
1

The MyDelivery Server

National Library of Medicine
8600 Rockville Pike, Bethesda, MD - 20894

Fr
an

k
W

al
ke

r a
nd

 G
ir

is
h

Li
ng

ap
pa

Ju
ne

 2
01

0

T
h

e
M

yD
el

iv
er

y
Se

rv
er

2

The MyDelivery Server
Summary:

This document explains all aspects of the MyDelivery system architecture and server design. It should
be sufficient to allow an organization to deploy its own MyDelivery server system. The minimum
requirement of one Windows-based server is capable of handling several hundred Windows-based
clients. The server system is easily expandable to allow thousands more users or to enhance server
reliability.

3

Table of Contents

1.0 System Architecture __ 5
1.2 Synchronization of Client Communication ___ 6
1.3 Expanded Server Architecture___ 7
1.4 Alternative Technologies ___ 8
1.5 System Performance ___ 10

2.0 Client-Server SOAP Communications __ 11
2.1 GetVersion ___ 11
2.2 Initialize ___ 12
2.3 CSP (ClientStatusPage) ___ 14
2.4 UploadUserInformation___ 16
2.5 ChangePassword __ 19
2.6 UpdateStatus ___ 20
2.7 CheckRecipient ___ 24
2.8 StartDeliveryUpload ___ 26
2.9 UploadDeliveryHeader1 __ 28
2.10 RequestToUpload __ 35
2.11 UploadAttachment ___ 37
2.12 IsDeliveryValid ___ 38
2.13 DownloadDeliveryHeader1 ___ 40
2.14 DownloadAttachment ___ 41
2.15 DeliveryStatus ___ 43
2.16 TerminateDelivery __ 44

3.0 MyDelivery Server Architecture __ 46
3.1 MyDelivery Windows Service: mdClientListService ___ 48
3.2 MyDelivery Windows Service: mdFileXFERService __ 50
3.3 MyDelivery Windows Service: mdMonitor __ 51
3.4 MyDelivery Windows Service: mdFlusher __ 52
3.5 MyDelivery Windows Service: mdPinger ___ 53
3.6 MyDelivery Windows Service: mdClientManager __ 54

4.0. Server Setup ___ 56

5.0 MyDelivery SQL Server Database Tables _______________________________________ 84
5.1 ClientsOnline ___ 85
5.2 Deliveries __ 86
5.3 IDs __ 88
5.4 InvalidLogin __ 89
5.5 PendingSenders ___ 90
5.6 Processors ___ 91
5.7 RegCodes __ 92
5.8 SystemInfo ___ 93
5.9 Users__ 94

4

6.0 SQL Server Database Configuration using SQL Server Express ______________________ 95

7.0 Implementation of Database Mirroring via SQL Server 2005 _____________________ 105
7.1 Setting up Security __ 105
7.2 Backup MyDelivery ___ 113
7.3 Detach, Attach and Restore MyDelivery ___ 116
7.4 Configure Mirroring ___ 120

5

1.0 System Architecture

MyDelivery is Windows-based client-server architecture. As illustrated in Figure 1.1, the minimal system
configuration consists of a single server and two clients. The server, running Microsoft’s IIS, keeps track
of which clients are online, and it facilitates communication between the two clients. Each Windows-
based client is capable of communicating messages with any other client. Throughout this document an
exchange of a message with optional attachments will be termed a ‘delivery’. Each user has a personal
address book that lists other users with which he or she wishes to communicate using the client
software. Clients can communicate only with other users listed in a user’s address book. All
communication occurs through the server. At no time do the two clients communicate with each other
directly, as in peer-to-peer systems.

Furthermore, no user delivery is stored on the server hard disk; instead, the data resides temporarily in
the server memory in 1 megabyte segments or chunks. When the server establishes connectivity
between each two users, it temporarily allocates a 1 megabyte segment of memory for that
communication. Ten pairs of users will be allocated 1 megabyte of memory per pair, for a total of 10
megabytes. One thousand pairs of users will be allocated 1,000 segments of memory, for a total of 1
gigabyte. Because memory is inexpensive (less than $50 per gigabyte in 2010), with 3 or more gigabytes
typically available on a web server, this architecture makes it possible to have 1,000 pairs of users on a

MyDelivery Server

MyDelivery Client MyDelivery Client

Figure 1.1 Segmented Data Communication

1 Megabyte Memory
Storage

6

single server using up only 1 gigabyte of memory. If more than 1 megabyte of data needs to be sent in a
delivery, then the delivery is segmented into 1 megabyte chunks. A delivery that has a 1 gigabyte file
attached will be divided into 1,000 chunks, each of which is sent separately and stored temporarily in
the server memory allocated to that data exchange. Figure 1.2 shows how multiple files are packed into
the data segments. The sending client first compresses all file attachments, and then packs them into 1
megabyte chunks, which are then sent to the server. The sending and receiving clients negotiate with
the server to exchange one chunk at a time. Once all chunks in a delivery are downloaded to the
receiving client, that client separates them into compressed files and decompresses them to get the
original files.

1.2 Synchronization of Client Communication
Communications between two clients takes place only when both clients are online simultaneously.
This is similar to the case of two fax machines that communicate with each other, and is in contrast to
other, more conventional methods of Internet communication, such as email or FTP, which allow one
client to be offline. It is the job of the MyDelivery server to detect the online status of all clients. When
one client requests to send a delivery to a second client, the server establishes whether the second
client is online, and if so, facilitates the data exchange. If the recipient is not online, the sending client
retains the delivery for future exchange with the recipient.

The communication protocol between the two clients and server allow the server to synchronize the
sending client’s data stream with the recipient’s data stream. The two clients exchange a 1 megabyte

Compressed files of
various sizes

Files packed into 1
megabyte chunks

Figure 1.2 Segmented File Stream

7

chunk of data stored temporarily in server memory, and the protocol governs when the sending client
may upload its data chunk to the server, and when the receiving client may download it. As a router,
the server negotiates the data chunk exchange between the two clients. The two client data streams
may be of differing speed; the sending stream may, for instance, be much faster or slower than the
receiving stream, or vice versa. The communications protocol ensures synchronization between the two
streams by slowing down the effective rate of the faster stream to that of the slower stream. If the
sending client is faster than the receiving client, then the server will tell the sending client to slow down
until its speed matches that of the receiving client. Similarly, if the receiving client is faster than the
sending client, the server will force it to slow down to match the sending client’s speed. Due to the
nature of the Internet, communication speeds will vary throughout the day depending on usage. Thus,
at any given moment, the original client that had been faster may turn into a slower client. The server
will recognize this, and attempt to increase a client’s speed to match that of the faster client. The
process of matching speeds is dynamic: the server will increase or decrease a client’s speed so that it
matches that of the other client, and vice versa. The server’s task is then to synchronize the speeds of
the two clients so that they communicate with each other at the highest possible rate.

1.3 Expanded Server Architecture
While a single server can handle several hundred online users, an organization implementing
MyDelivery may at some point need to expand its capacity, whether to add more users, or to achieve a
higher degree of system reliability. Figure 1.3 shows a multi-CPU server architecture that allows
thousands of online users, with sufficient redundancy to handle cases where one or more machines may
fail.

8

This document explains how to configure servers for small or large configurations. Each machine runs
Windows server 2003 or 2008. In this example, seven machines are “Front-End Processors,” for
handling communication with clients. They run in a network load balanced configuration, which permits
traffic to be evenly distributed across all Front-end Processors. Furthermore, network load balancing
allows one or more Front-End Processors to fail, and the remaining machines will continue operating to
ensure error-free client communication. The Client Manager processor keeps track of all online clients,
and performs periodic system maintenance. The Primary Database Server and Secondary Database
Server each run SQL Server 2005 or 2008, which allows database mirroring and automatic failover
protection. With database mirroring, the Secondary Database Server maintains a current up-to-date
copy of the relevant tables on the Primary Database Server. If the Primary Database Server goes down,
the system detects this, and transfers operation to the Secondary Database Server, which then becomes
the Primary. Then, when the downed server comes back online, it becomes the Secondary Database
Server, and maintains an up-to-date copy of the tables on the new Primary Database Server.

1.4 Alternative Technologies
If there is any technology that might closely resemble MyDelivery, it might be a secure fax machine that
would be capable of sending files. Fax machines use the telephone system for communication and

To MyDelivery Clients

Internet

Network Load Balanced

Client Manager

Primary Database Server Secondary Database Server

Front-End Processors

Back-End Control

Figure 1.3. Multi-CPU MyDelivery Server

9

synchronization. No fax data is ever stored on servers where it could be lost. The problem is that fax
machines send copies of paper, not files, and the communication is usually not secure. MyDelivery uses
the Internet for data communication, and there are a number of existing technologies that permit two
clients to exchange information. These include email, secure email, FTP, instant messaging, and web
delivery services. The following table compares MyDelivery with alternative Internet technologies.

Tool Large
Datasets

Personal
Communications

Easy to
set up
and use

Secure Reliable
over
poor
networks

User
Data
Safe if
Server is
Lost

MyDelivery

Email

Secure Email

FTP

Peer-to-Peer
Instant
Messaging

Web-based
Instant
Messaging

Web
Delivery
Services

Email, a 30-year old technology, is easy to use, safe and usually free. However, it often limits message
attachment size, quantity, file types and inbox size. Secure email often presents users a hassle with
obtaining (for a fee) and managing security certificates. However, it provides end-to-end HIPAA-
compliant encryption and verification for limited attachment sizes and quantity.

Like email, FTP has been around for 30 years, and it allows users to exchange large files or large
numbers of files. An FTP server is tricky to set up, as it requires network administrators to poke holes
through firewalls. Neither FTP nor email protocols compensate for intermittent network connections,
requiring retransmission of data in the event of network failure.

Instant Messaging is easy to use, and usually allows large file exchange. There are two basic types of
Instant Messaging systems: one that uses peer-to-peer client communication and another that is web-
based. Peer-to-peer Instant Messaging systems offer file exchange that usually requires a server to run
on a user’s desktop computer (potentially allowing hackers to enter). Web-based instant messaging
systems do not use peer-to-peer communications, but employ a web server for temporary buffer for
user data. These systems may or may not permit file exchange. If they do, then some of these systems
may potentially archive user data for long periods of time, during which the data could be compromised.

10

A wide variety of web delivery services have sprung up in recent years, including BigUpload.com,
DropSend.com, SendSpace.com, YouSendit.com, MegaUpload.com, SendThisFile.com, GigaSize.com,
MailBigFile.com, WebCargo.com, and DropSend.com. These usually permit a user to upload a file via a
browser to a server. After the file arrives at the server, an email message is sent to the recipient, who
then clicks on a link in the email message to the server for file retrieval. Some services limit file size to
between 1 and 50 MB, while others permit up to 2 GB files. None offer HIPAA-compliant verification,
and none offer protection for communicating over poor networks.

The big advantage of MyDelivery over alternative technologies is its ability to offer HIPAA-compliant
exchange of user information while avoiding storage of that information on a server’s hard disk. The
avoidance of using a server’s hard disk for temporary storage of user data makes MyDelivery a very low-
cost solution to implement, while at the same time offering users an increased level of security.
MyDelivery also detects intermittent network communication and automatically recommences
communication at the point where communication was lost without having to restart from the
beginning.

1.5 System Performance
MyDelivery has been tested in an office environment over an Ethernet local area network, with a
measured speed of about 13 minutes to transfer a 1 gigabyte file from one client to another. This time
will vary depending on the compressibility of the data sent. It could be considerably longer if using a
wireless network or if transferring data over the Internet, where speeds can vary considerably.

11

2.0 Client-Server SOAP Communications

A unique communications protocol has been designed for MyDelivery client-server communication and
control. All communication takes place using HTTP or HTTPS, which nearly all firewalls permit. Sixteen
functions were created using Simple Object Access Protocol (SOAP), which is the transmission of XML-
based messages over HTTP. The functions are listed below, followed by a brief description given for
each.

GetVersion
Initialize
CSP
UploadUserInformation
ChangePassword
UpdateStatus
CheckRecipient
StartDeliveryUpload
UploadDeliveryHeader1
RequestToUpload
UploadAttachment
IsDeliveryValid
DownloadDeliveryHeader1
DownloadAttachment
DeliveryStatus
TerminateDelivery

2.1 GetVersion
A MyDelivery client uses the GetVersion function to find out the latest version of the client available on
the server. It checks the version number with its own version number, and determines whether the
client software needs to be updated to the new version. This function is typically executed once per
session and it is usually the first SOAP function executed.

