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Note to Readers

This document is a publication of the National ib¢¢ of Standards and Technology

(NIST) and is not subject to U.S. copyright. Certabmmercial entities, equipment, or

materials may be identified in this document inesrth describe an experimental procedure
or concept adequately. Such identification is mdénded to imply recommendation or

endorsement by the National Institute of Standart$ Technology, nor is it intended to

imply that the entities, materials, or equipmerdg aecessarily the best available for the
purpose.

For questions or comments on this document, cofatt Kuhn,kuhn@nist.govor 301-
975-3337.
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Executive Summary

Software implementation errors are one of the m&gnificant contributors to
information system security vulnerabilities, makisgftware testing an essential part of
system assurance. In 2003 NIST published a wida#gd report which estimated that
inadequate software testing costs the US econo@yb$8llion per year, even though 50%
to 80% of development budgets go toward testinghakstive testing — testing all possible
combinations of inputs and execution paths — isossfble for real-world software, so high
assurance software is tested using methods thaireegxtensive staff time and thus have
enormous cost. For less critical software, budgetstraints often limit the amount of
testing that can be accomplished, increasing gileaf residual errors that lead to system
failures and security weaknesses.

Combinatorial testing is a method that can redws# and increase the effectiveness of
software testing for many applications. The kesight underlying this form of testing is
that not every parameter contributes to every failand most failures are caused by
interactions between relatively few parameters. iEog) data gathered by NIST and
others suggest that software failures are triggbsednly a few variables interacting (6 or
fewer). This finding has important implications testing because it suggests that testing
combinations of parameters can provide highly é¢ffecfault detection. Pairwise (2-way
combinations) testing is sometimes used to ob&asanably good results at low cost, but
pairwise testing may miss 10% to 40% or more ofesysbugs, and is thus not sufficient
for mission-critical software. Combinatorial tesfi beyond 2-way has been limited,
primarily due to a lack of good algorithms for heghnteraction levels such as 4-way to 6-
way testing. New algorithms, however, have madahipatorial testing beyond pairwise
practical for industrial use.

This publication provides a self-contained tutomal using combinatorial testing for
real-world software. It introduces the key conseqtd methods, explains use of software
tools for generating combinatorial tests (freelyailable on the NIST web site
csrc.nist.gov/acts), and discusses advanced tapics as the use of formal models of
software to determine the expected results for eathof test inputs. With each topic, a
section on costs and practical considerations expladeoffs and limitations that may
impact resources or funding. The material is adbls$o an undergraduate student of
computer science or engineering, and includes gnsie set of references to papers that
provide more depth on each topic.
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1 INTRODUCTION

Software implementation errors are one of the mnmghificant contributors to
information system security vulnerabilities, makisgftware testing an essential part of
system assurance. Combinatorial methods can helpceethe cost and increase the
effectiveness of software testing for many appiacet. This publication provides a self-
contained tutorial on using combinatorial testing feal-world software. It introduces the
key concepts and methods, explains use of softt@ats for generating combinatorial tests
(freely available on the NIST web site csrc.nist/gots), and discusses advanced topics
such as the use of formal models of software terdehe the expected results for each
possible set of test inputs. The material is aibés to an undergraduate student of
computer science or engineering, and includes gansive set of references to papers that
provide more depth on each topic.

1.1 Authority

The National Institute of Standards and Technol@g\5T) developed this document
in furtherance of its statutory responsibilitiesdan the Federal Information Security
Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards andiedmes, including minimum
requirements, for providing adequate informationusiy for all agency operations and
assets, but such standards and guidelines shadlppby to national security systems. This
guideline is consistent with the requirements a @ffice of Management and Budget
(OMB) Circular A-130, Section 8b(3), “Securing Agsn Information Systems,” as
analyzed in A-130, Appendix IV: Analysis of Key $Sieas. Supplemental information is
provided in A-130, Appendix IlI.

This guideline has been prepared for use by Fedaahcies. It may be used by
nongovernmental organizations on a voluntary basisis not subject to copyright, though
attribution is desired.

Nothing in this document should be taken to cont¢tagtandards and guidelines made
mandatory and binding on Federal agencies by tkheetey of Commerce under statutory
authority, nor should these guidelines be integatets altering or superseding the existing
authorities of the Secretary of Commerce, Direabithe OMB, or any other Federal
official.

1.2 Document Scope and Purpose

This publication introduces combinatorial testimgl @xplains how to use it effectively
for system and software assurance.
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1.3 Audience and Assumptions

This document assumes that the readers have expeneth software development
and testing, some familiarity with scripting langea, and basic knowledge of
programming, logic, and discrete mathematics edemigo what would be acquired in an
undergraduate computer science or engineering gmogMost of the material should be
readily understood by an undergraduate student waime programming experience.
Because of the constantly changing nature of thanmation technology industry, readers
are strongly encouraged to take advantage of eéseurces (including those listed in this
document) for more current and detailed information

1.4 Organization: How to use this Document

The document is divided into chapters, with backgh material covered in
appendices. Because it is intended to be selfagued, each chapter provides material that
will be used in later topics. Chapters 2, 3, analiltbe needed by most testers, while the
material in later chapters is specialized for vasitopics. Appendices include a review of
basic combinatorics and a discussion of empiriaeth @n software failures.

Readers new to combinatorial testing may want ¥eeve the basics of combinatorics
in Appendix A and read chapters 2, 3, and 4. O#e&tions of the publication can be
reserved for later use as needed.
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2 COMBINATORIAL METHODS IN TESTING

Developers of large data-intensive software oftetice an interesting—though not
surprising—phenomenon: When usage of an applicatiorps dramatically, components
that have operated for months without trouble sotjdelevelop previously undetected
errors. For example, the application may have bestalled on a different OS-hardware-
DBMS-networking platform, or newly added customeray have account records with an
oddball combination of values that have not ocairimfore. Some of these rare
combinations trigger failures that have escapedipus testing and extensive use. Such
failures are known asteraction failures because they are only exposed when two or more
input values interact to cause the program to readncorrect result.

Combinatorial testing can help detect problems tike early in the testing life cycle.
The key insight underlying-way combinatorial testing is that not every partane
contributes to every failure and most failures tiggered by a single parameter value or
interactions between a relatively small number afameters (for more on the number of
parameters interacting in failures, see Appendix B) detect interaction failures, software
developers often use “pairwise testing”, in whidhpassible pairs of parameter values are
covered by at least one test. Its effectivenedsaged on the observation that software
failures often involve interactions between pararset For example, a router may be
observed to fail only for a particular protocol whgacket volume exceeds a certain rate, a
2-way interaction between protocol type and packet. Figure 1 illustrates how such a 2-
way interaction may happen in code. Note thafaiiare will only be triggered when both
pressure < 1Gandvolume > 300Care true.

if (pressure < 10) {
/1 do sonething
if (volunme > 300) {
faulty code! BOOM
}
el se {
good code, no problem
}
}
el se {
/1 do sonething el se
}
Figure 1. 2-way interaction failure triggered only when two conditions are

true.

Pairwise testing can be highly effective and gamals are available to generate arrays
with all pairs of parameter value combinations. Batil recently only a handful of tools
could generate combinations beyond 2-way, and thastdid could require impractically
long times to generate 3-way, 4-way, or 5-way a&rhgcause the generation process is
mathematically complex. Pairwise testing, i.e. &wcombinations, has come to be
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accepted as the common approach to combinatosahgebecause it is computationally

tractable and reasonably effective.

But what if some failure is triggered only by a ye
unusual combination of 3, 4, or more sensor valugs® very
unlikely that pairwise tests would detect this uralscase; we
would need to test 3-way and 4-way combinationsadfies.

Failures appear
to be caused by
interactions of

But is testing all 4-way combinations enough toedetall
errors? What degree of interaction occurs in faidlres in
real systems? Surprisingly, this question hadoeein studied
when NIST began investigating interaction failures1999. that cover a”_
Results showed that across a variety of domaingaitres | Such few-variable
could be triggered by a maximum of 4-way to 6-way Interactions can
interactions [34, 35, 36, 65]. As shown in Figitethe be very effective.
detection rate increased rapidly with interactiorersgth (the
interaction level in t-way combinations is often referred tosaeength). With the NASA
application, for example, 67% of the failures wéiggered by only a single parameter
value, 93% by 2-way combinations, and 98% by 3-a@ybinations. The detection rate
curves for the other applications studied are simileaching 100% detection with 4 to 6-
way interactions. Studies by other researcherd,[@6] have been consistent with these

only a few
variables, so tests

results.
100 - = — L =
90 / /-
K4
80 V. .
7 = = = Med. Devices

. 70 - /'
i 60 / = == Browser
2 ll
+— 50
‘—; // — = Server
Z 40 -
] . .
O 30 NASA Distributed

20 | DB

10

0 T T
1 2 3 4 5 6
I nteractions
Figure 2. Error detection rates for interaction strengths 1 to 6

While not conclusive, these results are interesbegause they suggest that, while
pairwise testing is not sufficient, the degreerdéraction involved in failures is relatively
low. We summarize this result in what we call thieraction rule an empirically-derivedule that
characterizes the distribution of interaction fault

Interaction Rule: Most failures are induced by single factor faults or by the joint combinatorial
effect (interaction) of two factors, with progressively fewer failuresinduced by interactions
between three or more factors.
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Testing all 4-way to 6-way combinations may theref@rovide reasonably high
assurance. As with most issues in software, hewewhe situation is not that simple.
Efficient generation of test suites to cover &way combinations is a difficult
mathematical problem that has been studied forlyearcentury. In addition, most
parameters are continuous variables which havelgessmlues in a very large range (+/-
2%2 or more). These values must be discretized awadistinct values. Most glaring of all
is the problem of determining the correct resu#tt tthould be expected from the system
under test for each set of test inputs. Generdtj@Q0 test data inputs is of little help if we
cannot determine what the system under test (Sbdijld produce as output for each of
the 1,000 tests.

With the exception of combination covering tes Advances in
generation, these challenges are common to allstype .
software testing, and a variety of good technignage been algorithms have
developed for dealing with them. What has madebsoatorial made
testing practical today is the development of &ffit algorithms | combinatorial
to generate tests coverirtgvay combinations, and effective testing beyond
methods of integrating the tests produced into tbsting pairwise finally
process. A variety of approaches introduced ia phblication practical
can be used to make combinatorial testing a pedctand '
effective addition to the software tester’s toolbox

A note on terminology: we use the definitions beldollowing the Institute of
Electrical and Electronics Engineers [30]. Thertébug” may also be used where its
meaning is clear.

e error: a mistake made by a developer. This could beoding error or a
misunderstanding of requirements or specification.

o fault: a difference between an incorrect program argltbat correctly implements a
specification. An error may result in one or mfaelts.

e failure: a result that differs from the correct resultspecified. A fault in code may
result in zero or more failures, depending on is@urtd execution path.

2.1 Two Forms of Combinatorial Testing

There are basically two approaches to combinatdeisting — use combinations of
configuration parameter values, or combinationsigput parameter values. In the first
case, we select combinations of values of configerparameters. For example, a server
might be tested by setting up all 4-way combinatioh configuration parameters such as
number of simultaneous connections allowed, memO, database size, etc., with the
same test suite run against each configuratiore t&€sts may have been constructed using
any methodology, not necessarily combinatorial cage. The combinatorial aspect of this
approach is in achieving combinatorial coverageanifiguration parameter values. (Note,
the termvariable is often used interchangeably wifarameterto refer to inputs to a
function.)

Combinatorial
testing can be
applied to
configurations,
input data, or both.
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In the second approach, we select combinationsymit data values, which then
become part of complete test cases, creating sstdst for the application. In this case
combinatorial coverage of input data values is iregufor tests constructed. A typical ad
hoc approach to testing involves subject mattereggpsetting up use scenarios, then
selecting input values to exercise the applicatioaach scenario, possibly supplementing
these tests with unusual or suspected problem .casélse combinatorial approach to input
data selection, a test data generation tool is tsedver all combinations of input values
up to some specified limit. One such tool is ACB8scribed in Appendix C), which is
available freely from NIST.

2.1.1 Configuration Testing

Many, if not most, software systems have a largaber of configuration parameters.
Many of the earliest applications of combinatotesting were in testing all pairs of system
configurations. For example, telecommunicationfwsye may be configured to work
with different types of call (local, long distangeternational), billing (caller, phone card,
800), access (ISDN, VOIP, PBX), and server forrmgll(Windows Server, Linux/MySQL,
Oracle). The software must work correctly with @limbinations of these, so a single test
suite could be applied to all pairwise combinatiohthese four major configuration items.
Any system with a variety of configuration optioissa suitable candidate for this type of
testing.

