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Compensating for Deficiencies in
Perinatal Data Sets:  Parametric
Perspectives
A. Scott Tippetts and Paul R. Marques

INTRODUCTION

Considering the investments made in a research demonstration project—
including the hours of work in research design, provision of services, data
collection, data entry, money spent, and professional reputation—great
care should be taken when testing hypotheses, but often it is not.  A small
amount of extra effort at the data analysis stage frequently can yield great
benefits in terms of more accurate findings.  The reason:  Very few data
sets are ideal, and among nonideal data sets, those of perinatal drug abuse
treatment projects have few equals.

Data deficiencies are sometimes apparent without having to search for
them, showing up as highly abnormal or extreme values or as missing
data or responses.  Other data deficiencies are not noticed until carefully
pursued.  When corners are cut (e.g., not checking distributions for
normality, not performing basic diagnostics of residuals), the researcher
risks missing the real relationships or reporting spurious relationships.
Although some researchers excuse these shortcuts with the rationale
that analysis of variance (ANOVA) and regression are relatively robust
against violations of assumptions, it is easy for even a single overlooked
data error to completely negate the outcome of a statistical test.

Even for researchers who regularly check for data deficiencies and
irregularities, and therefore often discover them, the question arises,
What should be done with the deficiencies?  This chapter covers some
basic “textbook” approaches for dealing with data deficiencies as well
as some less used, more imaginative techniques.

NONNORMALITY

Before any hypothesis testing is undertaken, data always should be
examined to assess the degree to which assumptions may be violated,
especially assumptions that require a data set to be normally distributed.
Even when a data set includes many variables, the time involved in quickly
checking the distribution of each variable can pay big dividends in the
long run.  Histograms are the most basic visual check, and many statistical
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software packages can superimpose the outline of the normal distribution
over the histogram.  Abnormal distributions, such as severely multimodal
distributions, probably should be excluded from parametric analysis
altogether, unless they can be modified in some way to become moderately
normal (e.g., by collapsing them into fewer categories, such as by
dichotomizing).

Conventional Transformations

Most distributions are fairly unimodal and taper into tails at each end,
showing some semblance of normality.  For such variables, ANOVA and
regression are robust; nevertheless, the power of parametric procedures
can be improved on—sometimes dramatically—by linearly transforming
the variables into more normally distributed versions.  One simple way
to assess the need for a transformation is to check the degree of skewness,
because skewed data represent perhaps the most common type of
distribution abnormality.  Any statistical package worth using should
provide the skewness and standard error of skewness for each distribution.
A good rule of thumb is to be skeptical of any distribution whose
magnitude of skewness (in either direction) is greater than three standard
errors of skewness, although in large samples (e.g., more than 1,000 cases),
the standard error of skewness becomes so small that this rule of thumb
becomes unreasonable and is likely to be exceeded even with only slight
amounts of skewness.  In cases where the distribution is positively
skewed (i.e., having a long tail tapering to the high side), taking the square
root, cube root, log, or reciprocal of the variable can compress the tail,
“pushing” the distribution toward a more normal form.  By contrast, when
the distribution is negatively skewed (i.e., having a long tail tapering to
the low end), using the square, cube, or exponential (e raised to the power
of the variable) pushes the lower values of the distribution closer in.
When more than one transformation seems to be successful in achieving
normality, one can decide which transformation works best based on the
new skewness statistics for the transformed variable because the standard
error of skewness remains the same regardless of transformation.

A word of caution:  Some transforms are sensitive to certain ranges of
values, such as power transforms (e.g., squares, square roots) on data that
straddle the value of 1.  Root transforms converge toward 1 on both sides,
and powers greater than 1 diverge away from 1 toward infinity or toward
zero.  For this reason, before using a power transform on a scale that
includes values between 1 and zero and values greater than 1, it may be
appropriate to first rescale via multiplication so that no values lie between
zero and 1 (exclusive) or all values range from zero to 1.  Log transforms
also can be undesirable with values less than 1, and logarithms of values
less than or equal to zero are undefined.  Again, rescaling through
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multiplication can make distributions more amenable to log transforms
and may optimize the transform (see below).

Finding nonnormal variables that can be normalized through linear
transformation does not imply that the original, untransformed variable
should be discarded or ignored during hypothesis testing.  The original
variable may produce better relationships with other variables of interest
than does the more normal transformed variable, even with sufficiently
random residuals.  In many such cases the use of the original variable is
permissible because of the robustness of many parametric procedures.
However, the linear transformation often not only helps to better satisfy
the assumptions needed for the procedures but also may uncover a
relationship not detectable until the variable is normalized.  Indeed, one
might wonder how many significant yet moderate relationships have
been reported that were actually strong relationships, watered down by
using untransformed variables that strayed only marginally from normality.
This was the case with hair cocaine data from mother-infant pairs, where
square root transformations normalized the distributions, strengthening
the correlation from 0.33 to 0.41 (Marques et al. 1993).

