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Metabolic Bioactivation Reactions
Potentially Related to Drug Toxicities

Neal Castagnoli, Jr. and Kay P. Castagnoli

The majority of metabolic transformations that xenobiotics undergo
in mammalian systems leads to more polar and, in general, less
pharmaco-logically and toxicologically potent products.  This
generalization has led to the proposal that evolutionary factors
influencing the emergence of the principal enzymes responsible for
the biotransformations of xenobiotics have a link to the improved
survival potential of those individuals equipped with enzyme systems
capable of converting otherwise toxic substances produced by plant-
and animal-based food sources to nontoxic metabolites (Jakoby and
Ziegler 1990).

The types of biotransformation reactions that many xenobiotics
undergo have been organized into two principal classes:  Phase I
transformations that, for the most part, are oxidative in nature and
generally introduce a hydroxy group into the substrate molecule; and
phase II transformations that convert the newly introduced hydroxy
group to polar conjugates such as glucuronides and sulfate esters
(Caldwell 1986; Guengerich and Ziegler 1990).  In the case of
carboxylic acids, polar amido esters derived from various amino acids
are formed (Killenberg and Webster 1980).  Since many toxic natural
products are lipophilic organic molecules, the metabolic conversion of
these substances in land-bound animals to polar conjugates makes
teleological sense in that polar compounds partition with difficulty
across cell membranes but are readily filtered through the nephron and
thus are more readily eliminated from the body through renal
excretion.  Depending on the structures of the molecules, however,
the same metabolic events, on occasion, can generate chemically
reactive and toxic metabolites (Mulder et al. 1986; Parke 1987;
Korzekwa and Jones 1993; Guengerich 1994; Gonzalez and Gelboin
1994).  Consequently, an important part of drug development focuses
on the characterization of the metabolic profile of candidate drugs in
an attempt to avoid structural features that may lead to the formation
of toxic metabolites.

This chapter is concerned with the metabolic fate of cyclic tertiary
amines and, in particular, a consideration of potential bioactivation
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pathways that may lead to toxic metabolites.  Cyclic tertiary amines
form an important class of compounds in the area of drug abuse since
a variety of psychoto-mimetic agents such as cocaine (figure 1,
structure 1), lysergic acid diethylamide (LSD 25) (structure 2) and
phencyclidine (structure 3), as well a large group of centrally acting
compounds such as the neuroleptic phenothiazine chlorpromazine
(structure 4), the central nervous system (CNS) stimulant mazindol
(structure 5), the narcotic analgetic fentanyl (structure 6), and the
antidepressant imipramine (structure 7) either have been used to treat
CNS disorders and/or have the potential for abuse.  These types of
compounds undergo extensive oxidative metabolic transformations.

The discussion that follows focuses on selected examples of metabolic
transformations that may be linked to the formation of potentially
neurotoxic metabolites.  Although the number of well-characterized
examples of such biotransformations is relatively few, it may be
reasonable to speculate that the neurological disorders associated with
long-term exposure to substances of abuse and some behavior-
modifying medications may involve biochemical lesions mediated by
chemically reactive metabolites.  Thus, it may be important when
attempting to assess the possible significance of metabolic
bioactivation processes to appreciate that the chemical instability of
reactive metabolites which can make the identification and
characterization of their biological properties difficult.

The most important metabolic transformation that cyclic amines
undergo is -carbon oxidation which generates the corresponding
iminium products (Koymans et al. 1993).  This reaction is catalyzed
by members of the cytochrome P450 superfamily of hemoproteins
(Nelson et al. 1993).  As discussed below, recent studies have
documented that the outer mitochondrial membrane bound
flavoproteins monoamine oxidase A and B (MAO-A and MAO-B) are
efficient catalysts for the -carbon oxidation of a specific class of
cyclic tertiary amines, namely 4-substituted 1-methyl-1, 2, 3, 6-
tetrahydropyridines (Kalgutkar et al. 1995).  The most generally
accepted catalytic pathway (figure 2) for this reaction assumes an
initial single electron transfer (SET) step from the amine substrate
(structure 8) nitrogen lone pair to generate an aminyl radical cation
(structure 9) which, following loss of an -proton, is converted to a
highly reactive carbon-centered radical (structure 10).  A second
single- electron oxidation of the carbon-centered radical gives, in the
case of the cytochrome P450-catalyzed reaction, the carbinolamine
(structure 11),
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which is in equilibrium with the iminium ion product (structure 12).
In the MAO-catalyzed reaction, intermediate structure 10 is
converted directly to structure 12.  As shown in figure 2, the electron
acceptor for the cytochrome P450-catalyzed reaction is the perferryl
oxo species (FeVO), while the electron acceptor for the MAO-
catalyzed reaction is the oxidized flavin moiety (FAD).

