
NIST SP 800-135, Revision 1

NIST Special Publication 800-135
Revision 1

Recommendation for Existing
Application-Specific Key Derivation

Functions

Quynh Dang

Computer Security Division

Information Technology Laboratory

C O M P U T E R S E C U R I T Y

December 2011

U.S. Department of Commerce

John Bryson, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Under Secretary for Standards and Technology and Director

 ii

NIST SP 800-135, Revision 1

Abstract

Cryptographic keys are vital to the security of internet security applications and
protocols. Many widely-used internet security protocols have their own application-
specific Key Derivation Functions (KDFs) that are used to generate the cryptographic
keys required for their cryptographic functions. This Recommendation provides security
requirements for those KDFs.

KEY WORDS: Cryptographic key, shared secret, Diffie-Hellman (DH) key exchange,
hash function, Key Derivation Function (KDF), Hash-based Key Derivation Function,
Randomness Extraction, Key expansion, Pseudorandom Function (PRF), HMAC, ANS
X9.42-2001, ANS X9.63-2001, IKE, SSH, TLS, SRTP, SNMP and TPM.

 iii

NIST SP 800-135, Revision 1

 iv

Acknowledgements

The author gratefully appreciates the comments and contributions of the many reviewers in
various Federal agencies and the public. In particular, the author would like to thank Elaine
Barker, William E. Burr, Lily Chen, Tim Polk, Tim Hall, Scott Rose and Hugo Krawczyk.

NIST SP 800-135, Revision 1

Table of Contents

1 Introduction.. 2

2

3

3

5

6

7

8

10

10

10

11

12

12

13

15

16

17

18

20

2 Authority ..

3 Glossary of Terms, Acronyms and Mathematical Symbols

3.1 Terms and Definitions..

3.2 Acronyms... 4

3.3 Symbols & Mathematical Operations..

4 Extraction-then-Expansion (E-E) Key Derivation Procedure

4.1 Internet Key Exchange (IKE) ..

4.1.1 IKE version 1 (IKEv1)...

4.1.2 IKE version 2 (IKEv2)...

4.2 Key Derivation in Transport Layer Security (TLS)...............................

4.2.1 Key Derivation in TLS versions 1.0 and 1.1

4.2.2 Key Derivation in TLS version 1.2..

5 Other Existing Key Derivation Functions

5.1 Key Derivation Functions in American National Standards (ANS)
X9.42-2001 and ANS X9.63-2001 ..

5.2 Secure Shell (SSH) Key Derivation Function

5.3 The Secure Real-time Transport Protocol (SRTP) Key Derivation
Function ...

5.4 Simple Network Management Protocol (SNMP) Key Derivation
Function/Key Localization Function ...

5.5 Trusted Platform Module (TPM) Key Derivation Function

6 References..

Appendix A — Change Log ...

 1

NIST SP 800-135, Revision 1

Recommendation for Application-Specific Key Derivation
Functions

1 Introduction

This document specifies security requirements for existing application-specific key
derivation functions in:

 American National Standard (ANS) X9.42-2001-Public Key Cryptography for
the Financial Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography (ANS X9.42-2001) [ANS X9.42] (also in
RFC 2631 [RFC 2631]),

 American National Standard (ANS) X9.63-2001-Public Key Cryptography for
the Financial Services Industry: Key Agreement and Key Transport Using
Elliptic Curve Cryptography (ANS X9.63-2001) [ANS X9.63] (also in RFC
3278 [RFC 3278]),

 Internet Key Exchange (IKE) (version 1: RFC 2409 [RFC 2409] and version
2: RFC 4306 [RFC 4306]),

 Secure Shell (SSH): RFC 4251 [RFC 4251],

 Transport Layer Security (TLS) version 1.0: RFC 2246 [RFC 2246], version
1.1: RFC 4346 [RFC 4346] and version 1.2: RFC 5246 [RFC 5246].

 The Secure Real-time Transport Protocol (SRTP): RFC 3711 [RFC 3711],

 User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMP): RFC 2574 [RFC 2574], and

 Trusted Platform Module (TPM) (Parts 1 [TPM Principles], 2 [TPM
Structures] and 3 [TPM Commands]).

2 Authority

This publication has been developed by the National Institute of Standards and
Technology (NIST) in furtherance of its statutory responsibilities under the Federal
Information Security Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum
requirements, for providing adequate information security for all agency operations
and assets, but such standards and guidelines shall not apply to national security
systems.

 2

NIST SP 800-135, Revision 1

This Recommendation has been prepared for use by federal agencies. It may be used
by non-governmental organizations on a voluntary basis and is not subject to
copyright. (Attribution would be appreciated by NIST.)

Nothing in this document should be taken to contradict standards and guidelines made
mandatory and binding on federal agencies by the Secretary of Commerce under
statutory authority. Nor should these guidelines be interpreted as altering or
superseding the existing authorities of the Secretary of Commerce, Director of the
OMB, or any other federal official.