Maximizing Normality

Some may question the practice of regularly checking and transforming
variables that are in need of normalization, but such a view fails to
recognize that many metrics are created in a somewhat arbitrary manner
that may not necessarily be isomorphic with the phenomenon being
measured.  Some of the most obvious such measures are decibels (sound
volume) and the Richter scale for measuring seismic activity, both of
which have a logarithmic relationship between magnitude and the measured
values.  Standard radioimmunoassay values are usually based on a log-
logit plot of drug concentration to the ratio of bound-to-free radioactivity.
Even simple survey scales that sum positive (or negative) responses to
a series of yes or no questions may linearly distort the metric of the
underlying “ideal set” of response patterns.  This is why some psychometric
instruments are more sensitive than others; better instruments or scales
produce values that correspond more closely to the natural progression of
the underlying concept or latent variable.  Such issues from measurement
and data theory are abstract, but the process of mapping phenomena onto
quantifiable scales often creates the frame of reference, or metric, leading
often to the mistaken notion that the metric came first.  The process of
linearly transforming variables sometimes may be nothing more than
restoring the isomorphism of the metric to the nature of the phenomenon.

There is another rarely used (and to some controversial) variant of linearly
transforming variables to satisfy assumptions of normally distributed data.
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If one accepts the concept that many metrics or scales are somewhat
arbitrarily mapped from the “ideal” metrics of the phenomena, then the
process of transformation may uncover these “ideal,” inherent metrics.
If so, then rather than looking only at transformations involving a few
limited exponents such as 0.5 (square root) or 2 (squared), one might solve
for the power that maximizes the normality of the distribution along the
entire scale of possible exponents.  The procedure for finding the optimal
linear transform involves creating an extra variable that consists of the
expected normal scores from a normal distribution and corresponds to
the ranks of the values of the variable to be transformed.  If the Statistical
Package for the Social Sciences (SPSS) (Norusis 1992) is used, these
expected normal scores can be computed with the command RANK/INTO
NORMAL.  Then, the original variable (RAWVAR) is modeled
in a basic nonlinear regression equation

NORMLVAR=((RAWVARPOWER)–MEAN)/STDDEV

that predicts the new normalized variable of expected normal scores
(NORMLVAR).  The parameters for MEAN and STDDEV are estimated
for the new transformed variable.  The estimated parameter POWER is
the exponent to which the original variable RAWVAR must be raised to
best produce the normal distribution NORMLVAR.  The solution to the
power transform question is sample dependent and may not differ much
from one of the basic transformations (e.g., square, square root) previously
mentioned.  In addition, this process can add much time (and therefore
cost) to the preanalysis stage, while gaining marginally little over the
traditional transformation powers.  If a variable requires normalization,
this approach is as defensible as any other, because the original
relationship among values is not altered.

The procedure described above is based on power transforms, which work
well in many instances, but sometimes the distribution in question requires
a log transform.  This is fairly common when the scale is constrained at
the lower end (often at zero), which produces something not unlike an
F-distribution.  As with the power transform, there is usually a particular
base whose log produces the most normal distribution.  Because most
computers are limited to logarithms of the bases 10 and e, some scale
adjustment is necessary before taking the transform.  By multiplying/
dividing the distribution by a constant, then adding/subtracting a constant,
the original distribution first is rescaled around the log’s base so that the
ensuing log transform will maximally approach normality.  Although this
three-step procedure may seem excessive, remember that multiplication
and addition do not change the shape of the distribution at all but only
shift the metric.  Any analysis of these rescaled (but still untransformed)
data will produce exactly the same results as the original distribution in
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terms of test statistics and probability values.  However, the log-transformed
distribution of the rescaled data will be closer to normality than that
resulting from the unrescaled original distribution, and the transformation
is still completely linear.

BISERIAL CHANGE VARIABLES

Although there are various objections to consolidating repeated measures
into a single “change” measure on an individual case basis, it is nevertheless
common practice for researchers to do so for the sake of simplicity, lack
of analytic sophistication, or the need to overcome the violation of the
assumption of independent observations without having to resort to more
complex repeated measures procedures like multivariate analysis of
variance (MANOVA).  Because the practice is certain to continue, it is
helpful to be aware of some of the more basic alternatives that can be
used when a single variable representing change is desired.

