

1. Collision resistance (see Collision resistance), 

2. Preimage resistance (see Preimage resistance) and 

3. Second preimage resistance (see Second preimage 
resistance). 

Approved hash functions are specified in  
[FIPS 180-4]. 

Hash output See “message digest”.  

Hash value See “message digest”. 

Key A parameter used with a cryptographic algorithm that 
determines its operation in such a way that an entity with 
knowledge of the key can reproduce or reverse the operation, 
while an entity without knowledge of the key cannot. Examples 
applicable to this Recommendation include: 

1.  The computation of a keyed-hash message authentication 
code. 

2.  The verification of a keyed-hash message authentication 
code. 

3. The generation of a digital signature on a message. 

4. The verification of a digital signature. 

Key Derivation Key A key used as an input to a key derivation function to derive 
other keys.  

Keying Material A bit string, such that any non-overlapping segments of the 
string with the required lengths can be used as symmetric 
cryptographic keys and secret parameters, such as initialization 
vectors.  

L-bit Hash Function A hash function for which the length of the output is L bits. 

MAC algorithm An algorithm that computes a MAC from a message and a key. 
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Message digest The result of applying a hash function to a message. Also 
known as a “hash value” or “hash output”. 

Preimage A message X that produces a given message digest when it is 
processed by a hash function. 

Preimage resistance An expected property of a hash function such that, given a 
randomly chosen message digest, message_digest, it is 
computationally infeasible to find a preimage of the 
message_digest, See “Preimage”.  

Random bit A bit for which an attacker has exactly a 50% probability of 
success of guessing the value of the bit as either a zero or one. It 
is also called an unbiased bit. 

Random bit generator A device or algorithm that can produce a sequence of bits that 
appear to be both statistically independent and unbiased. 

Randomized hashing A process by which the input to a hash function is randomized 
before being processed by the hash function. 

Random number A value in a set of numbers that has an equal probability of 
being selected from the total population of possibilities and, in 
that sense, is unpredictable. A random number is an instance of 
an unbiased random variable, that is, the output produced by a 
uniformly distributed random process. Random numbers may, 
e.g., be obtained by converting suitable stings of random bits 
(see [SP 800-90A], Appendix B.5 for details). 

Second preimage A message X’, that is different from a given message X , such 
that its message digest is the same as the known message digest 
of X. 

Second preimage 
resistance 

An expected property of a hash function whereby it is 
computationally infeasible to find a second preimage of a 
known message digest, See “Second preimage”.  

Secret keying material The binary data that is used to form secret keys, such as AES 
encryption or HMAC keys. 

Security strength 
(Also “bits of 
security”) 

A number associated with the amount of work (that is, the 
number of operations) that is required to break a cryptographic 
algorithm or system. If 2N execution operations of the algorithm 
(or system) are required to break the cryptographic algorithm, 
then the security strength is N bits. 
 

Shall Used to indicate a requirement of this Recommendation. 

Shared secret A secret value that has been computed using a key agreement 
algorithm and is used as input to a key derivation function. 
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3.2 Acronyms 
FIPS                Federal Information Processing Standard 

SHA                Secure Hash Algorithm 

KDF                Key Derivation Function 

MAC               Message Authentication Code 

HMAC            Keyed-hash Message Authentication Code 

RBG  Random Bit Generator 

3.3 Symbols 
K HMAC key. 

L Length in bits of the full message digest from a hash function. 

MacTag Transmitted full or truncated HMAC output. 
min(x, y) The minimum of x and y. For example, if x < y, then min(x, y) = x. 

λ The length in bits of a MacTag, or the length in bits of a truncated 
message digest (used, for example, by a digital signature algorithm). 

4 Approved Hash Algorithms 

Currently, there are seven approved hash algorithms specified in FIPS 180-4: SHA-1, 
SHA-224, SHA-256, SHA-384 SHA-512, SHA-512/224 and SHA-512/256. These hash 
algorithms produce outputs of 160, 224, 256, 384, 512, 224 and 256 bits, respectively. 
The output of a hash algorithm is commonly known as a message digest, a hash value or 
a hash output. 