Conformance testing for implementations of this Recommendation will be conducted
within the framework of the Cryptographic Module Validation Program (CMVP) and
the Cryptographic Algorithm Validation Program (CAVP). The requirements of this
Recommendation are indicated by the word “shall.” Some of these requirements may
be out-of-scope for CMVP or CAVP validation testing, and thus are the responsibility
of entities using, implementing, installing or configuring applications that incorporate
this Recommendation.

3 Glossary of Terms, Acronyms and Mathematical Symbols

3.1 Terms and Definitions

Algorithm A clearly specified mathematical process for computation; a
set of rules that, if followed, will give a prescribed result.

Approved FIPS-approved and/or NIST-recommended. An algorithm
or technique that is either 1) specified in a FIPS or NIST
Recommendation, 2) adopted in a FIPS or NIST
Recommendation or 3) specified in a list of NIST-approved
security functions.

Approved hash
algorithms

Cryptographic hash algorithms specified in FIPS 180-3
[FIPS 180-3].

Block cipher A family of functions and their inverse functions that is
parameterized by cryptographic keys; the functions map bit
strings of a fixed length to bit strings of the same length.

Cryptographic key
(key)

A parameter used in conjunction with a cryptographic
algorithm that determines the algorithm’s operation in such
a way that an entity with knowledge of the key can
reproduce or reverse the operation, while an entity without
knowledge of the key cannot. Examples include:

1. The transformation of plaintext data into ciphertext data,
2. The transformation of ciphertext data into plaintext data,

 3

NIST SP 800-135, Revision 1

3. The computation of a digital signature from data,
4. The verification of a digital signature,
5. The computation of an authentication code from data,
6. The verification of an authentication code from data and a

received authentication code.

Key agreement
primitive

A DLC primitive specified in SP 800-56A [SP 800-56A] or
an RSA Secret Value Encapsulation (RSASVE) operation
specified in SP 800-56B [SP 800-56B].

Key derivation key A key that is used as an input to a key derivation function or
key expansion function to derive other keys.

Nonce A time-varying value that has at most a negligible chance of
repeating; for example, a random value that is generated
anew for each use, a time-stamp, a sequence number, or
some combination of these. It can be a secret or non-secret
value.

Pre-shared key A secret key that is established between communicating
parties before a communication protocol starts.

Pseudorandom
function (PRF)

A function that can be used to generate output from a random
seed and a data variable, such that the output is
computationally indistinguishable from truly random output.

Pseudorandom key As used in this Recommendation, a binary string that is
taken from the output of a PRF.

Secret keying material The binary data that is used to form secret keys, such as
AES encryption keys or HMAC keys.

Shall This term is used to indicate a requirement that needs to be
fulfilled to claim conformance to this Recommendation. Note
that shall may be coupled with not to become shall not.

Shared secret A secret value that has been computed using a key
agreement algorithm.

Should This term is used to indicate an important recommendation.
Ignoring the recommendation could result in undesirable
results. Note that should may be coupled with not to become
should not.

3.2 Acronyms

ANS American National Standard

CMAC Block Cipher-based Message Authentication Code

DLC Discrete Logarithm Cryptography

 4

NIST SP 800-135, Revision 1

E-E Extraction-then-Expansion

FIPS Federal Information Processing Standard

HKDF Hash-based Key Derivation Function

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IKEv1 IKE version 1

IKEv2 IKE version 2

KDF Key Derivation Function

MAC Message Authentication Code

NIST National Institute of Standards and Technology

PRF Pseudorandom Function

RFC Request for Comments

SA Security Association

SHA Secure Hash Algorithm

SSH Secure Shell

SP Special Publication

TLS Transport Layer Security

TPM Trusted Platform Module

3.3 Symbols & Mathematical Operations

AES(k, input) A single AES encryption operation as specified in FIPS 197 [FIPS
197] with k and input being the AES encryption key and one 128-
bit block of plaintext/data, respectively.

gxy Diffie-Hellman (DH) key exchange value, also called a DH shared
secret (in IKE version 1).

gir DH key exchange value, also called a DH shared secret (in IKE
version 2).

|| Concatenation operation; for example, a || b means that string b is
appended after string a.

0x0X 8-bit binary representation of the hexadecimal number X, for
example, 0x02 = 00000010.

 5

NIST SP 800-135, Revision 1

HASH A cryptographic hash function, such as SHA-1.

HMAC-HASH The HMAC algorithm using the hash function, HASH (e.g., HASH
could be SHA-1). See FIPS 198-1 for the specification of the
HMAC algorithm using one of the approved hash functions.

HMAC-PRF The HMAC function being used as a PRF.

P_HASH A function that uses the HMAC-HASH as the core function in its
construction. The specification of this function is in RFCs 2246 and
5246.

a | x a divides x.

 x The ceiling of x; the smallest integer ≥ x. For example, = 5 and

= 6.
 5

 2.5 



 x The floor of x; the largest integer ≤ x. For example, = 5 and  5

  = 6. 9.6

len(x) The length of the string x in bits.