Configuration coverage is perhaps the most devdldpen of combinatorial testing.
It has been used for years with pairwise coverpgsdicularly for applications that must be
shown to work across a variety of combinations pérating systems, databases, and
network characteristics.

For example, suppose we had an application thattémded to run on a variety of
platforms comprised of five components: an opegasiystem (Windows XP, Apple OS X,
Red Hat Enterprise Linux), a browser (Internet Bxgi, Firefox), protocol stack (IPv4,
IPv6), a processor (Intel, AMD), and a database SNk, Sybase, Oracle), a total of
3:2-2-2-3 =72 possible platforms. With only 10 tests, shaw Table 1, it is possible to
test every component interacting with every otl@nponent at least once, i.e., all possible
pairs of platform components are covered.

Test | OS | Browser | Protocol | CPU | DBMS
1 XP IE IPv4 Intel | MySQL
2 XP Firefox IPv6 AMD | Sybase
3 XP IE IPv6 Intel | Oracle
4 OS X | Firefox IPv4 AMD | MySQL
5 OsS X IE IPv4 Intel | Sybase
6 OS X | Firefox IPv4 Intel | Oracle
7 RHEL IE IPv6 AMD | MySQL
8 RHEL | Firefox IPv4 Intel | Sybase
9 RHEL | Firefox IPv4 AMD | Oracle
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| 10 ‘osx| Firefox ‘ IPv6 |AMD‘ Oracle |

Table 1. Pairwise test configurations

2.1.2 Input Parameter Testing

Even if an application has no configuration optioesme form of input will be
processed. For example, a word processing applicabay allow the user to select 10
ways to modify some highlighted textsubscript, superscript, underline, bold, italic,
strikethrough, emboss, shadow, small ¢camsall caps The font-processing function
within the application that receives these settiagsinput must process the input and
modify the text on the screen correctly. Most opsi can be combined, such as bold and
small caps, but some are incompatible, such axgpband superscript.

Thorough testing requires that the font-proces$umgtion work correctly for all
valid combinations of these input settings. BuhwliO binary inputs, there aré’2 1,024
possible combinations. But the empirical analysiported above shows that failures
appear to involve a small number of parameters,thattesting all 3-way combinations
may detect 90% or more of bugs. For a word praegsspplication, testing that detects
better than 90% of bugs may be a cost-effectivacehdut we need to ensure that all 3-
way combinations of values are tested. To do théscreate a test suite to cover all 3-way
combinations (known asavering array [12, 14, 23, 26, 30, 43, 63].

An example is given in Figure 3, which shows a 3¥waThe key component
covering array for 10 variables with two values heacThe is a covering array
interesting property of this array is that any &hm@lumns TN '
contain all eight possible values for three binaayiables. which 'nCIl_Jdes all t-
For example, taking columns F, G, and H, we cantlseeall | Way combinations.
eight possible 3-way combinations (000, 001, 01,00, | Each column is a
101, 110, 111) occur somewhere in the three columpmarameter. Each
together. In fact, any combination of three colsnashosen in| g\ is a test.
any order will also contain all eight possible \edu
Collectively, therefore, this set of tests will esise all 3-way combinations of input values
in only 13 tests, as compared with 1,024 for extieeigoverage.

A B C D E F G H I J
(@0 070700000
11 !1|1|1|]i1|1|1|
1[1 1|0|1|0|@i0|0|1|

[ 0/ D11041(04110/0

1 [0 ol1y1:1]0[0]0
01 olo|1]|0¢0|1]|0
Tests <@0 oli1lol1aT O
1[1[o1lojo 1|of1]o0
o[0fof1]1,1,0¢01]|1
0lol1]1]o0]o|1|0(0]1
1 1(1|/0(0¢C1]0]0
1{oflojolojojo|1|1]1
\ |0]1]o0;0l0)1 1 1‘0‘1
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Figure 3. 3-way covering array

Similar arrays can be generated to cover up t@-alay combinations. In general, the
number oft-way combinatorial tests that will be required isgortional tov' log n, for n
parameters withr possible values each.

Figure 4 contrasts these two approaches. WitHitkteapproach, we may run the
same test set against all 3-way combinations ofigaration options, while for the second
approach, we would construct a test suite that rsoe#l 3-way combinations of input
transaction fields. Of course these approachekl dmicombined, with the combinatorial
tests (approach 2) run against all the configuratiombinations (approach 1).

Use combinations ofanfiguration Configuration:
value: with existing testsuir  ___________ > Browser
0s
DBMS
L . Server
Use combinations ahput
valuesin generating tests
v
Inputs:
Product
Amount System
Quantity Under Test
Pmt method
Shipping method
Figure 4. Two ways of using combinatorial testing

2.2 The Test Oracle Problem

Even with efficient algorithms to produce coveriagays, the oracle problem
remains — testing requires both test data andtsethdt should be expected for each data
input. High interaction strength combinatorialtieg may require a large number of tests

in some cases, although not always. Approachesotaing the oracle problem for
combinatorial testing include:

Crash testing the easiest and least expensive approach isntplysrun tests
against the system under test (SUT) to check whethg unusual combination of input
values causes a crash or other easily detectablgefa This is essentially the same
procedure used in “fuzz testing”, which sends ramd@lues against the SUT. This form
of combinatorial testing could be regarded as aiglised form of fuzz testing [59]. It
should be noted that although pure random testiligg@nerally cover a high percentage of
t-way combinations, 100% coverage of combinatiorguires a random test set much
larger than a covering array. For example, all&8swombinations of 10 parameters with 4
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values each can be covered with 151 tests. Puaelgom generation requires over 900
tests to provide full 3-way coverage.

Embedded assertions An increasingly popular “light-weight formal nhetds”
technique is to embed assertions within code tarengroper relationships between data,
for example as preconditions, postconditions, puirvalue checks. Tools such as the Java
Modeling language (JML) can be used to introducey \mmplex assertions, effectively
embedding a formal specification within the codehe embedded assertions serve as an
executable form of the specification, thus providan oracle for the testing phase. With
embedded assertions, exercising the applicatioh alitt-way combinations can provide
reasonable assurance that the code works corracthss a very wide range of inputs.
This approach has been used successfully for gestmart cards, with embedded JML
assertions acting as an oracle for combinator&bt25]. Results showed that 80% - 90%
of errors could be found in this way.

Model based test generatioises a mathematical modeél
of the SUT and a simulator or model checker to rpre Several types of
expected results for each input [1,8,9,52,55] dimulator can| t€St oracle can be
be used, expected results can be generated dirfeotty the | used, depending or
simulation, but model checkers are widely availadhel can| resources and the
also be used to prove properties such as liverregmiallel | system under test.
processes, in addition to generating tests. Cduoalp, a
model checker can be viewed as exploring all states system model to determine if a
property claimed in a specification statement isetrWhat makes a model checker
particularly valuable is that if the claim is falslke model checker not only reports this, but
also provides a “counterexample” showing how tteénelcan be shown false. If the claim
is false, the model checker indicates this and idesva trace of parameter input values and
states that will prove it is false. In effect tissa complete test case, i.e., a set of parameter
values and expected result. It is then simple ap these values into complete test cases in
the syntax needed for the system under test. katgters develop detailed procedures for
applying each of these testing approaches.

—

2.3 Chapter Summary

1. Empirical data suggest that software failures angsed by the interaction of relatively
few parameter values, and that the proportion ibdiries attributable td-way interactions
declines very rapidly with increasetin That is, usually single parameter values oriagia
values are the cause of a failure, but increasisgigller proportions are caused by 3-way,
4-way, and higher order interactions.

2. Because a small number of parameters are involvddilures, we can attain a high
degree of assurance by testingtadlay interactions, for an appropriate interactitrersgth

t (2 to 6 usually). The number bivay tests that will be required is proportional/ttog n,
for n parameters with values each.

3. Combinatorial methods can be applied to configaretior to input parameters, or in
some cases both.

4. As with all other types of testing, the oracle pemb must be solved — i.e., for every
test input, the expected output must be determinemtder to check if the application is

10
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producing the correct result for each set of inpudsvariety of methods are available to
solve the oracle problem.
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3 CONFIGURATION TESTING

This chapter presents worked examples illustradienelopment of test configurations. As
will be seen, the advantages of combinatorialnigsticrease with the size of the problem.

3.1 Simple Application Platform Example

Returning to the simple example introduced in Céa@t we illustrate development
of test configurations, and compare the size dfgages for various interaction strengths
versus testing all possible configurations. Far fike configuration parameters, we have
3-2-2-2-3 =72 configurations. The convention for describihg variables and values in
combinatorial testing isx™ " ... where thes; are number of variable values andare
number of occurrences. Thus this configuratioddsignated 3. Note that at = 5, the
number of tests is the same as exhaustive testinthis example, because there are only
five parameters. The savings as a percentageh#uskive testing are good, but not that
impressive for this small example. With largerteyss the savings can be enormous, as
will be seen in the next section.

Parameter Values

Operating system | XP, OS X, RHL
Browser IE, Firefox

Protocol IPv4, IPv6

CPU Intel, AMD

DBMS MySQL, Sybase, Oracle

Table 2. Simple example configuration options.

We can now generate test configurations using ti&T& tool. For simplicity of
presentation we illustrate usage of the commareJarsion of ACTS, but an intuitive GUI
version is available that may be more convenidittis tool is summarized in Appendix C
and a comprehensive user manual is included wahAtBTS download.

The first step in creating test configurationstas specify the parameters and
possible values in a file for input to ACTS, aswhan Figure 5:

[System]

[Parameter]

OS (enum): XP,0S_X,RHL

Browser (enum): IE, Firefox
Protocol(enum): IPv4,IPv6

CPU (enum): Intel, AMD

DBMS (enum): MySQL,Sybase,Oracle

[Relation]
[Constraint]
[Misc]

Figure 5. Simple example input file for ACTS.
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Note that most of the bracketed tags in the inpatafre optional, and not filled in
for this example. The essential part of the fdethe [Parameter] specification, in the
format <parameter name> (<type>): <values>, wheme or more values are listed
separated by commas. The tool can then be rureatammand line:

java -Ddoi=2 —jar acts_cmd.jar ActsConsoleManager i n.txt out.txt

A variety of options can be specified, but for tkeisample we only use the “degree of
interaction” option to specify 2-way, 3-way, etoverage. Output can be created in a
convenient form shown below, or as a matrix of namspcomma separated value, or Excel
spreadsheet form. If the output will be used bynhn testers rather than as input for
further machine processing, the format in Figure @seful:

Degree of interaction coverage: 2

Number of parameters: 5

Maximum number of values per parameter: 3
Number of configurations: 10

Configuration #1.:

1=0S=XP

2 = Browser=IE

3 = Protocol=IPv4
4 = CPU=Intel

5 = DBMS=MySQL

Configuration #2:

1=0S=XP

2 = Browser=Firefox
3 = Protocol=IPv6

4 = CPU=AMD

5 = DBMS=Sybase

Configuration #3:

1=0S=XP

2 = Browser=IE

3 = Protocol=IPv6
4 = CPU=Intel

5 = DBMS=0Oracle

Configuration #4:

1=0S=0S X

2 = Browser=Firefox
3 = Protocol=IPv4

4 = CPU=AMD

5 = DBMS=MySQL

Figure 6. Excerpt of test configuration output covering all 2-way
combinations.
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The complete test set for 2-way combinations issshon Table 1 in Section 2.1.1. Only
10 tests are needed. Moving to 3-way or higharagtion strengths requires more tests, as
shown in Table 3.

t | # Tests | % of Exhaustive

2 10 14
3 18 25
4 36 50
5 72 100

Table 3. Number of combinatorial tests for a simple example.

In this example, substantial savings could be izedl by testing t-way
configurations instead of all possible configuratipalthough for some applications (such
as a small but highly critical module) a full exktue test may be warranted. As we will
see in the next example, in many cases it is imbles® test all configurations, so we need
to develop reasonable alternatives.

