
doi: 10.1136/jamia.2009.001149
 2010 17: 714-719JAMIA

 
Jyotishman Pathak, Lee Peters, Christopher G Chute, et al.
 
UMLSKS and LexBIG
application programming interfaces: RxNav, 
Comparing and evaluating terminology services

 http://jamia.bmj.com/content/17/6/714.full.html
Updated information and services can be found at: 

These include:

References
 http://jamia.bmj.com/content/17/6/714.full.html#ref-list-1

This article cites 5 articles, 2 of which can be accessed free at:

service
Email alerting

box at the top right corner of the online article.
Receive free email alerts when new articles cite this article. Sign up in the

Notes

 http://group.bmj.com/group/rights-licensing/permissions
To request permissions go to:

 http://journals.bmj.com/cgi/reprintform
To order reprints go to:

 http://journals.bmj.com/cgi/ep
To subscribe to BMJ go to:

 group.bmj.com on December 2, 2010 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/content/17/6/714.full.html
http://jamia.bmj.com/content/17/6/714.full.html#ref-list-1
http://group.bmj.com/group/rights-licensing/permissions
http://journals.bmj.com/cgi/reprintform
http://journals.bmj.com/cgi/ep
http://jamia.bmj.com/
http://group.bmj.com/


Comparing and evaluating terminology services
application programming interfaces: RxNav, UMLSKS
and LexBIG

Jyotishman Pathak,1 Lee Peters,2 Christopher G Chute,1 Olivier Bodenreider2

ABSTRACT
To facilitate the integration of terminologies into
applications, various terminology services application
programming interfaces (API) have been developed in
the recent past. In this study, three publicly available
terminology services API, RxNav, UMLSKS and LexBIG,
are compared and functionally evaluated with respect to
the retrieval of information from one biomedical
terminology, RxNorm, to which all three services provide
access. A list of queries is established covering a wide
spectrum of terminology services functionalities such as
finding RxNorm concepts by their name, or navigating
different types of relationships. Test data were
generated from the RxNorm dataset to evaluate the
implementation of the functionalities in the three API.
The results revealed issues with various aspects of the
API implementation (eg, handling of obsolete terms by
LexBIG) and documentation (eg, navigational paths used
in RxNav) that were subsequently addressed by the
development teams of the three API investigated.
Knowledge about such discrepancies helps inform the
choice of an API for a given use case.

The evolution of terminologies, across the spectrum
of detailed nomenclatures and sophisticated classi-
fications, has accelerated dramatically this decade,1

and terminologies play a crucial role in applications
including knowledge management, data integration
and decision support.2 To facilitate the integration
of terminologies into applications, various termi-
nology services application programming interfaces
(API) have been developed in the recent past. In the
biomedical domain, for example, such API for
terminology services are a key component of the
architecture of the cancer biomedical informatics
grid (caBIG) developed under the auspices of the
National Cancer Institute (NCI).3

In practice, these API are tuned to efficiently and
effectively provide a host of functional
characteristics ranging from retrieving concept
attributes such as definitions and synonyms, to
navigating relationships between concepts (eg,
finding sub or super-concepts of a given concept)
and accessing information combinatorially (eg, list
the immediate parent concepts of all concepts that
have a term that contains the word infarction). In
addition, the API provide various degrees of fault
resilience (to ensure high availability of service),
security (to prevent unauthorized alteration and/or
disruption of content) and federation (to maintain
linkages among components of a large terminology,
or cross-references among related terminologies).
As is true of interfaces in general, terminology

service API integrated in biomedical applications

have an impact on the overall quality of these
applications. For example, the inability of a drug
terminology API to serve the latest available data or
to identify links between drug entities may cause
a clinical decision support system (CDSS) relying on
terminological information to make wrong infer-
ences. For example, the following scenario illustrates
the practical consequences on health care of subop-
timal terminology services: A drug terminology
service fails to identify the link between a brand
name and its ingredients (eg, between Hamarin and
allopurinol), which is used by the CDSS to identify
drugedrug interactions among ingredients (eg,
between allopurinol and warfarin). The CDSS,
having failed to identify the proper interactions
based on the information from the drug terminology
service, fails to send an alert to the physician, and
adverse events (eg, increased anticoagulation) occur
in a patient as a consequence of the interaction
between drugs (eg,metabolism ofwarfarin inhibited
by allopurinol). Although hypothetical, this
scenario illustrates the possible impact of termi-
nology services on health care and motivates our
investigation of terminology services.
In some cases, multiple terminology services API

deliver overlapping capabilities and mechanisms for
querying the same information, thereby making it
important to evaluate the consistency and accuracy
of the functionalities provided. The goal of this
study is to perform a functional evaluation of three
publicly available terminology services API, RxNav,
UMLSKS and LexBIG, with respect to the retrieval
of information from one biomedical terminology,
RxNorm, to which all three services provide access.