Parameters sent to the Server: None

Parameters received from the Server:

Parameter Data Type Description

Status Integer Integer indication of whether the
function was successful.

12

0 = Function completed
successfully.

4 = Server problems; try again
later. Client should delay 15
minutes before trying to contact
the server again.

Version String Most recent version of client
software that is available for
download from the server.

NewSoftwareURL String URL where the latest client
software may be downloaded. The
client is designed to ask the user
whether the new software should
be downloaded and installed. It
goes to this URL to download the
software, which is in a self-
extracting executable file.

2.2 Initialize
The MyDelivery client uses this function to:

• Log into the system
• Tell the server how much free space is on the client computer, and the size of the largest file
• Get the user’s Address Book, Signature and SpamControl
• Get the user’s First and Last name as supplied during registration
• Get a Key uniquely identifying this user for executing other SOAP functions

Parameters sent to the Server:

Parameter Data Type Description

UserID String The MyDelivery UserID/password

DeviceCaps An XML string containing two
parameters: “LargestFile” - the size
of the largest file permitted on the
hard disk of the client’s computer,
and “FreeDiskSpace” - the total free
disk space available for deliveries on

13

the client computer.

Parameters received from the Server

Parameter Data Type Description

Status Integer Integer indication of whether the
function was successful.

0 = Function completed successfully.

1 = Not used

2 = Invalid MyDelivery ID or password

3 = Serious problem; details given in
ErrorStatus

4 = Server problems; try again in 15
minutes

ErrorStatus String String containing status 3-specific
information. To be used for
debugging purposes only, since status
3 should never occur in a production
client.

UserName String A string containing the user’s first and
last name, separated by a space (as
supplied during registration).

AddressBook Zip-compressed byte
array containing an XML

string

XML String containing the signature,
spam control policy, and address
book belonging to this user.

Key String String containing a 10-digit key that
uniquely identifies this client. This
key shall be used in all other SOAP
functions to identify this client.

14

2.3 CSP (ClientStatusPage)
Each client shall execute CSP (ClientStatusPage) from the MyDelivery Server periodically, whose period
depends on the overall system load. A typical period will be as fast once every 5 seconds, and could be
as slow as a minute or more. It will be specified by a variable, HeartBeat, returned by CSP. One
purpose of the CSP is to let the server know that the client is online. It also lets the client know whether
the system is up or down, and whether deliveries are pending, or clients are ready for a delivery. CSP
plays an important role in error recovery after a communications problem. The client uses it to probe
the network to see if it is up and running before executing all other SOAP functions.

Parameters sent to the Server:

Parameter Data Type Description

Key String String containing the unique key
assigned to this user via Initialize.

Parameters received from the Server

Parameter Description

Status String String containing status for this
specific client in the form “N1,N2”

When the client executes CSP, this lets the MyDelivery Server know that the client is online, and for
those clients configured to receive deliveries, it lets those clients know something about the status of
deliveries. The Server sends back to the client a brief message that may be as short as three ASCII
characters. Here is the scheme for the message:
“N1,N2” where:

N1 is a decimal encoding of ServerDown, InvalidKey, DoUpdateStatus, and PendingSender status
where the status of each of these is indicated by a Boolean flag (true or false).

N2 is a decimal number representing the HeartBeat, which is the number of seconds the client
must wait prior to repeating the execution of CSP.

Here is the relationship between the bit positions of N1 and the five status flags:

 |------------------------------ServerDown
 |-------------------------InvalidKey

 |--------------------DoUpdateStatus
 |--------------Not Used

 |--------PendingSender
N1 bit value 0/1 0/1 0/1 0/1 0/1
N1 bit position 4 3 2 1 0

15

Here are the status indications, their possible values, and meanings:

Key Word Value Meaning
ServerDown 1 (True) or 0

(False)
A value of True indicates that the server is Down. The
client shall immediately stop doing whatever it is doing,
wait 15 minutes, and attempt to recover. If recovery fails,
the client shall start from the beginning by executing the
Initialize function. A value of False indicates the server is
up.

InvalidKey

1 (True) or 0
(False)

A value of True indicates that either another client has
logged into the system with the same UserID, or this client
has provided an invalid key. This client must notify the
user and shut down automatically, stopping all other
processes it may be conducting. A value of False indicates
no key problem.

DoUpdateStatus

1 (True) or 0
(False)

A value of True indicates that the client should execute
UpdateStatus to determine the status of deliveries. This
bit is set to False after the sending client executes
UpdateStatus.

Not Used This bit is not currently used.

PendingSender
1 (True) or 0

(False)
A value of True indicates that either another client wants
to make a delivery to this client, but is unable to do so
because the other client is not in this client’s address
book. A value of False indicates there are no pending
senders.

HeartBeat

Integer
 >= 5

HeartBeat is the amount of time in seconds that the client
should wait before executing the next CSP. The Server will
vary this, depending on its total CPU utilization. The
Front-end processors are able to throttle their CPU
utilization by varying the frequency of CSPs received by
the machine.

The following are sample responses sent by the Server back to the client through CSP:
0,5

This is normal status with a heartbeat of 5 seconds:

ServerDown = 0

InvalidKey = 0

DoUpdateStatus = 0

(Not Used) = 0

PendingSender = 0

16

HeartBeat = 5

4,5

This indicates that client should execute the UpdateStatus function:

ServerDown = 0

InvalidKey = 0

DoUpdateStatus = 1

(Not Used) = 0

PendingSender = 0

HeartBeat = 5

16,5

This indicates the server is down, and the client should go away for 15 minutes:

ServerDown = 1

InvalidKey = 0

DoUpdateStatus = 0

(Not Used) = 0

PendingSender = 0

HeartBeat = 5

2.4 UploadUserInformation
The MyDelivery client uses UploadUserInformation to upload to the MyDelivery Server its address book,
which also contains the user signature, and spam control policy.

17

Parameters sent to the Server

Parameter Data Type Description

Key String The unique key assigned to this
user via Initialize.

AddressBook Zip-compressed byte array
containing an XML string

XML String containing the
signature, spam control policy,
and address book belonging to
this user.

Parameters received from the Server

Parameter Data Type Description

Status Integer Status – Integer indication of
whether the function was
successful.

0 = Function completed
successfully.

1 = User logged out. Must execute
Initialize again.

2 = Invalid MyDelivery ID or
password

3 = Serious problem; details given
in ErrorStatus

4 = Server problems; try again in
15 minutes

5 = Invalid MyDelivery ID in
Address Book. Invalid ID’s will be
listed in ErrorStatus

ErrorStatus String Comma-separated list of invalid
MyDelivery ID’s (if the Status
received is “5”)

18

AddressBook – XML String containing the signature, spam control policy, and address book belonging to
this user.
 It will contain a SIG element, which is a string containing the user’s signature.
 It will contain a POLICY element, which is a string containing one of two values
(BLOCKALL or ADDRESSBOOK) for controlling unwanted receptions:
BLOCKALL – Prevent all receptions
ADDRESSBOOK – Allow receptions only from users listed in the user’s address book.
It will contain a WHITELIST section for users permitted to communicate with the user. The WHITELIST
contains:
 NUM_ENTRIES – number of entries in the WHITELIST
 ADDRx – entry for user x
 FIRST – user’s first name
 LAST – user’s last name
 HANDLE – MyDelivery ID of this user
 NOTES – up to 256 characters of free text

It will contain a BLOCKED_SENDERS section for users NOT permitted to communicate with the user. This
section contains:
 NUM_BLK_ENTRIES – number of entries in the section
 ADDRx – entry for user x
 FIRST – user’s first name
 LAST – user’s last name
 HANDLE – MyDelivery ID of this user
 NOTES – up to 256 characters of free text

Here is a sample address book:
<?xml Version=”1.0”?>
<MyDelivery>
 <SIG>John Dow</SIG>
 <POLICY>BLOCKALL</POLICY>
 <WHITELIST>
 <NUM_ENTRIES>1</NUM_ENTRIES>
 <ADDR1>
 <FIRST>Tom</FIRST>
 <LAST>Jones</LAST>
 <HANDLE>tomj</HANDLE>
 <NOTES>tomjones@yahoo.com</NOTES>
 </ADDR1>
 </WHITELIST>
 <BLOCKED_SENDERS>
 <NUM_BLK_ENTRIES>1</NUM_BLK_ENTRIES>
 <ADDR1>
 <FIRST>John</FIRST>
 <LAST>Doe</LAST>
 <HANDLE>jdoe</HANDLE>
 <NOTES>jdoe@yahoo.com</NOTES>
 </ADDR1>
 </BLOCKED_SENDERS>

19

</MyDelivery>

If a potential sender to a recipient is not in the recipient’s address book, and attempts to send a delivery
to the recipient, the following will occur:

If POLICY contains BLOCKALL, the MyDelivery server will reject the delivery.

If POLICY contains ADDRESSBOOK, information about the sender will be presented to the recipient, who
will be asked whether the sender should be added to the address book and the delivery transaction
completed.

2.5 ChangePassword
Users are permitted to change their MyDelivery password through the client when the ChangePassword
function is executed.

Parameters sent to the Server:

Parameter Data Type Description

Key String The unique key assigned to this
user via Initialize.

OldPassword String String containing the user’s current
password. This is the user’s current
password. If the user sends an
incorrect OldPassword, the server
will return a Status of 2, and will not
store the NewPassword.

NewPassword String String containing the user’s new
password. This is the user’s new
password. A password must be
between 6 and 15 alphanumeric
characters (a-z, A-Z, or 0-9).

Parameters received from the Server

Parameter Data Type Description

20

Status Integer Integer indication of whether the
function was successful.

0 = Function completed
successfully.

1 = User logged out. Must execute
ChangePassword again.

2 = Invalid MyDelivery ID or
password

3 = Serious problem; details given in
ErrorStatus

4 = Server problems; try again in 15
minutes

ErrorStatus String String containing status 3-specific
information

2.6 UpdateStatus
The MyDelivery client uses UpdateStatus in several ways:

1. To receive from the MyDelivery server a list of MyDelivery IDs that have recently attempted to
send to this user’s client, but which cannot send because they are not listed in the user’s
address book.

2. To receive from the MyDelivery server the status of previous deliveries or attempted deliveries –
whether they were successfully delivered, whether they are pending delivery, whether the
receiving client is blocking deliveries from this user (anti-spam), or whether they could not be
delivered.

3. To tell the server how much free disk space is available on the client for receiving a delivery.

There are three instances when the client executes UpdateStatus:

1. Right after running Initialize. This enables a client to immediately find out whether it has pending
deliveries, or other clients are not included in its address book.

2. When CSP indicates a TRUE state in DoUpdateStatus.
3. When there is a major change in FreeDiskSpace on the client computer. The client should keep

track of FreeDiskSpace, and when it changes by 10 percent or more since the last Initialize or
UpdateStatus, it should run UpdateStatus again, giving the new value to the server.

21

Parameters sent to the Server

Parameter Data Type Description

Key String The unique key assigned to this
user via Initialize.

DeliveryStatusRequest String XML string containing a list of
DeliveryID’s for deliveries
previously sent to the
MyDelivery Server.

FreeDiskSpace String The amount (in bytes) of space
available on the client computer
for receiving deliveries. The
MyDelivery Server can use this
number to reject deliveries that
exceed the disk space available
on a potential recipient
computer.

Parameters received from the Server

Parameter Data Type Description

Status Integer Indicates whether the function
was successful.

0 = Function completed
successfully.

1 = User logged out. Must
execute Initialize again.

2 = Invalid MyDelivery ID or
password

3 = Serious problem; details
given in ErrorStatus

4 = Server problems; try again in
15 minutes

22

ErrorStatus String String containing status 3-
specific information.

DeliveriesReadyForDownload String XML string containing a list of
pending deliveries. Each list
entry contains two items for
each pending delivery:

DeliveryID assigned to delivery

DeliverySize -the size of the
delivery.