Simple Difference and Percent Difference

The first type of change is the simple difference, or posttreatment measure
minus the pretreatment measure (or baseline).  Much has been written
about the mathematical issues relating to difference scores, and many
researchers have proposed corrections to produce less biased estimates
of a true difference (e.g., Chronbach and Furby 1970; Harris 1963).  Many
researchers continue to compute simple difference scores anyway, either
because of unfamiliarity with the alternatives or to sidestep the complexity
of the correction formulas.  Yet numerous researchers have abandoned
the use of difference scores (and their various corrections) because of a
conceptual consideration, not a mathematical one:  Nearly all fail to
adequately address the idea of “relative change.”

For example, regardless of how the difference score is computed or
corrected, a change of –200 ng in measured hair cocaine levels may be an
unimpressive reduction for a subject who measured 1,500 ng at basal, but
such change arguably represents a dramatic improvement for a subject who
began at a level of only 400 ng.  This is particularly true in substance abuse
research where, as a result of different degrees of drug tolerance, a low or
moderate exposure level for one person may be an extremely high level for
another.  Data for such phenomena often manifest this relativeness through
a high positive correlation between the baseline value and the absolute
value of the simple difference score.  For this reason, most researchers who
compute single “change” variables often prefer the more subject-specific
percent-change relative to baseline, in which the –200 ng from a baseline
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of 400 ng would be represented as a 50-percent decrease but from a
baseline of 1,500 ng would be represented as only a 13.3-percent decrease.
The intuitive appeal of this computation is that change is relative to each
case’s baseline.  If all cases have the same baseline (such as under the
most ideal laboratory-controlled conditions), the same percent-change
would also represent the same amount in terms of raw difference.  In
clinical studies a relative change variable is often used to estimate an
effect size for treatment progress.

The problem with this common percent-change measure is that most data
for which it is computed are constrained at the low end by zero or some
other minimum constraint below which values are inherently not possible
(e.g., less than zero treatment hours or a negative amount of drug found in
urine samples).  This would not be a problem if values rarely approached
the minimum (i.e., the mean would be at least three or four standard
deviations above this constraint), but in most types of clinical research,
this minimum value constraint is often observed with some frequency so
that the distribution of values is bunched up against the minimum, as
shown in figure 1.

FIGURE 1. Distribution of potential percent-change scores
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The result is that the theoretical universe of all possible values for the
change variable, with a theoretical median of zero percent-change,
suddenly disappears at –100 percent, chopping off the tail of what should
be a normal distribution of values.  (A 101-percent decrease for such scales
is inherently impossible.)  On the other end of the scale, the distribution
has a normal tail approaching a theoretical limit of +infinity-percent
increase.  The observed values disappear well short of infinity for empirical
reasons (i.e., sampling and/or measurement sensitivity), but this upper
measurement constraint is usually well above the median, which allows
the sampling distribution to have an upper tail that is virtually normal.
Depending on what is being measured and the sensitivity of the instrument,
the upper end of the percent-change distribution allows for increases
as large as 500 or even 5 million percent!  This asymmetry violates the
assumption of normality in a serious manner; the irregular potential
distribution is not the result of empirical problems (i.e., a sampling
anomaly) but is inherent in the computation.  In any theoretical sampling
from the universe of all clinical trials of pre-post measures, researchers
who expect to see a pre-post reduction have the deck stacked against
them if they compute change as a percentage difference from baseline.

Log-Change Ratio

The solution to this situation is obtained through a slight modification in the
calculation of the “change” variable.  Similar in principle to log-likelihood
ratio statistics, the log-change ratio (LCR) is obtained by computing the
ratio of the postmeasure to the premeasure, then taking the log of this ratio.
The theoretical distribution (with a null hypothesis of no change) of the
resulting variable is perfectly normal and symmetrical about zero, which
represents no change (i.e., when both premeasures and postmeasures are
equal).  Taking the log of the ratio also prevents creation of extreme values
that result from a spuriously low value (baseline or postvalue) and allows
a more complete spread when postvalues represent marginal change.

Although its qualities make the LCR more robust and conceptually
meaningful than percent-change, its metric is not readily interpretable
in a descriptive sense.  For description, one can work backward from the
LCR value to reconstruct an example of “representative change” using
the mean basal value and the LCR-expected posttreatment value.  The
authors find the LCR to be best suited for reporting effect sizes (such as
d, difference divided by standard deviation) because no change equates
to an LCR of zero and proportional change is symmetrical about zero;
simply dividing the LCR by its standard deviation produces the effect size.