CASE DESCRIPTION: BACKGROUND AND
MATERIALS
RxNav
TheRxNav is abrowser forRxNorm, the repositoryof
standard names and codes for clinical drugs developed
at the US National Library of Medicine (NLM).4 The
RxNav displays links from clinical drugs, both
branded and generic, to their active ingredients, drug
components and related brand names. The RxNav
uses a web service API (see http://www.rxnav.nlm.
nih.gov/RxNormAPI.html for details) to access the
RxNorm data.5 The API provides various functional-
ities ranging fromsearching for aname intheRxNorm
dataset to get the RxCUI (concept unique identifiers)
to finding relationships between drug entities.

UMLSKS
The unified medical language system (UMLS),
developed at the NLM, includes the metathesaurus,

1Division of Biomedical
Statistics and Informatics, Mayo
Clinic, Rochester, Minnesota,
USA
2US National Library of
Medicine, Bethesda, Maryland,
USA

Correspondence to
Dr Jyotishman Pathak, Division
of Biomedical Statistics and
Informatics, Mayo Clinic,
Rochester, MN 55905, USA;
pathak.jyotishman@mayo.edu

Received 23 September 2009
Accepted 29 August 2010

714 J Am Med Inform Assoc 2010;17:714e719. doi:10.1136/jamia.2009.001149

Case report

 group.bmj.com on December 2, 2010 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/
http://group.bmj.com/


the semantic network and the SPECIALIST lexicon.6 7 These
resources are typically used by application programs to interpret
and refine user queries, to map the user ’s terms to appropriate
controlled vocabularies and classification schemes, to interpret
natural language, and to assist in structured data creation. The
UMLS knowledge source server (UMLSKS; http://www.umlsks.
nlm.nih.gov/) provides access to the UMLS through both navi-
gation and programming services.8 The web service API was
developed to support specific queries in order to reduce the total
amount of information traveling between the UMLSKS and
client applications, and also to provide applications with fine-
grained control over the data they wish to receive.

LexBIG
The LexBIG is a community-wide project coordinated by the
Mayo Clinic Division of Biomedical Statistics and Informatics
for creating a vocabulary server built on a well-structured web
service API capable of accessing and distributing vocabularies
served by a common information model, namely, the LexGrid
model.9 This model provides the core representation for all data
managed and retrieved through the LexBIG system, and is rich
enough to represent vocabularies provided in numerous source
formats including the UMLS rich release format (RRF), the web
ontology language and open biomedical ontologies. The current
implementation of LexBIG provides a robust and flexible tool set
for loading, indexing and managing vocabulary content as well
as Java interfaces to various functions, including lexical queries,
graph representation and hierarchy traversal. Unlike RxNav and
UMLSKS, LexBIG is also compliant with the HL7 common
terminology services I specification.

RxNorm
The RxNorm, a standardized nomenclature for clinical drugs, is
produced by the NLM.10 It contains the names of prescription
and many non-prescription formulations approved for human
use (primarily in the USA). An RxNorm clinical drug name
reflects the active ingredients, strengths and dose form
comprising that drug. When any of these elements vary, a new
RxNorm drug name is created as a separate concept. Conse-
quently, to distinguish between such drug entities, RxNorm uses
‘term types’ (TTY). Furthermore, the RxNorm drug entities are
related to each other by a well-defined set of named relationships
(figure 1). For example, ingredient concepts (TTY¼IN) are
related to clinical drug component concepts (TTY¼SCDC) by
the relationships ingredient_of and has_ingredient. Finally,
RxNorm also contains a list of identifiers from other vocabu-
laries that appear as concept attributes (table 1).
The following materials were used in the study: (1) RxNav

