
NYS BOARD OF ELECTIONS ELECTION OPERATIONS UNIT

REQUEST FOR INTERPRETATION BY THE NYS BOARD OF ELECTIONS

Requestor(s)

SysTest Labs Inc.

Request Date

10/03/2008

Requestor Contact
Information
(Name, telephone, fax,
mailing address, & email
address)

R. Reed
303-575-6881
216 16th St
Suite 700
Denver, CO 80202
rreed@systest.com

NYS Election Law,
Guideline, or Other
Issue to be
Clarified (cite specific
reference)

VVSG Vol I, Section 5.2.3a Software Modularity and
Programming:
Each module shall have a specific function that can be
tested and verified independently of the remainder of
the code. In practice, some additional modules (such
as library modules) may be needed to compile the
module under test, but the modular construction allows
the supporting modules to be replaced by special test
versions that support test objectives.

VVSG Vol II, Section 5.4.2 Assessment of Coding
Conventions:
Has all assert() statements coded such that they are
absent from a production compilation. Such coding may
be implemented by ifdef()s that remove them from or
include them in the compilation. If implemented, the
initial program identification in setup should identify that
assert() is enabled and active as a test version

Section 6209.2
 G. Any submitted voting system’s software shall not
contain any code, procedures or other material which
may disable, disarm or otherwise affect in any manner,
the proper operation of the voting system, or which may
damage the voting system, any hardware, or any
computer system or other property of the State Board or
county board, including but not limited to ‘viruses’,
‘worms’, ‘time bombs’, and ‘drop dead’ devices that may
cause the voting system to cease functioning properly
at a future time.

 - 1 -

NYS BOARD OF ELECTIONS ELECTION OPERATIONS UNIT

Statement of
Ambiguity

VVSG Vol II 5.4.2 and VVSGVol I 5.2.3aare the only
sections of the VVSG where there are any distinctions
made between “production compilation” and “test
versions” of software. While these particular sections
reference the use of conditional compile statements, the
same rationale could be extended and applied to any
potential security exposure through the introduction of
“conditionally compiled” code “test” code or “unused”
code.

Section 6209.2 identifies “any submitted voting system’s
software”, but does not identify if this is the “production
compilation” for the Trusted Build or the “complete
source code” delivery to the VSTL which could include
any “conditionally compiled” code, “test” code or
“unused” code.

The Ambiguity impacts the review process for the code.
 If from Section 6209.2 and VVSG Vol II 5.4.2, it may

be categorically stated that there is a difference
between “production compilations” of code used for
the Trusted Build and “test versions” of code, and
that test versions of code are allowable in
production compilations, , then the focus isn’t just on
the source code review for -“conditionally compiled”,
“unused”, or “test-only” code. Instead, the focus is
also on the review of all of the supporting files in the
build process and the combinations of compiler
switch settings. This will require a complete review
of all compilation switches and a confirmation that
all “conditionally compiled”, “unused”, or “test” code
is NOT being compiled as part of the “production
compilation”.

 If Section 6209.2 means “any delivered software
prior to compilation” must be “production” level
code, then “conditionally compiled”, “unused”, or
“test-only” code can not be delivered as part of the
submitted voting systems software. The focus would
be to review the source code to validate that all
“conditionally compiled”, “unused” and “test-only”
code is not present in the production level code,
and the compiler switch review would confirm that
all code provided is compiled and used in the
Trusted Build for the voting system.

Facts Supporting
Ambiguity

In an independent analysis of compiler flag settings by
SysTest prompted by NYSTEC questions on compiler
switches, an execution trace for a given compiled
module (i.e. cfload) was followed from initiation to
compilation to determine if a security patch was
bypassed. The result was that the flags for cfload were

 - 2 -

NYS BOARD OF ELECTIONS ELECTION OPERATIONS UNIT

all set correctly and the security patch was not
bypassed.

The more significant finding was that through the
manipulation of compiler switches in nested makefiles,
the end result of the compiled code could be impacted,
and that compiled binaries could be produced that did
not exactly reflect what was provided in the source code
through compiler switch manipulation.

The current VVSG and NYSBOE requirements (NY
Laws, 6209 and BMD) do not require the settings for
compile flags to be set as “release-level”. They do not
specifically prohibit “conditionally compiled” or “unused
code. They do not specify that all compiler flags must
be traced from initiation to final compiled binaries to
validate all make files and build files compile the source
code exactly as reviewed.