However, the LCR is not without its bugs; values of zero for either measure
produce undefined results, so zeros must be recoded to some nonzero value.
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The most conservative method is to recode zeros to the lowest nonzero
value observed in the sample, with more liberal procedures recoding zeros
to some point, such as halfway between the empirical nonzero minimum
and zero.  Although choice of this recoding point for zeros is arbitrary, the
effect on the potential distribution is symmetrical regardless of the value
chosen because the zero value could occur in either the premeasure or
postmeasure.  On the other hand, the effect on the empirical distribution
can be profoundly affected, depending on the recode value chosen, and
the researcher should report explicitly the value to which zeros are recoded.
The authors recommend that the lowest nonzero value observed or measured
be used because it is (1) the most conservative option and (2) less arbitrary
(empirically determined).  The latter also implies that in a truly constrained
distribution this “next-lowest” value should theoretically correspond to the
smallest detectable increment above zero, assuming a fairly large sample.
Other procedures for empirically deriving the appropriate minimum (based
on various percentile ranges within the sample distribution) have been
suggested but not yet fully evaluated.

The LCR shares the same advantage of “relativeness” with the percent-
change measure in that the magnitude of change is considered relative to
the baseline or premeasure value.  The symmetry about the expected mean
of zero change (and ensuing normality in the potential distribution) of the
LCR is a desirable feature and a definite advantage over percent-change.
For example, calculated by the percent-change method, a change from 40
to 200 ng would produce a score of +400 percent, whereas the same change
in the other direction (from 200 to 40 ng) produces a score of –80 percent.
In this case the LCR would produce values of the same magnitude for both
the increase and decrease (+1.609, –1.609), differing only in sign.

DATA ERROR

Up to this point the discussion of data deficiencies has centered on
violations of the normality assumptions, which can and do occur in
perfectly good and accurate data.  Such violations also occur because
of  data error, which can be of many types and can creep into the data at
many stages in the research process.  Whether measurement, sampling,
or data entry error, all error, regardless of source, should be minimized.
In research where sample sizes are limited (e.g., perinatal research),
a single substantial error or a handful of small errors may completely
negate what otherwise might have been a strong finding.  Cohen (1990)
cites a study of 25 height-weight pairs in which reversal of data for a single
subject would have changed the 0.83 correlation to a –0.26 correlation!
The authors recommend always performing random spot-checks of data
already entered and/or duplicating the data entry for small segments of
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the data set to verify the integrity of the data entry.  The rate of data entry
error can be estimated by drawing periodic random samples for verification.

Outliers

Other sources of data error include measurement instrument (“sensitivity”)
error and sampling error.  These are inherent in any data set and cannot
be quantified or known in any practical sense.  (If they could be identified
and quantified, probabilistic methods would not be necessary.)  Because
they usually can be assumed to be normally distributed, they are “ignored”
as the error term in the statistical model.  However, remote “one-in-a-
million” cases exist in the near-infinite populations that are sampled,
and these “data spikes” inevitably pop up at times.  The long-run
expectation of finding such cases does not change the fact that they are
significantly overrepresented in a sample of only 100.  Therefore, when
checking variables for normality in the preanalysis, it is important to
check for extreme outliers as well.

The definition of the normal distribution stipulates the existence of
tails, but given a sample size, the researcher can determine the probability
of any z-score being a chance occurrence.  For example, z-scores greater
than 3 should occur only about three times per 1,000 cases, and z-scores
greater than 4 should occur only about six to seven times in a sample
of 100,000 cases.  Unless working with large data sets (more than
10,000 cases), it is always worthwhile to investigate cases in which
a value has a corresponding z-score greater than 3 and certainly always
when the z-score exceeds 4.  The value may turn out to be a data entry error
just waiting to ruin a correlation, or it may belong to a case/subject that on
further investigation is found to be so bizarre and unrepresentative of the
population being studied as to warrant its exclusion as an anomalous case.

Simply excluding a case on the basis of one extreme value is a highly
questionable (and arguably unethical) procedure; the decision to exclude
a case from the data set should be based on some other objective basis,
which may result in the exclusion of one or more “good” cases also.
When any subject has a preponderance of extreme values on a number
of measures (variables), a brief case study/descriptive explanation should
be included in the research report to justify the basis for a “specific”
(nonobjective) exclusion.  This is not to say exclusions are not sometimes
justified and proper.  The authors recommend that, when the researcher
locates a questionable case so extreme as to radically influence the outcome
of an analysis, the report include the results of both analyses, including
and excluding the questionable case, as well as the bases on which the
case was deemed questionable.  If the case is truly bad, producing a
spurious or erroneous result, and the researcher fails to exclude it, the
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scientific integrity of the research is jeopardized just as much as if the case
is excluded simply to boost a correlation.  If the results do not change much
either way, presumption must rest with leaving the questionable data in.