4.1 Hash Function Properties 
An approved hash function1 is expected to have the following three properties: 

1. Collision resistance: It is computationally infeasible to find two different inputs to 
the hash function that have the same hash value. That is, if hash is a hash 
function, it is computationally infeasible to find two different inputs x and x’ for 
which hash(x) = hash(x’). Collision resistance is measured by the amount of work 
that would be needed to find a collision for a hash function with high probability. 
If the amount of work is 2N, then the collision resistance is N bits. The expected 
collision-resistance strength of a hash function is half the length of the hash value 
produced by that hash function, i.e., for an L-bit hash function, the expected 
security strength for collision resistance is L/2 bits. For example, SHA-256 
produces a (full-length) hash value of 256 bits; SHA-256 provides an expected 
collision resistance of 128 bits (see Table 1 in Section 4.2).  

                                                 
1 The terms “hash function” and “hash algorithm” are used interchangeably, depending on the context of 
the discussions throughout this Recommendation.  
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2.  Preimage resistance2: Given a randomly chosen hash value, hash_value, it is 
computationally infeasible to find an x so that hash(x) = hash_value. This 
property is also called the one-way property. Preimage resistance is measured by 
the amount of work that would be needed to have a high probability of finding a 
preimage for a hash function. If the amount of work is 2N, then the preimage 
resistance is N bits. The expected preimage-resistance strength of a hash function 
is the length of the hash value produced by that hash function, i.e., for an L-bit 
hash function, the expected security strength for preimage resistance is L bits. For 
example, SHA-256 produces a (full-length) hash value of 256 bits; SHA-256 
provides an expected preimage resistance of 256 bits (see Table 1 in Section 4.2).  

3. Second preimage resistance: It is computationally infeasible to find a second input 
that has the same hash value as any other specified input. That is, given an input 
x, it is computationally infeasible to find a second input x’ that is different from x, 
such that hash(x) = hash(x’). Second preimage resistance is measured by the 
amount of work that would be needed to have a high probability of finding a 
second preimage for a hash function. If the amount of work is 2N, then the second 
preimage resistance is N bits. In general, the expected second preimage strength 
of a hash function is the length of the hash value produced by that hash function, 
i.e., for an L-bit hash function, the expected security strength for second preimage 
resistance is L bits. For example, SHA-256 produces a (full-length) hash value of 
256 bits; SHA-256 provides an expected second preimage resistance of 256 bits 
(see Table 1 in Section 4.2). However, for some hash functions, the second 
preimage resistance strength also depends on the message length processed by the 
hash function. More details can be found in Appendix A. 

The security strength of a hash function is determined by its collision resistance strength, 
preimage resistance strength or second preimage resistance strength, depending on the 
property(ies) that the cryptographic application needs from the hash function.  If an 
application requires more than one property from the hash function, then the weakest 
property is the security strength of the hash function for that application. For instance, the 
security strength of a hash function for digital signatures is defined as its collision 
resistance strength, because digital signatures require both collision resistance and second 
preimage resistance from the hash function, and the collision resistance strength of the 
hash function (L/2) is less than its second preimage resistance strength (i.e., L).  

A hash function that is not suitable for one application might be suitable for other 
cryptographic applications that do not require the same security properties. SHA-1 is not 
suitable for general-purpose digital signature applications (as specified in FIPS 186-3) 
that require 112 bits of security. In the case of digital signatures, SHA-1 does not provide 
the 112 bits of collision resistance (see Table 1 in Section 4.2) needed to achieve the 
security strength. On the other hand, SHA-1 does provide the 112 bits of preimage 
resistance that is needed to achieve the 112-bit security strength for HMAC. The security 
strengths of the approved hash functions for different applications can be found in SP 
800-57, Part 1 [SP 800-57].  
                                                 
2 There are slightly different definitions of preimage resistance of hash functions in the literature.  
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4.2 Strengths of the Approved Hash Algorithms 
Table 1 provides a summary of the security strengths for the hash function security 
properties (discussed in the previous section) of the approved hash functions. 

 

Table 1: Strengths of the Security Properties of the Approved Hash Algorithms 

 

 SHA-1 SHA-
224 

SHA-
256 

SHA-
384 

SHA-
512 

SHA-
512/224 

SHA-
512/256 

Collision 
Resistance 
Strength in 

bits 

< 80 112 128 192 256 112 128 

Preimage 
Resistance 
Strength in 

bits 

160 224 256 384 512 224 256 

Second 
Preimage 
Resistance 
Strength in 

bits 

105-
160 

201-
224 

201-
256 384 394-

512 224 256 

 

As mentioned in Section 4.1, the expected collision resistance strength of any approved 
hash function is, in general, half the length of its hash value. This is currently believed to 
be true for all the approved hash functions except SHA-1. The latest cryptanalytic results 
for SHA-1 [SHA1 Attack] indicate that it may have a collision resistance strength that is 
considerably less than its expected strength of 80 bits.   