Although the experimental evidence supporting the SET mechanism
for the cytochrome P450-catalyzed (Miwa et al. 1983; Hanzlik et al.
1984; Guengerich and Macdonald 1984; Macdonald et al. 1989) and
the MAO-catalyzed (Silverman 1992) reactions is extensive, it has
been challenged by results from several laboratories.  These include
results obtained with deuterium kinetic isotope effects (Peterson et al.
1987; Peterson and Castagnoli 1988; Dinnocenzo et al. 1993; Walker
and Edmondson 1994), model chemical reactions (Kim et al. 1993,
1995), and the unexpected substrate properties (Kuttab et al. 1994) of
certain tertiary cyclopropyl- amine derivatives, that according to the
SET pathway, would be expected to act as enzyme inactivators only
(Silverman 1984).  These results have led some investigators to
propose a direct hydrogen atom abstraction pathway (structure 8 –>
structure 12) that bypasses the aminyl radical cation intermediate
(structure 9), for both the cytochrome P450-catalyzed (Dinnocenzo
et al. 1993) and the MAO-catalyzed pathways (Walker and
Edmondson 1994; Ottoboni et al. 1989), and a polar (2-electron)
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pathway for MAO catalysis that proceeds via an amine-FAD adduct
(Kim et al. 1993, 1995).  The metabolic processes in figures 2 to 9
are described below.

As illustrated in figure 2, these -carbon oxidations lead to the
formation of iminium ion products which undergo spontaneous
hydrolysis to the corresponding aldehyde (structure 13) and secondary
amine (structure 14),
the net outcome being N-dealkylation.  Cyclic tertiary amines (figure 3,
structure 15) also undergo oxidative N-dealkylation, via hydrolysis of
the enzyme generated exocyclic iminium intermediate (figure 3,
structure 16), to yield an aldehyde (structure 13) and the cyclic
secondary amine (figure 3, structure 17).  The corresponding oxidation
of a ring -carbon atom generates the cyclic iminium intermediate
(figure 3, structure 18).  Unlike the acyclic regioisomer structure 16,
hydrolysis of structure 18 to the aminoaldehyde structure 19 is
reversible, giving rise to the possible further metabolic processing of
structure 18.  These intermediary metabolites are often oxidized to the
biologically less active lactams (structure 20) in a reaction that is
catalyzed by the liver cytosolic enzyme aldehyde oxidase (Bielawski et
al. 1987).  If special structural features are present in the substrate
molecule or if the cyclic iminium metabolite is generated in
extrahepatic tissues lacking aldehyde oxidase, these reactive
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intermediates may undergo alternative chemical transformations that
can produce toxic products.

An example of the metabolic conversion of a 5-membered
azaheterocylic system to toxic metabolites is summarized in figure 4
with the hepatotoxic and carcinogenic pyrrolizidine alkaloids
(Mattocks 1986).  Initial cyto-chrome P450-catalyzed, -carbon
oxidation of the bicyclic parent tertiary amine (structure 21)
generates the iminium intermediate (structure 22) that, upon loss of a
proton, forms the pyrrolic derivative (structure 23).  However,
compound 23 is unstable because of the presence of the leaving groups
in the side chains.  Departure of the RCOO- group generates the
highly reactive electrophilic intermediate (structure 24) that is
attacked by a nucleophilic group present on biomacromolecules to
generate an adduct (structure 25).  The pyrrolizidine alkaloids are
bisalkylating agents because of the presence of the second
strategically positioned leaving group (R.COO-) with the resulting
formation of a crosslinked biopolymer (structure 26).