3.2 Smart Phone Application Example

Smart phones have become enormously popular bmcabhsy combine
communication capability with powerful graphicalspliays and processing capability.
Literally tens of thousands of smart phone apphbcest, or ‘apps’, are developed annually.
Among the platforms for smart phone apps is thergiad which includes an open source
development environment and specialized operagstes. Android units contain a large
number of configuration options that control théhdédor of the device. Android apps
must operate across a variety of hardware and aodtwlatforms, since not all products
support the same options. For example, some ghartes may have a physical keyboard
and others may present a soft keyboard using thehteensitive screen. Keyboards may
also be either only numeric with a few special kegs a full typewriter keyboard.
Depending on the state of the app and user chdlvekeyboard may be visible or hidden.
Ensuring that a particular app works across themreaos number of options is a significant
challenge for developers. The extensive set ofonptmakes it intractable to test all
possible configurations, so combinatorial tests@ practical alternative.

Figure 7 shows a resource configuration file fordémd apps. A total of 35
options may be set. Our task is to develop a &b configurations that allow testing
across all 4-way combinations of these options.e Titst step is to determine the set of
parameters and possible values for each that witebted. Although the options are listed
individually to allow a specific integer value tee kassociated with each, they clearly
represent sets of option values with mutually esigle choices. For example, “Keyboard
Hidden” may be “yes”, “no”, or “undefined”. Thesalues will be the possible settings for
parameter names that we will use in generating \&eraoy array. Table 4 shows the
parameter names and number of possible valuesvihatill use for input to the covering
array generator. For a complete specificatiorhesé parameters, see:
http://developer.android.com/reference/androidientires/Configuration.html
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int HARDKEYBOARDHIDDEN_ NO;

int HARDKEYBOARDHIDDEN_UNDEFINED;

int HARDKEYBOARDHIDDEN_YES;

int KEYBOARDHIDDEN_NO;

int KEYBOARDHIDDEN_ UNDEFINED;

int KEYBOARDHIDDEN_YES;

int KEYBOARD_ 12KEY;

int KEYBOARD NOKEYS;

int KEYBOARD_ QWERTY;

int KEYBOARD_UNDEFINED;

int NAVIGATIONHIDDEN_NO;

int NAVIGATIONHIDDEN_ UNDEFINED;

int NAVIGATIONHIDDEN_YES;

int NAVIGATION_DPAD;

int NAVIGATION_NONAYV;

int NAVIGATION_TRACKBALL;

int NAVIGATION_UNDEFINED;

int NAVIGATION_WHEEL,;

int ORIENTATION_LANDSCAPE;

int ORIENTATION_PORTRAIT,;

int ORIENTATION_SQUARE;

int ORIENTATION_UNDEFINED;

int SCREENLAYOUT_LONG_MASK;

int SCREENLAYOUT_LONG_NO;

int SCREENLAYOUT_LONG_UNDEFINED;

int SCREENLAYOUT_LONG_YES;

int SCREENLAYOUT_SIZE LARGE;

int SCREENLAYOUT_SIZE_MASK;

int SCREENLAYOUT_SIZE_NORMAL,;

int SCREENLAYOUT_SIZE_SMALL;

int SCREENLAYOUT_SIZE _UNDEFINED;

int TOUCHSCREEN_FINGER;

int TOUCHSCREEN_NOTOUCH,;

int TOUCHSCREEN_STYLUS;

int TOUCHSCREEN_UNDEFINED;

Figure 7. Android resource configuration file.

Parameter Name Values # Values
HARDKEYBOARDHIDDEN | NO, UNDEFINED, YES 3
KEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4
NAVIGATIONHIDDEN NO, UNDEFINED, YES 3
NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, WHEEL 5
ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4
SCREENLAYOUT LONG MASK, NO, UNDEFINED, YES 4
SCREENLAYOUT SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5
TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Table 4. Android configuration options.
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Using Table 4, we can now calculate the total numh# configurations:
3.3-4.3.5-4.4.5.4 = 172,800 configurations (i.e., &4'5° system) Like many
applications, thorough testing will require someniam intervention to run tests and verify results,
and a test suite will typically include many testseach test suite can be run in 15 minutesilit w
take roughly 24 staff-years to complete testingdorapp. With salary and benefit costs for each
tester of $150,000, the cost of testing an app bellmore than $3 million, making it virtually
impossible to return a profit for most apps. Haoan ave provide effective testing for apps at a
reasonable cost?

Using the covering array generator, we can prodigsts that covert-way
combinations of values. Table 5 shows the nurobéegsts required at several levelst.of
For many applications, 2-way or 3-way testing mayappropriate, and either of these will
require less than 1% of the time required to callgpossible test configurations.

t | # Tests | % of Exhaustive

2 29 0.02
3 137 0.08
4 625 0.4
5 2532 1.5
6 9168 5.3

Table 5. Number of combinatorial tests for Android example.

3.3 Cost and Practical Considerations
3.3.1 Invalid Combinations and Constraints

The system described in Section 3.1 illustratesramon situation in all types of
testing: some combinations cannot be tested bedaay don’t exist for the systems under
test. In this case, if the operating system i8egiOS X or Linux, Internet Explorer is not
available as a browser. Note that we cannot sindglete tests with these untestable
combinations, because that would result in lositigelocombinations that are essential to
test but are not covered by other tests. For elgmndpleting tests 5 and 7 in Section 2.1.1
would mean that we would also lose the test foukiwith the IPv6 protocol.

One way around f[his p_roblem is to delete tests arglome combinations
supplement the test suite with manually constructest never oceur in
configurations to cover the deleted combinations,dovering .
array tools offer a better solution. With ACTS wan specify | Practice
constraints, which tell the tool not to include gfied combinations in the generated test
configurations. ACTS supports a set of commonkydu®gic and arithmetic operators to
specify constraints. In this case, the followirgstraint can be used to ensure that invalid

combinations are not generated:
(OS = “XP” => Browser = “Firefox”)

)

The covering array tool will then generate a setiest configurations that does not include
the invalid combinations, but does cover all thtsat are essential. The revised test
configuration array is shown in Figure 8 below.rdPaeter values that have changed from
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the original configurations are underlined. Ndtattadding the constraint also resulted in
reducing the number of test configurations by onkhis will not always be the case,
depending on the constraints used, but it illusgrdiow constraints can help reduce the
problem. Even if particular combinations are telathe test team may consider some
combinations unnecessary, and constraints couldsked to prevent these combinations,
possibly reducing the number of test configurations

Test | OS | Browser | Protocol | CPU | DBMS
1 XP IE IPv4 Intel | MySQL
2 XP Firefox IPv6 AMD | Sybase
3 XP IE IPv6 Intel | Oracle
4 OS X | Firefox IPv4 AMD | MySQL
5 OS X | Firefox IPv4 Intel | Sybase
6 OS X | Firefox 1Pv6 AMD | Oracle
7 RHL | Firefox IPv6 Intel | MySQL
8 RHL Firefox IPv4 Intel | Oracle
9 XP IE IPv4 AMD | Sybase

Figure 8. Test configurations for simple example with constraint.

3.3.2 Cost Factors

Using combinatorial methods to design test con&gans is probably the most widely
used combinatorial approach because it is quick easly to do and typically delivers
significant improvements to testing.  Combinatiottiesting for input parameters can
provide better test coverage at lower cost tharvewtional tests, and can be extended to
high strength coverage to provide much better asse.

3.4 Chapter Summary

1. Configuration testing is probably the most commamded application of combinatorial
methods in software testing. Whenever an apptinathas roughly five or more
configurable attributes, a covering array is likely make testing more efficient.
Configurable attributes usually have a small nuntdfepossible values each, which is an
ideal situation for combinatorial methods. Becaubke number of t-way tests is
proportional tov' log n, for n parameters witlr values each, unless configurable attributes
have more than 8 or 10 possible values each, thibeuof tests generated will probably be
reasonable. The real-world testing problem intoaduin Section 3.2 is a fairly typical
size, where 4-way interactions can be tested witwehundred tests.

2. Because many systems have certain configuratiataihy not be of interest (such as
Internet Explorer browser on a Linux system), camsts are an important consideration in
any type of testing. With combinatorial methodsisiimportant that the covering array
generator allows for the inclusion of constrairdstisat all relevant interactions are tested,
and important information is not lost because adestains an impossible combination.
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4 INPUT PARAMETER TESTING

As noted in the introduction, the key advantagecainbinatorial testing derives
from the fact that all, or nearly all, softwareldaes appear to involve interactions of only a
few parameters. Using combinatorial testing tedetonfigurations can make testing
more efficient, but it can be even more effectiveew used to select input parameter
values. Testers traditionally develop scenarioh@f an application will be used, then
select inputs that will exercise each of the agpicn features using representative values,
normally supplemented with extreme values to temfopmance and reliability. The
problem with this often ad hoc approach is thatswali combinations will usually be
missed, so a system may pass all tests and workuwvwder normal circumstances, but
eventually encounter a combination of inputs thédils to process correctly.

By testing allt-way combinations, for some specified level tpfcombinatorial
testing can help to avoid this type of situatioim. this chapter we work through a small
example to illustrate the use of these methods.

4.1 Example Access Control Module

The system under test is an access control modaterhplements the following
policy:

Access is allowed if and only if:
¢ the subject is an employee
AND current time is between 9 am and 5 pm
AND it is not a weekend

e OR subject is an employee with a special authorization code
e OR subject is an auditor

AND the time is between 9 am and 5 pm

(not constrained to weekdays).

The input parameters for this module are showngaré 9:

emp: boolean;

time: 0..1440; // time in minutes
day: {m,tu,w,th,fsa,su};

auth: boolean;

aud: boolean;

Figure 9. Access control module input parameters.

Our task is to develop a covering array of teststiese inputs. The first step will
be to develop a table of parameters and possililesasimilar to that in Section 3.1 in the
previous chapter. The only difference is that his tcase we are dealing with input
parameters rather than configuration options. tRermost part, the task is simple: we just
take the values directly from the specificationscode, as shown in Figure 10. Several
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parameters are boolean, and we will use 0 and falfee and true values respectively. For
day of the week, there are only seven values, agetican all be used. However, hour of
the day presents a problem. Recall that the numbtrsts generated for parameters is
proportional to/, wherev is the number of values ands the interaction level (2-way to 6-
way). For all boolean values and 4-way testingrafore, the number of tests will be some
multiple of Z. But consider what happens with a large numberoskible values, such as
24 hours. The number of tests will be proporticiwaR4' = 331,736. For this example,
time is given in minutes, which would obviously t@mpletely intractable. Therefore, we
must select representative values for the houmpatex. This problem occurs in all types
of testing, not just with combinatorial methodsdayood methods have been developed to
deal with it. Most testers are already familiathmwo of these:equivalence partitioning
and boundary value analysis Additional background on these methods can bedan
software testing texts such as Ammann and OffditB2izer [4], Copeland [21], Mathur
[45], and Myers [52].

Parameter | Values

emp 0,1

time ?7?

day m,tu,w,th,f,sa,su
auth 0,1

aud 0,1

Figure 10. Parameters and values for access control example.

Both of these intuitively obvious methods will prox a smaller set of values that
should be adequate for testing purposes, by digithe possible values into partitions that
are meaningful for the program being tested. Caleevis selected for each partition. The
objective is to partition the input space such #rat value selected from the partition will
affect the program under test in the same way gsotlrer value in the partition. Thus,
ideally if a test case contains a parametamich has valug, replacingy with any other
value from the partition will not affect the tesise result. This ideal may not always be
achieved in practice.

How should the partitions be determined? One alsjidout not necessarily good,
approach is to simply select values from variousmfgoon the range of a variable. For
example, if capacity can range from 0 to 20,00&ight seem sensible to select 0, 10,000,
and 20,000 as possible values. But this approadtkely to miss important cases that
depend on the specific requirements of the systederutest. Some judgment is involved,
but partitions are usually best determined fromgbecification. In this example, 9 am and
5 pm are significant, so 0540 (9 hours past midjighd 1020 (17 hours past midnight)
determine the appropriate partitions:

0000 0540 1020 1440
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Ideally, the program should behave the same for an)(J .
of the times within the partitions; it should notatter S€ a maximum
whether the time is 4:00 am or 7:03 am, for example Of 8 to 10 values
because the specification treats both of thesestiime same.| per parameter to
Similarly, it should not matter which time betwettye hours | keep testing
of 9 am and 5 pm is chose; the program should el |  {5ctable.
same for 10:20 am and 2:33 pm. One common strategy
boundary value analysiss to select test values at each boundary andheatstallest
possible unit on either side of the boundary, foe¢ values per boundary. The intuition,
backed by empirical research, is that errors areerikely at boundary conditions because
errors in programming may be made at these poiRts. example, if the requirements for
automated teller machine software say that a wathdl should not be allowed to exceed
$300, a programming error such as the followingd¢@acur:

if (amount > 0 && amount < 300) {
/lprocess withdrawal

} else {
I/l error message

}

Here, the second condition should have beamotint <= 300 ", so a test case that
includes the valuamount = 300 can detect the error, but a test witlhount = 305
would not.

