
American Institute of Aeronautics and Astronautics
1

Function Extraction: Automated Behavior Computation for
Aerospace Software Verification and Certification

Redge Bartholomew
Software Design Support

Engineering and Technology
Rockwell Collins, Inc.

Cedar Rapids, IA
rgbartho@rockwellcollins.com

Luanne Burns, Tim Daly, Rick Linger, and Stacy Prowell
CERT STAR*Lab

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA
lburns, daly, rlinger, sprowell@cert.org

[Abstract] The complex aerospace systems of the future will challenge the capabilities of present-day
software engineering, which is reaching cost and complexity limits of development technologies evolved in the
first fifty years of computing. A new science for the next fifty years is required to transform software
engineering into a computational discipline capable of fast and dependable software development. This paper
describes verification and certification challenges for avionics software, in particular, the need to verify
behavior in all circumstances of use. The emerging technology of function extraction (FX) for automated
computation of software behavior is discussed as a new technology for avionics software certification. An FX
demonstration system is employed to illustrate the role of behavior computation in the avionics certification
process.

I. Verification and Certification of Avionics Software

The purpose of software verification in the certification context is to eliminate errors introduced during
development, typically in compliance with industry or government guidance. In the case of software for commercial
aviation, the FAA recognizes1 the guidance provided by RTCA DO-178B2, and aviation software developers use it
as a compliance document. Among other things it advises the development team to make sure system requirements
that were allocated to software have been developed into high-level software requirements, and that those have been
decomposed into a software architecture and successively lower-level requirements in a hierarchical structure.
Subsequent reviews, testing, and analyses then confirm that the architecture and low-level requirements have been
correctly and completely decomposed into source code. The team creates deliverable verification artifacts to
demonstrate that the reviews, tests, and analyses have been performed correctly and with required thoroughness. The
team must also demonstrate traceability between the requirements, their implementation, and their verification.
Ultimately, the goal is to identify what the software does, verify that it does what it was meant to do (and no more),
and verify that it does it correctly. That is, the verification process is intended to provide evidence of correct
behavior of the software in all possible circumstances of use.

The purpose of reviewing high-level and low-level requirements is to find errors introduced during the process of
defining, deriving, and allocating requirements – e.g., requirements that were incorrectly or incompletely defined or
derived, or requirements that were not allocated. This includes confirming that system requirements allocated to
software are accurately and completely defined and derived and that none of them conflict with the others, or
conflict with the requirements of the target hardware or infrastructural software (e.g., RTOS). This also includes
determining that defined and derived requirements can be verified (e.g., can be quantified). In particular, the
developer must demonstrate traceability from system requirements to defined and derived software requirements. As
requirements are decomposed into lower levels of detail, clear traceability must be maintained through the
successive layers to demonstrate that all requirements are implemented and that no requirements have been derived
and allocated that cannot be traced back to a system requirement.



American Institute of Aeronautics and Astronautics
2

This level of comprehension and traceability also applies to the development of the software architecture. Reviews
and analysis verify that the software architecture does not conflict with requirements (e.g., required partitioning),
that the data and control flow among architectural components is correct, that the architecture does not conflict with
the hardware or the infrastructural software (e.g., interrupts, initialization, synchronization, etc.), and that all
requirements are allocated to architectural components and that those components contain only features and
capabilities that trace back to system requirements.

Review and analysis of the source code is meant to determine the correctness of the code, but again, also to confirm
that the developer has implemented in code all requirements from the system level to the lowest level and that
nothing has been implemented that cannot be traced back to a system level requirement. The review also verifies
that the code is compatible with the software architecture and with the hardware and infrastructural software. This
includes demonstrating that the source code implements data and control flow that are compliant and compatible
with those defined by the software architecture, that it contains nothing (e.g., capabilities, data structures) that
cannot be verified, and that verification does not require the code to be modified. Further, the developer must
demonstrate that the code complies with complexity minimization requirements (e.g., minimum coupling among
components, minimum nesting, minimum complexity of logical and arithmetic expressions), that it is correct (free of
coding errors – e.g., stack overflow, uninitialized stack variable), and that each line of code traces back to a low
level requirement and all requirements allocated to that component have been implemented. As above, compliance
must be demonstrated and captured in deliverable artifacts.