The dramatic toxicity of the pyrrolizidine alkaloids and related highly
toxic compounds has led investigators to focus their attention on the
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underlying biochemical mechanisms.  More subtle toxicities, however,
may be associated with compounds that undergo similar oxidative
conversions.  The authors have been interested in the potential
metabolic bioactivation of the tobacco alkaloid (S)-nicotine (figure 5,
structure 27), a compound that is metabolically bioactivated to
reactive intermediates that form covalent bonds to
biomacromolecules (Shigenaga et al. 1988).  The principal oxidative
pathway for this compound also proceeds via cytochrome P450-
catalyzed oxidation to form the corresponding iminium metabolite
(structure 28).  When generated in the presence of liver aldehyde
oxidase, structure 28 is rapidly converted to the nontoxic lactam (S)-
cotinine (structure 29).  In the absence of aldehyde oxidase, however,
the iminium ion (structure 28), presumably via the corres-ponding
free enamine base (structure 30), can be oxidized to the pyrrolic
metabolite -nicotyrine (structure 31) in a reaction that is catalyzed
by MAO-B (Shigenaga 1989).  -nicotyrine is an electron-rich
heterocyclic aromatic system that undergoes rapid cytochrome P450-
catalyzed conver- sion to the pyrrolinones (structures 35 and 36),
which in turn autoxidize to the 5-hydroxypyrrolinone (structure 38)
(Shigenaga et al. 1989).

The proposed reaction pathway leading to these products is depicted
in figure 5.  The electron-rich pyrrole ring system is oxidized to the
reactive arene oxide (structure 32) which rearranges to the
zwitterionic species
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 (structure 33).  Proton loss generates the anion structure 34 which
leads to an equilibrium mixture of pyrrolinones (structures 35 and 36).
Alternatively, the anion (structure 34) undergoes autoxidation,
leading to formation of superoxide radical anion (O2

.-) and the
resonance stabilized radical, structure 37a <—> 37b, which eventually
is converted to the final product (structure 38).  The possible
toxicological significance of this metabolic pathway remains to be
documented.  Since human exposure to tobacco products occurs over
the course of many years, even low-level exposures to reactive
intermediates (such as structure 37) could have a cumulative effect
that may contribute to the degenerative processes linked to tobacco
use.  In this regard, the efficient conversion of (S)-nicotine to the
corresponding iminium metabolite (Shigenaga et al. 1988) by lung
cytochrome P450 may be particularly significant since the levels of
aldehyde oxidase in this tissue are likely to be very low or absent
(Huff and Chaykin 1967; Beedham 1985).

A major impetus for considering the bioactivation of cyclic tertiary
amines is derived from studies on the parkinsonian-inducing
nigrostriatal neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-
tetrahydropyridine (MPTP) structure 39.  Extensive metabolic,
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biochemical, and toxicological investigations have documented that
the neurodegenerative properties of MPTP are mediated by a
mitochondrial neurotoxin that is formed according to the reaction
sequence shown in figure 6 (Sayre 1989; Maret et al. 1990; Kopin
1992; Tipton et al. 1993; Tipton and Singer 1993; Singer et al.
1993).  The substrate amine (structure 39) undergoes C-6 (allylic) ring
-carbon oxidation to form the cyclic iminium metabolite, the 1-
methyl-4-phenyl-1,2-dihydropyridinium species (MPDP+) (structure
40).  Structure 40, although stable as its solid perchlorate salt (Chiba
et al. 1985), is too unstable to isolate from incubation mixtures
(Weissman et al. 1985).  Since structure 40 is an excellent substrate
for aldehyde oxidase, it is rapidly converted in whole liver
homogenates to the corresponding lactam structure 41 (Wu et al.
1988).  In the absence of the aldehyde oxidase, however, structure 40
(< 50 millimolars (mM)) in pH 7.4 buffer undergoes slow autoxidation
to yield the 1-methyl-4-phenyl-pyridinium product MPP+ depicted in
structure 42 (Wu et al. 1988).  At higher con- centrations, this
dihydropyridinium metabolite also may participate in two alternative
reactions (figure 7).  The first is a bimolecular dispropor-tionation
reaction in which the free base structure 43 derived from structure 40
functions as a hydride donor, while structure 40 serves as a hydride
acceptor.  The net result is the formation of stoichiometric amounts
of MPTP and MPP+ (Wu et al. 1988).  A second and more complex
reaction sequence involves the net consumption of three moles of the
dihydropyridinium metabolite (structure 40) that eventually yields the
isoquinoline system (structure 44), a mole of MPP+, and a mole of
methyl- amine (figure 7) (Leung et al. 1989).  The extent to which
these or similar reactions involving endogenous reactants occur in
vivo is not known.