DeliveryStatus String XML string containing the
delivery status for those
deliveries whose DeliveryID was
given in DeliveryStatusRequest

An example of the DeliveryStatusRequest parameter:

 <?xml version="1.0" ?>
- <MyDelivery>
 - <DeliveryStatusRequest>
 <NUM_ENTRIES>3</NUM_ENTRIES>
 <ID1>234899009837779</ID1>
 <ID2>982349872277999</ID2>
 <ID3>198098347798739</ID3>
 </DeliveryStatusRequest>
 </MyDelivery>

An example of the DeliveryStatus parameter:

 <?xml version="1.0" ?>
- <MyDelivery>
 - <DeliveriesReadyForDownload>
 <NUM_ENTRIES>2</NUM_ENTRIES>
 <Delivery1>
 <ID>123989820937</ID>
 <TotalSize> 23399</TotalSize>
 </Delivery1>
 <Delivery2>
 <ID>892839876390</ID>
 <TotalSize>2388399</TotalSize>
</Delivery2>

23

 </DeliveriesReadyForDownload>
 </MyDelivery>

DeliveryStatus will be one of the following:

Pending – The Delivery is still waiting for the client to initiate its download. The sending client should
retain the entire delivery until the recipient has received all of it.
Restart – The delivery should either be restarted or continued. The Pointer parameter indicates where
the delivery should recommence.
Success – The Delivery was successfully completed. The sending client may delete the delivery from its
hard disk since it is no longer needed.
Failure – The Delivery failed. The sending client should retain the delivery for future action.
Pointer will indicate where the sending client should restart or continue. If 0, the client shall send
UploadDeliveryHeader1. If not zero, this indicates the attachment number for resumption of
communications.

Example:

 <?xml version="1.0" ?>
- <MyDelivery>
 <DeliveryStatus>
 <NUM_ENTRIES>3</NUM_ENTRIES>
<Delivery1>
 <ID>234899009837779</ID>
 <Status>Failure</Status>
 <Pointer></Pointer>
</Delivery1>
<Delivery2>
 <ID>982349872277999<ID>
 <Status>Pending</Status>
<Pointer></Pointer>
</Delivery2>
<Delivery3>
 <ID>198098347798739<ID>
 <Status> Success </Status>
<Pointer></Pointer>
</Delivery3>
<Delivery4>
 <ID>198098347798739<ID>
 <Status>Restart </Status>
<Pointer>25</Pointer>
</Delivery4>
 </DeliveryStatus>
</MyDelivery>

24

2.7 CheckRecipient
The client uses CheckRecipient to find out if a delivery can be made to a specific recipient. This function
is executed immediately after the user clicks the “Start” button in the New Delivery dialog box. The
results returned by the function allow the delivery to either be processed or rejected immediately. For
rejections, the client software shall present the user with a dialog box informing the user of the
problem.

Parameters sent to the Server:

Parameter Data Type Description

Key String The unique key assigned to this
user via Initialize

ReceiverHandle String The MyDeliveryID of the intended
recipient client.

TotalSize String String representation of an int64
number that is an estimate of the
total size (in bytes) of all
attachments to be sent in this
delivery to the recipient.

LargestFile String String representation of an int64
number that is the size (in bytes)
of the largest file (prior to
encryption) to be sent as an
attachment in this delivery to the
recipient. The MyDelivery Server
shall use this to determine
whether the recipient can accept
files of certain sizes. For FAT16
and FAT32, the maximum file size
is 232 – 1 bytes. For NTFS, the
maximum file size is 244 – 64kb.

Parameters received from the Server

Parameter Data Type Description

Status Integer Indicates whether the function was
successful.

25

0 = Function completed successfully.
Delivery to the specified recipient
may proceed.

1 = User logged out. Must execute
Initialize again.

2 = Not used

3 = Serious problem; details given in
ErrorStatus

4 = Server problems; try again in 15
minutes

5 = Recipient has never run
MyDelivery. Notify the user
through a dialog box: “Recipient
needs to run MyDelivery, and has
never run it before.”

6 = Blocked. The recipient is not
allowing reception from this user.
Do not attempt a delivery to this
recipient.

7 = DiskFull - the recipient does not
have adequate hard disk space to
accept the delivery from the
sending client.

8 = FileSystemOverload – the
recipient computer’s file system
cannot accept the largest file to be
sent.

9 = Pending - the recipient does not
have the sender in its address book,
and it is not blocking this sender.
The next time the recipient executes
ClientStatusPage, it will receive
“PendingSender” status, indicating
there is a pending sender. Upon
receiving this status, the recipient
should execute the UpdateStatus

26

function to find out who the
pending sender is.

10 = Problem with recipient’s
MyDelivery ID; either the recipient
is not in the sender’s address book,
or the recipient does not exist.

ErrorStatus String String containing status 3-specific
information

2.8 StartDeliveryUpload
The client uses StartDeliveryUpload to initiate a single delivery to a recipient. The client must specify
the MyDeliveryID of the recipient, and in return receives the DeliveryID of the recipient that it should
use for other functions associated with sending a delivery: UploadDeliveryHeader, UploadAttachment,
IsDeliveryValid and TerminateDelivery.

Parameters sent to the Server:

Parameter Data Type Description

Key String The unique key assigned to this
user via Initialize.

ReceiverHandle String The MyDelivery ID of the intended
recipient client.

TotalSize String String representation of an int64
number that is an estimate of the
total size (in bytes) of all
attachments to be sent in this
delivery to the recipient.

LargestFile String String representation of an int64
number that is the size (in bytes)
of the largest file (prior to
encryption) to be sent as an
attachment in this delivery to the
recipient. The MyDelivery Server
shall use this to determine
whether the recipient can accept
files of certain sizes. For FAT16

27

and FAT32, the maximum file size
is 232 – 1 bytes. For NTFS, the
maximum file size is 244 – 64kb.

Parameters received from the Server:

Parameter DataType Description

Status Integer Indicates whether the function was
successful.

0 = Function completed successfully.
The client may proceed next with
UploadDeliveryHeader.

1 = User logged out. Must execute
Initialize again.

2 = Invalid MyDelivery ID or password

3 = Serious problem; details given in
ErrorStatus

4 = Server problems; try again in 15
minutes

5 = Not used.

6 = Blocked. The recipient is not
allowing reception from this user. Do
not attempt a delivery to this
recipient.

7 = DiskFull - the recipient does not
have adequate hard disk space to
accept the delivery from the sending
client.

8 = FileSystemOverload - the recipient
computer’s file system cannot accept
the largest file to be sent by the
sending MyDelivery.

9 = Pending - the recipient does not

28

have the sender in its address book,
and it is not blocking this sender. The
next time the recipient executes
UpdateStatus, it will receive status
indicating the pending sender.

10 = Problem with recipient’s
MyDelivery ID; either the recipient is
not in the sender’s address book, or
the recipient does not exist.

11 = Recipient is offline.

ErrorStatus String String containing status 3-specific
information.

DeliveryID String If the Server determines the delivery
to the specified recipient can proceed
(Status = 0), it creates the DeliveryID,
which is the string representation of
an int64 number identifying the
delivery. The sending and receiving
clients will use this identifier for all
functions regarding this specific
delivery.

2.9 UploadDeliveryHeader1
The client uses UploadDeliveryHeader1 to upload the header information for a single delivery, where a
delivery may consist of zero, one or more file attachments. The UploadDeliveryHeader initiates a
delivery, and it is sent once per delivery. It contains general information describing the delivery. For the
case where there are no attachments, the delivery contains only a text message. Attachments will be
numbered 1, 2, 3, and so on. If there are no attachments, then execution of UploadDeliveryHeader
completes the delivery. Otherwise if there are attachments, UploadDeliveryHeader1 must be followed
with one or more UploadAttachment executions. The number of attachments is calculated from the
total size of all files listed in the Files parameter. The attachment size is fixed at one megabyte
(1,048,576 bytes). Files smaller than this size are packed together to create a one megabyte
attachment. Files larger than one megabyte are split into one megabyte attachments.

The number of files in the delivery is obtained from the NUM_ENTRIES element in Files (see below).

29

Parameters sent to the Server:

Parameter Data Type Description

Key String The unique key assigned to this user
via Initialize.

DeliveryID String A string representing an int64
number that identifies the delivery;
obtained from StartDeliveryUpload.

Subject Byte Array containing a
string

Byte array (base-64-encoded by
SOAP) containing the text subject.

TextMessage Byte Array containing a
string

Byte array (base-64-encoded by
SOAP) containing a text message that
accompanies the attached delivery.
This may be empty if there is no text
message.

Files Byte Array containing a
string

XML string containing the node ID of
the file (1, 2, 3, etc.), the names of
the encrypted files, the size (in bytes)
of each file, and the number of parts
required to send each file. It also
contains a compression map that
describes which attached files have
been compressed. Each file may be
subdivided into one or more “parts”.
If the file has only one part, this
means the file is completely sent in
one attachment. If the file needs to
be divided into more than one part,
then the parts may be spread out
over two or more attachments. For
multiple parts, part 1 is the first
portion of the file, part 2 follows part
1, part 3 follows part 2, and so on. A
single file is the concatenation of its
parts. The number of files in the
entire delivery is denoted by
NUM_ENTRIES in this XML string.

30

There are no files if this is an empty
string.

Tree Zip-compressed Byte Array
containing a string

Byte array (base-64-encoded by
SOAP) containing an always
compressed representation of the
tree structure. The Tree structure
that will be used by MyDelivery will
contain a delimiter (‘*’) separated list
of values. These values are used to
reconstruct the hierarchical
information of the attached folders,
files and their timestamps. Each line
in this file represents a single node,
and the lines are separated by a new
line character ‘\n’.

CheckCode Byte Array Contains a checkcode for verifying
the Subject, TextMessage, Files and
Tree. The receiving client shall hash
these fields to determine whether
they match the CheckCode. If there
is a match, then the fields were not
altered during transmission. If there
is not a match, then this function
must be repeated until a match is
received.

Parameters received from the Server

Parameter Data Type Description

Status Integer Indicates whether the function was
successful.

0 = Function completed successfully.
The client should next execute the
UploadAttachment function if there
are any to be uploaded.

1 = User logged out. Must execute

31

Initialize again.

2 = Invalid MyDelivery ID or
password

3 = Serious problem; details given in
ErrorStatus

4 = Server problems; try again in 15
minutes

ErrorStatus String String containing status 3-specific
information.

Files – XML string containing the node ID of the file (1, 2, 3, etc.), the names of the files, the size (in

bytes) of each file, and the number of parts required to send each file. It also contains a compression
map that describes which attached files have been compressed. Each file may be subdivided into one or
more “parts”. If the file has only one part, this means the file is completely sent in one attachment. If
the file needs to be divided into more than one part, then the parts may be spread out over two or more
attachments. For multiple parts, part 1 is the first portion of the file, part 2 follows part 1, part 3 follows
part 2, and so on. A single file is the concatenation of its parts. The number of files in the entire delivery
is denoted by NUM_ENTRIES in this XML string. There are no files if this is an empty string.

The Compression map is a base-64-encoded byte array that describes which attached files are
compressed. This is the format for the byte array and the correspondence between the file attachment
and the bit within the byte:
Bit Position Attached File
7 1
6 2
5 3
4 4
3 5
2 6
1 7
0 8

If the file is compressed, then the bit is set to 1. If the file is uncompressed, then the bit is set to 0.
Three factors are used to determine whether a file gets compressed. First, if the file size is less than
10,240 bytes, the file will not be compressed. Second, if the first 1,048,576 bytes of the file can be
compressed, then the entire file will be compressed. Third, if the resulting size of the compressed file is
greater than the uncompressed size, the file will not be compressed.

If there is only one attached file, bit 0 corresponds to that file. If there are two attached files, the first
attached file corresponds to bit 1, and the second file corresponds to bit 0. The above table is the case
for 8 attached files. A second byte will be added if there are 9 through 16 attached files. In this case,

32

the first byte corresponds to files 1 through 8, and the second file corresponds to files 9 through 16.
Additional bytes are added for additional attached files.

Once the byte array is created, it is converted to base-64, which results in a text representation of the
bytes. In base-64 encoding, four bytes are produced for every three input. The Compression element in
the xml-based Files parameter is this base-64 conversion of the byte array.