It is generally also desirable to test the extremieranges. One possible selection
of values for the time parameter would then be000@539, 0540, 0541, 1019, 1020, 1021,
and 1440. More values would be better, but theetemay believe that this is the most
effective set for the available time budget. Withs selection, the total number of
combinations i2-8-7-2- 2= 448.

Generating covering arrays for 2 through 6, as detailed in Section 3.1 regalts
the following number of tests:

# Tests

t

2 56
3 112
4 224

Figure 11. Number of tests for access control example.

4.2 Real-world Systems

As with the previous example, the advantage oyer.
exhaustive testing is not large, because of thdl smmber of The larger the
parameters.  With larger problems, the advantagks oSystem, the greate
combinatorial testing can be spectacular. For etem the benefit from
consider the problem of testing the software thaicgsses| combinatorial
switch settings for the panel shown in Figure There are 34|  testing.
switches, which can each be either on or off, feotal of 2*

=
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= 1.7 x 16° possible settings. We clearly cannot test 17obilpossible settings, but all 3-
way interactions can be tested with only 33 temtsl all 4-way interactions with only 85.
This may seem surprising at first, but it resultenf the fact that every test of 34

parameters contair(so’;j = 5,984 3-way anf?ﬁ = 46,376 4-way combinations.

Figure 12. Panel with 34 switches.

4.3 Cost and Practical Considerations

Combinatorial methods can be highly effective aeduce the cost of testing
substantially. For example, Justin Hunter hasiagpghese methods to a wide variety of
test problems and consistently found both lowet eosl more rapid error detection [30].
But as with most aspects of engineering, tradewifist be considered. Among the most
important is the question of when to stop testimgjancing the cost of testing against the
risk of failing to discover additional failures. nAextensive body of research has been
devoted to this topic, and sophisticated modelsagedlable for determining when the cost
of further testing will exceed the expected besdfliD, 45]. Existing models for when to
stop testing can be applied to the combinatorstlapproach also, but there is an additional
consideration: What is the appropriate interacsivangth to use in this type of testing?

To address these questions consider the numbegstd at different interaction
strengths for an avionics software example [34sh Figure 13. While the number of
tests will be different (probably much smaller tharFigure 13) depending on the system
under test, the magnitude of difference betweerl$ewft will be similar to Figure 13,
because the number of tests grows withfor parameters witlv values. That is, the
number of tests grows with the exponénso we want to use the smallest interaction
strength that is appropriate for the problem.uititely, it seems that if no failures are
detected by-way tests, then it may be reasonable to conduditiadal testing only fot+1
interactions, but no greater if no additional fegls are found at+l. In the empirical
studies of software failures, the number of faiurdetected att > 2 decreased
monotonically witht, so this heuristic seems to make sensé&art testing using 2-way
(pairwise) combinations, continue increasing theeiaction strength t until no errors are
detected by the t-way tests, then (optionally)t+d and ensure that no additional errors
are detected As with other aspects of software developmehis guideline is also
dependent on resources, time constraints, andoevs&tfit considerations.
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Figure 13. Number of tests for avionics example.

When applying combinatorial methods to input paramse the key cost factors are
the number of values per parameter, the interasti@mngth, and the number of parameters.
As shown above, the number of tests increaseslyagsdhe value of t is increased, but the
rate of increase depends on the number of valuepgrameter. Binary variables, with
only two values each, result in far fewer testsitparameters with many values each. As
a practical matter, when partitioning the input cpésection 4.1), it is best to keep the
number of values per parameter below 8 or 10 ifinbs.

Because the number of tests increases only lbgaigally with the number of
parameters, test set size for a large problem reagnty somewhat larger than for a much
smaller problem. For example, if a project useslmoatorial testing for a system that has
20 parameters and generates several hundred &estsich larger system with 40 to 50
parameters may only require a few dozen more t€stenbinatorial methods may generate
the best cost benefit ratio for large systems.

4.4 Chapter Summary

1. The key advantage of combinatorial testing derives) the fact that all, or nearly all,
software failures appear to involve interaction®oly a few parameters. Generating a
covering array of input parameter values allowsoutest all of these interactions, up to
a level of 5-way or 6-way combinations, dependinge&sources.

2. Practical testing often requires abstracting thesfide values of a variable into a small
set of equivalence classes. For example, if alabgiis a 32-bit integer, it is clearly not
possible to test the full range of values in +. 2 This problem is not unique to
combinatorial testing, but occurs in most test mdtlogies. Simple heuristics and
engineering judgment are required to determineajhygropriate portioning of values
into equivalence classes, but once this is accaimgdi it is possible to generate
covering arrays of a few hundred to a few thoudasts for many applications. The
thoroughness of coverage will depend on resoumcg<saticality of the application.
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5 SEQUENCE-COVERING ARRAYS

In testing event-driven software, the critical ctiadh for triggering failures often is
whether or not a particular event has occurredr poi@ second one, not necessarily if they
are back to back. This situation reflects the that in many cases, a particular state must
be reached before a particular failure can be éngd. For example, a failure might occur
when connecting device A only if device B is alnpannected. The methods described
in this chapter were developed to solve a real Ipmbin interoperability test and
evaluation, using combinatorial methods to provdicient testing. Sequence covering
arrays, as defined here, ensure thattaawents will be tested in every possiblgay order.

For this problem we can define a sequence-cove'ingi
array [39, 40], which is a set of tests that ensaife-way | N Many systems,
sequence of events have been tested. Thevents in the| the order of inputs
sequence may be interleaved with others, but athpations | is important.
will be tested. For example, we may have a compibota
factory automation system that uses certain dewntesacting with a control program. We
want to test the events defined in Table 6.

There are 6! = 720 possible sequences for thesevemts, and the system should
respond correctly and safely no matter the ordexhich they occur. Operators may be
instructed to use a particular order, but mistakesinevitable, and should not result in
injury to users or compromise the enterprise. Beeaetup, connections and operation of
this component are manual, each test can take sidavable amount of time. It is not
uncommon for system-level tests such as this te tadurs to execute, monitor, and
complete. We want to test this system as thorougslypossible, but time and budget
constraints do not allow for testing all possibkggences, so we will test all 3-event
sequences.

With six eventsa, b, c, d, eandf, one subset of three i9{d, @, which can be
arranged in six permutationsb fi §, [be d,[dbd,[deld, [eb d, [edH . A testthat
covers the permutatior[b g is: [ad cfb & anotheris§d dc b eff A larger example
system may have 10 devices to connect, in which ti@s number of permutations is 10!,
or 3,628,800 tests for exhaustive testing. In teade, a 3-way sequence covering array
with 14 tests covering a10-9-8=720 3-way sequences is a dramatic improvement, a2 is 7
tests for all 4-way sequences (see Table 8).

Event| Description

connect air flow meter
connect pressure gauge
connect satellite link
connect pressure readout
engage drive motor
engage steering control

0D |Q|O ([T

Table 6. System events
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Definition. We define a sequence covering array, G4, } as anN x S matrix where
entries are from a finite s&of s symbols, such that evetyway permutation of symbols
from S occurs in at least one row; theymbols in the permutation are not required to be
adjacent. That is, for everyway arrangement of symbolsg, X, ..., X%, the regular
expression X;.*x..*X.* matches at least one row in the array. Sequentering arrays,

as the name implies, are analogous to standardingvarays, which include at least one
of everyt-way combination of any variables, wheré<n. A variety of algorithms are
available for constructing covering arrays, butsthare not usable for generatingay
sequences because they are designed to cover @iibsin any order.

Example 1. Consider the problem of testing four eveatsy, ¢ andd. For convenience, a
t-way permutation of symbols is referred to dsaamy sequencelhere are 4! = 24 possible
permutations of these four events, but we canalé8tway sequences of these events with
only six tests (see Table 7).

Test

Q10 |0|(T|TC|D
[VRIeRiR eRiORLeR

O|T|T|0|0|T
T ||| Qo

OO WIN| -

Table 7. Tests for four events.

5.1 Constructing Sequence Covering Arrays

A 2-way sequence covering array can be construmtedting the events in some order for
one test and in reverse order for the second test:

l|a|b|c| d
2|d|c|b]| a

To see that the procedure in Example 2 generatestteat cover all 2-way sequences, note
that for 2-way sequence coverage, every pair aalilsx andy, x..yandy..xmust both be

in some test (whera..b means that is eventually followed byb). All variables are
included in each test, therefore any sequeagamust be in either test 1 or test 2 and its
reversey..xin the other test.

For t-way sequenc¢est generation, where t > 2, we use a greedyritdigo that
generates a large number of tests, scores eachebyumber of previously uncovered

sequences it covers, then chooses the higheshgaest. This simple approach produces
surprisingly good results,

5.2 Using Sequence Covering Arrays

Sequence covering arrays have been incorporated dperational testing for a
mission-critical system that uses multiple deviedth inputs and outputs to a laptop
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computer. The test procedure has 8 steps: bstgray open application, run scan, connect
peripherals P-1 through P-5. It is expected tbatsbme sequences, the system will not
function properly, thus the order of connectingipieerals is a critical aspect of testing. In
addition, there are constraints on the sequeneverits: can't scan until the app is open;
can't open app until system is booted. There @820 permutations of 8 steps, but some
are redundant (e.g., changing the order of pergd@&onnected before boot), and some are
invalid (violates a constraint). Around 7,000 asdid, and non-redundant, but this is far
too many to test for a system that requires mamimgssical connections of devices.

The system was tested using a seven-step sequewegng array, incorporating
the assumption that there is no need to examieadtn-3 sequences that involve boot-up.
The initial test configuration (Figure 14) was dradrom the library of pre-computed
sequence tests. Some changes were made to therpperted sequences based on unique
requirements of the system test. If 6="Open Ap@ 5='Run Scan’, then cases 1, 4, 6, 8,
10, and 12 are invalid, because the scan cannotrbdefore the application is started.
This was handled by 'swapping 0 and 1' when theyadjacent (1 and 4), out of order. For
the other cases, several cases were generatederomthat were valid mutations of the
invalid case. A test was also embedded to seehehdt mattered where each of three
USB connections were placed. The last test caseres at least strength 2 (sequence of
length 2) for all peripheral connections and 'Bob&., that each peripheral connection
occurs prior to boot. The final test array is shaw Table 9.

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10
Test 11
Test 12

N[O |wo|jo | | [W|IN O |O
A |OJO|jO1T |01 [O|O|O |0 |W|[W
oW |~ INO (WO o |IN|>

S |O|_ I~ IN|m|D[~0 |-~
D (W|Ww O |N |~ |w|oo|o|[~]|N
O|= (N[O |2 (N~~~ O0
N oo = |Olw|dO|N|w| O |®

[6)]
N
w

Figure 14. Seven-event test from pre-computed test library.

5.3 Cost and Practical Considerations

As with other forms of combinatorial testing, soommbinations may be either impossible or
not exist on the system under test. For exampézeive message’ must occur before ‘process
message’. The algorithm we have developed makesssible to specify pairsy, where the
sequence..yis to be excluded from the generated coveringyarfieypically this will lead to extra
tests, but does not increase the test array signily.

25



Practical Combinatorial Testing

5.4 Chapter Summary

1. Sequence covering arrays are a new applicationrabmatorial methods, developed
by NIST to solve problems with interoperabilitytiag. A sequence-covering array is
a set of tests that ensuretallay sequenaeof events have been tested. Theents in
the sequence may be interleaved with others, bpeanutations will be tested.

2. All 2-way sequences can be tested simply by listiregevents to be tested in any order,
then reversing the order to create a second tAkjorithms have been developed to
create sequence covering arrays for higher strantghaction levels.

3. As with other types of combinatorial testing, coastts may be important, since it is
very common that certain events depend on othensroag first. The tools NIST has
developed for this problem allow the user to sgecdnstraints in the form of excluded
sequences which will not appear in the generatsdateay.