The expected preimage resistance strengths of the approved hash functions are provided 
in the above table. At the time that this Recommendation was written, there had been no 
known short cuts for finding preimages of the hash values generated by the approved 
hash algorithms.   

Except for SHA-384, SHA-512/224 and SHA-512/256, the second preimage resistance 
strengths of the approved hash functions depend not only on the functions themselves, 
but also on the sizes of the messages that the hash functions process [Second Preimage 
Attack]. In Table 1, the low end of each range applies to the situation where the length of 
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the message input to the hash function is the maximum length allowed by the hash 
function, while the high end of the range applies to the situation where the message input 
length is relatively small. Information on determining the actual second preimage 
resistance strengths of the approved hash functions for different message lengths is 
provided in Appendix A. In the case of SHA-384, SHA-512/224 or SHA-512/256, the 
second preimage resistance strength does not depend on the message length; details can 
be found in Appendix A.   

Note that the preimage resistance and the second preimage resistance strengths are 
greater than the collision resistance strength for each of the approved hash algorithms 
specified in FIPS 180-4.  

5 Hash function Usage 

5.1      Truncated Message Digest 
Some applications may require a value that is shorter than the (full-length) message 
digest provided by an approved hash function as specified in FIPS 180-4. In such cases, it 
may be appropriate to use a subset of the bits produced by the hash function as the 
(shortened) message digest. 

Let the (shortened) message digest be called a truncated message digest, and let λ be its 
desired length in bits. A truncated message digest may be used if the following 
requirements are met: 

1. The length of the output block of the approved hash function to be used shall be 
greater than λ (i.e., L > λ). 

2. The λ left-most bits of the full-length message digest shall be selected as the 
truncated message digest. 

For example, if a truncated message digest of 96 bits is desired, the SHA-256 
hash function could be used (e.g., because it is available to the application, and 
provides an output larger than 96 bits). The leftmost 96 bits of the 256-bit 
message digest generated by SHA-256 are selected as the truncated message 
digest, and the rightmost 160 bits of the message digest are discarded.  

3. If collision resistance is required, λ shall be at least twice the required collision 
resistance strength s (in bits) for the truncated message digest (i.e., λ ≥ 2s). 

These specifications for truncating the output of a cryptographic hash function promote 
application interoperability in situations where the use of shortened message digests is 
appropriate (and permissible), as determined by implementers and application developers 
acting in conformance with NIST Standards and Recommendations. 

Truncating the message digest can impact the security of an application. By truncating a 
message digest, the expected collision resistance strength is reduced from L/2 to λ/2 (in 
bits). For the example in item 2 above, even though SHA-256 provides 128 bits of 
collision resistance, the collision resistance provided by the 96-bit truncated message 
digest is half the length of the truncated message digest, which is 48 bits, in this case.  
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The truncated message digest of λ bits provides an expected preimage resistance of λ bits, 
not L bits, regardless of the hash function used.  

The expected second preimage resistance strength of a message digest truncated to λ bits 
sometimes depends on the length of the message. This dependence is determined as 
specified in Appendix A. Note that there are situations for which the expected second 
preimage resistance strength does not depend on the message length. For example, a 130-
bit truncated message digest generated using SHA-256 has an expected second preimage 
strength of 130 bits, rather than a value in the range specified in Table 1 above for SHA-
256.   

Truncating the message digest can have other impacts, as well. For example, applications 
that use a truncated message digest risk attacks based on confusion between different 
parties about the specific amount of truncation used, as well as the specific hash function 
that was used to produce the truncated message digest. Any application using a truncated 
message digest is responsible for ensuring that the truncation amount and the hash 
function used are known to all parties, with no chance of ambiguity.  

 

5.2      Digital Signatures 
A hash function is used to map a message of any eligible length (see FIPS 180-4) to a 
fixed-length message digest. In a digital signature generation process, this message digest 
is then signed by a signing operation, such as an RSA private key operation, to produce a 
digital signature. The resulting digital signature is used to verify who signed the message 
and whether or not the message was altered (either deliberately or accidentally) after it 
was signed.  

When two different messages have the same message digest (i.e., a collision is found), 
then a digital signature of one message could be used as a digital signature for the other 
message.  If this happens, then a verified digital signature does not guarantee the 
authenticity of the signed message, because either one of the two messages could be 
considered valid. Therefore, a hash function used for digital signatures requires collision 
resistance. The approved hash functions are considered to provide the collision resistance 
strengths as specified in Table 1 of Section 4.2. 