Example:

 <?xml version="1.0" ?>
 <MyDelivery>
 <Files>
 <NUM_ENTRIES>3</NUM_ENTRIES>
 <COMPRESSION>BQ==</COMPRESSION>
 </Files>
 <FILEINFO>1,2489034433,3:3,20909,1:4, 3489034433,4</FILEINFO>
</MyDelivery>

In the example above, the first file, has a node id of 1, a size of 2489034433 bytes, and is divided into 3
parts. The second file, has a node id of 3, has a size of 20909, and consists of only one part. The
FILEINFO field will be empty if there are no attachments.

The client and server shall each assume that the total number of attachments is the total size of all files
divided by 1,048,576. This means that each “part” or transmitted attachment has a maximum size of
1,048,576 bytes.

Tree – Byte array (base-64-encoded by SOAP) containing an always compressed representation of the
tree structure. The Tree structure that will be used by MyDelivery will contain a delimiter (‘*’) separated
list of values. These values are used to reconstruct the hierarchical information of the attached folders,
files and their timestamps. Each line in this file represents a single node, and the lines are separated by a
new line character ‘\n’. The following table lists the fields and their data types:

Field Type Max Size
NodeID Integer 32 bits
ParentID Integer 32 bits
LastWriteTime FILETIME 64 bits
Attribute Integer 32 bits
FileName String 256 bytes

Ordering:

Each line has the fields in the same order as in the table above.

NodeID*ParentID*LastWriteTime*Attribute*FileName’\n’

33

NodeID

The tree structure used by MyDelivery consists of a hierarchy of nodes. Each of these nodes represents
either a file or a folder. Each Node has a unique node id (integer) that identifies it. These node ids start
at 1 (excluding the reserved root MyDelivery node id of ‘0’) and continuously increase by 1 with no gaps
in between the node ids. That is every node id that starts on a new line should be the next higher
integer of the previous lines node id.

ParentID:

Each node has a parent id that is the node id of its parent. The root node does not have a parent and its
parent id field has the value -1.

LastWriteTime:

The LastWriteTime field has the datatype FILETIME that is really an (unsigned __int64). This structure
specifies when the file or directory was modified. The FILETIME structure is a 64-bit value representing
the number of 100-nanosecond intervals since January 1, 1601 (UTC).

typedef struct _FILETIME {
 DWORD dwLowDateTime;
 DWORD dwHighDateTime;} FILETIME,

Attribute:
The Attribute Field specifies the attribute of the file or folder and has one of these values (defined in
winnt.h)

#define FILE_ATTRIBUTE_READONLY 0x00000001
#define FILE_ATTRIBUTE_HIDDEN 0x00000002
#define FILE_ATTRIBUTE_SYSTEM 0x00000004
#define FILE_ATTRIBUTE_DIRECTORY 0x00000010
#define FILE_ATTRIBUTE_ARCHIVE 0x00000020
#define FILE_ATTRIBUTE_DEVICE 0x00000040
#define FILE_ATTRIBUTE_NORMAL 0x00000080
#define FILE_ATTRIBUTE_TEMPORARY 0x00000100
#define FILE_ATTRIBUTE_SPARSE_FILE 0x00000200
#define FILE_ATTRIBUTE_REPARSE_POINT 0x00000400

34

#define FILE_ATTRIBUTE_COMPRESSED 0x00000800
#define FILE_ATTRIBUTE_OFFLINE 0x00001000
#define FILE_ATTRIBUTE_NOT_CONTENT_INDEXED 0x00002000
#define FILE_ATTRIBUTE_ENCRYPTED 0x00004000

FileName:

The FileName is a string that holds the name of the file on disk and can be MAX_PATH (256) bytes long.

FileSize:
The FileSize is a string containing the size in bytes of the uncompressed original file.

Samples:

Case 1: A folder c:\aaa containing subdirectories and files is attached

The first line always describes the root folder MyDelivery. This pseudo folder is a parent for all
attachments included in this delivery. The following is a listing of the tree when a folder c:\aaa is
attached. This listing specifies all files and folders that appear below the directory c:\aaa.

0*-1*0*16*MyDelivery
1*0*128894147203484931*16*aaa
2*1*128226147780354931*16*MissionSpace
3*2*128226147217876531*16*debug
4*3*128226105885869991*16*images
5*4*128223879320000000*128*cassini.jpg*1001
6*4*128225236300000000*128*ecell.jpg*10011
7*4*128222923260000000*128*exhaust.jpg*10012
8*4*128225240680000000*128*galaxy.jpg*100111
9*4*128222599020000000*128*planet1.bmp*100131
10*4*127892533520000000*128*quitDown.png*10044
11*4*127892533540000000*128*quitOver.png*1005
12*4*127892533540000000*128*quitUp.png*10054
13*4*128223328800000000*128*ssbody.jpg*100433
14*4*128223316660000000*128*ssglass.jpg*1002
15*4*127892533540000000*128*startDown.png*10021
16*4*127892533540000000*128*startOver.png*100123
17*4*127892533540000000*128*startUp.png*10032
18*3*128226133174665811*16*objects
19*18*128226104176404387*128*artifact.x*10033
20*18*128226133174197079*128*planet.x*10043
21*18*128226124963418635*128*skybox.x*1002
22*18*128226106165702995*128*spaceship.x*1005
23*3*128226090650361307*16*sound
24*23*128224689780000000*128*laser.wav*1005
25*23*128224687920000000*128*launch.wav*1003
26*23*128224694020000000*128*meteor.wav*10033

35

27*23*128224686500000000*128*travel.wav*100532
28*3*128226127624566443*128*mission.txt*10052

Case 2: A folder c:\aaa that contains only files is attached

The first line always describes the root folder MyDelivery. This pseudo folder is a parent for all
attachments included in this delivery. The following is a listing of the tree when a folder c:\aaa is
attached. This listing specifies all files that appear below the directory c:\aaa.

0*-1*0*16*MyDelivery
1*0*128894147203484931*16*aaa
2*1*128223879320000000*128*cassini.jpg*1012
3*1*128225236300000000*128*ecell.jpg*10033
4*1*128222923260000000*128*exhaust.jpg*10044
5*1*128225240680000000*128*galaxy.jpg*10032
6*1*128222599020000000*128*planet1.bmp*10012
7*1*127892533540000000*128*quitOver.png*10043
8*1*127892533540000000*128*quitUp.png*10021
9*1*128223328800000000*128*ssbody.jpg*10044
10*1*128223316660000000*128*ssglass.jpg*1006

Case 3: Only files are attached

The first line always describes the root folder MyDelivery. This pseudo folder is a parent for all
attachments included in this delivery. The following is a listing of the tree when only files are attached
to a delivery like in WebDelivery.

0*-1*0*16*MyDelivery*0
1*0*128223879320000000*128*cassini.jpg*103
2*0*128225236300000000*128*ecell.jpg*10034
3*0*128222923260000000*128*exhaust.jpg*10234
4*0*128225240680000000*128*galaxy.jpg*1054
5*0*128222599020000000*128*planet1.bmp*10053
6*0*127892533540000000*128*quitOver.png*10022
7*0*127892533540000000*128*quitUp.png*100223
8*0*128223328800000000*128*ssbody.jpg*1002
9*0*128223316660000000*128*ssglass.jpg*10023

2.10 RequestToUpload
The client uses RequestToUpload to get permission from the server to upload an attachment via
UploadAttachment. RequestToUpload is executed at least once for each UploadAttachment. If the 1
megabyte of server memory is not available (i.e., the receiving client has not downloaded the previous

36

attachment), this function returns a nonzero value in the Wait parameter. This value will be the number
of milliseconds the sending client must wait prior to re-executing the RequestToUpload function. The
sending client must keep repeating RequestToUpload until the value returned in the Wait parameter is
0, after which it is permitted to execute UploadAttachment.

Parameters sent to the Server:

Parameter Data Type Description

Key String The unique key assigned to this user
via Initialize.

DeliveryID String String identifying the delivery.
Represents an int64 data type.

Attachment Integer The attachment number (1, 2, 3, …)

Parameters received from the Server:

Parameter Data Type Description

Status Integer Integer indication of whether the
function was successful.

0 = Function completed
successfully.

1 = User logged out. Must execute
Initialize again.

2 = Invalid MyDelivery ID or
password

3 = Serious problem; details given
in ErrorStatus

4 = Server problems; try again in
15 minutes

5= Receiver is offline

6= Resync: The receiving client has
indicated through DeliveryStatus
that the download failed. the
sending client must execute

37

UpdateStatus to determine the
new starting point for sending the
delivery.

Wait Integer Number of milliseconds the client
must wait before repeating this
function. A value of 0 indicates
the client may proceed
immediately with
UploadAttachment.

2.11 UploadAttachment
The client uses UploadAttachment to upload an attachment of a delivery. This function may be
executed more than once, if multiple attachments must be sent. All attachments stored at the
MyDelivery Server will be one megabyte (1,048,576 bytes) in size, unless it is the final attachment in a
delivery, in which case it can be from one byte to one megabyte in size. This function permits the client
to upload variable-sized DIME attachments.

Parameters sent to the Server:

Parameter Data Type Description

Key String The unique key assigned to this user
via Initialize.

DeliveryID String String identifying the delivery.
Represents an int64 data type.

Attachment Integer The attachment number (1, 2, 3, …)

CheckCode String Hash checkcode for the attachment.

DIMEAttachment Byte stream File part attached to the message
using DIME.

Parameters received from the Server:

Parameter Data Type Description

Status Integer Integer indication of whether the

38

function was successful.

0 = Function completed
successfully.

1 = User logged out. Must execute
Initialize again.

2 = Invalid MyDelivery ID or
password

3 = Serious problem; details given
in ErrorStatus

4 = Server problems; try again in
15 minutes

5= Receiver is offline

6= Resync: The receiving client has
indicated through DeliveryStatus
that the download failed. the
sending client must execute
UpdateStatus to determine the
new starting point for sending the
delivery.

ErrorStatus String String containing status 3-specific
information.

Wait Integer Number of milliseconds the client
must wait before repeating this
function. A value of 0 indicates
the Server has stored the
attachment, and the client may
proceed with the next
RequestToUpload.

2.12 IsDeliveryValid
The client uses IsDeliveryValid to determine whether a delivery is still available for reception or delivery.
The function also returns status indicating whether a delivery has been terminated.

Parameters sent to the Server:

39

Parameter Data Type Description

Key String The unique key assigned to this
user via Initialize.

DeliveryID String String identifying the delivery
(represents an int64 data type).

Parameters received from the Server

Parameter Data Type Description

Status Integer Indicates whether the function
was successful.

0 = Function completed
successfully; Delivery is valid

1 = User logged out. Must
execute Initialize again.

2 = Invalid MyDelivery ID or
password

3 = Serious problem; details given
in ErrorStatus

4 = Server problems; try again
later

ErrorStatus String String containing status 3-specific
information.

DeliveryValid Boolean TRUE if the delivery is still
available on the server, or FALSE
if not available.

DeliveryTerminated Boolean TRUE if the delivery was
terminated, or FALSE if not
terminated.

40

2.13 DownloadDeliveryHeader1
The client uses DownloadDeliveryHeader1 to download the header information for a single delivery,
where a delivery may consist of zero, one or more attachments.

Parameters sent to the Server:

Parameter Data Type Description

Key String The unique key assigned to this
user via Initialize.

DeliveryID String String identifying the delivery

(represents an int64 data type)

Parameters received from the Server

Parameter Data Type Description

Status Integer Indicates whether the function was
successful.

0 = Function completed successfully.

1 = User logged out. Must execute
Initialize again.

2 = Invalid MyDelivery ID or
password

3 = Serious problem; details given in
ErrorStatus

4 = Server problems; try again in 15
minutes

5= Sending client is offline

ErrorStatus String String containing status 3-specific
information.

DeliveryTerminated Boolean Indicates whether the sending client
has terminated the delivery (TRUE)
or not (FALSE).

41

SenderFirstName String The sender’s first name

SenderLastName String The sender’s last name

SenderHandle String The sender’s MyDelivery ID

Subject Byte Array containing a
string

The text subject.

TextMessage Byte Array containing a
string

The text message

Files String XML string describing the attached
files and/or folders. If the string is
empty, this indicates there are no
attachments.