Events 3-seq Tests 4-seq Tests
5 8 29
6 10 38
7 12 50
8 12 56
9 14 68
10 14 72
11 14 78
12 16 86
13 16 92
14 16 100
15 18 108
16 18 112
17 20 118
18 20 122
19 22 128
20 22 134
21 22 134
22 22 140
23 24 146
24 24 146
25 24 152
26 24 158
27 26 160
28 26 162
29 26 166
30 26 166
40 32 198
50 34 214
60 38 238
70 40 250
80 42 264
90 44

100 44

Table 8. Number of tests for combinatorial 3-way and 4-way sequences.
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Table 9. Final sequence covering array used in testing.

Original
Case Case Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8
1 1 Boot P-1 (USB-RIGHT) P-2 (USB-BACK) P-3 (USB-LEFT) P-4 P-5 Application Scan
2 2 Boot Application Scan P-5 P-4 P-3 (USB-RIGHT) P-2 (USB-BACK) P-1 (USB-LEFT)
3 3 Boot P-3 (USB-RIGHT) P-2 (USB-LEFT) P-1 (USB-BACK) Application Scan P-5 P-4
4 4 Boot P-4 P-5 Application Scan P-1 (USB-RIGHT) P-2 (USB-LEFT) P-3 (USB-BACK)
5 5 Boot P-5 P-2 (USB-RIGHT) Application P-1 (USB-BACK) P-4 P-3 (USB-LEFT) Scan
6A 6 Boot Application P-3 (USB-BACK) P-4 P-1 (USB-LEFT) Scan P-2 (USB-RIGHT) P-5
6B 7 Boot Application Scan P-3 (USB-LEFT) P-4 P-1 (USB-RIGHT) P-2 (USB-BACK) P-5
6C 8 Boot P-3 (USB-RIGHT) P-4 P-1 (USB-LEFT) Application Scan P-2 (USB-BACK) P-5
6D 9 Boot P-3 (USB-RIGHT) Application P-4 Scan P-1 (USB-BACK) P-2 (USB-LEFT) P-5
7 10 Boot P-1 (USB-RIGHT) Application P-5 Scan P-3 (USB-BACK) P-2 (USB-LEFT) P-4
8A 11 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-LEFT) Application Scan P-5 P-1 (USB-BACK)
8B 12 Boot P-4 P-2 (USB-RIGHT) P-3 (USB-BACK) P-5 Application Scan P-1 (USB-LEFT)
9 13 Boot Application P-3 (USB-LEFT) Scan P-1 (USB-RIGHT) P-4 P-5 P-2 (USB-BACK)
10A 14 Boot P-2 (USB-BACK) P-5 P-4 P-1 (USB-LEFT) P-3 (USB-RIGHT) Application Scan
10B 15 Boot P-2 (USB-LEFT) P-5 P-4 P-1 (USB-BACK) Application Scan P-3 (USB-RIGHT)
11 16 Boot P-3 (USB-BACK) P-1 (USB-RIGHT) P-4 P-5 Application P-2 (USB-LEFT) Scan
12A 17 Boot Application Scan P-2 (USB-RIGHT) P-5 P-4 P-1 (USB-BACK) P-3 (USB-LEFT)
12B 18 Boot P-2 (USB-RIGHT) Application Scan P-5 P-4 P-1 (USB-LEFT) P-3 (USB-BACK)
NA 19 P-5 P-4 P-3 (USB-LEFT) P-2 (USB-RIGHT) P-1 (USB-BACK) Boot Application Scan
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6 MEASURING COMBINATORIAL COVERAGE

Since it is nearly always impossible to test alsgible combinations, combinatorial
testing is a reasonable alternative. For somesvalt; testing alt-way interactions among
n parameters will detect nearly all errors. It igsgible thatt = n, but recalling the
empirical data on failures, we would expetd be relatively small. Determining the level
of input or configuration state space coveragelep in understanding the degree of risk
that remains after testing. If 90% - 100% of thates space has been covered, then
presumably the risk is small, but if coverage iscmsmaller, then the risk may be
substantial. This chapter describes some measfigembinatorial coverage that can be
helpful in estimating this risk that we have apgplie tests for spacecraft software [50] but
have general application to any combinatorial cagerproblem.

6.1 Software Test Coverage

Test coverage is one of the most important topicsoiftware assurance. Users would
like some quantitative measure to judge the riskgimg a product. For a given test set,
what can we say about the combinatorial coverageovides? With physical products,
such as light bulbs or motors, reliability engireeean provide a probability of failure
within a particular time frame. This is possiblechuse the failures in physical products
are typically the result of natural processes, saghetal fatigue.

_ With software the situation is more comp_lex,_ andnyna Commonly used
different approaches have been devised for detamgsoftware
test coverage. With millions of lines of code omty with a few coverage
thousand, the number of paths through a prograso large that| Measures do not
it is impossible to test all paths. For edcktatement, there are apply well to
two possible branches, so a sequencen d@f statements will| combinatorial
result in 2 possible paths. Thus even a small program wit Ontesting.
270if statements in an execution trace may have morglpes
paths than there are atoms in the universe, wkicm ithe order of & With loops while
statements) the number of possible paths is lijemafinite. Thus a variety of measures
have been developed to gauge the degree of testagm: The following are some of the
better-known coverage metrics:

) Statement coverage: This is the simplest of coverage criteria — teecpntage of
statements exercised by the test set. While it segm at first that 100% statement
coverage should provide good confidence in thenarogin practice, statement coverage is
a relatively weak criterion. At best, statementerage represents a sanity check: unless
statement coverage is close to 100%, the tess gebbably inadequate.

) Decision or branch coverage: The percentage of branches that have been
evaluated to botlrue andfalseby the test set.
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o Condition coverage: The percentage of conditions within decision egprons
that have been evaluated to both true and falsée that 100% condition coverage does
not guarantee 100% decision coverage. For exartip(@, || B) {do something}

else {do something else} " is tested with [0 1], [1 0], then A and B will bohave
been evaluated to 0 and 1, but éleebranch will not be taken because neither testdgav
both A and B false.

) Modified condition decision coverage (MCDC): This is a strong coverage
criterion that is required by the US Federal AwatiAdministration for Level A
(catastrophic failure consequence) software; seftware whose failure could lead to
complete loss of life. It requires that every dibion in a decision in the program has
taken on all possible outcomes at least once, awth eondition has been shown to
independently affect the decision outcome, and ¢aah entry and exit point have been
invoked at least once.

6.2 Combinatorial Coverage

Note that the coverage measures above depend essatx program source code.
Combinatorial testing, in contrast, is a black kexhnique. Inputs are specified and
expected results determined from some form of §pation. The program is then treated
as simply a processor that accepts inputs and pesdoutputs, with no knowledge
expected of its inner workings.

Even in the absence of knowledge about a program@r structure, we can apply
combinatorial methods to produce precise and useédsures. In this case, we measure
the state space of inputs. Suppose we have agonatiat accepts two inputsandy, with
10 values each. Then the input state space cemsitie 16 = 100 pairs ok andy values,
which can be pictured as a checkerboard squar® abws by 10 columns. With three
inputs, x, y, andz, we would have a cube with %6 1,000 points in its input state space.
Extending the example to n inputs we would havéad to visualize) hypercube of
dimensions with 10 points. Exhaustive testing would require inputs al 10
combinations, but combinatorial testing could beduo reduce the size of the test set.

How should state space coverage be measured? rigalosely at the nature of
combinatorial testing leads to several measuresafgauseful. We begin by introducing
what will be called aariable-value configuration

Definition. For a set of variables, a variable-value configuration is acfétvalid values,
one for each of the variables.

Example. Given four binary variables, b, ¢ andd, a=0, c=1, d=0 is a variable-value
configuration, and=1, c=1, d=0 is a different variable-value configuration e same
three variables, ¢ andd.

6.2.1 Simplet-way combination coverage

Of the total number ofway combinations for a given collection of variedl what
percentage will be covered by the test set? Itekeset is a covering array, then coverage
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is 100%, by definition, but many test sets not dase covering arrays may still provide
significantt-way coverage. If the test set is large, but msighed as a covering array, it is
very possible that it provides 2-way coverage ottdbe For example, random input
generation may have been used to produce the éestgjood branch or condition coverage
may have been achieved. In addition to the strattaoverage figure, for software
assurance it would be helpful to know what peragataf 2-way, 3-way, etc. coverage has
been obtained.

Definition: For a given test set forvariables, simplé-way combination coverage is the
proportion of t-way combinations ofn variables for which all variable-values
configurations are fully covered.

Example. Figure 15 shows an example with four binary \aes, a, b, ¢, andd, where
each row represents a test. Of the six 2-way coatioins,ab, ac, ad, bc, bd, ¢anly bd
andcd have all four binary values covered, so simplea&®woverage for the four tests in
Figure 15 is 1/3 = 33.3%. There are four 3-way bimrations,abc, abd, acd, bgdeach
with eight possible configurations: 000, 001, 0@@1, 100, 101, 110, 111. Of the four
combinations, none has all eight configurationseces, so simple 3-way coverage for this
test set is 0%.

O|r | O0O|O0|2
R O|FR,|O|T
P O|FR,|O|O
Rr|IRr|O|O|&

Figure 15. An example test array for a
system with four binary components

6.2.2 (t + k)-way combination coverage
A test set that provides full combinatorial covezdgrt- | A test set for t-way
way combinations will also provide some degree mfetage for | interactions will
(t+1)-way combinations, t{2)-way combinations, etc. This glso cover some
statistic may be useful for comparing two combinatdest sets. higher strength
For example, different algorithms may be used toegate 3-way interactions at
covering arrays. They both achieve 100% 3-way @& but if
one provides better 4-way and 5-way coverage, thean be | [t1, t+2, etc.
considered to provide more software testing assearan

Definition. For a given test set far variables, {+k)-way combination coverage is the
proportion of {+k)-way combinations ofn variables for which all variable-values
configurations are fully covered. (Note that tmeasure would normally be applied only
to at-way covering array, as a measure of coverage loktyon

Example. If the test set in Figure 15 is extended as shiowfigure 16, we can extend 3-
way coverage. For this test sktdis covered, out of the four 3-way combinations2so
way coverage is 100%, and (2+1)-way = 3-way cowera@5%.
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PP OO|R,|IO|O|D
OOk, [FP|O|R,|O|T

Rk lo|lkr|O|R|O|0
o|lo|r|r|r|r|lo|lo|a

o
=
o

Figure 16. Eight tests for four binary variables.

6.2.3 Variable-Value Configuration coverage

So far we have only considered measures of theoptiop of combinations for
which all configurations ot variables are fully covered. But whéernvariables withv
values each are considered, ettiple has/ configurations. For example, in pairwise (2-
way) coverage of binary variables, every 2-way coration has four configurations: 00,
01, 10, 11. We can define two measures with i@dpeconfigurations:

Definition. For a given combination afvariables, variable-value configuration coverage
is the proportion of variable-value configuratighat are covered.

Definition. For a given set af variables, |§, f)-completeness is the proportion of thenC(
t) combinations that have configuration coveragatdéastp [50].

Example. For Figure 16 above, there are C(4, 2) = 6 possibtiable combinations and
C(4,2)72 = 24 possible variable-value configurations. Ofese, 19 variable-value
configurations are covered and the only ones ngsameab=11, ac=11, ad=10, bc=01,
bc=10. But only two,bd andcd, are covered with all 4 value pairs. So for tlasib
definition of simplet-way coverage, we have only 33% (2/6) coverage/b&b (19/24) for
the configuration coverage metric. For a bettedeustanding of this test set, we can
compute the configuration coverage for each ofsikevariable combinations, as shown in
Figure 17. So for this test set, one of the comtitams pC) is covered at the 50% level,
three @b, ac, ad) are covered at the 75% level, and tWd, (cd) are covered at the 100%
level. And, as noted above, for the whole settedts, 79% of variable-value
configurations are covered. All 2-way combinatidmsve at least 50% configuration
coverage, so (.50, 2)-completeness for this sttt is 100%.