 A bitwise logical operation such that 1  1 = 0, 1  0 = 1, 0  0 =

0, and 0  1 = 1. For example, given a string A = 10 and a string B
= 11, then A  B = (1  1) || (0  1) = 01.

XOR A XOR B is equivalent to A  B. See the definition of the bitwise

logical operation  above.

Pre-shared-key A secret key that has previously been established. See “pre-shared

key” in Section 3.1 above.

SKEY A session key in TPM.

4 Extraction-then-Expansion (E-E) Key Derivation
Procedure

NIST has specified several key derivation functions (KDFs) in SP 800-56A, SP 800-
56B and SP 800-108 [SP 800-108]. SP 800-56C [SP 800-56C] specifies an additional
KDF that is an extraction-then-expansion (E-E) procedure, which has a different
structure from the KDFs in SP 800-56A, SP 800-56B and SP 800-108. The procedure
consists of two separate steps: a randomness extraction step and a key expansion step.
The general specification of the E-E procedure is in SP 800-56C, which provides an
additional method for deriving keys when performing a key establishment scheme as

 6

NIST SP 800-135, Revision 1

specified in SP 800-56A and SP 800-56B . Figure 1 below shows the relationship of
the E-E procedure in SP 800-56C with the approved KDFs in SP 800-108. In Figure
1, the randomness extraction step outputs a key derivation key, which is then used as
input to the key expansion step. Any approved KDFs in SP 800-108 can be used as
the key expansion step that derives keying material and can also be used to derive
more keying material from the key expansion step’s derived key(s)/keying material.
The following sections discuss protocols that use the E-E procedure. Note that even
though the KDFs in these protocols use the E-E procedure for key derivation, their
specific randomness extraction and/or key expansion step(s) do not meet all
specification of SP 800-56C. These KDFs are only approved for use within the
limitations described in the corresponding sections later in this document.

Key Agreement
Primitive

Shared Secret

Extraction
Step

Expansion
Step

SP 800‐56C
E‐E Procedure

SP 800‐108
KDF

Derived Keying Material

K1 … Ki ….. Kn

Derived Keying Material

KDF
SP 800‐108

KDF

Key
Derivation
Key

Figure 1: Key Derivation

4.1 Internet Key Exchange (IKE)

Versions 1 and 2 of the Internet Key Exchange (IKE) are specified in RFC 2409 and
RFC 4306, respectively, and use HMAC-based Pseudorandom Functions (PRFs) in

 7

NIST SP 800-135, Revision 1

their KDFs to generate keying material for their security associations (SAs). IKEv11
and IKEv2 specify multiple PRFs, including those based on HMAC and block
ciphers. Only an approved hash function and HMAC function shall be used.

4.1.1 IKE version 1 (IKEv1)

In IKEv1, a string called SKEYID is derived from secret material known only to the
communicating parties. An HMAC-PRF is used to produce the SKEYID. The secret
material that is input to the HMAC function is either a Diffie-Hellman shared secret
gxy, secret nonces generated by both of the communicating parties, or a pre-shared
key. In the protocol, the method used to generate SKEYID depends on the
authentication method. One of the following three different functions is used as a
randomness extraction step to produce the SKEYID:

1) When digital signatures are used for authentication, the function is:

SKEYID = HMAC (Ni_b || Nr_b, gxy), where Ni_b and Nr_b are non-secret
values.

2) When a public key algorithm encryption is used for authentication, the function
is:

SKEYID = HMAC (HASH (Ni_b || Nr_b), CKY-I || CKY-R), where Ni_b
and Nr_b are secret nonces, and CKY-I and CKY-R are non-secret values.

3) When a pre-shared key is used for authentication, the function is:

SKEYID = HMAC (pre-shared-key, Ni_b || Nr_b), where Ni_b and Nr_b are
non-secret values.

Additional technical details for the variables in the functions are provided in RFC
2409.

The appropriate PRF (i.e., the HMAC functions 1-3 above) is executed only once to
generate the SKEYID.

After the randomness extraction step above, the SKEYID is fed into a feedback
function that performs the key expansion step and produces the necessary keying
material. The resulting keying material is defined by the following equations:

SKEYID_d = HMAC (SKEYID, gxy || CKY-I || CKY-R || 0)

(SKEYID_d is used as the key derivation key to generate fresh keying material for
new, negotiated security associations.)

SKEYID_a = HMAC (SKEYID, SKEYID_d || gxy || CKY-I || CKY-R || 1)

(SKEYID_a is used as an HMAC key to authenticate the current security
association’s messages.)

SKEYID_e = HMAC (SKEYID, SKEYID_a || gxy || CKY-I || CKY-R || 2)

1 Note that IKEv1 is considered obsolete by the IETF and not recommended for new protocols.

 8

NIST SP 800-135, Revision 1

(SKEYID_e is used as a key derivation key to derive a symmetric encryption key
to provide confidentiality for the current SA’s messages. More details about this
function can be found in Appendix B of RFC 2409.)