Tree Byte Array containing a
string

Byte array (base-64-encoded by
SOAP) containing an always
compressed representation of the
tree structure. This tree structure
contains information such as the
folders; hierarchy, display names,
extensions, timestamps and other
file attribute information.

CheckCode Byte Array A hash checkcode for the Subject,
TextMessage, Files and Tree.

2.14 DownloadAttachment
The client uses DownloadAttachment to download a specific attachment for a single delivery, where a
delivery may consist of zero, one or more one megabyte (1,048,576 bytes) attachments. This function
may be executed more than once, if multiple attachments must be received.

Parameters sent to the Server:

Parameter Data Type Description

Key String The unique key assigned to this user
via Initialize

DeliveryID String Identifies the delivery. Represents

42

an int64 data type.

Attachment Integer The attachment number (1, 2, 3, …).
Attachments shall be downloaded
in order, starting with 1, then 2, etc.

Parameters received from the Server:

Parameter Data Type Description

Status Integer Indicates whether the function was
successful.

0 = Function completed successfully.

1 = User logged out. Must execute
Initialize again.

2 = Invalid MyDelivery ID or password

3 = Serious problem; details given in
ErrorStatus

4 = Server problems; try again in 15
minutes

5=Sender is offline; cannot download
the attachment

ErrorStatus String Contains status 3-specific information.

MaxAttachmentReady Integer The number of the highest numbered
attachment on the server available for
download. The client should use this
number, if possible, instead of executing
IsAttachmentReady.

Wait Integer Number of milliseconds the client must
wait before repeating this function. If 0,
this indicates the specified attachment is
available as a DIME attachment in this
function. If non zero, the specified
attachment is not available, and the

43

client must repeat the function after
waiting.

CheckCode String Hash checkcode for the attachment.

DeliveryTerminated Boolean Indicates whether the sending client has
terminated the delivery (TRUE) or not
(FALSE). If the delivery has been
terminated, the receiving client shall
delete whatever it has received from the
delivery.

DIMEAttachment Byte stream File part attached to the message using
DIME.

2.15 DeliveryStatus
The client uses DeliveryStatus to tell the server all of the attachments for a delivery were correctly
received. Once the server receives a successful delivery indication, it can notify the sending client that
the delivery was successfully completed.

Parameters sent to the Server:

Parameter Data Type Description

Key String The unique key assigned to this
user via Initialize

DeliveryID String Identifies the delivery. Represents
an int64 data type.

DeliveryResult String “Success” if the delivery was
successfully received.

“Failure” if the delivery was not
properly received.

RestartPointer Integer If DeliveryResult is "Failure",
RestartPointer indicates where
the sending client should restart
the delivery
0 = Restart with
UploadDeliveryHeader
 > 0 = The attachment number
where UploadAttachment should

44

be restarted

Parameters received from the Server

Parameter Data Type Description

Status Integer Indicates whether the function
was successful.

0 = Function completed
successfully.

1 = User logged out. Must execute
Initialize again.

2 = Invalid MyDelivery ID or
password

3 = Serious problem; details given
in ErrorStatus

4 = Server problems; try again later
ErrorStatus String Contains status 3-specific

information.

2.16 TerminateDelivery
The client uses TerminateDelivery to inform the server that it is killing one or more deliveries.

Parameters sent to the Server:

Parameter Data Type Description

Key String Contains the unique key assigned
to this user via Initialize

TerminationList String XML string of DeliveryID’s to be
terminated.

Parameters received from the Server

Parameter Data Type Description

45

Status Integer Indicates whether the function
was successful.

0 = Function completed
successfully.

1 = User logged out. Must execute
Initialize again.

2 = Invalid MyDelivery ID or
password

3 = Serious problem; details given
in ErrorStatus

4 = Server problems; try again later
ErrorStatus String Contains status 3-specific

information.

Example of the TerminationList parameter:

<?xml version="1.0"?>
- <MyDelivery>
<Terminate>
<NUM_ENTRIES>2</NUM_ENTRIES>
<ID1>123345677</ID1>
<ID2>345345247</ID2>
 </Terminate>
</MyDelivery>

46

3.0 MyDelivery Server Architecture

The MyDelivery server can be configured as one or more machines, depending on the amount of
redundancy the administrator desires, and the number of users. The cheapest solution is to run the
MyDelivery server as a single machine, which should be able to handle several hundred online users.
This is a list of Windows services running on a single-machine server:

1. mdClientListService

2. mdFileXFERService

3. mdFlusher

4. mdMonitor

5. mdPinger

6. mdClientManager

7. SQL Server Express

For a large production system capable of handling thousands of users, rack-mounted blade servers are
recommended. Each server runs Windows Server 2003 or 2008, and the Internet Information Server (IIS)
is the HTTP server that interfaces with the Internet. Figure 1.3 illustrates a multi CPU system that uses
Microsoft’s Network Load Balancing for the Front-End Processors. These are the services running on
each Front-End Processor:

1. mdClientListService

2. mdFileXFERService

3. mdFlusher

4. mdMonitor

5. mdPinger

6. Secondary ClientManager (running on one Front-End Processor)

These are the services running on the ClientManager processor:

1. Primary ClientManager

2. SQL Server Express acting as a Witness for SQL Server database mirroring

Primary SQL Server Database Machine

47

1. SQL Server 2005 or SQL Server 2008 (for database mirroring)

or SQL Server Express (without database mirroring)

Secondary SQL Server Database Machine (for database mirroring)

1. SQL Server 2005 or 2008

48

3.1 MyDelivery Windows Service: mdClientListService
The mdClientListService is a Window service that runs on each of the Front-End Processors. It maintains
ClientsOnlineArray, which is a memory cache version of a table in the SQL Server database:
ClientsOnline. Its main function is to reduce load on the database machine by having the equivalent
table available in the cache memory of each Front-End Processor. In addition to containing information
about online client status, the table contains information intended to signal a client of a change in
delivery status when it executes the CSP (ClientStatusPage) function.

The ClientsOnlineArray (and the SQL Server’s ClientsOnline table) maintains a list of numbers identifying
each online MyDelivery user, where each user is assigned a unique random ID. A MyDelivery client is
online if it executes the CSP function regularly. Each time CSP is executed, an entry is made for that user
in the ClientsOnlineArray. This service is called remotely via .NET Remoting from any computer in the
system using TCP Channel via port 9080. It is set up to run a “Singleton” object, which means there is
only one copy of the object created for all clients that use this service. The name of the object it runs is
called ClientList. Periodically another Windows Service, mdClientManager, queries the
mdClientListService running on each Front-End Processor to get its current list of all online clients. Once
the mdClientManager gets the list from a machine, that machine’s online client list is emptied. If a
user’s client is shut down, it no longer periodically executes CSP, and the entry for that user will no
longer be found in the mdClientListService. Then, when the mdClientManager finds no entry for a
particular user, it will assume that this user is offline.

The ClientList object exposes several important functions via .NET Remoting:

1. CheckClient - Allows ClientStatusPage (CSP) to check the status of a client, and report the
client as being online to mdClientManager. Periodically triggers refreshing the
ClientsOnlineArray.

2. AddClient - Allows a remote program to tell the mdClientListService to add a client to its
ClientsOnlineArray. This is executed when a user logs into MyDelivery (via the Initialize SOAP
function)

3. DeleteClient - Allows a remote program (mdClientManager) to tell the mdClientListService to
remove a client from its ClientsOnlineArray.

4. ChangeClient - Allows a remote program to tell the mdClientListService to change the status
of a client in its ClientsOnlineArray.

5. GetClients - Called by the mdClientManager to get a list of identifying numbers for all clients
that have reported to be online.

49

ClientList uses a SyncLock to ensure that its functions run exclusively of each other. It is not possible for
them to conflict. Furthermore, since mdClientListService is running ClientList as a Singleton object, only
one ClientList object is actually created, which means there is only one ClientListArray created in each
Front-End Processor.

50

3.2 MyDelivery Windows Service: mdFileXFERService
The mdFileXFERService is a Windows Service that is installed and run automatically upon boot up on all
Front-End Processors. It provides a variety of functions for an external client to transfer portions of
deliveries to and from the server. The mdFileXFERService can be called remotely via .NET Remoting
from any computer in the system using TCP Channel via port 9082. It is set up to run a “SingleCall”
object, which means there a copy of the object it controls is created for each calling client. The name of
the object it runs is called FileXFER.

The FileXFER object offers memory-based transfer functions:

1. AddDeliveryHeader – Allows a remote process to add a delivery header to a memory-based
collection of delivery headers. Each header consists of a MyDeliveryID, Subject, TextMessage,
Files, Tree and CheckCode.

2. GetDeliveryHeader – Allows a remote process to get the delivery header for a specified
MyDeliveryID.

3. AddAttachment – Allows a remote process to add a 1 megabyte attachment and corresponding
CheckCode to a memory-based collection of delivery attachments.

4. GetAttachment – Allows a remote process to get a 1 megabyte attachment and corresponding
CheckCode from the memory-based collection of delivery attachments.

5. DeleteDelivery – Allows a remote process to delete the header and attachment for a specific
MyDeliveryID from the memory-based collections of delivery headers and attachments.

6. CheckExist – Allows a remote process to determine whether a delivery header or attachment for
a specific MyDelivery is in the memory-based collection of headers and attachments.

In addition to memory-based transfer functions, this service provides a disk-based transfer function:

FileIn –Allows a remote process (the mdClientManager) to send an HTML file named “mdStatus.htm” to
the server’s hard disk. This file lists the status of the overall MyDelivery server system, and is accessible
over the Internet. It allows a remote administrator to monitor the health of the MyDelivery system.

mdFileXFERService is useful because it makes it possible to store or access a delivery on a computer
other than the one on which it is received. This overcomes a problem that arises due to Network Load
Balancing, which creates the scenario where files may not be stored on a computer with which a
MyDelivery client is communicating. It easily allows software running on one computer to access files
on another computer via .Net Remoting.

51

 3.3 MyDelivery Windows Service: mdMonitor
The mdMonitor service is a Windows Service that is installed and run automatically upon boot up on all
Front-End Processors. It has three functions for monitoring the machine on which it is running:

Every two minutes it monitors the CPU utilization of the machine, and enters this number in the SQL
Server database. One of the factors contributing to high CPU utilization is the CSP function, if there are
hundreds of remote user clients executing it periodically. The utilization can be decreased by slowing
down the heartbeat (period of the CSP), or increased by speeding up the CSP period. mdMonitor
decides whether to increase or decrease the heartbeat, and this is reflected in the heartbeat parameter
sent to the client via the CSP. If there is more than one Front-End Processor used in the MyDelivery
server system, each Front-End Processor will individually control its own heartbeat.

Once every 24 hours mdMonitor removes web server log files from the server’s hard disk that are older
than 7 days.

It checks the mdStatus.htm file on the current server to see if mdClientManager has updated it recently.
If this file has not been updated, this indicates that mdClientManager is down, and the remote
administrator must be notified. The notification is made by mdMonitor, which creates an mdStatus.htm
file containing the appropriate error status.

52

3.4 MyDelivery Windows Service: mdFlusher
The mdFlusher service is a Windows Service that is installed and run automatically upon boot up on all
Front-End Processors. Its purpose is to allow a remote administrator to control two parameters used by
the system, and each parameter is stored temporarily in system Cache. This service can be called
remotely via .NET Remoting from any computer in the system using TCP Channel via port 9081. The only
process in the MyDelivery system that calls mdFlusher is mdClientManager. It is set up to run a
“SingleCall” object, which means there a copy of the object it controls is created for each calling client.
The name of the object it runs is called CacheData.

The CacheData object has one function: UpdateNow. Depending on the parameter sent via
UpdateNow, CacheData either modifies a file called flush.clientversion, or a file called flush.serverstatus.
When either of these files is modified, a parameter stored in system cache is subsequently updated.

Flush.serverstatus is used by the system to maintain a current copy of ServerStatus in Cache. This has a
value of 1 (if the system is up) or 2 (if the system is down). The only way to bring the system up or down
is through a web page named Syscontrol.aspx (a password-controlled function). This function uses
mdFlusher when the ServerStatus variable stored in Cache on all Front-End Processors needs to be
changed (system status goes from up to down or vice versa).