API 1.0 released in October 2008 and accessible via http://www.
rxnav.nlm.nih.gov/RxNormAPI.html; (2) UMLSKS API 5.2
released in July 2005 and accessible via http://www.umlsks.nlm.
nih.gov; (3) LexBIG API 2.3 released in October 2008 and
accessible via https://www.gforge.nci.nih.gov/projects/lexevs;
and (4) RxNorm November 17, 2008 full update release data
that are consistent with the 2008AB version of the UMLS, and
accessible via http://www.download.nlm.nih.gov/umls/kss.
This dataset included 4112 ingredients, 100 dose forms, 13 923
clinical drug components, 8180 clinical drug forms, 18 228 clin-
ical drugs, 10 029 brand names, 14 154 branded drug compo-
nents, 11 643 branded drug forms, 14 891 branded drugs, 288
branded packs and 224 generic packs. Furthermore, the dataset
had over 500 000 relationships between these RxNorm entities.

Figure 1 Relationship between
RxNorm drug entities (adapted from
Zeng et al4).

J Am Med Inform Assoc 2010;17:714e719. doi:10.1136/jamia.2009.001149 715

Case report

 group.bmj.com on December 2, 2010 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/
http://group.bmj.com/


METHOD OF IMPLEMENTATION
This experiment was developed as a functional evaluation, that
is, a qualitative exploration of the major terminology services
functionalities for drug names and codes, such as finding drug
concepts by their names or codes, or navigating different types
of relationships among drug entities. Therefore, we did not
record any API scalability, performance or usability information,
but focused on assessing qualitative and functional discrepancies
among API.

Preliminary test
In order to eliminate major issues in the process of comparing
the three API, we started by performing a preliminary test, ie, by
running a small number of queries and comparing the results.
Careful inspection of these preliminary results revealed a few
unexpected issues with the RxNav API, in particular with the
restriction of multiple search results to the first candidate, and
with the processing of brand and generic packs. As we intended
to use the RxNav API as our reference in this study, these errors
were fixed in RxNav before running the experiment. Analo-
gously, the preliminary test also revealed an issue with string
searches, also fixed before running the experiment, because it
impacted the UMLS interface. A detailed account of these issues
is provided in the discussion section.

Establishing reference queries and test data
We first established a list of queries (box 1) that cover a wide
spectrum of terminology services functionalities, using the
current implementation of the RxNav API as a guide. The RxNav
API allows users to search RxNorm entities by name (Q1) and by
identifier (Q2), including the proprietary identifiers from source
vocabularies. Moreover, the RxNav API provides access to the
various properties of an RxNorm entity, including the national
drug codes (NDC) used for inventory purposes (Q3), RxNorm
name (Q4), proprietary names and codes from source vocabu-
laries (Q5). Finally, the RxNav API can be used to retrieve various
types of relations among RxNorm entities, by type of relation-
ship (Q6), by type of target entity (Q7) and all relations (Q8).
Based on these API calls, test data were generated from the
RxNorm dataset to evaluate the implementation of the func-
tionalities. For each function, we randomly selected from
RxNorm a list of test values (ie, a list of drug names and codes to
be tested). A distinct set of 100 test values was selected for each
simple function (eg, returning all NDC codes for a given drug).
For complex functions, we selected larger sets of test values in
order to reflect all possible variants of the query (eg, combinations
of drug codes and types of relationships for the function used for
exploring related drug entities for various types of relationships).

Reference paths in the RxNorm graph
In order to query for relationships between various RxNorm
drug entities, a reference list of paths among categories of enti-
ties in RxNorm was developed (see the RxNav API documen-
tation for details). For example, as illustrated in figure 1, given
the brand name Zyrtec (RxCUI¼58930), the reference path to
the ingredient cetirizine (RxCUI¼20610) traverses the direct
path between BN and IN via the relationship tradename_of. On
the other hand, among all possible paths between the two drug
entities, the reference path to the clinical drug cetirizine 5 mg
oral tablet (RxCUI¼315025) from Zyrtec is the indirect path
between BN and SCD (through SBD) via the relationships
ingredient_of and tradename_of.