The previous discussion of extreme cases refers only to univariate
extremeness.  It is possible that a case may be an extreme anomaly worthy
of exclusion, but only in terms of its multivariate distribution.  Such cases
often cannot be identified as extreme on any single dimension.  Perhaps
the simplest way to locate the existence of such cases is to perform a
cluster analysis specifying a small number of clusters (e.g., three to five).
If any of these clusters comprises single cases (or relatively few cases
compared with the other clusters), there is a possibility that these cases
are multidimensional extremes.  The researcher can follow up on such
indications by computing for each case the mean pairwise distance score.
Truly extreme cases should stand out.  To avoid having the different metrics
of variables influence the distance scores, it is usually preferable to first
standardize the variables to be used in the clustering procedure.  Also,
highly correlated variables can be thought of as indicators of the same
latent dimension, which then would contribute disproportionately more to
the cluster solution if these somewhat redundant variables are all included
in the analysis.  The researcher can select the most appropriate variable
from such a group or combine several through principal components
analysis to keep them from exerting undue influence in defining the
multidimensional space of the data set.

Other Errors

Data entry errors occurring within normal ranges of values may be
undetectable when one looks at the univariate distributions yet still be
different enough from their true values to greatly distort a relationship
with another variable.  These data errors are perhaps the most pernicious
of all.  For this reason, it is advisable to use a statistical package that can
produce residual diagnostics, particularly lists of cases that have great
influence (or leverage) on the outcome of the analysis.  Some of the
best measures to check are Cook’s distance, Mahalanobis’ distance, and
deleted studentized residuals (Belsley et al. 1980; Cook 1977).  Again,
cases with unusual influence should be checked for data entry errors or
on some other general and objective basis that would disqualify them.

One other source of error that can inflate the residual error is related to
independence of sequential observations/measurements.  It is useful to
have variables that indicate sequence of measurement or collection in
the data set so that sequence can be plotted against both the dependent
variable and the residuals from any analysis.  Sequential error can occur
as the result of instrument calibration issues (such as warmup or drift),
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measurer/collector change (e.g., interviewer fatigue/boredom, interviewer’s
becoming more proficient in measuring or using the instrument), or even
from subject “learning” (such as becoming more proficient at tasks that
are performed repeatedly).  Such sources of sequential error can sometimes
be explicitly modeled into an analysis (e.g., as a covariate in an ANOVA),
thereby reducing the residual error and strengthening the estimate of the
magnitude of the effect size being tested.

MISSING DATA

One type of instrument sensitivity error mentioned above is the failure to
register a value at all, such as when a mechanical instrument fails to sense
a stimulus or when a survey respondent fails to provide a response.  In
perinatal research, missing data can be common because of uncooperative
subjects, scheduling difficulties, and access restrictions.  When working
with many variables in multiple-variable or multivariate analyses, the
researcher may find that the usual default procedure of excluding cases
with a missing value on any one of the many variables in the analysis
(often called listwise deletion) will eliminate nearly all cases in the sample.
Even if nearly every variable has valid data for 98 percent of the cases, if
the 2 percent missing data are different for each of 50 variables, then the
sample N can disappear completely.  Whereas in most data sets missing
data tend to congregate within the same variables (difficult questions or
bad instruments) and/or within the same cases (e.g., problem respondents),
a data set with many variables can have enough of a scattering of missing
data to render an analysis fairly unreliable when excluding cases with
missing data listwise.

There are at least three methods of dealing with missing data without
having to exclude cases altogether.  However, the researcher first must
determine whether the missing data have a story to tell, because missing
data can be evidence of a relationship.  If missing data patterns are
correlated with other variables, the researcher may have the serious
problem of nonresponse bias, which can render any statistical inference
invalid and unrepresentative of the entire sample.  In cases where variables
have missing values for more than a handful of cases, it is important for
the researcher to test for nonresponse bias.  The easiest way is to divide the
sample into two subsamples:  those with valid data for a particular variable
and those without.  Then the researcher can perform a simple difference of
means test (such as the two-independent sample t-test) on other important
variables for which both groups have most cases with valid data.  Any
significant difference implies that those cases with missing values may
be different from the rest of the sample and that their actual values on the
missing variable are possibly unrepresentative and cannot be “corrected”
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by substitution or imputation methods with much reliability.  Such patterns
of nonresponse can be significant findings.