CKY-I and CKY-R are non-secret values. The technical details of these variables are
provided in RFC 2409. Figure 2 below shows the feedback function that produces the
SKEYID_d, SKEYID_a and SKEYID_e above. This function conforms to the
specification of the key expansion step in SP 800-56C.

HMAC

HMAC

HMAC

SKEYID_d SKEYID_a

i = 0 i = 1 i = 2

gxy || CKY-I || CKY-R

SKEYID

SKEYID_e

Figure 2: Key expansion Step in IKEv1

Note that both SKEYID and the Diffie-Hellman shared secret gxy are secret values and
are used as inputs to the HMAC in the key expansion step. Also note that all three
resulting keys (i.e., SKEYID_d, SKEYID_a and SKEYID_e) are pseudorandom keys.

The IKEv12 KDFs are approved when the following conditions are satisfied:

(1) The IKEv1 KDFs are performed in the context of the IKEv1 protocol.

(2) The PRF is an HMAC-based PRF.

(3) The HMAC and HASH are NIST-approved algorithms and are used as
specified in FIPSs 198-1 [FIPS 198-1] and 180-3, respectively.

2 Note that when the function (randomness extraction step) used to produce the SKEYID is SKEYID =
HMAC (Ni_b || Nr_b, gxy) as described earlier in this section, the IKEv1 KDF is compliant with the
current specification of SP 800-56C.

 9

NIST SP 800-135, Revision 1

4.1.2 IKE version 2 (IKEv2)

In IKEv2, an HMAC is used as a randomness extraction step to extract randomness
from a Diffie-Hellman shared secret (gir) and to uniformly distribute the randomness
across the output (SKEYSEED). The function to produce SKEYSEED is:

SKEYSEED = HMAC (Ni || Nr, gir).

Ni and Nr are nonces generated by the protocol initiator and responder, respectively;
see RFC 4306 for more details. This function acts as the randomness extraction step
of the E-E KDF. After the SKEYSEED is generated, a key expansion step is used to
derive keys for the security association (SA). SKEYSEED is the key derivation key
for the key expansion step. The string of concatenated non-secret attributes: Ni || Nr ||
SPIi || SPIr3 is the fixed input message P field in SP 800-56C. Information about
these non-secret attributes can be found in RFC 4306. The specification of the key
expansion step can be found in Sections 2.13 and 2.14 of the RFC. Note that as
shown in Figure 1, the keying material generated by this key expansion step is the
output of the E-E procedure.

One of the seven secret keys derived from the SKEYSEED is called SK_d. It is used
as the key derivation key to derive new keys for child SA(s) using another KDF that
is functionally the same as the key expansion step, but with a different set of
attributes.

 One of the attributes is an optional new Diffie-Hellman shared secret established
during the creation of the child SA. Details of this function can be found in Sections
2.17 and 2.18 of RFC 4306.

The IKEv2 KDFs, which are compliant with SP 800-56C, are approved when used
with an approved HMAC function using an approved hash function; see FIPSs 198-
1 and 180-3, respectively. These KDFs are included here for completeness.

4.2 Key Derivation in Transport Layer Security (TLS)

In TLS, after a cipher suite negotiation is completed, a Diffie-Hellman (DH) key
agreement or RSA key transport scheme is used to generate a pre-master secret.
When RSA key transport is used, the pre-master secret is a random value generated
by the client. When the DH key agreement scheme is used, the pre-master secret is
the shared secret generated by the key agreement scheme.

4.2.1 Key Derivation in TLS versions 1.0 and 1.1

In TLS versions 1.0 and 1.1 (TLS 1.0 and 1.1), the pre-master secret is input into an
HMAC-MD5/HMAC-SHA-1 PRF4 with some non-secret values to produce a master
secret; the PRF acts as the randomness extraction step in an E-E KDF. The master

3 Ni and Nr are nonces created by the initiator and responder, respectively. SPIi and SPIr are security
parameter indexes (SPIs) of the initiator and responder respectively.
4 The HMAC-MD5/HMAC-SHA-1 PRF uses HMAC-MD5 and HMAC-SHA-1 as the core functions
in its construction, as specified in RFC 2246, Section 5.

 10

NIST SP 800-135, Revision 1

secret is then input into the HMAC-MD5/HMAC-SHA1 PRF with other non-secret
values to derive keying material for the negotiated cryptographic functions; in this
case, the PRF acts as the key expansion step in the E-E KDF.

The HMAC-MD5/HMAC-SHA1 PRF contains two functions: P_MD5 and P_SHA1,
which use MD5-HMAC and SHA-1-HMAC as the core functions, respectively. The
specifications of P_MD5 and P_SHA-1 are in Section 5 of RFC 2246 (the function
called P_hash in the RFC). The P_HASH function (P_MD5 or P_SHA-1) uses the
double-pipeline iteration mode and HMAC-PRF specified in SP 800-108.