In vitro metabolic studies with rodent  and human liver microsomal
prepara- tions have established that MPTP undergoes both oxidative
N-demethylation and C-6 (allylic) oxidation in reactions that are -
nicotinamide adenine dinucleotide phosphate (NADPH) dependent
and therefore likely to be cytochrome P-450 catalyzed (Weissman et
al. 1985; Ottoboni et al. 1990).  Although the latter transformation
can lead to the toxic pyridinium metabolite MPP+, the cytochrome
P450-catalyzed pathway is unlikely to contribute significantly to the
neurotoxicity of MPTP.  As mentioned above, liver aldehyde oxidase
diverts the inter-mediate dihydropyridinium metabolite away from
pyridinium ion formation by catalyzing the conversion of structure
40 to the nontoxic lactim structure 41.  Further-more, even if formed
in the periphery, the polar pyridinium metabolite would have limited
access to the central nervous system (CNS).  The low
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concentrations of the P450s in the brain (Warner et al. 1993)
preclude the in situ formation of toxic levels of MPP+ within the CNS
by this pathway.

Continued interest in the possible metabolic activation of MPTP led
to brain tissue homogenate studies that initially established
bioactivation in these tissues by MAO (Chiba et al. 1984).  Later
studies demonstrated the unexpected and excellent (kcat/KM = 1400
min -1mM-1 at 37%C) MAO-B substrate properties of MPTP (Kuttab
et al. 1994).  Subsequent studies employing a monkey model of
MPTP-induced parkinsonism established the role of MAO-B in the
mediation of the nigrostriatal toxicity of MPTP.  The critical
experiment showed that the selective MAO-B inhibitor (R)-deprenyl
(structure 45, figure 8) completely protects against MPTP's toxicity
in this model (Langston et al. 1984; Heikkila et al. 1984).  MPTP
also is a substrate for MAO-A (kcat/KM = 47 min-1mM-1 at 30%C)
(Singer et al. 1986).  However, since pretreatment with the MAO-A
selective inactivator clorgyline (structure 46) does not protect against
its neurotoxicity, this form of the enzyme does not appear to
contribute to MPTP's neuro-degenerative properties.

The selective toxicity of MPTP is remarkable, particularly since
there is no evidence for the presence of MAO-B in the susceptible
dopaminergic nigrostriatal neurons (which do, however, contain
MAO-A) (Moll et al. 1990).  This apparent dilemma has been
resolved by the demonstration that MPP+ is a substrate for the
dopamine transporter (Javitch et al. 1985).  Once localized
intraneuronally, MPP+ is concentrated further within the inner
mitochondrial membrane (Youngster et al. 1989a; Davey et al.
1992), where it inhibits electron transport (Nicklas et al. 1985, 1987)
leading to adenosine triphosphate (ATP) depletion (Di Monte et al.
1986) and cell death.

The ability of MPTP to cause a lesion that parallels in many ways the
characteristic lesion of idiopathic Parkinson's disease has stimulated
efforts to identify possible environmental and endogenous compounds
that may possess MPTP-type properties (Ikeda et al. 1992).
Intracerebral microdialysis studies that estimate irreversible neuronal
degeneration have provided evidence that a variety of pyridinium and
related quaternized azaheteroaromatic systems are toxic to
dopaminergic neurons (Rollema et al. 1990, 1994).  Nevertheless,
relatively few compounds meet all of the characteristics required for
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an MPTP-type neurotoxin; these characteristics include the in situ
MAO-B-catalyzed biotransformation in the brain to a pyridinium

metabolite.  The metabolite is actively transported into the
nigrostriatal nerve terminals and then into the inner mitochondrial
membrane, where it must inhibit electron transport.  Extensive studies
have documented that only 1-methyl-1,2,3,6- tetrahydropyridine
derivatives bearing selected substituents at C-4 are good substrates for
MAO-B (Maret et al. 1990; Sablin et al. 1994; Youngster et al.
1989b; Kalgutkar et al. 1994).  Furthermore, various types of
tetrahydropyridine derivatives that are good substrates for MAO-B do
not display MPTP-type activity when tested in vivo since, for
various structural reasons, the intermediate dihydropyridinium
metabolites are not converted to the corresponding pyridinium
species (Naiman et al. 1990; Dalvie et al. 1992).