Mean Substitution

If the researcher decides to salvage cases with missing data without losing
the good data, the most common method is to employ a mean substitution
strategy, in which the missing data for a predictor variable receive the
value of the mean for all those cases with a valid datum for that variable.
This is a good method to use in situations where an analysis includes many
“incomplete” variables, each of which may be missing values for only a
very few cases, but the values are scattered among different cases for each
variable.  On the other hand, if the variables tend to have their missing
values concentrated within the same few cases, then the researcher is
probably better off excluding those cases.  When the missing data are
scattered among the cases, mean substitution can keep a fairly complete
data set from losing a substantial portion of its cases in multivariate
analyses, with relatively little risk of introducing a falsely positive bias.

The problem with the mean substitution method is that it usually
flattens true correlations by reducing variance, erring on the side of
being conservative (reducing magnitude of the effect).  Because this
is perhaps the easiest and least risky way to salvage a disappearing N,
many software packages offer mean substitution as an option for
multivariate procedures.  As mentioned above, any indication that
nonresponse patterns are significant makes mean substitution a highly
questionable procedure.  In any respect, mean substitution should be
undertaken only for independent (predictor) variables in an analysis,
and care should be taken to exclude cases that have missing values
for the dependent variable, even when mean-substituting for independent
variables.

Imputation

A second method for dealing with missing data is to impute, or predict,
values for these cases based on other variables—preferably from variables
that will not be used in the analysis (called external variables here).  Much
has been written on the topic of data imputation, and it is advisable to
examine some of the literature if this path is chosen, as there are many
complex issues (and procedures) dealing with imputation (e.g., Little
and Rubin 1987).  Imputation is perhaps most advantageous when a
small number of important predictor variables have missing values and
nonmissing values of these important variables can be reliably predicted
from a combination of two or more external variables.  If such other
variables exist that are successful in predicting values of the “incomplete”
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variable in question, the multiple regression or ANOVA model used for
predicting the valid cases can be used to assign predicted values for those
cases with missing values.  The danger here is that the researcher may
spuriously inflate the findings of the statistical tests by reinforcing the
relationships used to impute the values—essentially perpetuating a result
by increasing the N.  For this reason, missing values for the independent
variable should always be imputed from variables external to the analysis,
although these external variables may be used in other unrelated analyses
that do not involve the imputed variable.

As with mean substitution, it is arguably not appropriate ever to impute
values for dependent variables.  When imputing values for predictor
variables, the dependent variable must never be used, and external
variables also should be avoided if they have even moderate bivariate
correlations with the dependent variable.  One rule of thumb is that no
external variable contributing to the imputation should have a bivariate
correlation (Pearson’s r [Snedecor and Cochran 1980]) with the dependent
variable greater than half the multiple r of the imputation equation.  This
way the researcher is less likely to fall into the trap of circular logic.
Although imputation can be a beneficial tactic for dealing with missing
data, the dangers of using it improperly are great enough to warrant
caution.  When it is used, it is a good idea to weight cases with imputed
data somewhat less than cases with all valid data.  One good rule is to
weight the case by the multiple r (or, more conservatively, the r2) of the
equation used to impute values for the missing variable, which means
that the less successful the imputation formula, the less weight is given
the cases relying on the imputed data.  One implication of this policy is
that cases utilizing imputed data carry case weights worth a fractional
case, which often results in interesting sample Ns (e.g., N=121.37).  The
researcher should report the weighting scheme used to protect against
suspicion of posthoc “data adjusting.”

In situations where more than one variable in the analysis carries imputed
data and some cases have imputed data for different variables than do
other cases, case weights depend on which variable(s) a case is missing.
Cases that carry imputed data for more than one variable should be
weighted by the product of all the multiple rs (of the imputation equations
for these imputed variables) so that the more missing data elements a
case has, the closer to zero that case’s weight becomes.

Multiple-Donor Matching

A third method for dealing with missing data is a variation of “donor-
recipient” matching.  This technique usually produces results similar
to that of the multiple-regression imputation.  The idea behind
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donor-recipient matching is to find the case or cases that are most similar
to a case with missing data in terms of other important variables for which
the “recipient” case has valid data.  The matching “donor” case then
contributes its score on the variable in question to the case that is missing
a value for that variable.  This can be done through a clustering procedure,
which determines distance between cases in terms of multidimensional
space or, inversely speaking, determines the most similar or closest
“neighbor” in terms of these other nonmissing attributes.  Because many
such clustering procedures are affected by the particular metric scaling
of each variable, the clustering should be based on either standardized
scores (i.e., z-scores) or on ranks for the nonmissing variables.  Also,
having several variables that are similar and highly correlated among
themselves can overemphasize the importance of these variables in
determining the distance score.  For this reason, some researchers prefer
to extract principal components (factors) from among the set of variables
and then to cluster the cases based on factor scores.