Although the example in Figure 17 uses variablgh the same number of values,
this is not essential for the measurement. Cageeraeasurement tools that we have
developed compute coverage for test sets in whachrpeters have differing numbers of
values, as shown in Figure 18 and Figure 19.
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Vars | Configurations covered Config coverage

ab 00, 01, 10 .75

ac 00, 01, 10 .75

ad 00,01, 11 .75

bc 00, 11 .50

bd 00, 01, 10, 11 1.0

cd 00, 01, 10, 11 1.0
e total 2-way coveage = 19/24 =.79167
e (.50, 2)-completeness6/6 =1.0
o (.75, 2)-completeness5/6 =0.83333
e (1.0, 2)-completeness2/6 =0.33333

Figure 17. The test array covers all possible 2-way combinations of a, b, ¢,

Figure 18 is an example of coverage for’®8%° set (87 binary, two 3-value, and five 4-
value) of input variables (blue=2-way, pink=3-wgg/low=4-way). This particular test set
was not a covering array, but pairwise coveraggilisquite good, with about 95% of the
variables having all possible 2-way configurati@esered. Even for 4-way combinations
we see that all variables have at least 28% of ttwifigurations covered, and about 25%
of them have about 98% or more of 4-way configorai covered.

and d to different levels.

similar plot for a 2°3'4'6'9" configuration.

Figure 19 shows a
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Figure 18. Configuration coverage for 287324° inputs.
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Figure 19. Configuration coverage for 27°3'4'6'9! inputs.

6.3 Cost and Practical Considerations

An important cost advantage introduced by coveragasurement is the ability to use
existing test sets, identify particular combinatiathat may be missing, and supplement
existing tests. In some cases, as in the exanfigtegare 18, it may be discovered that the
existing test set is already strong with respect particular strength(in this case 2-way),
and tests fot+1 generated. The tradeoff in cost of applyingezage measurement is the
need to map existing tests into discrete numenedles that can be analyzed by the
coverage measurement tools (see Appendix C). ekample, the days of the week in the
example of Figure 10 would have to be mapped it ®r 1 - 7. Future versions of the
coverage measurement tools may include more fligyim handling parameter values.

6.4 Chapter Summary

1. Many coverage measures have been devised for cogerage, including
statement, branch or decision, condition, and needli€ondition decision coverage. These
measures are based on aspects of source code enmibtasuitable for combinatorial
coverage measurement.

2. Measuring configuration-spanning coverage can Bpfiiein understanding state
space coverage. If we do use combinatorial testhren configuration-spanning coverage
will be 100% for the level of that was selected, but we may still want to ingasé the
coverage our test set provides ot ort+2. Calculating this statistic can help in chogsin
between t-way covering arrays generated by diftesgorithms. As seen in the examples
above, it may be relatively easy to produce tdsa$ provide a high degree of spanning
coverage, even if not 100%. In many cases it beapossible to generate additional tests
to boost the coverage of a test set.
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7 COMBINATORIAL AND RANDOM TESTING

For testing to be most efficient and effective, meed an understanding of when a
particular test method is most appropriate. Thatvhat characteristics of a problem lead
us to use one form of testing over another, andt wrathe tradeoffs with respect to cost
and effectiveness? Some studies have comparedfféniveness of combinatorial and
random approaches to testing, but have reachediatongf results [3, 4, 56, 58]. This
chapter presents an analysis [37, 38] of these methods and discusses how random
testing may complement combinatorial methods.

7.1 Coverage of Random Tests

Because a significant percentage of failures cdy loa triggered by the interaction of
two or more variables, one consideration in conmgarandom and combinatorial testing is
the degree to which random testing covers partidueay combinations. Table 10 gives
the percentage dfway combinations covered by a randomly generatgtdsts of the same
size as @-way covering array, for various combinationskaf number of variables and=
number of values per variable. Note that the cagercould vary with different
realizations of randomly generated test sets. Ehat different random number generator,
or even multiple runs of the same generator, madyme slightly different coverage
(perhaps a few tests out of thousands, dependinth@rproblem). Figure 20 through
Figure 24 summarize the coverage for arrays witialées of 2 to 10 values. As seen in
the figures, the coverage provided by a randomdesé versus a covering array of the
same size varies considerably with different canfagions.

Now consider the size of a random test set requioedrovide 100% combination
coverage. With the most efficient covering arrggodthms, the difficulty of finding tests
with high coverage increases as tests are generdtags even if a randomly generated test
set provides better than 99% of the coverage @l sized covering array, it should not
be concluded that only a few more tests are neéatethe random set to provide 100%
coverage. Table 11 gives the sizes of randomlyegged test sets required for 100%
combinatorial coverage at various configuratioms] ¢he ratio of these sizes to covering
arrays computed with ACTS. Although there is cdaeskble variation among
configurations, note that the ratio of random tonbatorial test set size for 100%
coverage exceeds 3 in most cases, with average @ti3.9, 3.8, and 3.2 &t 2, 3, and 4
respectively. Thus, combinatorial testing retaznsignificant advantage over random
testing if the goal is 100% combination coverageafgiven value of.
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ACTS Random ACTS Random ACTS Random
Values/ 2-way 2-way 3-way 3-way 4-way 4-way

Vars | Variable tests coverage tests coverage tests coverage
10 2 10 89.28% 20 92.18% 42 92.97%
10 4 30 86.38% 151 89.90% 657 92.89%
10 6 66 84.03% 532 91.82% 3843 94.86%
10 8 117 83.37% 1214 90.93% 12010 94.69%
10 10 172 82.21% 2367 90.71% 29231 94.60%
15 2 10 96.15% 24 97.08% 58 98.36%
15 4 33 89.42% 179 93.75% 940 97.49%
15 6 77 89.03% 663 95.49% 5243 98.26%
15 8 125 85.27% 1551 95.21% 16554 98.25%
15 10 199 86.75% 3000 94.96% 40233 98.21%
20 2 12 97.22% 27 97.08% 66 98.41%
20 4 37 90.07% 209 96.40% 1126 98.79%
20 6 86 91.37% 757 97.07% 6291 99.21%
20 8 142 89.16% 1785 96.92% 19882 99.22%
20 10 215 88.77% 3463 96.85% 48374 99.20%
25 2 12 96.54% 30 98.26% 74 99.18%
25 4 39 91.67% 233 97.49% 1320 99.43%
25 6 89 92.68% 839 97.94% 7126 99.59%
25 8 148 90.46% 1971 97.93% 22529 99.59%
25 10 229 89.80% 3823 97.82% 54856 99.58%

Table 10. Percent of t-way combinations covered by equal number of random
tests
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2-way Tests 3-way Tests 4-way Tests
Valu ACTS |Random ACTS [Random ACTS [Random
Vars es Tests Tests Ratio Tests Tests Ratio Tests Tests Ratio
10 2 10 18 1.80 20 61 3.05 42 150 3.57
10 4 30 145 4.83 151 914 6.05 657 2256 3.43
10 6 66 383 5.80 532 1984 3.73 3843 13356 3.48
10 8 117 499 4.26 1214 5419 4.46] 12010 52744 4.39
10 10 172 808 4.70 2367 11690 4.94] 29231 137590 4.71
15 2 10 20 2.00 24 52 2.17 58 130 2.24
15 4 33 121 3.67 179 672 3.75 940 2568 2.73
15 6 77 294 3.82 663 2515 3.79 5243 17070 3.26
15 8 125 551 4.41 1551 6770 4.36] 16554 60568 3.66
15 10 199 940 4.72 3000[ 15234 5.08 40233] 159870 3.97
20 2 12 23 1.92 27 70 2.59 66 140 2.12
20 4 37 140 3.78 209 623 2.98 1126 3768 3.35
20 6 86 288 3.35 757 2563 3.39 6291| 18798 2.99
20 8 142 630 4.44 1785 8450 4.73] 19882 59592 3.00
20 10 215 1028 4.78 3463[ 14001 4.04] 48374 157390 3.25
25 2 12 34 2.83 30 70 2.33 74 174 2.35
25 4 39 120 3.08 233 790 3.39 1320 3520 2.67
25 6 89 327 3.67 839 2890 3.44 7126| 19632 2.75
25 8 148 845 5.71 1971 7402 3.76| 22529 61184 2.72
25 10 229 1031 4.50 3823 16512 4.32 54856 191910 3.50
Ratio Average: 3.90 3.82 3.21

Table 11. Size of random test set required for 100% t-way combination
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coverage.
Values
per Ratio, Ratio, Ratio,
variable | 2-way 3-way 4-way
2 2.14 2.54 2.57
4 3.84 4.04 3.04
6 4.16 3.59 3.12
8 4.70 4.33 3.44
10 4.68 4.59 3.86

Table 12. Average ratio of random/ACTS for covering arrays
by values per variable, variables = 10, 15, 20, 25
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7.2 Comparing Random and Combinatorial Coverage

The comparisons between random and combinatorstinge suggest a number of
conclusions:

) For binary variables (v=2), random tests comparasenably well with covering
arrays (96% to 99% coverage) for all three values (2aBd 4) oft for 15 or more
variables. Thus random testing for a SUT withoalmostly binary variables may compare
favorably with combinatorial testing.

) Combination coverage provided by random generatibthe equivalent number of
pairwise tests at (t = 2) decreases as the numbealues per variable increaseand the
coverage provided by pairwise testing is signiftbaless than 100%. The effectiveness of
random testing relative to pairwise testing shdokdexpected to decline as the average
number of values per variable increases.

o For 4-way interactions, coverage provided by randtest generation increases
with the number of variablesCombinatorial testing for a module with approaiely 10
variables should be significantly more effectivarirandom testing, while the difference
between the two test methods should be less foutasdvith 20 or more variables.

. For 100% combination coverage, the efficiency atage of combinatorial testing

varies directly with the number of values per vhleaand inversely with the interaction
strength t. Figure 25 illustrates how these factors (intecacstrengtht and values per

variablev) combine: the ratio of random/combinatorial cagg is highest for 10 variables
with t = 2, but declines for other pairings bfandv. To obtain 100% combination

coverage, random testing is significantly lesscedfit than combinatorial testing, requiring
2 to nearly 5 times as many tests as a coveriray ayenerated by ACTS. Thus if 200%
combination coverage is desired, combinatorialingstshould be significantly less

expensive than random test generation.

An important practical consideration in comparimgndinatorial with random testing is
the efficiency of the covering array generator.lgohithms have a very wide range in the
size of covering arrays they produce. It is notammon for the better algorithms to
produce arrays that are 50% smaller than otherighhgess. We have found in comparisons
with other tools that there is no uniformly “best§orithm. Other algorithms may produce
smaller or larger combinatorial test suites, sodtparable random test suite will vary in
the number of combinations covered. Thus randesting may fare better in comparison
with combinatorial tests produced by one of the lefficient algorithms.

However there is a less obvious but importeateoff regarding covering array size. An
algorithm that produces a very compact array, wéh few tests, fot-way combinations
may include fewert¢1)-way combinations because there are fewer teSahle 13 and
Table 14 illustrate this phenomenon for an examglable 9 shows the percentaget-af
up tot+3 combination coverage provided by the ACTS tastsin Table 10 the equivalent
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number of random tests. Although ACTS pairwisetstes .
provide better 3-way coverage than the random,testether A less optimal (by
interaction strengths and values Bfthe random tests are SiZ€) array may
roughly the same or slightly better in combinaticoverage| provide better
than ACTS. Recall from Section 7.1 that pairwise failure detection
combinatorial tests detected slightly fewer evetitan the  pecause it
equivalent number of ra}ndom tests. One possibidaaation includes more
may be that the superior 4-way and 5-way coverdgthe | . .
random tests allowed detection of more events. o&im Interactions at
paradoxically, an algorithm that produces a largab-optimal t+1, t+2, etc.
covering array may provide better failure detect@cause the
larger array is statistically more likely to inclkitt+1, t+2, and higher degree interaction
tests as a byproduct of the test generation. Admiwever, the less optimal covering array
is likely to more closely resemble the random s$estie in failure detection.

D

Note also that the number of failures in the SUM aHiect the degree to which random
testing approaches combinatorial testing effecegsn For example, suppose the random
test set covers 99% of combinations for 4-way axtgons, and the SUT contains only one
4-way interaction failure. Then there is a 99%Mbability that the random tests will
contain the 4-way interaction that triggers thiduf®@. However, if the SUT containma
independent failures, then the probability that borations for allm failures are included
in the random test set is 9 Hence with multiple failures, random testing miag
significantly less effective, as its probability détecting all failures will b&™, for ¢ =
percent coverage amd= number of failures.
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3-way 4-way 5-way
coverage | coverage | coverage
.758 429 217
.924 .709
974

3-way 4-way 5-way
coverage | coverage | coverage
.735 499 .306
.917 767
974

Table 13. Higher interaction coverage of t-way tests

Table 14. Higher interaction coverage of random tests
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100%
55%
B0%
85%

4-way
3-wa
20% Y

Z-way

25
Figure 20. Percent coverage of t-way combinations for v=2.
100%
85%
0%
85% 4 d-way
3-wa
80% Y

2-way

25

Figure 21. Percent coverage of t-way combinations for v=4,

Figure 22. Percent coverage of t-way combinations for v=6.