Evaluation
In order to facilitate the comparison of the result sets from the
three API, an XML Schema was established that was loosely
based on the simple object access protocol envelope of the
RxNav web service API (refer to the WSDL schema from: http://
www.rxnav.nlm.nih.gov/RxNormDBService.wsdl). The output
results generated by UMLSKS and LexBIG were evaluated
against the result set from RxNav. We selected RxNav as the
reference, because it was designed specifically for the dataset
under investigation, RxNorm. However, all discrepancies were
reviewed manually, without assuming that RxNav would
necessarily return the correct answer. In other words, RxNav
was used as a reference only in order to simplify the evaluation.
The RxNav results were not used as the gold standard, but
reviewed as critically as the results from UMLSKS and LexBIG.
This study is a qualitative not quantitative evaluation. We

believe there is no acceptable proportion of discrepancies among
API, and our goal is to identify reasons for discrepancies, not
merely quantifying them. Special attention was given to distin-
guishing between differences in the underlying datasets and
differences in the behavior of the various API for a given query.

Table 1 RxNorm vocabulary identifiers

RxNorm idType Identifier name

AMPID Alchemy marked product identifier

GCN Generic code number

GFC Generic formula code

GPPC Generic product packing code

GS Gold standard alchemy identifier

LISTING_SEQ_NO FDA identification number

MMSL_CODE Multum identifier

NDC National drug code

SNOMEDCT SNOMEDCT identifier

SPL Standard product label

UMLSCUI UMLS concept unique identifier

VUID VHA unique identifier

Box 1 Query functionalities tested in RxNav, UMLSKS and
LexBIG (function names within the square brackets refer
to the RxNav implementation)

Q1: Search for a name in the RxNorm dataset and return the
RxCUI of concepts that have that name as an RxNorm term or as
a synonym of an RxNorm term. [findRxCuiByString(searchString)]
Q2: Search for an identifier from another vocabulary and return
the RxCUI of concepts that have an RxNorm term as a synonym
or have that identifier as an attribute. [findRxCuiById(idType,id)]
Q3: Get the NDC for an RxNorm concept. [getNDCs(rxcui)]
Q4: Get the RxNorm concept properties. [getRxConceptProperties
(rxcui)]
Q5: Get the concept information associated with the concept for
the specified sources. The user must have a valid UMLS license
and be able to access the UMLSKS authority service to obtain
proxy tickets to use this function. [getProprietaryInformation
(rxcui,sourceList,proxyTicket)]
Q6: Get the related RxNorm identifiers of an RxNorm concept
specified by a relational attribute list. [getRelatedByRelationship
(rxcui,relaList)]
Q7: Get the related RxNorm identifiers of an RxNorm concept
specified by one or more types. [getRelatedByType(rxcui,typeList)]
Q8: Get all the related RxNorm concepts for a given RxNorm
identifier. [getAllRelatedInfo(rxcui)]

716 J Am Med Inform Assoc 2010;17:714e719. doi:10.1136/jamia.2009.001149

Case report

 group.bmj.com on December 2, 2010 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/
http://group.bmj.com/


RESULTS AND OBSERVATIONS
Table 2 summarizes the results for UMLSKS and LexBIG API
compared with the RxNav API. The first column indicates the
type of query evaluated (as listed in box 1) along with the
number of queries executed (in the test data) in the second
column. The third and fourth columns refer to the number of
queries that differed in the results from UMLSKS and LexBIG
API, respectively, compared with the results from the RxNav
API for the test data. In all the cases, many differences were
observed between the results returned by the individual API: we
distinguish between differences in the API functionalities and
differences and issues in the dataset and how it was initially
loaded for querying.

Querying for drug entities by name (Q1)
For Q1, 19 differences were observed between the RxNav and
UMLSKS result sets, of which 17 were caused by slight differ-
ences between the two datasets used for querying RxNav and
UMLSKS. In particular, even though the RxNorm November 17,
2008 full update release data were aligned with the 2008AB
version of the UMLS (used for querying the UMLSKS), some
RxNorm concepts were missing from the UMLS release. The
other two differences were not associated with the dataset
alignment issues: the first difference occurred in searching for
‘psyllium husk’. UMLSKS returned two RxCUI, 104129 (‘psyl-
lium husk’) and 8928 (‘psyllium’), although the second RxCUI
was not found by RxNav. Investigating further, we realized that
UMLSKS found 8298 because ‘psyllium husk’ is a synonym from
the NCI thesaurus for ‘psyllium’, and the RxNorm dataset does
not contain terms from the NCI thesaurus. The second differ-
ence occurred because of different exact match rules between the
two APIdthe search for ‘Senna Lax’ yielded RxCUI 219861
(‘Senna Lax’) and 219864 (‘Sennalax’) in UMLSKS, while RxNav
only found 219861 (‘Senna Lax’). On the other hand, for LexBIG,
out of six differences, three were due to search strings not found
by the LexBIG (and found by RxNav), two were due to LexBIG
returning obsolete RxNorm concepts, and finally, LexBIG
returned one RxCUI without an RxNorm term.