For digital signature applications, the security strength of a hash function without any 
preprocessing is generally its collision resistance strength. When appropriate processing 
is applied to the data before the hash value is computed, the security strength may be 
more than the collision resistance strength (see Section 5.2.3). 

Without any preprocessing of the message input to the hash function, the security 
strength of any digital signature that is generated using an algorithm specified in FIPS 
186-3 is the minimum of the collision resistance strength of the hash algorithm and the 
security strength provided by the signing algorithm. More information on security 
strengths can be found in SP 800-57, Part 1. For instance, if a digital signature that is 
generated by one of the approved digital signature algorithms with SHA-1 as the hash 
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function and key sizes specified in FIPS 186-33, then the security strength of this digital 
signature is less than 80 bits (see Table 1 in Section 4.2); i.e., the strength of the digital 
signature process is determined by the strength of SHA-1, rather than the strength of the 
key, in this case. Therefore, SHA-1 shall not be used in any new digital signature 
applications that require at least 80 bits of security strength. Furthermore, SHA-1 shall 
not be used for the generation of digital signatures after the end of 2013 (see SP 800-
131A [SP 800-131A] for information about the required key lengths for digital signature 
applications). More information on the security strengths of digital signature applications 
using the approved hash algorithms and the recommended lifetimes of cryptographic 
algorithm usage can be found in SP 800-57, Part 1. 

There are several ways to use hash functions with digital signature algorithms as 
described below.  

5.2.1 Full-length Message Digests 
When the untruncated output of an approved hash function (as specified in FIPS 180-4) is 
used by an approved digital signature algorithm (as specified in FIPS 186-3), the 
resulting full-length message digests can support security strengths up to those given in 
Table 1 of Section 4.2 (for collision resistance). 

5.2.2 Truncated Message Digests 
In some specific situations, truncated message digests are used in generating digital 
signatures. (Details about these situations, including the lengths required for the truncated 
hash values, can be found in FIPS 186-3.) In such cases, the security strength that can be 
supported by a hash function depends on the length of these truncated values, as well as 
the particular hash function that is used. 

As noted in Section 5.1, when the outputs of an approved L-bit hash function are 
truncated to λ bits (where λ < L), the collision resistance strength supported by the 
truncated message digests is reduced to λ /2 bits. Therefore, in addition to the 
requirements/restrictions imposed by FIPS 186-3, the value of λ shall be at least twice the 
desired security strength (in bits) required for the digital signature. 

For example, if a security strength of 112 bits is required for digital signatures, a 
(truncated) message digest of (at least) 224 bits must be used. If required/desired, any 
approved hash functions except SHA-1 could be employed to generate (truncated) 
message digests of exactly 224 bits in length. (For SHA-224 and SHA-512/224, the hash 
function's output would not require truncation.) It is recommended that the hash function 
chosen should minimize the number of truncation operations required to achieve the 
required/desired length for the hash value. For the 224-bit example above, SHA-512/224 
should be chosen over SHA-384 and SHA-512/256. All three hash functions employ one 
(internal) truncation operation to produce their output, but SHA-384 and SHA-512/256 
would each require an additional (external) truncation operation to pare their output down 
to the desired length of 224 bits. 

                                                 
3 Key sizes that provide at least 112 bits of strength are provided. 
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5.2.3 Randomized Hashing for Digital Signatures 
As described in Section 5.2, the overall security strength of a digital signature is limited 
by the collision resistance strength of the hash function. However, when using the 
randomized hashing technique specified in SP 800-106 [SP 800-106], a randomized hash 
function may support a higher level of security with respect to a particular potential 
vulnerability, offering enhanced protection to a message signer against a collision attack 
by a malicious message preparer who formulates the message to be signed, but does not 
actually sign the message.  

In such an attack, the malicious message preparer would endeavor to find two messages 
that hash to the same value. Once the message signer had generated a signature for one of 
the messages, the malicious preparer could accuse the signer of having signed the other 
message instead. 

In situations where one party is asked to sign messages prepared by another party, the 
level of protection (in bits) that is provided to the message signer against a collision 
attack by using randomized hashing is determined by the minimum of the following three 
quantities: 

• The second preimage resistance strength (in bits) of the hash function. 