Flush.Clientversion is used by the system to maintain the current version number of the latest client.
When a remote client executes GetVersion, this function goes to cache memory to get the version value,
rather than to the SQL Database server. This saves execution time on the SQL server.

53

3.5 MyDelivery Windows Service: mdPinger
The mdPinger service is a Windows Service that is installed and run automatically upon boot up on all
Front-End Processors. It acts in a way similar to a ping server: it just responds to a remote request (or
fails to respond). It serves to let a remote processor know if the server on which mdPinger is running is
actually up. If mdPinger responds, this indicates the server is alive; otherwise, if mdPinger does not
respond, this indicates the server is down.

The mdPinger service can be called remotely via .NET using TCP Channel via port 9084. It is set up to run
a “SingleCall” object, which means there a copy of the object it controls is created for each calling client.
The name of the object it runs is called Pinger. This function allows the mdClientManager service to
determine whether a Front-End Processor is up. It can take the Front-End Processor out of service if
mdPinger fails to respond.

54

3.6 MyDelivery Windows Service: mdClientManager
The mdClientManager runs 24/7, and is active on one or perhaps two computers in the MyDelivery
Server system. If the MyDelivery Server consists of only one processor, then the mdClientManager runs
on it. If the MyDelivery Server consists of at least one Front-End Processor and a Client Manager, then a
primary mdClientManager runs on the Client Manager machine, and a secondary mdClientManager runs
on any Front-End processor as a backup in case the Client Manager machine goes down. The
mdClientManager does three main things:

Once every two hours it cleans up deliveries. Users are required to complete a delivery. If
mdClientManager finds an incomplete delivery (from the SQL Server Deliveries table), and that either
sending or receiving client has not serviced a delivery within a time period called the “Window”, then
mdClientManager uses the mdFileXFERService function DeleteFolder to delete the folder and files from
the appropriate Document Exchange Server, and updates the Deliveries table in the SQL server
database. The “Window” is permitted to vary from 1 hour to 336 hours. It is set by the system
administrator through the syscontrol.aspx web page.

Once every three minutes it updates lists of clients that are online. The mdClientManager uses the
Processors table in the SQL server database to get a list of all active Front-End Processors. Once every
three minutes it gathers a list of online clients from each Front-End Processor, which it uses to create
and maintain a master list of all online clients. It checks the master list to determine which clients are
online (executing CSP every heartbeat, typically 5 seconds) and which are offline (not executing a CSP
for three minutes). The mdClientManager determines when a client goes physically offline, and makes
a note of it. This is done when the mdClientManager contacts the mdClientListService at each Status
Server computer. When any client status changes, mdClientManager updates the ClientsOnline table in
the SQL server database. It notifies all Front-End Processors of changes in the ClientsOnline table only
when a client is physically offline. Each Status Server maintains a cache version of ClientsOnline, called
ClientsOnlineArray, which it uses for servicing ClientStatusPage. When mdClientManager notifies each
Front-End Processor of changes in ClientsOnline, the Front-End Processor’s mdClientListService updates
its cache version from the SQL Server database. The notifications of changes in the ClientsOnline table
through the mdFlusher service, which runs on each Front-End Processor. The mdFlusher service makes
a change to the flush.clientsonline file, residing on the machine’s hard disk. The ClientsOnlineArray,
stored in Cache on the server, is a representation of the ClientsOnline table in the SQL Server database.
The ClientsOnlineArray is removed automatically from Cache upon the change to the flush.clientsonline
file, and must be refreshed from the ClientsOnline table.

Every ten minutes it monitors system status and produces a web page named mdstatus.htm that it
transfers to each Front-End Processor, for remote system monitoring over the Internet. It checks a few
basic operations in the MyDelivery Server system to determine whether it is running properly. First, it
queries the database server to get a list of all Front-End Processors. If the query to the database server
fails, the SystemMonitor will not send a status page, mdstatus.htm, to the web servers running on the

55

Front-End Processors. Then it attempts to get the default web page from each Front-End Processor.
Any problems are noted in the mdstatus.htm file it creates and distributes to each Front-End Processor.

Primary-Secondary mdClientManager Interaction

For redundancy, there may be two ClientManagers used in the system: a Primary mdClientManager and
a Secondary mdClientManager. The Primary ClientManager will run on the mdprod-manager processor
in the production system. The way a mdClientManager knows whether it is classified as a Primary or
Secondary ClientManager will be through the

c:\bin\mydelivery.ini file. The computer where the Primary mdClientManager runs will

contain the entry: ClientManager:=Primary . The computer where the Secondary ClientManager runs
contains the entry: ClientManager:=Secondary . When the mdClientManager service starts up, it shall
read the mydelivery.ini file to find out whether it is a Primary or Secondary mdClientManager. When
the Primary mdClientManager finishes executing its ten-minute system check, it updates the
ClientManagerAccess variable in the SystemInfo table, with the current DayTime. If for some reason
the Primary mdClientManager is not functioning, this variable will not get updated.

The Secondary ClientManager in each of its timer functions shall check the ClientManagerAccess
variable in the SystemInfo table. If the value is off by more than 30 minutes, it shall execute its system
checks. It will never update the value of the ClientManagerAccess variable, because only the Primary
mdClientManager does that. When the Primary ClientManager comes back online, it will recommence
updating the ClientManagerAccess variable with the current DayTime. At that time the Secondary The
mdClientManager service shall stop further work, and remain as a potential backup.

56

4.0. Server Setup

This section details the steps necessary for setting up a MyDelivery server for using HTTP (non-SSL)
communication. Slight changes to the procedure are required if HTTPS (TLS or SSL) is to be used. It is
possible to construct a low-cost MyDelivery server using only one machine. This machine houses the
MyDelivery website, SQL Server Express, and all MyDelivery web services. In simulated testing, we
believe that a single server can handle several hundred simultaneous users, which is good enough for
small organizations. We have a created a test server housing all MyDelivery server functions and found
that it works well.

It is also possible to create a highly redundant, very reliable, but expensive MyDelivery Server system.
We have also created one of these systems, consisting of ten rack-mounted processors. For large
organizations requiring thousands of MyDelivery users, this server system consists of three categories of
machine:

Front-End Processor – 1 to 32 servers in a Network Load Balanced (NLB) cluster that handle status
requests from clients. If NLB is used, then each Front-End Processor shall have two Ethernet ports, one
of which is used for front-end communication with the outside world, and the second which shall be
used for internal communication with other MyDelivery processors. Rack-mounted blade servers are
recommended for these machines

Primary/Secondary Database Server – Two rack-mounted blade servers running SQL Server 2005 or SQL
Server 2008. One is the primary server and the second machine is a standby backup.

ClientManager Server – one rack-mounted blade server that runs the Client Manager. It also runs a SQL
Server Express Witness for database mirroring. The Witness helps to coordinate automatic failover for
the primary and secondary database SQL servers.

• Install Windows Server 2003 Standard Edition on all machines. We have not tested a
configuration using Windows Server 2008, but this should work equally well as Windows Server
2003.

• Download and install Microsoft security updates on all machines.
• There are three website folders required for each Front-End Processor:

1. MyDeliveryWeb – This folder contains a website explaining MyDelivery. It also allows a
user to register to use MyDelivery, and download the client software. Our test system
uses this folder as the default home folder for the website. Most pages for the
distribution MyDeliveryWeb have been deleted, as they pertained only to our original
beta test. The only ones that remain are the ones for user registration and system
monitoring.

2. MyDelivery – This folder contains the MyDelivery SOAP web services for communication
with MyDelivery clients.

57

3. NonSSL – This is used only for servers that use HTTPS (secure communication via TLS or
SSL). Any user attempting to access the server via HTTP using a browser will be directed
via this folder to an HTTPS connection to MyDelivery.

• For each Front-End Processor, use Windows Explorer and right-click on the mydelivery folder
name. Go to Sharing and Security. Go to Web Sharing. Share the MyDelivery folder as
“mydelivery.” Share the MyDeliveryWeb folder as mydeliveryweb. Share the NonSSL folder as
nonssl.

• Create c:\deliveries folder on all Front-End Processors. Give Network Service full control over
the c:\deliveries folder created in the last step. Use the Windows Explorer for this step. Right
click on the folder name, and select Sharing and Security. Click the Security tab in the dialog
box.

58

59

• Install IIS and ASP.NET on the server. To do this, go to Manage Your Server. Then select “Add or
Remove a role.” In the “Configure Your Server Wizard”, click Next. Select a role to add:
Application Server (IIS, ASP.NET). Enable ASP.NET. Insert the Windows 2003 (or 2008) Server
Standard Edition CD where requested. Both ASP.NET versions 1.0 and 2.0 should be allowed.

• Use IIS Manager to enable ASP.NET version 3.5 on the default web server. You may use version
4.0 or higher if you have it installed. This will permit it to run on the MyDelivery web site. Make
sure that the Network Service has the security privilege to use ASP.NET version 3.5 (look at
aspnet_isapi.dll in the ASP.NET 2 folder). If not, reinstall ASP.NET version 2 and make sure
NetWork Service has the right level of access.

• Use IIS Manager to allow Anonymous access to the MyDelivery, MyDeliveryWeb and NonSSL
web sites on all Front-End Processors. In IIS Manager, right-click on mydelivery, then select
Properties. Click on Directory Security.

60

• Under Authentication and access control, click Edit …

• Check the box that says “Enable anonymous access”. Do not enter the user name in the picture
above; use the one automatically suggested by IIS.

• In IIS Manager, disable logging. This maximizes system speed.

• In IIS Manager on the MyDeliveryWeb web site, go to Documents. Add default.aspx to the list of
default page contents for MyDeliveryWeb. Eliminate all the other default pages. Ignore this
step for the MyDelivery and NonSSL web sites.

61

• Create a c:\bin folder on each server. Make this folder a part of the Path for the user, so that
programs located in this folder can be executed from any folder. This folder shall contain
several files:

a. Mydelivery.ini. The mydelivery.ini file is used by MyDelivery Windows services to
contact the proper SQL Server. It contains three parameters: myServer, domain, and
CLientmanagaer, which are used by the system software. Here is an example:

i. myServer:=Server=db01.mycompany.com\SQL2005; Failover
Partner=db02.mycompany.com\SQL2005;Database=MyDelivery;Trusted_Conne
ction=yes;

ii. DOMAIN:=mycompany.com

iii. Clientmanager:=Primary

b. Installutil.exe This is a Microsoft utility used for installing MyDelivery web services.
Copy it to the c:\bin folder.

62

c. Aspnet_setreg.exe This is a Microsoft utility used to create a registry-based UserID and
password for accessing the MyDelivery SQL database server. Copy it to the c:\bin folder.

d. Mdsetup.bat – This is a batch file for installing MyDelivery web services.

• Install Web Service Enhancements 1.0 runtime (WSE 1.0) on the computer. This is available as a
download from Microsoft. It provides SOAP DIME attachment communication compatible with
the SOAP3 toolkit used by the MyDelivery client.

• Add the Anonymous user to allow access to c:\windows\Microsoft.NET\Framework (and the
folders/files beneath it).

• If more than one Front-End Processor is used, then the multiple configuration shall use Network
Load Balancing (NLB). Set up NLB from the ClientManager Server. For NLB to work properly, all
Front-End Processors, which have two Ethernet ports each, will be accessible through a common
URL, which for this example is mydelivery.nlm.nih.gov. Each machine has two Ethernet ports:
one public and one private. The private port should be the only one initially configured and
running after the operating system is installed. The public ports will be configured in the nest
steps.

• For the public port, examine the network status:

63

• Click the Properties button, and get the next dialog box:

• Select Internet Protocol (TCP/IP), and click the Properties button.

64

• Select “Use the following IP address:” radio button, and under IP address enter the dedicated IP
address assigned to the public Ethernet port. Enter the values above for Subnet mask, Default
gateway (leave blank), Preferred DNS server, and Alternate DNS server. Enter addresses
appropriate for your organization; do not use the ones in the picture. They are examples only,
and will not work.

• Next, we need to set the public Ethernet interface at a lower priority than the private interface
for outgoing control from internal-running software. This will ensure that all outgoing
communication goes out the private Ethernet interface, rather than through the public Ethernet
interface. To do this, click the Advanced button again. On the IP Settings tab, un-check the
Automatic metric checkbox. Enter 50 into the Interface metric text box. Click OK.