Querying for drug entities by code (Q2)
For Q2, there were 124 differences between UMLSKS and
RxNav result sets, of which 100 were due to the lack of existing
capability in UMLSKS to search by idType¼NDC. (Unlike other
codes, NDC are stored in the attribute table of the UMLS
metathesaurus, which is not amenable to search through the
API). The remaining 24 differences were a result of imperfect
alignment between the RxNorm and UMLS datasets as eluci-
dated above. For LexBIG, 66 differences were observed with the
RxNav result sets. In particular, for idType¼GCN, LexBIG

returned 29 RxCUI, which belonged to obsolete RxNorm data.
In addition, one of the returned RxCUI had ET as its term
type, which is invalid. Similar observations were made for
idType¼LISTING_SEQ_NO, in which one of the returned
RxCUI pointed to obsolete data and another RxCUI did not
have an RxNorm term (this was also true for idType¼SNO-
MEDCT). Interestingly, for idType¼NDC, LexBIG not only
returned all the expected RxCUI, but also found 33 NDC
identifiers associated with more than one RxCUI. The RxNav
API, on the other hand, returned only one RxCUI per identifier, a
behavior that can be attributed to the RxNav interface selecting
one identifier for visualization purposes. Furthermore, for this
evaluation, the results from idType¼MMSL_Code were excluded
because RxNav did not find any matches, due to the fact that
the identifiers were not in the format required by the API.

Querying NDC for a drug (Q3)
For Q3, four differences were observed between the UMLSKS
and RxNav results that were due to imperfect alignment
between the RxNorm and UMLS datasets. On the other hand,
LexBIG and RxNav results had no differences.

Querying the properties of a drug concept (Q4)
For Q4, five differences were observed between the UMLSKS and
RxNav results, and all were a result of imperfect alignment
between the RxNorm and UMLS datasets. On the other hand,
there were no differences between the LexBIG and RxNav
results.

Querying the proprietary information about a drug concept (Q5)
For Q5, four differences were observed between the UMLSKS
and RxNav results, and all were a result of imperfect alignment
between the RxNorm and UMLS datasets. On the other hand,
LexBIG could not return results for any of the queries becausee
such information is not captured by the RxNorm (RRF) loader
for LexBIG.

Querying related drugs by relationship (Q6)
For Q6, 58 differences were observed between the UMLSKS and
RxNav results, and all were a result of imperfect alignment
between the RxNorm and UMLS datasets. Although, for
LexBIG, 66 differences were observed, and all of them were due
to the result of LexBIG returning obsolete RxNorm concepts.

Querying related drugs by type of drug entity (Q7)
For Q7, 40 differences were observed between the UMLSKS and
RxNav results, of which 38 were due to the imperfect alignment
between the RxNorm and UMLS datasets. The other two
differences were observed when UMLSKS retrieved the desired

Table 2 UMLSKS and LexBIG query result comparison with the RxNav API

Query type
Total no of
queries executed

Query results with
UMLSKS differences

Query results with
LexBIG differences

API
related

Non-API
related

API
related

Non-API
related

Q1 (find by name) 820 2 17 3 3

Q2 (find by code) 1100 100 24 33 32

Q3 (get NDC codes) 100 0 4 0 0

Q4 (get concept properties) 102 0 5 0 0

Q5 (get proprietary information) 100 0 4 0 100

Q6 (get related drugs by relationship) 1060 0 58 0 66

Q7 (get related drugs by type of drug) 820 2 40 19 61

Q8 (get all related drugs) 100 1 17 16 19

J Am Med Inform Assoc 2010;17:714e719. doi:10.1136/jamia.2009.001149 717

Case report

 group.bmj.com on December 2, 2010 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/
http://group.bmj.com/


results, but RxNav failed due to issues in processing branded and
generic packs (BPCK and GPCK), for example, Tri-Pak, a branded
pack of three oral tablets of azithromycin. For LexBIG, we
observed 80 differences with the RxNav results, and the bulk of
which (61) were due to LexBIG returning obsolete data. In
addition, 16 differences were observed when the target type was
IN, and LexBIG results were missing the precise ingredients
(PIN), and one difference occurred (RxCUI¼236216, endTTY¼
SCD) in which the LexBIG results did not return the SCD
associated with the PIN. Similar to UMLSKS, the other two
differences observed were due to issues in RxNav processing of
branded and generic packs.