The outputs from both P_MD5 and P_SHA-1 are XORed together to produce the PRF
output. This PRF is used as both a randomness extraction step to generate the master
secret and as a key expansion step to derive keying material for the protocol from the
master secret.

The TLS 1.0 and 1.1 KDF is approved when the following conditions are satisfied:

(1) The TLS 1.0 and 1.1 KDF is performed in the context of the TLS protocol.

(2) SHA-1 and HMAC are as specified in FIPSs 180-3 and 198-1, respectively.

Note that MD5 and HMAC-MD5 shall not be used as a general hash function or
HMAC function, respectively.

4.2.2 Key Derivation in TLS version 1.2

In TLS version 1.2 (TLS 1.2), the pre-master secret is input into an HMAC-SHA-256
PRF5 with some non-secret values to produce a master secret; the PRF acts as the
randomness extraction step in an E-E KDF. The master secret is then input into the
HMAC-SHA-256 PRF with some other non-secret values to derive keying material
for the negotiated cryptographic functions; in this case, the PRF acts as the key
expansion step in the E-E KDF.

The HMAC-SHA-256 PRF is P_SHA256. This PRF is used instead of the PRF in
TLS 1.0 and 1.1 which is (P_MD5  P_SHA-1).

In TLS 1.2, in addition to P_SHA256, any P_HASH with a stronger hash function,
such as SHA-384 or SHA-512 (in FIPS 180-3), can be used as the PRF.

The TLS 1.2 KDF is an approved KDF when the following conditions are satisfied:

(1) The TLS 1.2 KDF is performed in the context of the TLS protocol.

(2) HMAC is as specified in FIPS 198-1.

(3) P_HASH uses either SHA-256, SHA-384 or SHA-512.

5 The HMAC-SHA-256 PRF uses HMAC-SHA-256 as the core function in its construction, as
specified in RFC 5246, Section 5.

 11

NIST SP 800-135, Revision 1

5 Other Existing Key Derivation Functions

In this section, several application-specific KDFs that are not specified in SP 800-
56A, SP 800-56B, SP 800-56C or SP 800-108, are considered. They do not follow the
extraction-then-expansion procedure in SP 800-56C or may not meet all the
specification requirements in either SP 800-56A, SP 800-56B or SP 800-108. The
following figure illustrates the application of these KDFs.

Shared Secret

Application‐Specific
KDF

Derived Keying Material
K1 … Ki … Kn

Figure 3: Application-Specific KDF.

5.1 Key Derivation Functions in American National Standards (ANS)
X9.42-2001 and ANS X9.63-2001

There are two hash-based KDFs specified in ANS X9.42-2001 and one hash-based
KDF specified in ANS X9.63-2001. These hash-based KDF specifications are similar
to (but not the same as) the specifications of the hash-based KDFs specified in SPs
800-56A and B. A shared secret that is generated during a key agreement scheme and
other non-secret values are used as input to the hash-based KDF to produce the
derived keying material for the application. A counter value is pre-pended to the
shared secret in the input to the hash-based KDFs in SPs 800-56A and B, but it is
appended to the shared secret in the input to the hash-based KDFs in ANS X9.42-
2001 and ANS X9.63-2001. Also, the identifiers of the communicating parties are
required in the input to the hash-based KDFs in SPs 800-56A and B, but optional in
ASN X9.42-2001 and ASN X9.63-2001.

 12

NIST SP 800-135, Revision 1

The hash-based KDFs in ANS X9.42-2001 and ANS X9.63-2001 are approved when
the following conditions are satisfied:

(1) Each of the hash-based KDFs is performed in the context of an ANS X9.42-
2001 or ANS X9.63-2001 key agreement scheme.

(2) The hash function is one of the hash functions specified in FIPS 180-3.

(3) The hash function deployed in the hash-based KDF meets the security
strength(s) required by the cryptographic function(s) for which the keying
material is being generated. The security strengths of approved hash
functions used in KDFs can be found in SP 800-57 [SP 800-57].

Note that any KDF that meets the specification of either the ANS X9.42-2001 or
ANS X9.63-2001 hash-based KDF and is used in a scheme specified in one of these
two Standards is approved when conditions (2) and (3) above are met. For example,
the KDF specified in Section 2.1.2 (Generation of Keying Material) of RFC 2631 and
the KDF (specified in [SEC1]) used in RFC 3278 are approved.

5.2 Secure Shell (SSH) Key Derivation Function

SSH is a protocol used between clients and servers for secure remote login and other
secure network services over an insecure network or the Internet. The Internet
Engineering Task Force (IETF) governs the SSH protocol (see RFC 4251). The SSH
protocol consists of three major components: the Transport Layer Protocol (RFC
4253 [RFC 4253]), the User Authentication Protocol (RFC 4252 [RFC 4252]) and the
Connection Protocol (RFC 4254 [RFC 4254]). The Transport Layer Protocol provides
server authentication, confidentiality, and integrity.