The MAO-catalyzed bioactivation of MPTP to MPDP+, leading to
the neurotoxic MPP+ pyridinium metabolite, is dependent on the
allylamine unit present in the tetrahydropyridine moiety.  A similar
reaction sequence, however, may occur with piperidine derivatives
lacking the double bond but at the same oxidation state as the
tetrahydropyridine.  One compound of particular interest that fits this
description is haloperidol (figure 9, structure 47), a potent neuroleptic
agent that, like other members of this pharmacological class, causes
severe extrapyramidal side effects including parkinsonism and tardive
dyskinesias (Tarsy and Baldessarini 1986).  This 4-piperidinol
derivative resembles MPTP in that it bears an aryl group at C-4 of
the piperidinol.  Dehydration of HP structure 47, a reaction that is
reported to occur in microsomal incubations (Fang and Gorrod 1991),
gives the corresponding 1,2,3,6-tetrahydropyridine derivative HPTP,
structure 50.  HP 47 and HPTP 50 are not substrates for MAO-B, but
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evidence obtained with the aid of mass spectral techniques and a
sensitive high-performance liquid chromatography (HPLC)
fluorescence assay have documented the conversion of HP (in
humans) and both HP and HPTP (in rodents) to the pyridinium
product HPP+ (structure 52) (Subramanyam et al. 1990, 1991a,
1991b;  Igarashi and Castagnoli 1992; Van der Schyf et al. 1994).
The proposed metabolic sequence for the oxidation of HPTP to
HPP+ (figure 9) proceeds via the dihydropyridinium intermediate
structure 51 followed by autoxidation of structure 51 to structure 52
(Subramanyam et al. 1991b).  The oxidation of HP is thought to
proceed via initial formation of the iminium inter-mediate structure
48 which, via the aminoenol structure 49, is converted to the
dihydropyridinium species structure 51.  These ring -carbon
oxidations parallel the pathway outlined in figure 3 for cyclic tertiary
amines in general.  Since oxidative N-dealkylation (analogous to the
sequence 8 –> 12 –> 13 + 14, figure 2) is a major metabolic pathway
for HP (Forssman and Larsson 1977), it is not surprising to observe
ring - carbon oxidation as a competing pathway.

The metabolic pathways leading to the production of these urinary
pyridinium metabolites are likely to be mediated by one or more
forms of liver cytochrome P450.  In vitro metabolic studies with
rodent (Igarashi et al., unpublished results) and human (Usuki et al.,
submitted) microsomal preparations have demonstrated the NADPH-
dependent oxidation of both HP and HPTP to HPP+.  Ongoing studies
in the authors' laboratory have shown that HPP+ and related
pyridinium metabolites are present in brain tissues obtained from C57
black mice that had been treated with HPTP (Van der Schyf et al.
1994).  Additionally, results obtained from intra-cerebral
microdialysis, mitochondrial respiration, and rat embryonic
mesencephalic cell culture studies suggest that HPP+ possesses MPP+

type neurotoxic properties (Rollema et al. 1992, 1994; Bloomquist et
al. 1994).

The critical question concerns the neurotoxic potential of HP in the
human.  Since the development of drug induced tardive dyskinesias
often requires months or even years of drug exposure (Gerlach and
Casey 1988; Casey 1991), the demonstration of toxin-induced lesions
in experimental animals may be difficult.  Furthermore, in view of the
dramatic species selectivity of MPTP (Singer et al. 1987; Giovanni et
al. 1994a, 1994b), the absence of a detectable anatomical lesion in
HP- or HPTP-treated rodents may not provide a definitive answer to
the question
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of the neurotoxic potential of HP.  It is hoped that this issue will be
resolved by an ongoing study in baboon (Van der Schyf et al.,
unpublished observations).

The potential neurotoxicity of pyridinium and related quaternary
azaheterocyclic species and the possible formation of such
metabolites from six-membered azaheterocyclic systems are of
interest because of the many drugs, including many CNS-acting agents,
that contain such structural features.  Reports on the metabolism of
compounds such as LSD (structure 3) morphine (structure 4),
phencyclidine (structure 5), and fentanyl (structure 6) have not
provided evidence for pyridinium ion formation.  However, the
proposed metabolites are quaternary cations and might not be readily
detected without appropriate analytical tools.  Investigations of the
possible bioactivation of cyclic tertiary amines to neurotoxic
quaternary cationic azaheterocyclic metabolites could provide
valuable information that might lead to a better understanding of the
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drug-related CNS disorders associated with long-term exposure to
certain abused substances.
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