Proposed
Interpretation

SysTest Labs is suggesting one of the following
Proposed Interpretation Options:
Option 1
6209.2 should be interpreted to mean any software
code delivered prior to compilation shall be “production-
level code”. This means that source code that is
delivered to SysTest Labs would only be the code that
is used in the production compilation of the Trusted
Build, and it would be in a “production-level” state
without “debugging code”, “test” code, “unused code”,
or “conditionally compiled” code . This option would
allow for diagnostics that could be used in the code if
accessible and usable through the hardware on which
the code is installed.

Reasons:
This would limit the volume of code that is being
delivered and used for the “production-level
compilation” of the Trusted Build to only that code that
is absolutely used by the voting system. This would
also improve the quality of the code.

Positive impact:
 Removes any identified “conditionally compiled”

code, “unused” code, or “test” code from the source
code prior to compilation.

 it limits the code being maintained in the TDP,
 it limits the number of compiler switches,
 it decreases the amount of time spent performing

the source code review and the build process
analysis.

 Any submitted code will be compiled during Trusted

 - 3 -

NYS BOARD OF ELECTIONS ELECTION OPERATIONS UNIT

Builds in an equivalent setting for “release” mode
 Would need to require the manufacturers to provide

a list of all compiler switches and how they are
intended to be used so that SysTest Labs may verify
this through the examination of their build items.

Negative Impact:
 Manufacturers would need to take the time to review

their own code and remove code that does not meet
“production-level” standards. These are complex
systems created through mergers and acquisitions
and clean-up of the code would be costly to the
manufacturers.

 Manufacturers would have to create NYS-specific
code releases, meaning that ongoing support would
be expensive and the additional versions of code
would be increasingly hard to maintain through
configuration management.

 Re-release of all impacted code. This would require
a full source code review on code that is nearing
defect fix completion.

Option 2:
Interpret 6209.2 as meaning “production compilation”
for Trusted Build is the “submitted voting system’s
software as delivered”. This means that the
manufacturer could deliver anything as part of their
Source Code, but the source code review would need
to include a full review of the entire build process to
confirm no “conditionally compiled”, “unused”, or “test"
code is used as part of the production compilation
Trusted Build.

Positive Impact:
 Source code is already reviewed
 Would need to require the manufacturers to provide

a list of all compiler switches and how they are
intended to be used so that SysTest Labs may verify
this through the examination of their build items.

 Manufacturers would not need to create multiple
versions of the code as the differences would be in
the compiler switches. Easier to maintain, lower
costs.

Negative Impact:
 Requirement for significant additional up-front time

on the source code review prior to Trusted Builds to
perform build analysis and confirm the compiler
switches.

 The amount of time spent to fully review the
compiler switches will push out testing schedules.

 - 4 -

NYS BOARD OF ELECTIONS ELECTION OPERATIONS UNIT

 There is a higher risk of less secure code built into
the Trusted Build as the result of the resetting or
unsetting of compiler switches, as illustrated by the
cfload example if the switches had been set
incorrectly.

Compiler Switch Review Process for Option 2:
The proposed process for performing the compiler
switch review is included below should Interpretation
Opion 2 be selected:

Review of pre-compiler statements (including flags and
conditionals) will be performed in the following manner
on the source code and supporting materials (as
defined by the Certified Voting System Software and
Source Code Escrow Requirements, submitted by
NYSTEC to the NYSBOE on January 21, 2008.

Step 1 - All “# if” statements will be identified through
keyword search in the source code only, and listed

Step 2 – In the source code, the “# if” occurrences will
be analyzed on a case-by-case basis to determine if the
pre-compiler instructions lead to any functionality
changes which can impact security in any way.
 The only occurrences of pre-compiler instructions

that will be deemed acceptable are those settings
which deal specifically with error messages written
to the log and system logging messages.

 Unacceptable outcomes, which will lead to the
generation of a discrepancy are:
1. Any changes to the functionality of the module
2. Any debug messages which present messages

to the user rather than through writing to logs

Step 3 – If the pre-compiler flags are not set in the
source files then all of the supporting materials (build
files, compiler artifacts) will then be analyzed with the
list produced in Step 1 for every occurrence of the same
pre-compiler flag. If the flag exists, a discrepancy will
be generated for the removal of the flags in the
supporting materials.

Please submit “Request for Interpretation” to:

NYS BOARD OF ELECTIONS
ELECTION OPERATIONS UNIT
ATTN: R. Warren
40 STEUBEN ST
ALBANY, NY 12207

 - 5 -

NYS BOARD OF ELECTIONS ELECTION OPERATIONS UNIT

 - 6 -

OR:

election_ops@elections.state.ny.us

NOTE: Interpretations by NYSBOE will be provided in a separate, attached, document.