Output from a key exchange6 (see Section 7.2 of RFC 4253) in the Transport Layer
Protocol is a shared secret, “K”, and a hash value, “H”. In the protocol, K, H and a
specific set of other non-secret values are input to a hash function-based KDF to
derive keying material. Different KDFs produce keying material for different
cryptographic functions; however, the KDFs are similar (see below). The
specifications for the KDFs in the Transport Layer Protocol can be found in Section
7.2 of RFC 4253.

The following is a description of the KDF used to derive a key, where HASH denotes
a hash function, such as SHA-1 as specified in FIPS 180-3. The key to be derived is
denoted by KEY, and the length of KEY is denoted by L. The length of the hash
function output is denoted by HASH_Length.

N =   LengthHashL _

X is a character, such as A, B, C, D, E or F, depending on the type of key desired.

6 The key exchange method specified for the protocol is one of the key agreement primitives described
in SP 800-56A.

 13

NIST SP 800-135, Revision 1

K1 = HASH (K || H || X || session_id), where session_id7 is a unique identifier for a

SSH connection.
K2 = HASH (K || H || K1)
K3 = HASH (K || H || K1 || K2)
………………
KN = HASH (K || H || K1 || K2 ||…|| K(N-1))

KEY = the L left most bits of (K1 || K2 ||…. KN)

Figure 4 below shows the accumulative and feedback operation of the KDF.

K || H || X || session_id

K || H || K1

K || H || K1|| K2

K || H || K1|| K2||…|K(N‐1)

.

.

.

K1

K2

. . . K(N‐1)

KEY = L left most bits of (K1 || K2 ||…K(N-1)|| KN)

KN

Figure 4: SSH KDF

Each box in Figure 4 represents a hash function computation. The variables in the box
are input to the hash function. The arrow () indicates an output from the hash
function.

7 session_id is actually H from the first key exchange and remains unchanged for the whole
connection. However, K and H will be changed when a key re-exchange is performed, see Section 9 of
RFC 4253.

 14

NIST SP 800-135, Revision 1

The SSH KDFs are approved when the following conditions are satisfied:

(1) They are performed in the context of the SSH protocol.

(2) The hash function is one of the hash functions specified in FIPS 180-3.

(3) The hash function deployed in the KDFs meets the security strength(s)
required by the cryptographic function(s) for which the keying material is
being generated. The security strengths of approved hash functions used in
KDFs can be found in SP 800-57.

5.3 The Secure Real-time Transport Protocol (SRTP) Key Derivation
Function

The SRTP is specified in RFC 3711. The protocol is intended to provide
confidentiality, message authentication, and replay protection to the Real-time
Transport Protocol (RTP) traffic and to the control traffic for RTP: the Real-time
Transport Control Protocol (RTCP) (RFC 3550 [RFC 3550]). Session encryption
keys (for a confidentiality service), cipher/encryption salts and authentication keys
(for message authentication) in the SRTP are derived from a single master key, called
k_master, using a KDF. Note that k_master is used as a key derivation key when
input to the KDF. Details of the KDF can be found in Sections 4.3, 5.3 and 7.1 of
RFC 3711.

Denote the cryptographic key (encryption key, cipher salt or authentication key
(HMAC key), etc…) to be derived as K. The length of K is denoted by L. Below is a
description of the KDF.

master_salt: a random non-secret value.

kdr: the key derivation rate. kdr is a number from the set {0, 1, 21, 22, 23…,224}.

index: a 48-bit value in RTP or a 32-bit value in RTCP. See Sections 3.2.1 and 4.3.2
of RFC 3711 for details.

A function, DIV, is defined as followed:

 a and x are non-negative integers.

a DIV x = . (a DIV x) is represented as a bit string whose length (in

bits) is the same as a.
 xa | 

label: an 8-bit value represented by two hexadecimal numbers from the set of {0x00,
0x01, 0x02, 0x03, 0x04, 0x05}. In the future, this set might also include any or all of
the values 0x06, 0x07,…,0xff.

key_id = label || (index DIV kdr)

 15

NIST SP 800-135, Revision 1

input = (key_id  master_salt) ||0x0000,

where key_id and master_salt are right-aligned. More zero bits are pre-pended to the
key_id so that len(master_salt) = len(key_id) before the (key_id  master_salt)
operation is performed. After key_id and master_salt are XORed together, the result is
then appended with 16 zero bits to form the input, a 128-bit value.

The input is used as input to AES-128, AES-192 or AES-256 to produce a session
encryption key, cipher salt or authentication key, with k_master being the encryption
key. k_master is 128, 192 or 256 bits, depending on which encryption function is
used. More details can be found in RFC 6188 [RFC 6188].

m =  128L 

 (128 is the bit length of the AES output, and m ≥ 1)

Derived_keying1 = AES(k_master, input)
Derived_keying2 = AES(k_master, input + 1)
 .
 .
 .
Derived_keyingm = AES(k_master, input + (m – 1))

K = the L leftmost bits of
 (Derived_keying1 || Derived_keying2 ||…|| Derived_keyingm).