Querying all related drugs (Q8)
For Q8, 18 differences were observed between the UMLSKS and
RxNav results, of which 17 were a result of imperfectly aligned
RxNorm datasets. One difference occurred (RxCUI¼494944) in
which UMLSKS results did not find a dose form concept (DF).
On the other hand, 37 results were different in LexBIG
compared with RxNav, of which 19 differences were due to
LexBIG returning obsolete RxNorm concepts. For the remainder,
16 differences were observed when the target type was IN, and
LexBIG results were missing the precise ingredients (PIN), one
difference occurred (RxCUI¼2625) in which LexBIG did not
return the clinical drugs associated with the PIN, and finally,
another difference occurred (RxCUI¼494944) when LexBIG did
not find a DF concept.

DISCUSSION
Practical implications
As illustrated in our evaluation, leaving aside minor nuances, all
the three API were functionally similar in terms of information
retrieval, and differences in result sets were primarily due to
issues in dataset alignment and content loading. However, the
investigation of these discrepancies was beneficial and prompted
changes in each of the three API. Knowledge about such dis-
crepancies helps inform the choice of an API for a given use case.

Implications for LexBIG
In particular, for LexBIG, major differences in results were due to
returning obsolete RxNorm concepts for the queries performed.
The information about obsolete concepts, although present in
the RxNorm dataset, was not captured by the RRF loader in
LexBIG. Similarly, all the concept information associated with
a concept for the specified sources was not captured by the RRF
loader in a consistent way. For instance, the information about
the mapping between an RxNorm concept (eg, RxCui¼161
(‘acetaminophen’)) and a concept in another vocabulary (eg,
id¼5005 in MMSL) was missing in many cases, and as a conse-
quence, LexBIG could not return results for query Q5 (ie, for
retrieving proprietary names and codes from source vocabularies
in RxNorm). We created an entry for this issue in the LexBIG
bugtracker that was subsequently addressed by the development
team. However, at the same time, the LexBIG API was highly
performant and provided various convenience methods
uniformly to query its underlying common information LexGrid
model.

Implications for UMLSKS
For UMLSKS, the differences observed in result sets were mainly
due to one reason: imperfect alignment of the 2008AB release of
UMLS with the RxNorm November 17, 2008 full update release.
While addressing this issue is beyond the scope of this work, we
realized that typically the RxNorm dataset is submitted to the

UMLS maintainers a few weeks before the UMLS scheduled
release date. Consequently, by the time the UMLS meta-
thesaurus is made publicly available, the RxNorm dataset would
have evolved due to the addition of new drugs or the elimination
of obsolete ones, thereby causing the RxNorm dataset to have
included new data (without UMLS CUI information) as well as
eliminated old data. The UMLSKS API also did not explore all
the features of the RxNorm dataset. For example, it was not
possible to search for RxCUI using NDC identifiers. In addition,
during a preliminary analysis, it was discovered that UMLSKS
incorrectly returned drug concepts searched by name, when the
search string had more than 30 characters. For example, when
executing query Q1 (finding drug entities by name) for the string
‘benztropine injectable solution’, UMLSKS returned RxCUI
371036 (‘benztropine injectable solution’) and 92198 (‘benz-
tropine injectable solution (Cogentin)’), of which the latter is
incorrect. After notifying the UMLSKS maintainers about this
issue, a problem in the string-matching algorithm was discov-
ered, and subsequently fixed before analyzing our test data. One
of the search features in UMLSKS that could benefit RxNav is
the removal of special characters from the search string for exact
matches. For example, searching for ‘senna lax’ yielded RxCUI
219861 (‘senna lax’) and 219864 (‘sennalax’) in UMLSKS, but
RxNav only retrieved 219861. It is worth noting that LexBIG
already implements such a feature.