Subsequently, test cases and test procedures must trace back to code and all code must trace forward to test cases
and procedures. Test results demonstrate correctness and completion of the implementation and complete the
traceability chain. Software must be tested across normal ranges of inputs, conditions, and outputs, but also across
abnormal and error conditions. Stress tests are required to confirm that system behavior cannot be driven to violate
requirements (e.g., cannot be driven into infinite loops, or into system states that have no exit conditions).

Given the rigor of the development methodology and its necessary cost and schedule, avionics development projects
look for ways of reducing the human time and effort as much as possible. Tools used for this purpose must be
qualified. Software verification tools – for example, a tool that would help demonstrate the correct and complete
implementation of a low level requirement into executable code – are qualified by demonstrating that they comply
with their defined operational requirements under normal operational conditions. This requires development of a
requirements document capturing functions and features, installation guides and user manuals, and a description of
the tool’s operating environment. A tool qualification plan identifies the verification activities that are to be
automated, eliminated, or reduced, and describes the tool’s architecture, the tests to be performed, and the
qualification data to be captured and delivered to the certification authority.

II. Function Extraction Technology for Computing Software Behavior

Given the stringent requirements for correctness and certification of avionics software, it is important for developers
to have complete knowledge of the functional behavior of the software in all possible circumstances of use.
Traditional code reviews and inspections are helpful but resource intensive and subject to human fallibility. Testing
is likewise resource intensive and no process of testing, no matter how well conceived, can reveal full functional
behavior. Modern methods such as model checking are an important addition to the verification process, but cannot
reveal full behavior. What is needed is an “all cases of behavior” view of software that is difficult to achieve with
current methods. This problem motivates a closer look at the possibilities for automated computation of software
behavior with mathematical precision at machine speeds.

The objective of behavior calculation is to reveal the net functional effect of software as a means to augment human
capabilities for analysis and design. We discuss these possibilities below in the context of sequential logic, in the full
knowledge that concurrent and recursive logic must be dealt with as well. Our goal is to say first words on the
subject, not last words.



American Institute of Aeronautics and Astronautics
3

The function-theoretic view of software5,7,8 provides mathematical foundations for computation of behavior. In this
view, programs are treated as rules for mathematical functions or relations, that is, mappings from inputs (domains)
to outputs (ranges), regardless of the subject matter addressed or the implementation languages employed. The key
to the function-theoretic approach is that, while programs may contain far too many execution paths for humans to
comprehend or computers to analyze, every program (and thus every system of programs) can be described as a
composition of a finite number of control structures, each of which implements a mathematical function or relation
in the transformation of its inputs into outputs. In particular, the sequential logic of programs can be expressed as a
finite number of single-entry, single-exit control structures: sequence (composition), alternation (ifthenelse), and
iteration (whiledo). The behavior of every control structure in a program can be extracted and composed with others
in a stepwise process based on an algebra of functions that traverses the control structure hierarchy. Termination of
the extraction and composition processes is assured by the finite number of control structures present in any
program. While no comprehensive theory for computing the behavior of iteration structures is possible, satisfactory
engineering solutions are possible.

In more detail, function-theoretic foundations prescribe procedure-free equations that represent net effects on data of
control structures and provide a starting point for behavior extraction. These equations are expressed in terms of
function composition, case analysis, and, for iteration structures, a recursive expression based on an equivalence of
iteration and alternation structures. Representative equations are given below for control structures labeled P, data
operations g and h, predicate q, and program function f.

The program function of a sequence control structure (P: g; h) is defined by

f = [P] = [g; h] = [h] o [g]

where square brackets enclose the program function and “o” is the composition operator. That is, the program
function of a sequence can be calculated by simple composition of its constituent operations.