Some researchers propose a strict one-to-one donor-recipient match,
but the authors recommend instead that the recipient case receive a
mean value for the group of closest neighbors.  Determining how many
neighbors to use as donors can be based on a criterion that specifies the
average size of clusters.  For example, if one wishes the average cluster
size to be approximately 5 percent of the total sample, a cluster solution
that produces 20 clusters would be specified.  Some clusters contain more
than 5 percent of the cases and some less, depending on the distribution
of multidimensional similarities.  The recipient case then would have its
missing value replaced by the mean of that variable for the other cases
in the recipient case’s cluster.  The criterion to use for specifying cluster
size should depend on sample size.  The authors’ somewhat arbitrary
recommendation is that samples with fewer than 100 cases should average
5 cases per cluster; samples of 100 to 500 should average 5 percent of the
sample per cluster; and samples with more than 500 cases should produce
clusters averaging about 25 cases.

This type of donor-recipient matching can be rather time consuming.
Although the end result will often be similar to the result of multiple-
regression imputation described earlier, donor-recipient matching can
provide more reliable estimates of the missing data when relationships
among the various dimensions are nonlinear or nonadditive or have specific
ranges in which residuals from multiple regression are not randomly
distributed.  Finally, as with the multiple-regression imputation technique,
recipient cases should be weighted to some fraction less than a full, single
case.  One possibility for determining the weight for such cases involves
the ratio of the cluster’s standard deviation of the variable to be donated
to the standard deviation of this variable for the total sample.  For example,
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if the cluster standard deviation is 3.57 and the total sample standard
deviation is 16.22, then the weight for recipient cases in this cluster
would be 1–(3.57/16.22), or 0.78.  In this way, the more homogeneous
the cluster, the closer the weight approaches that of a full case.

NONLINEAR RELATIONSHIPS

One fact of scientific life is that, for one reason or another, many true
relationships are not strictly linear.1  Although sophisticated procedures
exist to test models that are more complex than a simple linear frame of
reference, such as nonlinear regressions, dynamic/interactive systems
modeling, and qualitatively interactive segmentation or “tree-splitting”
procedures, these nonlinear/nonstatic/nonadditive models are beyond
the scope of this chapter.  Nevertheless, many times a relationship that
is not strictly linear may be intrinsically linear through the use of a
linear transformation, such as those discussed above in the section titled
“Nonnormality.”  Many times a simple linear regression will produce a
significant result, yet the true result may be a stronger relationship if the
function is curvilinear, such as a log function relationship (as in figure 2).
Failure to model the relationship as its actual log function or polynomial
function (achieved by transforming some or all the variables in the analysis
or adding square and cube components) results in underestimating the
magnitude of the relationship—sometimes concluding incorrectly
that there is no relationship, such as would result when the relationship
resembles a basic parabolic function as shown in figure 3.

Thinking Nonlinearly

There are two ways to guard against mistakenly missing or underestimating
a relationship.  The first is to be more imaginative in conceptualizing the
nature of the phenomenon and break away from the constraints of the
strictly linear frame of reference.  To do so means the researcher would
have various transformations of variables available for evaluation by a
regression procedure’s stepwise selection method of including variables.
If the researcher can conceptualize the nature of the phenomenon more
accurately, he or she is more likely to provide the analytic procedure with

1 The term “strictly linear” is used here to denote relationships that fit a straight line.  Curvilinear
functions, such as log, inverse, and polynomial, are also linear in the truest mathematical sense but are
called “intrinsically linear” here to differentiate them from the functions that can be properly fit using
general linear regression methods without transforming the data.  For a more detailed explanation, see
the introduction to the nonlinear regression procedure in SPSS/PC+ Manual (Version 5.0),  Advanced
Statistics (Norusis 1992, pp. 231-233).
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the appropriate transformed variables.  In this way analyzing data becomes
more than just feeding the computer a bunch of variables; the researcher
must spend some time conceptualizing the model in abstract mathematical
terms.  Many phenomena exhibit relationships that, rather than simply
being linear, are more properly conceptualized as “saturation,” ceiling,
or leveling-off models (log transforms); sudden “critical mass” functions
that suddenly take off (exponential); transfer functions that combine
both of these (sigmoidal or “S-curve”); and nonmonotonic curve functions
that have reversals, such as the relationship between vitamin A dosage
and healthy physiological functioning or between information input and
performance/decisionmaking, where “too much of a good thing” becomes
detrimental after a certain point (often modeled as simple polynomial
functions, as shown in figure 3).