Implications for RxNav
Although RxNav was used as a reference for evaluating discrep-
ancies among API, its results were not assumed as a gold standard,
but reviewed critically during the preliminary test, leading to the
identification of issues in RxNav. In addition to issues with exact
match string searching, we discovered problems involving the
traversal of the RxNorm graph for drug packs (TTY¼GPCK and
BPCK) in which the reference path was not used. For example,
when executing query Q6 (querying related drugs by type of drug
relationship) with RxCUI¼750119 (‘Tirosint 0.013 56 day pack’)
and TTY¼SCDC, RxNav returned no results. The correct result is
the concept ‘thyroxine 0.013 mg’ (RxCUI¼728558), which was
returned by both UMLSKS and LexBIG. Furthermore, when
querying drug entities by code (Q2), RxNav returned only one
RxCUI per identifier (such as NDC), although the dataset
contained more than one RxCUI in some cases. Finally, we
observed that documentation for few functionalities imple-
mented by RxNav was sparse and required significant enhance-
ments. In particular, the documentation about the RxNorm
graph traversal as well as relationship mappings between
RxNorm entities required improvement. All these issues were
brought to the RxNav development team’s attention during our
investigation and have been subsequently addressed.

Implications for the choice of an API
Similar to differences observed among SNOMED-CT browsers
in an earlier study,11 we believe this study and exercise is of
significance since without such a systematic analysis, it is non-
trivial for the users to identify API-level implementation bugs. In
particular, by identifying reasons for discrepancies among API,
this study was useful to the developers of the API as it gave
them the opportunity for identifying and fixing several API
implementation errors. The remaining discrepancies come from
differences in the datasets and in the inherent capabilities of the
API. Knowledge about these discrepancies, along with technical
and functional specifications, can help inform the choice of an
API for specific use cases, that is, align the requirements of an
application with the capabilities of a given API.

718 J Am Med Inform Assoc 2010;17:714e719. doi:10.1136/jamia.2009.001149

Case report

 group.bmj.com on December 2, 2010 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/
http://group.bmj.com/


Both RxNav and LexBIG load and import the RxNorm dataset
directly, and can therefore be pointed to the latest version,
whereas the UMLSKS API can only serve the version of RxNorm
integrated in a given edition of the UMLS. Given the differences
in frequency of update between RxNorm (monthly) and UMLS
(biannually) and possible residual discrepancies for a given
version of RxNorm (as illustrated in this study), the UMLSKS
API is not the right choice for querying an up-to-date RxNorm
dataset. Moreover, the UMLSKS API also does not allow drugs
to be queried by NDC. However, because it can query the entire
UMLS, the UMLSKS API is useful in cases when drug entities
need to be linked to other entities (eg, diseases), whereas the
RxNav API is limited to querying the RxNorm dataset. Analo-
gously, LexBIG has the ability to load and serve terminologies
developed using non-RRF languages, such as web ontology
language and open biomedical ontologiesda feature that is not
available in both UMLSKS and RxNav API.

Although evaluating the quality of the documentation was
beyond the scope of this study, we found that adequate
instructions and code samples were provided for the three API
investigated to support application developers. Because the three
API provide web services for accessing RxNorm data, program-
ming language requirements are not a factor in the choice of an
API, because most modern programming languages provide
support for web services. One small difference among the three
API lies in the protocols used by the API. Whereas all three API
support simple object access protocol-based web services (simple
object access protocol), RxNav and LexBIG also support the
REST protocol (representational state transfer).

All three API provide some form of access control. Therefore,
this element should not be determinant in the choice of an API.
Due to licensing requirements, an active UMLS metathesaurus
license code is required to access the complete UMLS release.
The UMLSKS API has robust authentication mechanisms for
granting ‘proxy tickets’ to access the UMLS data. The RxNav
API requires one such proxy ticket for using the function
getProprietaryInformation, through which proprietary names
and codes are exposed. In LexBIG, a particular terminology has
to be designated as ‘active’ by the administrator to make it
queryable. Therefore, terminologies whose access is restricted
can be made ‘inactive’ for access control purposes.

Finally, LexBIG API provides a much broader set of func-
tionalities compared with UMLSKS and RxNav. Examples
include defining and querying value sets, terminology mappings,
terminology version management and so on. UMLSKS and
RxNav, on the other hand, are limited to querying for concepts,
their attributes and relationships in the terminology of interest
(UMLS metathesaurus, semantic network, and SPECIALIST
lexicon for UMLSKS, and RxNorm for RxNav).