The program function of an alternation control structure (P: if q then g else h endif) is defined by:

f = [P] = [if q then g else h endif] = ([q] = true→ [g] | [q] = false→ [h])

where “|” is the or operator. That is, the program function is a case analysis of the true and false branches, with the
possibility of combining them into a more general function such as max, min, etc.

The program function of a terminating iteration control structure (P: while q do g enddo) is defined by

f = [P] = [while q do g enddo] = [if q then g; while q do g enddo endif] = [if q then g; f endif]

and f must satisfy the following recursive equation:

f = ([q] = true→ [f] o [g] | [q]= false→ I)

Engineering methods must be developed to transform this recursive equation into a more understandable recursion-
free form for human comprehension. Because no general theory for loop behavior computation can exist, it may be
the case that a small percentage of loops will always require human insight to be combined with automated analysis.

These equations define an algebra of functions that can be applied bottom up to the control structure hierarchy of a
program in a stepwise function extraction process, whereby each control structure is in turn transformed to
procedure-free functional form. This process propagates and preserves the net effects of control structures through
successive levels of abstraction while leaving behind complexities of local computations and data not required for
expressing behavior at higher levels.

In notional illustration of the behavior computation process, consider the following miniature program fragment
composed of five control structures that operate on integer variables (machine precision aside):



American Institute of Aeronautics and Astronautics
4

if x > y
then

t := x;
x := y;
y := t

else
x := x + y;
y := x – y;
x := x – y

endif;
t := x;
x := y;
y := t

The composition computations for the thenpart and elsepart sequence structures are given by accumulating trace
tables,

Operation t x y
t := x t = x unchanged unchanged
x := y unchanged x = y unchanged
y := t unchanged unchanged y = x

which produces the sequence-free concurrent assignment

t, x, y := x, y, x

where “:=” is the assignment operator, and

Operation x y
x := x + y x = x + y unchanged
y := x – y unchanged y = x + y – y = x
x := x – y x = x + y – x = y unchanged

which produces the sequence-free concurrent assignment

x, y := y, x.

These functions can be combined in the ifthenelse alternation analysis as a conditional concurrent assignment:

x > y→ (t, x, y := x, y, x) | x <= y→ (x, y := y, x)

Treating t as a local variable, both cases of the alternation compute x, y := y, x, that is, the values of x and y are
exchanged no matter how the iftest evaluates. Thus, the net computed behavior for the alternation is

x, y := y, x.

The trace table for the final sequence of three operations is identical to the first one above, giving the sequence-free
concurrent assignment

x, y := y, x

and thus the entire program fragment reduces to a sequence of two functions:



American Institute of Aeronautics and Astronautics
5

x, y := y, x;
x, y := y, x

The trace table computation for the sequence

Operation x y
x, y := y, x y x
x, y := y, x x y

reveals the overall behavior to be

x, y := x, y

or simply the identity function, and the possibility arises of a specification or programming error, as the program has
no functional effect.

The general form of the expressions produced by function extraction is a set of conditional concurrent assignments
(CCAs) organized into catalogs that define program behavior in all circumstances of use. The CCAs are disjoint and
thus partition behavior on the input domain of a program. The catalogs define behavior in non-procedural form, and
represent the as-built specification of a program. Each CCA is composed of a predicate on the input domain, which,
if true, results in simultaneous assignment of all right-hand side domain values in the concurrent assignments to their
left-hand side range variables. Catalogs can be queried, for example, for particular behavior cases of interest, or to
determine if any cases satisfy, or violate, specified conditions or constraints. Behavior catalogs have many uses,
ranging from correctness verification to analysis of specific properties to component composition.

To explore the potential of FX technology, CERT STAR*Lab developed a proof-of-concept prototype that
calculates the behavior of programs written in a small subset of Java and presents it to users in the form of behavior
catalogs. A controlled experiment was conducted to compare use of traditional methods of program reading and
inspection with FX-based methods3. Experienced programmers were divided into a control group using traditional
techniques and an experimental group using the FX prototype. Each group answered questions dealing with
comprehension and verification of three Java programs of increasing difficulty.