• The security strength (in bits) of the random bit generator (RBG) employed by the 
signer to produce bit strings used to randomize messages, or, the collision 
resistance strength (in bits) of the hash function – whichever is larger. 

• The sum of the collision resistance strength (in bits) of the hash function and the 
smaller of these two quantities: 

(1) The length (in bits) of bit strings used to randomize messages (denoted rv 
in SP 800-106), and  

(2) The length (in bits) of the RBG output used to generate rv (as specified in 
Section 3.3 of SP 800-106). 

When randomized hashing is used, the RBG (see Section 5.5 below for more 
information) employed to produce the bit strings used to randomize messages shall 
support a security strength that is equal to or greater than the security strength of the 
signing algorithm. See SP 800-57, Part 1, for information about security strengths of 
different signing algorithms. The randomization process itself shall conform to the 
specifications of SP 800-106 for digital signature applications supporting at least 112 bits 
of security. Under these conditions, SHA-1-based randomized hashing could provide 112 
bits of security strength against a collision attack by a malicious message preparer, even 
though the unrandomized SHA-1 function has a collision resistance strength that is less 
than 80 bits. 

It is important to note what the use of randomized hashing for digital signatures does and 
does not provide: 

1) Randomized hashing can offer a message signer additional protection by  
reducing the likelihood that a message preparer can find multiple 
messages that yield the same hash value during the digital signature 
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generation process – even if it is practical to find collisions for the 
unrandomized hash function.   

2)  Randomized hashing does not offer the message preparer or the signature 
verifiers any additional protection from a misbehaving signer (who may, 
for example, generate one signature that can be associated with either of 
two chosen messages after finding randomized versions of those messages 
that hash to the same value).    

3)         Randomized hashing does not improve the assurance of origin 
authenticity, data integrity, and/or signatory non-repudiation provided by 
the digital signature to signature verifiers (i.e., relying parties). 

5.3      Keyed-Hash Message Authentication Codes (HMAC) 

5.3.1 Description 
Message authentication codes (MACs) provide data authentication and integrity 
protection. Two types of algorithms for computing a MAC have been approved: 1) MAC 
algorithms that are based on approved block cipher algorithms (more information can be 
found in [SPs 800-38B, C and D]) and 2) MAC algorithms that are based on hash 
functions, called HMAC algorithms, that are specified in FIPS 198-1. This section 
discusses the use of HMAC. 

An output from an HMAC algorithm is called an HMAC output. The HMAC output is 
either used in its entirety, or is truncated (see Section 5.3.3) when it is transmitted for 
subsequent verification. The transmitted value is called a MacTag.  The HMAC 
algorithm requires the use of a secret key that is shared between the entity that generates 
the HMAC output (e.g., a message sender), and the entity (or entities) that need to verify 
the transmitted MacTag (message receiver(s)).  

The HMAC output is generated from a secret key and the string of “text” to be MACed 
(e.g., a message to be sent) using the HMAC algorithm. The MacTag is provided to the 
MacTag verifier, along with the “text” that was MACed (e.g., the sender transmits both 
the MacTag and the message to the intended receiver).  

The verifier computes an HMAC output on the received “text” using the same key and 
HMAC algorithm that were (purportedly) used to generate the received MacTag, 
generates a (new) MacTag (either a full or truncated HMAC output), and then compares 
the verifier-generated MacTag with the received MacTag. If the two values match, the 
“text” has been correctly received and the verifier is assured that the entity that generated 
the MacTag is a member of the community of users that share the key.  

The security strength provided by the HMAC algorithm depends on the security strength 
of the HMAC key, the underlying hash algorithm and the length of the MacTag. 

5.3.2 The HMAC Key 
The security strength of the HMAC algorithm depends, in part, on the security strength of 
the HMAC key, K. An HMAC key shall have a security strength that meets or exceeds 
the security strength required to protect the data over which the HMAC is computed.  
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The HMAC key shall be kept secret. When the secrecy of the HMAC key, K, is not 
preserved, an adversary that knows K, may impersonate any of the users that share that 
key in order to generate MacTags that seem to be authentic (i.e., MacTags that can be 
verified and are subsequently presumed to be authentic).  

 HMAC keys shall be generated as specified in SP 800-133 [SP 800-133].    

5.3.3 Truncation of HMAC Output 

When an application truncates the HMAC output to generate a MacTag to a desired 
length, λ, the λ left-most bits of the HMAC output shall be used as the MacTag. 
However, the output length, λ, shall be no less than 32 bits. For example, a low 
bandwidth channel or a desired high efficiency computation application such as audio or 
video casting application might use 32-bit MacTags. 