The SRTP KDF is approved when the following conditions are satisfied:

(1) The KDF is performed in the context of the SRTP protocol.
(2) The AES encryption operation is as specified in FIPS 197.

5.4 Simple Network Management Protocol (SNMP) Key Derivation
Function/Key Localization Function

 The User-based Security Model (USM) for SNMP version 3 (SNMPv3) (RFC 2571
[RFC 2571]) is specified in RFC 2574. In this security model, a key localization
function (i.e., a key derivation function) is used with a secret password when a user
needs to share a different secret key with each authoritative SNMP engine8. Two key
localization functions are specified in this model. Each uses an MD5 or SHA-1 hash
function to generate different secret keys to share with each authoritative SNMP
engine. The inputs to the key localization function are the password and the
snmpEngineID, which is unique for each authoritative SNMP engine. If the hash
function is collision resistant, then by using different snmpEngineIDs, the key
localization function will produce different keys. Below is the description of the key
localization function with SHA-1.

8 One of the SNMP engines involved in each communication is designated to be the authoritative
SNMP engine, see RFC 2574 Section 1.5.1 for details.

 16

NIST SP 800-135, Revision 1

Denote engineLength and passwordlen to be the lengths (in bytes) of an
snmpEngineID and a password, respectively.

Let N =  npasswordle/0485761 .

Expanded_password = the leftmost 1048576 bytes of the string of N repetitions of
the password.

Derived_password = SHA-1 (Expanded_password). The Derived_password is the
output of hashing the Expanded_password by SHA-1.

Let Shared_key to be the key that the user shares with the authoritative SNMP engine
with ID snmpEngineID. The Shared_key is generated as follow:

Shared_key = SHA-1(Derived_password || snmpEngineID || Derived_password).

The USM KDF is approved when the following conditions are satisfied:

(1) It is performed in the context of the SNMP protocol.

(2) SHA-1 (as specified in FIPS 180-3) is used in the key localization function.

5.5 Trusted Platform Module (TPM) Key Derivation Function

Version 1.2 of the Trusted Platform Module is specified in the TPM Main
Specification Parts 1, 2 and 3 ([TPM Principles], [TPM Structures] and [TPM
Commands], respectively). It uses a SHA-1 HMAC-based Pseudorandom Function
(PRF) in its KDF to generate keying material for transport sessions between the TPM
and an application running on another processor.

To protect the integrity of communications, a session key, SKEY, is derived from a
secret authorization value, Auth, that is a secret key shared between the TPM and the
application. An HMAC-PRF is used to produce the SKEY as follows:

SKEY = HMAC (Auth, Nonce_even || Nonce_odd), where Nonce_even and
Nonce_odd are non-secret values created by the random number generators
on the TPM and the application, respectively.

Additional technical details for the variables in the functions are provided in Part 3 of
the TPM Main Specification.

SKEY is used as an HMAC key to provide data integrity for communications during
the session. Further keys may be derived from SKEY to provide encryption of parts of
the session.

The TPM KDF is approved when the following conditions are satisfied:

(1) The TPM KDF is performed in the context of a TPM session (i.e. performed
between a TPM and an application with a shared authorization value.)

 17

NIST SP 800-135, Revision 1

(2) HMAC and SHA-1 are used as specified in FIPS 198-1 and 180-3,
respectively.

Note that the KDF is a particular instance of the feedback mode as specified in
Section 5.2 of SP 800-108, with an empty initial value (IV).

6 References

[ANS X9.42] NIST ANS X9.42-2001, Public Key Cryptography
for the Financial Services Industry: Agreement of
Symmetric Keys Using Discrete Logarithm
Cryptography, 2001.

[ANS X9.63] ANS X9.63-2001, Public Key Cryptography for the
Financial Services Industry: Key Agreement and Key
Transport Using Elliptic Curve Cryptography, 2001.

[FIPS 180-3] Federal Information Processing Standard 180-3,
Secure Hash Standard (SHS), October 2008.

[FIPS 197] Federal Information Processing Standard 197,
Advanced Encryption Standard (AES), November
2001.

 [FIPS 198-1] Federal Information Processing Standard 198-1, The
Keyed-Hash Message Authentication Code (HMAC),
July 2008.

[RFC 2246] T. Dierks and C. Allen, The TLS Protocol Version
1.0, RFC 2246, January 1999.

[RFC 2409] D. Harkins and D. Carrel, The Internet Key Exchange
(IKE), RFC 2409, November 1998.

[RFC 2571] D. Harrington, R. Presuhn and B. Wijnen, An
Architecture for Describing SNMP Management
Frameworks, RFC 2571, April 1999.

[RFC 2574] U. Blumenthal and B. Wijnen, User-based Security
Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3), RFC 2574, April
1999.