65

• Close the dialog boxes that called the one above, to start up the Ethernet port.

• You can verify that the 50 metric has been entered into the public interface by going to a
command prompt window, and running “route print”. The private interface will have a metric
of 20, while the public interface will have a metric of 50. The operating system always selects
the interface with the lower-numbered metric for outgoing communication.

66

• Start up the Network Load Balancing Manager:

• Select Cluster, then select New:

• Set up the Cluster parameters:

• IP address – 130.14.60.130 (use the IP address assigned to your NLB)

• Subnet Mask – 255.255.255.0

67

• Full Internet Name – Enter the appropriate URL for the server, such as
mydelivery.mycompany.com.

• Select Unicast, and leave “Allow remote control” unchecked. Then click Next.

68

• On the next dialog box, click Next:

69

• On the next dialog box, click Next:

70

• In the next dialog box, enter the name of the server being added to the cluster, then click
Connect:

71

• Select the port that was added in the Internet Protocol Properties dialog box, then click Next:

72

• Click Finish:

• The next dialog box will show the successful addition of the host server to the cluster:

73

• Next we need to add more hosts to this cluster. To start, go to the new host’s public port and
examine the network status:

• Click the Properties button, and get the next dialog box:

74

• Select Internet Protocol (TCP/IP), and click the Properties button.

75

• Enter the unique local IP address to be used by this port, subnet mask, and leave the default
gateway blank. Click OK.

76

• Go to the Network Load Balancing Manager to add the new host to the NLB cluster. Right click
on the cluster name, and select “Add Host to Cluster”.

77

• Enter the private name of the host to be added, and click Connect.

78

• Select the IP address just created for the public port of this server, and click Next:

79

• Click Next:

80

• After a couple of minutes, the NLB Manager dialog box will show the convergence of the second
host into the cluster:

• The procedure for creating a new cluster is easy: just right-click on “Network Load Balancing
Clusters” and select New Cluster. Then follow the above procedure for adding hosts to the new
cluster.

81

• On each Front-End Processor, create a c:\mdservices folder containing all MyDelivery web
services. Under the c:\mdservices folder will be additional folders, each containing components
of the web services:

1. CacheData – This is a web service component of mdFlusher that is used to store/retrieve
items from cache memory.

2. mdFlusher – This is the web service for CacheData.

3. ClientList – This is a web service component of mdClientListService that keeps track of
MyDelivery clients that are online (currently running).

4. mdClientListService – This is the web service for ClientList.

5. FileXFER – This is the web service component that allows external processes to store or
retrieve data on the server.

6. mdFileXFERService – This is the web service for FileXFER.

7. mdMonitor – This is a web service that monitors current conditions on the Front-End
Processor.

8. Pinger – This is a web service component for mdPinger. It is the equivalent of a “ping”
service, which allows other machines to determine whether the machine running
mdPinger is online and itself running.

9. mdPinger – This is the web service for Pinger.

10. mdClientManager - This is a web service that monitors the entire MyDelivery server
system and all online clients. In a multi-cpu server system, a Primary mdClientManager
runs on its own separate machine (Manager). A Secondary (backup) mdClientManager
runs on one of the Front-End Processors.

• Set up all Windows services in the MyDelivery Server system to run using a service account that
has a non-expiring password. This includes all md services: mdClientManager,
mdClientListService, mdFileXFERService, mdFlusher, mdMonitor, and mdPinger. Go to
MyComputer/manage. Under Groups, click Administrators. Add the service account to the
Administrators group.

• In the web.config files on all Front-End Processors, set up the identity element:

 <!-- used for setting the identity of ASP.NET for contacting the SQL Server

 -->

82

 <identity impersonate="true"
userName="registry:HKLM\SOFTWARE\MyDelivery\identity\ASPNET_SETREG,userName"
password="registry:HKLM\SOFTWARE\MyDelivery\identity\ASPNET_SETREG,password"/>

This allows MyDelivery SOAP services to access the SQL Server through the username and password that
will be stored encrypted in the registry in the next step.

• On all Front-End Processors, run the aspnet_setreg utility. This allows us to encrypt the
username and password associated with the MyDelivery service account and store it in the
registry.

• Give the Network Service rights to read the registry key entries for the username and password
created in the last step. Using regedt32.exe, go to
HKEY_LOCAL_MACHINE\SOFTWARE\MyDelivery key. Right-click ASPNET_SETREG, and click
Permissions. Add the Network Service, giving it read permissions for the username and
password subkeys.

• Install and run all MyDelivery web services. This is done by running a batch file, mdsetup.bat,
located in c:\bin. The contents of mdsetup.bat are as follows:

@REM Batch file for setting up services on a Front-End Processor
c:
net stop mdFileXFERService
cd \MDServices\mdFileXFERService\bin
c:\bin\installutil -uninstall mdFileXFERService.exe
c:\bin\installutil mdFileXFERService.exe
net start mdFileXFERService

net stop mdClientListService
cd \MDServices\mdClientListService\bin
c:\bin\installutil -uninstall mdClientListService.exe
c:\bin\installutil mdClientListService.exe
net start mdClientListService

net stop mdFlusher
cd \MDServices\mdFlusher\bin
c:\bin\installutil -uninstall mdFlusher.exe
c:\bin\installutil mdFlusher.exe
net start mdFlusher

net stop mdMonitor
cd \MDServices\mdMonitor\bin
c:\bin\installutil -uninstall mdMonitor.exe
c:\bin\installutil mdMonitor.exe
net start mdMonitor

net stop mdpinger

83

cd \mdservices\mdpinger\bin
c:\bin\installutil -uninstall mdpinger.exe
c:\bin\installutil mdpinger.exe
net start mdpinger

@REM Install a primary mdClientManager only once
@REM For a multi-cpu system, install a secondary mdClientManager only once
net stop mdClientManager
cd \MDServices\mdClientManager\bin
c:\bin\installutil -uninstall mdClientManager.exe
c:\bin\installutil mdClientManager.exe
net start mdClientManager

cd \bin
pause

• Finally, run the Services executable found under Administrative Tools. You may need to Stop
each service, configure the proper UserID and login to be used for each of the services, and
restart the services. Typically the best UserID to be used for a service would be an
administrators account that does not have an expiring password.

84

5.0 MyDelivery SQL Server Database Tables

The following database tables are used for the MyDelivery database residing on the MyDelivery
Database (SQL) Server:

1. ClientsOnline – Keeps track of which clients are currently online and ready for communication.
2. Deliveries – Keeps track of all deliveries made by the system.
3. IDs – A table containing a list of all valid MyDelivery ID’s. These are the same as the Handle in

the Users table. This table provides a fast look-up of a MyDelivery ID to see if it exists.
4. InvalidLogin – Used to permit no more than 3 incorrect logins in a 60 minute period.
5. PendingSenders – A list of all receiver MyDelivery ID / sender MyDelivery ID pairs for each

sender that is pending to send to the receiver.
6. Processors – Keeps track of functionality and states of all processors used in the MyDelivery

server.
7. RegCodes – Prevents hackers from generating thousands of requests for user registration.
8. SystemInfo – Keeps track of key characteristic of the Server system.
9. Users – Keeps track of user registrations. Includes user name, address, email address, date of

registration, and other information.

85

5.1 ClientsOnline
The ClientsOnline table is used by several server processes to maintain a list of all users whose clients
are online.

Column Name Data Type Length Allow Nulls Description
UserID int 4 Unique ID of the user
RandomID int 4 Randomly-generated ID used to

identify this user
DoUpdateStatus bit 1 TRUE if client should execute

UpdateStatus to find out changes in
deliveries.

PendingSender bit 1 TRUE if another client wants to
send to this client, but is not in this
client’s address book.

Key

86

5.2 Deliveries
The Deliveries table keeps track of the status of each delivery.

Column Name Data Type Length Allow Nulls Description
DeliveryNumber bigint 8 Unique delivery number
bCleanedUp bit 1 0 indicates this delivery is not

cleaned up; 1 means it is cleaned
up

StartDate datetime 8 Date the delivery was initiated
MostRecentDateUsed datetime 8 Last time the sender or receiver

uploaded or downloaded
anything

Attachments int 4 Number of attachments in this
delivery

TotalFiles int 4 Total number of files being sent
in this delivery

TotalSize bigint 8 Total size of the delivery in bytes
TotalTime int 4 Time (in seconds) of this delivery
SenderHandle nvarchar 15 MyDelivery ID of the sending

client
ReceiverHandle nvarchar 15 MyDelivery ID of the receiving

client
UploadStatus int 4 Status of the uploading client

delivery: 0 = Pending 1st upload,
1 = At least one attachment
uploaded, 2 = All attachments
uploaded, 3 = Delivery
terminated, 4 = Job removed by
server

DownloadStatus int 4 Status of the download delivery 0
= Pending, 2 = Success 3 = Job
abandoned by receiver or
removed by server

LastUploadedAttachment int 4 Most recent attachment
uploaded successfully

LastDownloadedAttachment int 4 Most recent attachment
downloaded successfully

Resync bit 1 0 indicates no recync required; 1
indicates whether a sending
clients needs to resync with the
receiving; Download Request
contains requested data

DownloadRequest int 8 Used to resync a sending client
with a receiving client. If > 0, this
indicates the next attachment to

Key

87

be sent, or if 0, this indicates the
sender should send the
DeliveryHeader through
StartDeliveryUpload.

Processor varchar 64 Full path to computer, i.e.
proc1.mydelivery.com

bDirectionUp Bit 1 True indicates the UpDelay is
increasing; False indicates it is
decreasing

UpDelay Int 4 Most recent delay for
UploadAttachment

bDirectionDown Bit 1 True indicates the DownDelay is
increasing; False indicates it is
decreasing

DownDelay Int 4 Most recent delay for
DownloadAttachment

88

5.3 IDs
The IDs table keeps track of user IDs currently in use. This table is used primarily for registration of new
users, to determine whether an ID is currently in use. The MyDeliveryID is the same as the “Handle” in
the Users table.

Column Name Data Type Length Allow Nulls Description
MyDeliveryID Nvarchar 15 MyDelivery ID of this user

Key

89

5.4 InvalidLogin
The InvalidLogin table is used to keep track of the most recent time a user attempted, but failed, to log
into the system. It is used to prevent hackers from guessing a user’s password. Users are allowed only 4
invalid logins within a 60 minute period. A record is placed into this table for each invalid login. The
mdClientManager process periodically cleans up the table by removing old records.

Column Name Data Type Length Allow Nulls Description
Handle Nvarchar 15 MyDelivery ID of this user. Same as

the “Handle” in the users table.
InvalidLoginTime datetime 8 Date and Time the user failed to log

into MyDelivery

90

5.5 PendingSenders
The PendingSenders table is used to inform a person of other users who wish to want to communicate
with the person, but who cannot because the person does not have the others in his address book. The
table maintains the receiver/sender relationship for these pairs of users who could potentially
communicate with each other.

Column Name Data Type Length Allow Nulls Description
Number Int 4 Unique record number
ReceiverHandle nvarchar 15 Receiver MyDelivery ID
SenderHandle nvarchar 15 Sender MyDelivery ID

91

5.6 Processors

The Processors table keeps track of all Front-End Processors used in the system, and the status of each.

Column Name Data Type Length Allow Nulls Description
Processor char 64 Full path to computer, e.g.

proc1.mydelivery.com
Status int 4 Processor Status: 0 = Down; 1 = Up;

2 = Going Down; 3 = Coming Up
Sick int 4 1 = SICK; 0 = WELL; updated by

mdClientManager. If processor is
SICK, no other processor is allowed
to access it except
mdClientManager or the processor
itself.

PercentUtilization Int 4 Percentage of processor utilization.
HeartBeat Int 4 Local HeartBeat for this processor

(Time period for CSP)

92

5.7 RegCodes

The RegCodes table is used for new user registration to prevent hackers from randomly generating user
registrations. It stores a unique “Code” that is displayed on the user registration form.