39



Practical Combinatorial Testing

100%
95% 1
B0%
B5% 1 S-way
B80% S-way

25

Figure 23. Percent coverage of t-way combinations for v=8.
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Figure 24. Percent coverage of t-way combinations for v=10
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Figure 25. Average ratio of random/ACTS for covering arrays by values per
variable
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7.3 Cost and Practical Considerations

The relationship between covering arrays and ramgl@enerated tests presents some
interesting issues. Generating covering arrayscéonbinatorial tests is complex; it has
been shown to be an NP-hard problem. But gengrégists randomly is trivial. Thus for
large problems, we can compare the cost and tingepérating a covering array versus
producing tests randomly, measuring their cover@@eapter 6), then adding tests as
needed to provide full combinatorial coverage. itdthe last column of Table 10. For 4-
way tests, once the number of parameters exceedplyo 20, random generation will
cover 99% or more of 4-way combinations. If a peabrequires tests for 100 parameters,
for example, covering array generators may redumgs or days, or may simply be unable
to handle that many parameters, but random testisl de generated quickly and easily.
This is an option that may be cost effective ev@nsmaller problems, and should be kept
in mind for test planning.

7.4 Chapter Summary

1. Existing research has shown either no differenoe ¢bme problems) or higher
failure detection effectiveness (for most problerftg) combinatorial testing. Analyzing
random test sets suggests a number of reasonsifordsult. In particular, a highly
optimized t-way covering array may include fewet, t+2, and higher degree interaction
tests than an equivalent sized random test senilg8ly, a covering array algorithm that
produces a larger, sub-optimal array may provideebé&ilure detection because the larger
array is statistically more likely to includel, t+2, and higher degree interaction tests as a
byproduct of the test generation.

2. While the analysis reported here does not indithédé combinatorial testing is
uniformly better than random, it does support dgyemce for combinatorial methods if the
cost of applying the two test approaches is theesaifhis preference may be particularly
relevant if the SUT is likely to contain multiplailures (as is usually the case). Single
failures that depend on the interaction of two arenvariables have a high likelihood of
being detected by random tests, because the ratedrset may cover a high percentage of
all t-way combinations. But the probability of detegtimultiple failures declines rapidly
asc", for c = percent coverage amal= number of independent failures.
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8 ASSERTION-BASED TEST ORACLES

Many programming languages includeassertfeature that allows the programmer
to specify properties that are assumed true atracpiar point in the program. For
example, a function that includes a division in e¥vha particular parameter x will be used
as a divisor may require that this parameter magmee zero. This function may include
the C statemenassert(x != 0); as the first statement executed. Note that the
assertion is not the same as an input validity kltleat issues an error message if input is
not acceptable. The assertion gives conditionsrthest hold for the function to operate
properly, in this case a non-zero divisor. It is thsponsibility of the programmer to ensure
that a zero divisor is never passed to the functibhe distinction between assertions and
input validation code is that assertions are inéehtb catclprogramming mistakesvhile
input validation detects errors in user or file&tstse input.

With a sufficient number of assertions derived fran ., . .
specification, the program can have a self-chechknugperty With Self'CheCkmg
[27, 60, 47]. The assertions can serve as a $embedded| through assertions,
proof of important properties, such that if theeiens hold | thousands of tests
for all executions of the program, then the prdaper{ can often be run at
encoded in the assertions are guaranteed to Adldn, if the very low cost,
assertions form a chain of logic that implies anfal : L h

: ; allowing high
statement of program properties, the program’sectmess : :
with respect to these properties can be proven. civietake strength interaction
advantage of this scheme in combinatorial testing |fOVE€rage.
demonstrating that the assertions hold for &lvay
combinations of inputs. While this is not the samsea correctness proof, it is an effective
way of integrating formal methods for correctnesthwrogram testing, and an extensive
body of research has developed this idea for malctise (for a survey, see [4]). Some
modern programming languages, such as Eiffel [32¢Jude extensive support for
including assertions that encode program properéied tools such as the Java Modeling
Language [42] have been designed to integrate tassemwith testing. In many cases,
using assertions to self-check important properntiekes it practical to run thousands of
tests in a fully automated fashion, so high-striengteractions of 4-way and above can be
done in reasonable time.

8.1 Basic Assertions for Testing

To clarify this somewhat abstract discussion, wk analyze requirements for a
small function that handles withdrawal processimgain automated teller machine (ATM).
Graphical user interface code for the ATM will no¢ displayed, as this would vary
considerably for different systems. The decisiohto include GUI code in this example
also illustrates a practical limitation of this g&mwf testing: there are many potential
sources of error in a software project, and testiay not deal with all of them at the same
time. The GUI code may be analyzed separatelya arore complex verification with
assertions may specify properties of the GUI callg,in the end some human involvement
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is needed to ensure that the screen informatipnoigerly displayed. However, we can do
very thorough testing of the most critical aspedtshe withdrawal module.

Requirements for the module are as follows:

1. Some accounts have a minimum balance requirenmetitated by boolean
variableminflag

2. The bank allows all customers a basic overdraftgatan amount, but for a
fee, customers may purchase overdraft protectiahethceeds the default.

3. If the account has a minimum balance, the withdraaanot reduce account
balance belowminimum balance — overdraft default) unless
overdraft protection is set for this account arelalowed overdraft amount for
this account exceeds the default, in which casédfence cannot be reduced
below (ninimum balance — overdraft amount).

4. No withdrawals may exceed the default limit (to fx¢lee ATM from running
out of cash), although some customers may havehalraival limit below this
amount, such as minors who have an account wititsliplaced by parents.

5. The overdraft privilege can be used only once thélbalance is made positive
again.

6. Cards flagged as stolen are to be captured aneédbiggthe hot card file. No
withdrawal is allowed for a card flagged as stolen.

The module has these inputs from the user aftensbeis authorized by another module:

string num: the user card number
int amt: withdrawal amount requested

and these inputs from the system:

int balance: user account balance

boolean minflag: account has minimum balance requi rement
int min: account minimum balance

boolean odflag: account has overdraft protection

int odamt: overdraft protection amount,

int oddefault: overdraft default

boolean hot: card flagged as stolen

boolean limflag: withdrawal limit less than defaul t

int limit: withdrawal limit for this account

int limdefault: withdrawal limit default

How should these requirements be translated irgeragns and used in testing? Consider
requirement 1: ifninflag is set, then the balance before and after thedvatihal must be
no less than the minimum balance amount. Thisdcbaltranslated directly into logic for
assertions:minflag => balance >= min. If the assertion facility does not include

logical implication, then the equivalent expressgam be used, for example, in C syntax:
Iminflag || balance >= min.
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However, we must also consider overdraft protectaod withdrawal limits, so the
assertion above is not adequate. Collecting cimmdif we can develop assertions for each
of the eight possible settings winflag , odflag , andlimflag . If there is a minimum
balance requirement, no overdraft protection, angitbdrawal limit below the default,
what is the relationship between balance and therqtarameters?

minflag && 'odflag && limflag
=> balance >= min — oddefault && amt <= limit

This relation must hold after the withdrawal, sodevelop an assertion that must hold
immediately before the withdrawal, substitute (baka— amt) for balance in the expression
above:

balanceO — amt >= min — oddefault && amt <= limit

Assertions such as this would be placedhediatelybefore the balance is modified,
not at the beginning of the code for the withdratualction. Code prior to the subtraction
from balance should have ensured that propertiesden by assertions hold immediately
before the subtraction, thus any violation of teeeations indicates an error in the code (or
possibly in the assertions!) that must be invegtiga This is illustrated in Figure 26, where
“wdl_init.c” and “wdl_final.c” are files containingssertions such as developed above.

Including the card number, there are 11 paramdtershis module. We need to
partition the inputs to determine what values t@® s generating a covering array.
Partitions should cover valid and invalid valuespimum and maximum for ranges, and
values at and on either side of boundaries. T lbges a check digit scheme for card
numbers to detect errors such as digit transpositieen numbers are entered manually. A
simple partition could be as follows:

string acct: {valid, invalid}

int amt: {0, divisible by 20, not divisible by 20, max}
int balance: {0, negative, positive, max int}
int minflag: {T, F}

int min: {0, negative, positive, max int}
boolean odflag: {T, F}

int odamt: {0, negative, positive, max int}
int oddefault: {0, negative, positive, max int}
boolean hot: {T, F}

int acctlim: {0, negative, positive, max int}
int lim: {0, negative, positive, max int}

Using the equivalence classes above, this is t1i4’asystem, or 262,144 possible inputs.
If values on either side of boundaries are useslntimber of possible input combinations
will be much larger, but using combinatorial methode can cover 3-way or 4-way
combinations with only a few hundred tests.
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while (Ivalid(acct)) {/* get account number input * }
if (amt >lim) { return ERROR; }
else {
if (odflag ) {
if (amt > balance + odamt)
{return ERROR; }
}
else {
if (amt > balance + oddefault)
{return ERROR; }

©CoNoOr~WNE

=
e

11. else {

12. if (amt >1lim)

13. {return ERROR; }
14. }

15. #include "wdl_init.c"
16. balance -=amt;
17. #include "wdl_final.c"
18. }

19. }

20. }

Figure 26. Withdrawal function code to be tested.

8.2 Stronger Assertion-based Testing

While the method described in the previous secti@am be very effective in testing,
notice that it will be inadequate for many probletscause basic assertion functions such
as in C language library do not support importagtd operators such as (for all) and 3
(for som@. Thus expressing simple properties suctsas sorted in ascending order =
Vi:0<i<n-1:§i]<Ji+1] cannot be done without a good deal of additiomaliry.

While it would be possible to add code to handleséhproblems in assertions, a better
solution is to use an assertion language thatsgyded for the purpose and contains all the
necessary features.

Tools such as Anna [44] for Ada, the Java Modeliagguage (JML) [42] and
iContract [28] for Java, and APP [57] or Nana [#]C, can be used to introduce complex
assertions, effectively embedding a formal speaiiftsn within the code. The embedded
assertions serve as an executable form of thefggadin, thus providing an oracle for the
testing phase. With embedded assertions, exegcigie application with allt-way
combinations can provide reasonable assuranceéhthabde works correctly across a very
wide range of inputs. This approach has been ssedessfully for testing smart cards,
with embedded JML assertions acting as an oracledmbinatorial tests [25]. Results
showed that 80% - 90% of errors could be foundhis way.
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8.3 Cost and Practical Considerations

Assertions may be a cost-effective approach toae&imation because they can be a
simple extension of coding. In general, use otdems is correlated with reduced error
rates [41], but a very wide range of effectivenesailts from variations in usage. In many
applications, assertions are used in a very baaj; such as ensuring that null pointers are
not passed to a function that will use them, ot gamameters that may be used as divisors
are non-zero.

More complex assertions can provide stronger assaraut there are limits to their
effectiveness. For example, invariants (propetties are expected to hold throughout a
computation) cannot be assured without placingsseréion for every line of code. Since
assertions must be executed to show the preseralesence of a property at some point,
errors that prevent the assertion from being reichay not be detected. As an example,
consider the code in Figure 26. If a coding erfrothe first few lines of the function
prevents execution the code at of lines 15 andhErassertions will not be executed and it
may be assumed that the test was passed. loatbes an ERROR return for the particular
test case might trigger an investigation that wodéhtify the faulty code, but this may not
happen with other applications.

8.4 Chapter Summary

Assertions are one of the easiest to use and rffestiee approaches to dealing with
the oracle problem. Properties ranging from sinpaleameter checks to effectively
embedded proofs can be encoded in assertionspécibslanguage support is needed for
the stronger forms of assurance. This supportimegyrovided as language preprocessors,
as in the case of Anna [44] and others. Placem#hin code is particularly important to
assertion effectiveness [60, 61], but if sufficlgrstrong assertions are embedded, the code
becomes self-checking for important properties thvgelf-checking code, thousands of
tests can be run at low cost in most cases, greafisoving the chances that faults will be
detected.
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9 MODEL-BASED TEST ORACLES

One of the most effective ways to produce testlesats to use a model of the
system under test, and generate complete tesisiding both input data and expected
results, directly from the model. The model irstbase is exactly what the name implies:
it incorporates the most important aspects of gstesn, but not every detail such as the
location of an amount on a screen (if it did in@wadl details, it would be equivalent to the
system itself). This chapter provides a step-lp-sitroduction to model-based automated
generation of tests that provide combinatorial cage. Procedures introduced in this
tutorial will produce a set of complete tests,, ileput values with the expected output for
each set of inputs.