[RFC 2631] E. Rescorla, “Diffie-Hellman Key Agreement
Method”, RFC 2631, June 1999.

[RFC 3278] S. Blake-Wilson, D. Brown and P. Lambert, Use of
Elliptic Curve Cryptography (ECC) Algorithms in
Cryptographic Message Syntax (CMS), RFC 3278,
April 2002.

 18

NIST SP 800-135, Revision 1

[RFC 3550] H. Schulzrinne, S. Casner, R. Frederick and V.
Jacobson, RTP: A Transport Protocol for Real-Time
Applications, RFC 3550, July 2003.

[RFC 3711] M. Baugher, D. McGrew, M. Naslund, E. Carrara and
K. Norrman, The Secure Real-time Transport
Protocol (SRTP), RFC 3711, March 2004.

[RFC 4251] Y. Ylonen and C. Lonvick (Ed.), The Secure Shell
(SSH) Protocol Achitecture, RFC 4251, January
2006.

[RFC 4252] T. Ylonen and C. Lonvick, The Secure Shell (SSH)
Authentication Protocol, RFC 4252, January 2006.

[RFC 4253] T. Ylonen and C. Lonvick (Ed.), The Secure Shell
(SSH) Transport Layer Protocol, RFC 4253, January
2006.

[RFC 4254] T. Ylonen and C. Lonvick, The Secure Shell (SSH)
Connection Protocol, RFC 4254, January 2006.

[RFC 4306] C. Kaufman (Ed.), Internet Key Exchange (IKEv2)
Protocol, RFC 4306, December 2005.

[RFC 4346] T. Dierks and E. Rescorla, The Transport Layer
Security (TLS) Protocol Version 1.1, RFC 4346,
April 2006.

[RFC 5246] T. Dierks and E. Rescorla, The Transport Layer
Security (TLS) Protocol Version 1.2, RFC 5246,
August 2008.

[RFC 6188] D. McGrew, The Use of AES-192 and AES-256 in

Secure RTP, RFC 6188, March 2011.

[SEC1] SECG, "Elliptic Curve Cryptography", Standards for
 Efficient Cryptography Group, 2000.

www.secg.org/collateral/sec1.pdf.

[SP 800-56A] E. Barker, D. Johnson and M. Smid,

“Recommendations for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography
(Revised), National Institute of Standards and
Technology, NIST Special Publication 800-56A,
March 2007.

[SP 800-56B] E. Barker, L. Chen, A. Regenscheid and M. Smid,
“Recommendation for Pair-Wise Key Establishment
Schemes Using Integer Factorization Cryptography”,

 19

NIST SP 800-135, Revision 1

 20

National Institute of Standards and Technology, NIST
Special Publication 800-56B, August 2009.

[SP 800-56C] L. Chen, “Recommendation for Key Derivation
through Extraction-then-Expansion”, NIST SP 800
56C, November 2011.

[SP 800-57] E. Barker, W. Barker, W. Burr, W. Polk, and M.
Smid, “Recommendation for Key Management-Part
1: General (Revised), National Institute of Standards
and Technology, NIST Special Publication 800-57,
March 2007.

[SP 800-108] L. Chen, “Recommendation for Key Derivation
Using Pseudorandom Functions”, National Institute
of Standards and Technology (Revised)”, NIST
Special Publication 800-108, October 2009.

[TPM Principles] TPM Main Specification Part 1 – Design Principles,
July 2007.

[TPM Structures] TPM Main Specification Part 2 – TPM Structures,
July 2007.

[TPM Commands] TPM Main Specification Part 3 – Commands, July
2007.

Appendix A — Change Log

1. Section 5.3: Descriptions of kdr, index, lable and the function DIV were
revised. Reference of RFC 6188 was added to replace the draft document
located at http://tools.ietf.org/html/draft-ietf-avt-srtp-big-aes-04.

 2. Section 5.4: The number 1024 was changed to 1048576 (10242).

http://tools.ietf.org/html/draft-ietf-avt-srtp-big-aes-04

	1 Introduction
	2 Authority
	3 Glossary of Terms, Acronyms and Mathematical Symbols
	4 Extraction-then-Expansion (E-E) Key Derivation Procedure
	4.1 Internet Key Exchange (IKE)
	4.1.1 IKE version 1 (IKEv1)
	4.1.2 IKE version 2 (IKEv2)
	4.2.1 Key Derivation in TLS versions 1.0 and 1.1
	4.2.2 Key Derivation in TLS version 1.2

	5 Other Existing Key Derivation Functions
	5.1 Key Derivation Functions in American National Standards (ANS) X9.42-2001 and ANS X9.63-2001
	5.2 Secure Shell (SSH) Key Derivation Function
	5.3 The Secure Real-time Transport Protocol (SRTP) Key Derivation Function
	5.4 Simple Network Management Protocol (SNMP) Key Derivation Function/Key Localization Function
	5.5 Trusted Platform Module (TPM) Key Derivation Function

	6 References
	Appendix A — Change Log