Limitations and future work
The selection of queries in this study does not reflect any specific
use case (eg, medication reconciliation) or even the frequency of
queries sent to the RxNav service. Rather, we elected to perform
a systematic investigation of the queries available through the
RxNav API. Specific evaluation schemes could be designed to
investigate the degree to which atomic queries can be combined
in order to support specific use cases. For example, medication
reconciliation (using RxNorm as an interlingua) would require
that drug codes be mapped from the source vocabulary to
RxNorm (RxCUI) and then that RxCUI be expressed into the
codes of the target drug vocabulary.

Several factors were purposely omitted from our evaluation.
Beyond the ability of API to retrieve basic information from
a terminology, the specific requirements of an application should
also be taken into account in the choice of an API, for example,
in terms of required functionalities and communication proto-
cols. Another aspect of our investigation that requires further
evaluation is analyzing performance and reliability (eg, running
performance benchmarks and analyzing fault resilience). Finally,
evaluating the quality of the documentation was beyond the
scope of our investigation.
The study only evaluated the retrieval of information from

one biomedical terminology, RxNorm. In the future, we plan to
expand our investigation by incorporating more terminology
sources, although arguably, API such as RxNav, developed
specifically for a particular terminology, will not be applicable.
Furthermore, we intend to include additional publicly available
terminology services API such as Apelon DTS12 in our study.

CONCLUSIONS
In this study, we experimented with three publicly available
terminology services API to query a clinical drug terminology,
RxNorm. The main finding of this study is that the three API
investigated are essentially functionally similar. However, the
systematic investigation of discrepancies among the three API
highlighted various issues in each API that have since been
addressed. The other benefit of this study is that knowledge about
such discrepancies helps inform the choice of an API for a given
use case. Finally, our investigation, the first of its kind, contributed
to provide a methodological model in comparing and evaluating
terminology services API developed by different organizations.

Acknowledgments The authors would like to acknowledge the inputs and
critiques from the 2009 AMIA Annual Symposium reviewers.

Funding This research is supported in part by NHGRI grant U01HG04599 (eMERGE)
and the Intramural Research Program at NLM.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
1. Cimino J, Zhu X. The practical impact of ontologies on biomedical informatics. IMIA

Yearbook 2006: Assessing informationdtechnologies for health. International
Medical Informatics Association, 2006:124e35.

2. Bodenreider O. Biomedical ontologies in action: role in knowledge management,
data integration and decision support. IMIA Yearbook 2008: Access to Health
Information. International Medical Informatics Association, 2008:67e79.

3. Komatsoulis G, Warzel DB, Hartel FW, et al. caCORE version 3: implementation of
a model driven, service-oriented architecture for semantic interoperability. J Biomed
Inf 2008;41:106e23.

4. Zeng K, Bodenrider O, Kilbourne J, et al. RxNav: towards an integrated view on drug
information. Medinfo 2007:P386.

5. Peters L, Bodenreider O. Using the RxNorm web services API for quality assurance
purposes. AMIA Ann Symp Proc 2008:591e5.

6. Lindberg DA, Humphreys BL, McCray AT. The unified medical language system.
Methods Inf Med 1993;32:281e91.

7. Bodenreider O. The unified medical language system (UMLS): integrating
biomedical terminology. Nucl Acids Res 2004;32(database issue):D267e70.

8. Thorn KE, Bangalore A, Browne A. Plug-and-play UMLS knowledge source server
using web services and portlets. AMIA Ann Symp Proc 2006:1121.

9. Pathak J, Solbrig HR, Buntrock JD, et al. LexGrid: a framework for representing,
storing, and querying biomedical terminologies from simple to sublime. J Am Med
Inform Assoc 2009;16:305e15.

10. Liu S, Ma W, Moore R, et al. RxNorm: prescription for electronic drug information
exchange. IT Pro 2005;7:17e23.

11. Rogers J, Bodenrieder O. SNOMED CT: browsing the browsers. In 3rd International
Conference on Knowledge Representation in Medicine (KR-MED 2008). Phoenix, AZ,
2008:30e6.

12. Apelon Distributed Terminology Server (DTS). http://www.apelon-dts.sourceforge.net
(accessed 7 May 2010).

J Am Med Inform Assoc 2010;17:714e719. doi:10.1136/jamia.2009.001149 719

Case report

 group.bmj.com on December 2, 2010 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/
http://group.bmj.com/