5.3.4 Security Effect of the HMAC Key 
Let C denote the bit length of the internal hash value that is denoted H in FIPS 180-4. 
(This H is often called the “chaining value” in descriptions of Merkle–Damgård-style 
hash functions.) Note that C is not (necessarily) equal to L, the bit length of the hash 
function’s output (see, for example, SHA-384 or SHA-512/t for any t < 512, for which L 
< 512 = C). In all currently approved hash functions, L ≤ C (with L = C for SHA-1, SHA-
256, and SHA-512). 

The effective security strength4 of the HMAC key is the minimum of the security 
strength of K and the value of 2C. That is, security strength  =  min(security strength of 
K, 2C). For example, if the security strength of K is 128 bits, and SHA-1 is used, then the 
effective security strength of the HMAC key is 128 bits, since for SHA-1, 2C= 320. Note 
that, in this example, even if the security strength of K is greater than 320 bits, the 
effective security strength of the key is limited to 320 bits (the value of 2C for SHA-1). In 
general, there is no benefit in generating K with more than 2C bits of security. In 
particular, it is not sensible to generate K with a bit length that exceeds the input block 
size of the approved L-bit hash function employed in the HMAC construction. Such a K 
is hashed, and the resulting L-bit value is used instead. Returning to the SHA-1 example, 
suppose that the key K has a bit length greater than 512 (the input block size for SHA-1). 
Instead of using K directly, HMAC replaces K by its 160-bit SHA-1 hash value, and so 
the effective security strength of that choice of K is no more than 160 bits. 

                                                 
4 As described in [BCK1], the success of a collision attack on any approved HMAC algorithm in FIPS 198-
1 that uses SHA-1 would require the collection of at least 280 pairs of chosen plaintexts and their 
corresponding HMAC values. This is an impractical task. So, the collision attack is not considered in this 
document. In this Recommendation, the strength of the HMAC key is considered to be the amount of work 
required for an attacker who performs a brute-force attack to discover the HMAC key K or the first hash 
values (Hs) from hashing the two strings:(K0 ⊕ opad ) and (K0 ⊕ ipad) separately in the HMAC 
construction (see FIPS 198-1) in order to generate authentic MacTags at any time.  
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5.3.5 Security of the HMAC Values  
The successful verification of a MacTag does not completely guarantee that the 
accompanying text is authentic; there is a slight chance that an adversary with no 
knowledge of the HMAC key, K, can present a (MacTag, text) pair that will pass the 
verification procedure. From the perspective of an adversary that does not know the 
HMAC key K (i.e., the adversary is not among the community of users that share the 
key), the assurance of authenticity provided by a MacTag depends on its length and on 
the number of failed MacTag verifications allowed by a system for each value of the 
HMAC key.  

Let 2t be the number of failed MacTag verifications allowed by a system for each value 
of the HMAC key. The MacTag length, λ, and the value of t need to be chosen to avoid 
an unacceptable probability of falsely accepting forged data. The likelihood of accepting 
forged data as authentic is (1/2)(λ - t).  For example, if λ  is 32, and a system allows 212 
failed MacTag verifications for any given value of the HMAC key, then the likelihood of 
accepting forged data is (1/2)20. In order to increase assurance of authenticity, either λ 
would need to be increased, or the number of allowed failed MacTag verifications for 
each value of the HMAC key would need to be decreased. To avoid having an 
unacceptable probability of falsely accepting forged data at any time, the value of the 
HMAC key must be changed to a new value before the number of failed MacTag 
authentications reaches the maximum allowed number (2t). For the example above, with 
λ = 32 and t = 20, the HMAC key must be changed before the number of failed MacTag 
verifications reaches 212.  

The table below provides the likelihoods of accepting forged data for different MacTag 
lengths and allowed numbers of MAC verifications using a given value of the HMAC 
key. This table is intended to assist the implementers of HMAC applications in security-
sensitive systems to assess the security risk associated with using MacTags. 

λ 
Number of Failed Verifications Allowed (2t): 
       220                  230                   235 

40 2−20 2−10 2−5  

64 2−44 2−34 2−29 

96 2−76 2−66 2−61 

Table 2: Risks/Likelihoods of Accepting Forged Data 
Each 2-x entry displayed in Table 2 is the probability of accepting forged data given the 
indicated choices for the MacTag length and the number of failed MacTag verifications 
allowed for a fixed value of the HMAC key. If the probability is not acceptable for the 
system, the HMAC key shall be changed to a new value before the number of failed 
MAC verifications reaches 2t. 