Results of the experiment showed that the group using the FX prototype reduced the time required to derive the
functional behavior of the most difficult program by about three orders of magnitude over the control group, was
about four times better at providing correct answers to the program comprehension and verification questions, and
required about one-fourth of the time to do so. The FX group achieved these results with 45 minutes of instruction
on use of the prototype, compared to years of education and experience for the control group3.

III. Function Extraction Application to Avionics Software

The objective of function extraction technology is to compute the behavior of software to the maximum extent
possible with mathematical precision4,6,7,9. CERT STAR*Lab is currently engaged in developing an operational
function extraction system that computes the behavior of programs expressed in or compiled into Intel assembly
language. This system expresses an input program in terms of the functional semantics of its assembly language
instructions, transforms the program to structured form, and computes the behavior of each of its constituent control
structures in a stepwise abstraction process. Machine precision is taken into account. The resulting behavior catalog
can be inspected for conformance to requirements, as well as queried and analyzed by automated processes to verify
specific properties and behaviors of interest.

In notional illustration of how a function extraction system could be employed to compute the behavior of avionics
software components, consider the following contrived example that fits within the space constraints of the paper.
Imagine investigating the behavior of the program depicted in Figure 1. The program requirement is to set register
EAX to an angle value, based on certain conditions, that is used by its invoking program as the denominator in a
tangent calculation. It is important to ensure that the angle is never set to 90 degrees, which would cause the



American Institute of Aeronautics and Astronautics
6

calculation to fail. For this illustration, the requirement has been implemented in an intentionally obscure manner to
simulate the difficulty of understanding larger programs that exhibit more complexity. For example, the program
contains substantial spaghetti logic expressed as jumps in the code. The point is, here is a program that would
require substantial resource-intensive human analysis, with full human fallibility, to determine a key property. In
what follows, we will show the alternative process of behavior computation with full precision at machine speeds.

; pi radians = 180
; eax is number of degrees

push eax
push ebx
jl skip
jmp elseO

skip:
push eax
jge elseT
push ebx
pop eax
pop ebx
pop eax
pop ebx
sub ebx, ebx
sub eax, ebx
add ebx, eax
jmp target4

target2:
xor eax, 0x10
add eax,10
jmp endT

target3:
add eax, ecx
xor eax, 0x40
pop ecx
jmp target2

target4:
push ecx

sub ecx, ecx
sub ecx, eax
add ecx, ebx
sub eax, eax
jmp target3
jmp endT

elseT:
sub ebx, ebx
sub eax, ebx
add ebx, eax
jmp target41

target21:
xor eax, 0x10
add eax,8
jmp endT

target31:
add eax, ecx
xor eax, 0x40
pop ecx
jmp target21

target41:
push ecx
sub ecx, ecx
sub ecx, eax
add ecx, ebx
sub eax, eax
jmp target31
jmp endT

endT:
jmp endO

elseO:

jge elseE
add eax,7
jmp endE

elseE:
sub ebx, ebx
sub eax, ebx
add ebx, eax
jmp target43

target23:
xor eax, 0x10
add eax,16
jmp endT

target33:
add eax, ecx
xor eax, 0x40
pop ecx
jmp target23

target43:
push ecx
sub ecx, ecx
sub ecx, eax
add ecx, ebx
sub eax, eax
jmp target33
jmp endT

endE:
endO:

Figure 1. The Assembly Language Program Input to the FX System.

Figure 2 shows output from the function extraction system, a partial view of the function-equivalent structured
version of the input program expressed in terms of standard control structures with all arbitrary branching logic
eliminated. Jump instructions are retained in the text as comments for traceability, but have no functional effect.

Figure 3 depicts a portion of the structured logic on the left, and the computed behavior on the right. Assembly
language programs can set registers (EAX, EBX, etc.), flags (OF – overflow flag, CF – carry flag, SF – sign flag,
etc.) and memory locations. As described above, the behavior is organized into disjoint cases expressed as
conditional concurrent assignments. Each case defines a predicate condition which, if true on entry, results in the
defined concurrent assignments of expressions of initial values on entry to final values on exit. Thus, for the first
case, if the exclusive or of the overflow flag and the carry flag is true, register EAX is indeed set to the undesired
value of 90 degrees. The other two cases set EAX to the acceptable values of 96 and 88 degrees, respectively.