Column Name Data Type Length Allow Nulls Description
Code Nvarchar 7 Unique registration code
RegistrationDate datetime 8 Date this code was registered

93

5.8 SystemInfo
The SystemInfo table is used for keeping track of the overall system.

Column Name Data Type Length Allow Nulls Description
Number Int 4 Unique record number
ClientVersionNumber char 10 Version number of the MyDelivery

Client software
ClientURL char 256 URL where the client installation

software package can be
downloaded

SetupEXE Char 256 Physical location of the client setup
package

ServerUp Bit 1 TRUE = System is Up;
FALSE = System is Down

Window Int 4 Number of minutes a client can be
offline, and a delivery can stay on
the server

Day2Update Int 4 Used by mdClientManager for
updating the system once a day
(Number of day from 1 to 366)

ClientManagerAccess Datetime 8 Yes The most recent access time by the
Primary mdClientManager

94

5.9 Users
The Users table keeps track of all registered users: their registration information, number of deliveries
sent and received, address book and disk space on their most recently used computer.

Column Name Data Type Length Allow Nulls Description
UserID int 4 Unique record number
FirstName nvarchar 22 First name
LastName nvarchar 22 Last name
Org nvarchar 50 Yes Organization
Address1 nvarchar 50 First line of address
Address2 nvarchar 50 Yes Second line of address
City nvarchar 30 Yes City
State nvarchar 20 State
Country nvarchar 20 Country (United States)
Zip nvarchar 10 Zip Code
Handle nvarchar 15 User’s MyDelivery ID
Password nvarchar 30 User’s password
RegistrationDate Datetime 8 Date registered
MostRecentDateUsed datetime 8 Date the user most recently used

MyDelivery
TotalTransmissions int 4 Total # of transmissions by this user
TotalReceptions int 4 Total # of receptions by this user
SpamControl int 4 Yes Controls spam. 0 = BlockAll,

1 = AddressBook
LargestFile bigint 8 Largest file that can fit on the hard

drive of the user’s computer
FreeDiskSpace bigint 8 Amount of free disk space available

on the client computer for
deliveries

AddressBook ntext - Yes Address book

95

6.0 SQL Server Database Configuration using SQL Server Express
The MyDelivery database server may be configured to run on a freely available SQL Server 2005 Express
or SQL Server 2008 Express edition. MyDelivery has been tested and works well on both of these
servers. The Express Edition server is free, but it has some limitations. First, the database size is limited
to 4 gigabytes, which is not a problem for MyDelivery, since its database is small (typically 50 megabytes
maximum). Second, the Express edition limits memory usage of the SQL Server to 1 gigabyte and one
processor (again, not really a problem for small MyDelivery server systems.) Third, backups must be
done manually, which is usually not a problem. Forth, there is no database mirroring with automatic
failover protection. This means that if the SQL Server Express goes down, then the MyDelivery server
system is down until manually restored to service. Implementations should not use SQL Server Express
if high reliability is absolutely critical, because it may not always be possible for a human operator to
respond quickly enough to restore service if the server should go down. For implementations where
minimizing cost is an important factor, usage of a SQL Server Express edition should be quite suitable.

Installation of SQL Server Express is quite straightforward; most of the defaults can be selected during
installation. The individual running the installation should have administrator rights. Various flavors of
SQL Server Express are available from Microsoft. For the example here, SQL Server 2005 Express edition
with Advanced Services (including Management Studio) was used. In the picture below, the Microsoft
SQL Native Client and Setup Support files will be installed. Click Install as shown.

96

Click Next to begin the server installation:

If all went well, click Next:

97

Fill in your name and company, then click Next:

Ask for Database Service, Client Components, and Management Studio Express:

98

Select the default named instance, SQLExpress:

Select Windows Authentification Mode to create a more secure access to the SQL Server:

99

Enable the user instance. It usually is not necessary to add the user to the SQL Server administrator role.

Click Install to continue:

100

After installation is complete, go to Administrative Tools and run Services. For the SQL Server Browser
service, make this service run Automatic, then go ahead and start the service. Next, run the SQL Server
Configuration Manager. Under SQL Server Network Configuration, select Protocols. Enable the TCP/IP
protocol:

Next, go to SQL Server 2005 Services and ensure that both that SQL Server Browser and SQL Server
(Express) are both running:

101

Next, run SQL Server Management Studio Express. It is time to install the MyDelivery database and its
transaction log file, named MyDelivery1_data.mdf and MyDelivery1_log.ldr, respectively. Copy these
two files to the default folder for SQL Server databases:

C:\program files\Microsoft SQL Server\MSSQL.1\data.

In Management Studio, right-click databases, and select Attach:

102

Next, click Add to add the database just copied to hard disk:

103

At this point the MyDelivery1 database has been added, and can be viewed or updated through
Management Express. This completes the installation of SQL Server Express and the MyDelivery
database.

104

The next figure shows the two important sections of the MyDelivery1 database: the tables and the
stored procedures. Descriptions of the tables are given in the next section of this document.

105

7.0 Implementation of Database Mirroring via SQL Server 2005

While MyDelivery will run well using just one database server, its reliability will increase by using two
database servers with mirroring. This section shows how to set up two SQL Server 2005 Standard
edition database servers for database mirroring. For explanatory purposes here these two machines will
be named mdprod-db01 and mdprod-db02. For your own installation, you can name your machines
whatever you wish. For database mirroring, there is a Principal (initially, mdprod-db01) and a mirror
(initially, mdprod-db02). There is a third computer called the Witness. This will be installed and running
under SQL Server 2005 Express edition on a third machine named mdprod-manager, on which also runs
the mdClientManager service. The witness, principal and mirror will be configured to have High Safety
with Automatic Failover. If mdprod-db01 (and its SQL Server) shall ever go down, then all database
clients (running on the Front-End Processors) will automatically switch to the SQL server running on
mdprod-db02. The latter becomes the principal server. Once mdprod-db01 is restored to operational
status, it becomes the mirror. When the two databases are both operational, they are fully
synchronized at all times. In other words, one MyDelivery database is a precise copy of the other. It is
possible for one of the three computers (mdprod-db01, mdprod-db02 and mdprod-manager) to be
down at a time, and the “database server system” is still fully functional. Although the name of the
database distributed with the MyDelivery source code is ‘MyDelivery1’, this section refers to the
database as ‘MyDelivery’. The screen captures were made at an earlier date when the original database
name was ‘MyDelivery’. Wherever a screen capture shows the MyDelivery database, it should be
MyDelivery1.

7.1 Setting up Security
There should be a common service account for administering all three machines: mdprod-db01,
mdprod-db02 and mdprod-manager. Let’s name this service account svc_mydelivery. When logged in
as the database service account, svc_mydelivery, install SQL Server 2005 Standard edition on both
mdprod-db01 and mdprod-db02. Similarly, log in as svc_mydelivery and install SQL Server 2005 Express
edition on mdprod-manager. Also, install SQL Server Management Studio Express on mdprod-manager.
The SQL Server services shall all be run under the svc_mydelivery account on all three machines.

Run Microsoft SQL Server Management Studio on both mdprod-db01 and mdprod-db02. In the Security
settings for the SQL Server, make sure that there is a svc_mydelivery user. The svc_mydelivery user is
used by all the Front-End Processors and mdprod-manager to access the MyDelivery database on the
Principal machine. The next several screen captures show the default settings for the svc_mydelivery
user.

The next picture shows the “General” tab settings for the svc_mydelivery user.

106

The next picture show the “Server Roles” tab settings for the “svc_mydelivery” user.

107

This shows the “User Mapping” for the “svc_mydelivery” user.

108

The next picture shows the “Status” for the “svc_mydelivery” user.

Next we show the properties of the MyDelivery database that we install on the mdprod-db01 server.
These are the “General” properties.

109

These are the left portion of the “Files” properties.

110

These are the right portion of the “Files” properties.

These are the “Permissions.”

111

Under “Security” for the MyDelivery database, these are the users:

112

Right-click the “svc_mydelivery” user. These are the “General” properties of “svc_mydelivery.” Note
that all roles are checked.

113

7.2 Backup MyDelivery

Next, truncate both the MyDelivery database and its log file on mdprod-db01. Then, backup both the
MyDelivery database on mdprod-db01, along with its log transaction file. See below for the General tab
choices.

114

These are the additional options for backing up MyDelivery. Click OK. You will get a dialog box showing
the backup was successful.

115

Next, backup the transaction log file for MyDelivery. Use the same choice of Options as for backing up
the database (see last picture). Click OK.

Once the database and log file are backed up, copy them to mdprod-db02, where they will be restored.

116

7.3 Detach, Attach and Restore MyDelivery

Next, detach the MyDelivery database on mdprod-db01. Copy both the database and its transaction log
file to mdprod-db02 to the folders that correspond on mdprod-db01.

Path to database on mdprod-db01: D:\MDPROD_DB01\mydelivery_data2005.mdf

Path to log file on mdprod-db01: c:\program files\microsoft sql
server\mssql.1\data\mydelivery_log2005.ldf.

On mdprod-db02, attach the MyDelivery database and its log file, assuming there is no database already
attached. NOTE: If there was a previous MyDelivery database (in restoring mode), then it must first be
restored (with Recovery), then detached before copying and attaching the database and log files from
mdprod-db01.

On mdprod-db02, select the MyDelivery database, and choose Restore Database under tasks.

117

This is the Options panel for restoring the database. Be sure to select RESTORE WITH NORECOVERY.

118

Next, restore the transaction log file.

119

Here is the Options tab for restoring the transaction log file. . Be sure to select RESTORE WITH
NORECOVERY. Click OK.

At this point, the MyDelivery database on mdprod-db02 is in a restoring state. Its tables cannot be
opened.

120

7.4 Configure Mirroring

On mdprod-db01, under Tasks for the MyDelivery database, click Mirror. This brings up the following
dialog box.

Click “Configure Security.” This brings up a dialog box about whether to include a Witness Server.
Select Yes, then click Next.

121

This brings up the following dialog box. Click Next.

This brings up the following dialog box. Click Next.

122

This brings up the next dialog box. Connect to SQL2005 running on mdprod-db02. Then click Next.

123

This brings up the witness dialog box. Connect to SQLExpress running on mdprod-manager. Then click
Next.

124

This brings up the service accounts dialog box. Leave everything here blank, and click Next.

This gives us the final dialog box. Click Finish.

125

If successful, we should have this dialog box. Click Close.

126

Next we get the dialog box to start mirroring. Click Start Mirroring.

127

If all went well, and mirroring successfully started, we end up here. Click OK.

128

To check on the status of database mirroring, use the Database Mirroring Monitor (under Tasks for the
MyDelivery database on mdprod-db01.

	1.0 System Architecture
	1.2 Synchronization of Client Communication
	1.3 Expanded Server Architecture
	1.4 Alternative Technologies
	1.5 System Performance

	2.0 Client-Server SOAP Communications
	2.1 GetVersion
	2.2 Initialize
	2.3 CSP (ClientStatusPage)
	2.4 UploadUserInformation
	2.5 ChangePassword
	2.6 UpdateStatus
	2.7 CheckRecipient
	2.8 StartDeliveryUpload
	2.9 UploadDeliveryHeader1
	2.10 RequestToUpload
	2.11 UploadAttachment
	2.12 IsDeliveryValid
	2.13 DownloadDeliveryHeader1
	2.14 DownloadAttachment
	2.15 DeliveryStatus
	2.16 TerminateDelivery

	3.0 MyDelivery Server Architecture
	3.1 MyDelivery Windows Service: mdClientListService
	3.2 MyDelivery Windows Service: mdFileXFERService
	3.3 MyDelivery Windows Service: mdMonitor
	3.4 MyDelivery Windows Service: mdFlusher
	3.5 MyDelivery Windows Service: mdPinger
	3.6 MyDelivery Windows Service: mdClientManager

	4.0. Server Setup
	5.0 MyDelivery SQL Server Database Tables
	5.1 ClientsOnline
	5.2 Deliveries
	5.3 IDs
	5.4 InvalidLogin
	5.5 PendingSenders
	5.6 Processors
	5.7 RegCodes
	5.8 SystemInfo
	5.9 Users

	6.0 SQL Server Database Configuration using SQL Server Express
	7.0 Implementation of Database Mirroring via SQL Server 2005
	7.1 Setting up Security
	7.2 Backup MyDelivery
	7.3 Detach, Attach and Restore MyDelivery
	7.4 Configure Mirroring