A commonly acceptable length for the MacTag is 64 bits; MacTags with lengths shorter 
than 64 bits are discouraged.  
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5.4  Hash-based Key Derivation Functions 
Hash functions can be used as building blocks in key derivation functions (KDFs) (e.g., 
as specified in SP 800-56A, SP 800-56B, SP 800-56C and SP 800-108).  

The KDFs specified in future versions of SPs 800-56A and B are expected to use the hash 
functions either directly or indirectly in an HMAC construction. The method specified in 
SP 800-56C is an additional approved method for key derivation purposes in SPs 800-
56A and B. The key derivation functions in SP 800-56A, B and C are used to generate 
(i.e., derive) secret keying material from a shared secret computed during a key 
agreement transaction between communicating parties. 

The hash-based KDFs specified in SP 800-108 use an HMAC construction and can be 
used either: (1) to derive keying material from an existing key, or (2) as a key-expansion 
step in the key derivation method specified in SP 800-56C.  

In addition to the KDFs in SPs 800-56A, B and C, and in SP 800-108, there are several 
other allowed application-specific KDFs described in SP 800-135 [SP 800-135]. These 
application-specific KDFs are approved for use in their own protocols with specific 
conditions; see SP 800-135 for detailed information.  

5.4.1 Using a Hash Function Directly for Key Derivation 
This section discusses and provides security requirements for the KDFs in SP 800-56A 
and B that use the hash function directly as their building block (i.e., in the concatenation 
and ASN.1 KDFs). The KDFs derive the keying material from a shared secret computed 
during the key agreement transaction and other input attributes.  

The security strength that can be provided by a derived key depends on the security 
strength of the asymmetric keys used to generate the shared secret, the preimage strength 
of the hash function used in the KDF and the length of the derived key. Therefore, if a 
derived key is intended to provide s bits of security strength, then each of the following 
shall be equal to or greater than s: 

• The security strength supported by the asymmetric keys, 

• The preimage strength of the hash function, and 

• The length of the derived key in bits. 

5.4.2 Using HMAC for Key Derivation During a Key Agreement Transaction 
This section discusses and provides security requirements for the key derivation methods 
in SP 800-56A, B and C that use the hash function in an HMAC construction.  

The KDFs specified in SPs 800-56A and B derive keys in a single step, and are being 
revised to allow the use of HMAC with an approved hash function for key derivation. SP 
800-56C specifies a two-step key derivation procedure in which HMAC can be used 
during the key derivation process. 

5.4.2.1 Using HMAC in the Single-Step Key Derivation Process 
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SP 800-56A and B specify single-step key derivation functions using HMAC in the 
concatenation and ASN.1 forms.  

The security strength that can be provided by a derived key depends on the security 
strength of the asymmetric keys used to generate the shared secret, the preimage strength 
of the hash function used in the HMAC construction in the KDF and the length of the 
derived key. Note that in this case, the key used for HMAC is a salt, which can be a 
publicly known value, a secret value, or a combination of both. Therefore, if a derived 
key is intended to provide s bits of security strength, then each of the following shall be 
equal to or greater than s: 

• The security strength provided by the asymmetric keys, 

• The preimage strength of the hash function used in the HMAC construction, and 

• The length of the derived key in bits. 

5.4.2.2 Using HMAC in the Two-Step Key Derivation Process 
SP 800-56C specifies a two-step key derivation procedure, which is also known as an 
“extraction-then-expansion” procedure. This procedure is included by reference in SPs 
800-56A and B.  

The extraction-then-expansion procedure in SP 800-56C is comprised of two separate 
steps: randomness-extraction and key-expansion, both of which can be implemented 
using an HMAC construction; when this construction is used, the same hash function is 
used for the randomness extraction and key expansion steps.  

The security strength that can be provided by a key derived using the two-step procedure 
depends on the security strength of the asymmetric keys used to generate the shared 
secret, the preimage strength of the hash function used in each HMAC construction and 
the length of the derived key. In the randomness extraction step, the key used for HMAC 
is a salt, which can be a publicly known value, a secret value, or a combination of both; 
the result of this step is a key derivation key. In the key expansion step, the key used for 
HMAC is the entire key derivation key that was output from the randomness extraction 
step, e.g., if SHA-1 is used during the randomness extraction step, then the output is 160 
bits in length, and is used as the key derivation key for the key expansion step. 