American Institute of Aeronautics and Astronautics
7

Figure 2. FX-Generated Function-Equivalent Structured Version of the Input Program (partial view).

Figure 3. FX-Generated Computed Behavior of the Input Program Expressed in Three Cases.



American Institute of Aeronautics and Astronautics
8

Figure 4. FX-Generated Trace of the Pathway to the Incorrect Behavior.

The next task is to determine how register EAX is set to 90 degrees in the code in order to fix the problem. Figure 4
depicts another FX system capability that can be used for this purpose. The first three lines of this tabular view of
behavior show the same three cases of behavior, one row per case, with the condition and associated concurrent
assignments in the columns. Clicking on row one, the incorrect behavior, produces a list of the line numbers of the
instructions whose accumulating behavior produces the 90 degree value. Clicking on this list produces the display of
Figure 5, which shows part of the corresponding progression of calculations. Each line labeled “after composition”
gives the net effect of the computations to that point, resulting in setting register EAX to 90 at line 47. Armed with
this tracing information, the developer can make the necessary changes in the program and rerun the extraction
process to verify that the modified program is indeed correct.

IV. Implications for Avionics Software Certification

Function extraction is an emerging technology that has the potential to substantially impact verification and
certification of avionics software. FX can provide precise computation of functional behavior at low cost compared
to current resource-intensive methods. Most importantly, the final calculated behavior represents repeatable and
documented assurance evidence required for certification of the software. In the long run, availability of automated
behavior computation may help reduce cost and cycle time for avionics software development.



American Institute of Aeronautics and Astronautics
9

Figure 5. FX Behavior Accumulation Across Instructions That Contribute to the Incorrect Behavior.

References
1Federal Aviation Administration, Advisory Circular 20-115B: RTCA, Inc., Document RTCA/DO-178B, 11 January
1993.
2RTCA SC-167, RTCA/DO-178B: Software Considerations in Airborne Systems and Equipment Certification,
RTCA Inc., 1992.
3Collins, R., Walton, G., Hevner, A., and Linger, R. The CERT Function Extraction Experiment: Quantifying FX
Impact on Software Comprehension and Verification, Technical Note CMU/SEI-2005-TN-047, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2005.
4Hevner, A., Linger, R., Collins, R., Pleszkoch, M., Prowell, S., and Walton, G. The Impact of Function Extraction
Technology on Next-Generation Software Engineering, Technical Report CMU/SEI-2005-TR-015, Software
Engineering Institute, Carnegie Mellon University, July 2005.
5R. Linger, H. Mills, and B. Witt, Structured Programming: Theory and Practice, Addison-Wesley, Inc., 1979.
6Linger, R. and Pleszkoch, M. “Improving Network System Security with Function Extraction Technology for
Automated Calculation of Program Behavior,” Proceedings of the 37th Annual Hawaii International Conference on
System Science (HICSS35), Hawaii, IEEE Computer Society Press, Los Alamitos, CA, January 2004.
7R. Linger, M. Pleszkoch, L. Burns, A. Hevner, and G. Walton, “Next-Generation Software Engineering: Function
Extraction for Computation of Software Behavior,” Proceedings of the 40th Annual Hawaii International
Conference on System Sciences (HICSS40), Hawaii, IEEE Computer Society Press, Los Alamitos, CA, Jan. 2007.
8Prowell, S., Trammell, C., Linger, R., and Poore, J. Cleanroom Software Engineering: Technology and Practice,
Addison Wesley, Reading, MA, 1999.
9Walton, G., Longstaff, T, and Linger, R., Technology Foundations for Computational Evaluation of Security
Attributes, Technical Report CMU/SEI-2006-TR-021, Software Engineering Institute, Carnegie Mellon University,
December 2006.