For example, in a recent study of cocaine use by mothers referred to
treatment, the authors obtained hair measures of cocaine use every
4 months after the pretreatment baseline measure.  Using a repeated

FIGURE 2. Comparative fits of linear and log models to data generated
by a quadratic function

NOTE: Units are hypothetical; data were generated by simulations.

KEY: r=correlation coefficient
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FIGURE 3. Comparative fits of linear and polynomial models to data
generated by a quadratic function

NOTE: Units are hypothetical; data were generated by simulations.

KEY: r=correlation coefficient

measures MANOVA, the authors expected the contrast between
consecutive measures to decrease over time for at least two reasons.
First, prior research and common sense led to the belief that if a client
were to improve at all over 2 years, much or even most of the improvement
would be seen in the first 4 months of treatment.  Second, there is a ceiling
effect on improvement (or from another perspective, a floor effect on
drug use because drug use cannot drop below zero).  For these two reasons
the authors expected plots of drug use over 2 years to drop suddenly at
the beginning and then level off toward some asymptote, as in an inverted
logarithmic function.  By specifying a second-order polynomial contrast
among the repeated measures rather than strictly linear or simple difference
contrasts, the true relationship between treatment over time and cocaine
use for the group became clear.
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Examining Residuals

The second way to guard against passing over relationships is to spend
time looking at residual plots to check for violations of the assumption
of randomly distributed and uncorrelated error.  Such violations do not
necessarily mean that the data are not amenable to parametric analysis
but often indicate that the relationship can be better discerned through
a different conceptual model (such as those previously described).
Regularly performing residual diagnostics is something everyone is
(or certainly should be) taught in the first course on regression, but few
busy researchers feel they have time for such tedium after the results are
in.  One of the easiest checks is to look at normal probability plots of
the residual for deviations from a straight diagonal line.  Because most
software packages can generate these plots automatically on request,
there is no reason why the researcher should not always check them.
Second, one should examine plots of the raw and studentized residuals
against predicted values of the dependent variable and against each of
the independent variables.  A glance at each is all it takes to check that
there are no patterns (i.e., that these scatterplots look like random shotgun
blasts) and that the spread of residuals does not increase as the predicted
values for the dependent variable increase (which indicates that the
homogeneity of variance assumption is violated).  Most of the better
statistical packages allow the researcher to request that the software
automatically generate these plots as part of the regression or ANOVA
procedure.

When multiple regression is used, it can be difficult to see from those
residual plots where transformation of a single variable would improve the
model.  Although somewhat more time consuming (because many software
packages do not have the capability to automatically generate the output),
one of the best regression diagnostics is the partial regression plot, which
removes the variance of the dependent variable that is explained by the
other predictor variables, thereby making nonlinear relationships easier to
see.  The partial regression plot consists of plotting for each independent
variable j, the residuals when the dependent variable is predicted from all
other independent variables except j, against the residuals produced when
independent variable j is predicted from the other independent variables.
Such plots should produce a straight line pattern of data points; nonlinear
relationships show up as curvilinear patterns.  Such patterns can help the
researcher reassess the proper conceptualization of the model and locate
variables that need linear transformation.  Just as with the preanalysis
diagnostics of univariate distributions discussed at the beginning of this
chapter, checking residuals for the assumption of independent and random
error to ensure that the procedure is valid may not be necessary given
the robustness of these parametric procedures; often the greatest value
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in doing so is to optimize the results of analyses that might otherwise
be biased in the direction of a Type II error, that is, underestimating or
finding no relationship.

CONCLUSION

Although some topics mentioned here merit greater detail (especially
missing data imputation and nonresponse bias), the authors have presented
some new techniques that others may find useful in dealing with difficult
or problematic data sets and have emphasized issues that may motivate
reassessment of data sets and analyses that were assumed to be valid.
Finally, in fairness to the data, perhaps the perspective of this chapter’s
title should be rephrased:  The most common data deficiencies result from
the researcher’s imperfect methods of scaling, measuring, and collecting
data as well as from the use of often overly simplistic perspectives in
modeling and diagnosing relationships among them.  Thus, researchers
need to “minimize their deficiencies in dealing with data.”
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