When this two-step procedure is used, if a derived key is intended to provide s bits of 
security strength, then each of the following shall be equal to or greater than s: 

• The security strength provided by the asymmetric keys, 

• The preimage strength of the hash function used in the HMAC construction of 
each step of the procedure, and 

• The length of the derived key in bits. 

5.4.3 Using HMAC for Key Derivation from a Pre-shared Key 
This section discusses and provides security requirements for the KDFs in SP 800-108 
that are used to derive keying material from a pre-shared (i.e., existing) key, called a key-
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derivation key. HMAC can be used with an approved hash function to derive keying 
material. 

The security strength of a derived key depends on the security strength provided by the 
key-derivation key, the hash function used in the HMAC construction and the length of 
the derived key. If a derived key is intended to provide s bits of security strength, then 
each of the following shall be equal to or greater than s: 

• The security strength provided by the key-derivation key, 

• The preimage strength of the hash function used in the HMAC construction, and 

• The length of the derived key in bits. 

5.5    Random Number (Bit) Generation 
A random bit generator (RBG) is used to produce random bits. These bits may be used 
directly or may be converted to a random number (integer). Approved RBGs that use 
deterministic algorithms5, along with methods for converting a bit string to an integer can 
be found in SP 800-90A. Other approved random number generators were either 
specified or approved by reference in FIPS 186-2 [FIPS 186-2]; however, their use is 
limited (see SP 800-131A [SP 800-131A]). 

RBGs may be constructed using hash functions. The hash function used by the RBG 
shall be selected so that the RBG can provide a security strength that meets or exceeds 
the minimum security strength required for the random bits that it generates. See SP 800-
57, Part 1, for the security strength that can be provided for each approved hash function 
for random number generation.  
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Appendix A : Actual Second Preimage Resistance Strengths of 
Approved Hash functions 

In an application, if the size of the messages is small, then the second preimage resistance 
strengths of the hash functions are practically the same as their preimage resistance 
strengths described in Section 4.2. 

The actual second preimage resistance strength for SHA-1, SHA -224, SHA-256 and 
SHA-512 is approximately (L – M), where L is the output block size of the hash function, 
and the message is 2M input blocks in length. 

For example, if a message that is 233 bits in length (i.e., a gigabyte long) is hashed by 
SHA-256 (whose input block size is 29 bits), the second preimage resistance strength is 
(L – M) = (256 – 24) =  232 bits (where L = 256, and M = log2(233/29) = (33 – 9) = 24). 
That is, the amount of work required to find a second preimage is 2232. 

It is important to note that the amount of work is based on the number of compression 
function executions (compressing single message blocks), not on the number of hash 
function executions (hashing messages of more than one block in length).  

The actual second preimage resistance strength of SHA-1, SHA -224, SHA-256 and 
SHA-512 varies, depending on the maximum size of the messages in the application 
using the hash function. 

The second preimage resistance of SHA-384, SHA-512/224 or SHA-512/256 does not 
depend on the message length because the attack described in [Second Preimage Attack] 
would actually require more work than a brute-force approach, which will break the 
second preimage resistance of SHA-384, SHA-512/224 or SHA-512/256 with work of 
384, 224, or 256 bits, respectively. 

For any truncated message digest of λ bits, the actual second preimage resistance strength  
of SHA-1, SHA-224, SHA-256, and SHA-512 is the minimum of (L – M) and λ, where λ 
≤ 160 for SHA-1, λ ≤ 224 for SHA-224, λ ≤ 256 for SHA-256, and λ ≤ 512 for SHA-512.  

The actual second preimage resistance strengths of SHA-384, SHA-512/224 and SHA-
512/256 is λ (where λ ≤ 384 for SHA-384, λ ≤ 224 for SHA-512/224, and λ ≤ 256 for 
SHA-512/256).  
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Appendix B : Document Changes 

The original version of this document was published in February 2009. The main 
technical additions to this revision are: 

1) Adding and addressing the security properties of SHA-512/224 and SHA-
512/256. 

2) Expanding the discussion of the security of HMAC values in Section 5.3, 

3) Revising Section 5.2, especially sub-section 5.2.3 : Randomized Hashing for 
Digital Signatures, and 

4) Section 5.4: Hash-based Key Derivation Function was rewritten to incorporate the 
“extraction-then-expansion” key derivation procedure specified in SP 800-56C 
and to discuss different approved hash-based key derivation functions.     
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