In addition to the ACTS covering array generat@ee( Appendix C), we use
NuSMV [18], a variant of the original SMV model dker. NuSMV is freely available
and was developed by Carnegie Mellon Universitgtitato per la Ricerca Scientifica e
Tecnolgica (IRST), U. of Genova, and U. of TrentduSMV can be installed on either
UNIX/Linux or Windows systems running Cygwin. Liskand instructions for
downloading NuSMV are included in the appendix.

Also needed is a formal or semi-formal specificataf the system or subsystem
under test (SUT). This can be in the form of anfak logic specification, but state
transition tables, decision tables, pseudo-codetroctured natural language can also be
used, as long as the rules are unambiguous. Tdwfisption will be converted to SMV
code, which provides a precise, machine-processsdtieof rules that can be used to
generate tests.

9.1 Overview
To apply combinatorial testing, two tasks must beoanplished:

1. Using ACTS, construct a set of tests that will coad t-way combinations of
parameter values. The covering array specifigsdi@s, where each row of the array can
be regarded as a set of parameter values for andndl test (see Chapter 4).

2. Determine what output should be produced by the 8dEach set of input parameter
values. The test data output from ACTS will beomporated into SMV specifications that
can be processed by the NuSMV model checker far $teép. In many cases, the
conversion to SMV will be straightforward. The axale in Section 9.2.1 illustrates a
simple conversion of rules in the form Gibnditionthenaction’ into the syntax used by the
model checker. The model checker will instanttagespecification with parameter values
from the covering array once for each test in theedng array. The resulting specification
is evaluated against a claim that negates eaclifispe@sultR; using a model checker, so
that the model checker evaluates claims in thefotig form: C; => ~R;, whereC; is a set
of parameter values in one row of the coveringyaimahe formp; =vi1 & po=Vvip & ... &
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Pn = Vin, and R is one of the possible results. The output of thiep is a set of
counterexamples that show how the SUT can reacklém@ed resulR from a given set
of inputs.

The example in the following sections illustratesvithese counterexamples are converted
into tests. Other approaches to determining threecboutput for each test can also be
used. For example, in some cases we can run alncbhdeker in simulation mode,
producing expected results directly rather thaough a counterexample.

The completed tests can be used to validate coopetation of the system for
interaction strengths up to some pre-determineel kevDepending on the system type and
level of effort, we may want to use pairwised) or higher strength, up t=6 way
interactions. We do not claim this guaranteesembness of the system, as there may be
failures triggered only by interaction strengthgajer thart. In addition, some of the
parameters are likely to have a large number osiptes values, requiring that they be
abstracted into equivalence classes. If the atigirmdoes not faithfully represent the
range of values for a parameter, some flaws maybaaodetected by equivalence classes
used.

9.2 Access Control System Example

Here we present a small example of a very simptessccontrol system. The rules
of the system are a simplified multi-level secusgstem, given below, followed by a step-
by-step construction of tests using a fully autedgtrocess.

Each subject (user) has a clearance lavEland each file has a classification level,
f 1.  Levels are given as 0, 1, or 2, which coulpresent levels such as Confidential,
Secret, and Top Secret. A usecan read a file fiti_| > f | (the “no read up” rule), or
write to afile if f_| > u_I (the “no write down” rule).

Thus a pseudo-code representation of the acces®lkares is:

ifu | >=f | & act = rd then GRANT,
elseif f | >=u_| & act = wr then GRANT;
else DENY;

Tests produced will check that these rules areectyrimplemented in a system.
9.2.1 SMV Model

This system is easily modeled in SMV as a simple-$tate finite state machine. The
START state merely initializes the system (lineFgyure 27), with the rule above used to
evaluate access as either GRANT or DENY (lines P-1For example, line 9 represents
the first line of the pseudo-code above: in theent state (always START for this simple
model), ifu_| > f_I then the next state is GRANT. Each line of theecatatement is
examined sequentially, as in a conventional prognarg language. Line 12 implements
the “else DENY” rule, since the predicate “1” isvalys true. SPEC clauses given at the
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end of the model are simple “reflections” that dcgtie the access control rules as temporal
logic statements. They are thus trivially provalliet we are interested in using them to
generate tests rather than to prove propertidseo$ystem.

1. MODULE main

2. VAR

--Input parameters

3. ul: 0.2 -- user level

4, fl 0.2 -- file level

5. act: {rd,wr}; -- action

--output parameter

6. access: {START_, GRANT,DENY},

7. ASSIGN

8. init(access) := START _;

--if access is allowed under rules, then next state is GRANT

--else next state is DENY

9. next(access) := case

10. u l>=fl&act=rd: GRANT;

11. f I>=u_| &act=wr: GRANT;

12. 1: DENY;

13. esac;

14. next(u_I) :=u_l;

15. next(f_I) :=f_I;

16. next(act) := act;

-- if user level is at or above file level then rea dis OK

SPEC AG ((u_I>=f I &act=rd) -> AX (access = G RANT));

-- if user level is at or below file level, then wr ite is OK

SPEC AG ((f I>=u_l &act=wr) -> AX (access = G RANT));

-- if neither condition above is true, then DENY an y action

SPEC AG (I((u_l>=f_l&act=rd) | (f_I>=u_l & act =wr))
-> AX (access = DENY));

Figure 27. SMV model of access control rules

Separate documentation on SMV should be constdtéaly understand the syntax used,
but specifications of the form “AG ffedicate )} -> AX (predicate 2)” indicate
essentially that for all paths (the “A” in “AG”) faall states globally (the “G”), ipredicate

1 holds then ( “->") for all paths, in the next gtgthe “X” in “AX”) predicate 2will hold.

In the next section we will see how this speciimatcan be used to produce complete
tests, with test data input and the expected odigpgach set of input data.

Model checkers can be used to perform a varietyatdiable functions, because
they make it possible to evaluate whether certanpgrties are true of the system model.
Conceptually, the model checker can be viewed pkarg all states of a system model to
determine if a property claimed in a SPEC statensetntie. If the statement can be proved
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true for the given model, the model checker repihitsfact. What makes a model checker
particularly valuable for many applications, thoug that if the statement is false, the
model checker not only reports this, but also piesia “counterexample” showing how
the claim in the SPEC statement can be shown falge counterexample will include
input data values and a trace of system statesldhdtto a result contrary to the SPEC
claim (Figure 28). In the process described i #action, the input data values will be the
covering array generated by ACTS.

For advanced uses in test generation, this cow@smgle generation capability is
very useful for proving properties such as liven@dsence of deadlock) that are difficult
to ensure through testing. In this tutorial, hoarewe will simply use the model checker
to determine whether a particular input data sdtem@a SPEC claim true or false. That is,
we will enter claims that particular results canrbached for a given set of input data
values, and the model checker will tell us if thaira is true or false. This gives us the
ability to match every set of input test data vtttk result that the system should produce
for that input data.

The model checker thus automates the work thamaldly must be done by a
human tester — determining what the correct owpatild be for each set of input data. In
some cases, we may have a “reference implementatiat is, an implementation of the
functions that we are testing that is assumed todoeect. This happens, for example, in
conformance testing for protocols, where many vendoplement their own software for
the protocol and submit it to a test lab for congmar with an existing implementation of
the protocol. In this case the reference impleatént could be used for determining the
expected output, instead of the model checker. c@irse before this can happen the
reference implementation itself must be thoroudbabted before it can be used as the gold
standard for testing other products, so the metheddescribe here may be needed to
produce tests for the original reference implentgma

Checking the properties in the SPEC statements sltloat they match the access
control rules as implemented in the FSM, as exjgect® other words, the claims we made
about the state machine in the SPEC clauses cproleen. This step is used to check that
the SPEC claims are valid for the model definediiptesly. If NuSMV is unable to prove
one of the SPECSs, then either the spec or the msdetorrect. This problem must be
resolved before continuing with the test generagioztess. Once the model is correct and
SPEC claims have been shown valid for the modeintsyexamples can be produced that
will be turned into test cases, by which we meaetaof test inputs with the expected result
for these inputs. In other words, ACTS is usedaoerate tests, then the model checker
determines expected results for each test.

-- specification AG((u_| >=f | & act = rd) -> AX access = GRANT)
is true
-- specification AG((f I >=u_| & act=wr) ->AX a ccess = GRANT)
is true
-- specification AG(!((u_I >=f_| & act = rd)|(f_I >=u_| & act = wr))
-> AX access = DENY) is true

Figure 28. NuSMV output
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9.2.2 Integrating Combinatorial Tests into the Model

We will compute covering arrays that give alvay combinations, with degree of
interaction coverage = 2 for this example. Thasti®n describes the use of ACTS as a
standalone command line tool, using a text filauinfsee Section 3.1). The first step is to
define the parameters and their values in a sysd&fmition file that will be used as input
to ACTS. Call this file “in.txt”, with the followng format:

[System]
[Parameter]
ul:012
f1:0,1,2
act: rd,wr
[Relation]
[Constraint]
[Misc]

For this application, the [Parameter] section effile is all that is needed. Other tags refer
to advanced functions that will be explained ineotldocuments.  After the system

definition file is saved, run ACTS as shown below:
java -Ddoi=2 —jar acts_cmd.jar ActsConsoleManager i n.txt out.txt

The “-Ddoi=2" argument sets the degree of intetacfor the covering array that we want
ACTS to compute. In this case we are using sir@play, or pairwise, interactions. (For
a system with more parameters we would use a higfinength interaction, but with only
three parameters, 3-way interaction would be edgmiato exhaustive testing.) ACTS
produces the output shown in Figure 29.

Each test configuration defines a set of valuegHerinput parameters u_|I, f_I, and
act. The complete test set ensures that all 2-eeaybinations of parameter values have
been covered. If we had a larger number of pamrmsetwe could produce test
configurations that cover all 3-way, 4-way, etcmimnations. ACTS may output “don’t
care” for some parameter values. This means thategitimate value for that parameter
can be used and the full set of configurations still cover all t-way combinations. Since
“don’t care” is not normally an acceptable input fwograms being tested, a random value
for that parameter is substituted before usingctheering array to produce tests.
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Number of parameters: 3
Maximum number of values per parameter: 3
Number of configurations: 9

Configuration #1:

1=u_I=0
2=f1=0

3 = act=rd
Configuration #2:
1=u |=0
2=f1I=1

3 = act=wr

Configuration #3:
1=u |=0

WN P

onfiguration #5:
ul=1

f =1

act=rd

WN PO

onfiguration #6:
=1

=2

act=wr

WN PO
—-c
—|
|

onfiguration #7:

WN PO

Configuration #9:
l=ul=2
2=f1=2

3 = (don't care)

Figure 29. ACTS output

The next step is to assign values from the coveaingy to parameters used in the
model. For each test, we claim that the expeatsdItr will not occur. The model checker
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determines combinations that would disprove thesa@ms, outputting these as
counterexamples. Each counterexample can thenobeeded to a test with known
expected result. Every test from the ACTS toolsedj with the model checker supplying
expected results for each test. (Note that tivealty provable positive claims have been
commented out. Here we are concerned with produmiinterexamples.)

Recall the structure introduced in Section 9C1=> ~R. HereC; is the set of
parameter values from the covering array. For ganfor configuration #1 in Section:

ul=0&fl=0&act=rd

As can be seen below, for each of the 9 configoatin the covering array
we create a SPEC claim of the form:

SPEC AG(( <covering array values>) -> AX !(access = <result>));

This process is repeated for each possible rasuthis case either “GRANT” or
“DENY”, so we have 9 claims for each of the twoulkks The model checker is able to
determine, using the model defined in Section 9\&Hich result is the correct one for each
set of input values, producing a total of 9 tests.

Excerpt:

-- reflection of the assign for access

--SPEC AG ((u_l >=f_| &act=rd ) -> AX (access = GRANT));
--SPEC AG ((f_I >=u_l & act =wr ) -> AX (access = GRANT));
--SPEC AG ({((u_I>=fl&act=rd) | (f_I>=u_l & act =wr))
-> AX (access = DENY));

SPEC AG((u_I=0&f I=0&act=rd) -> AX I(acce ss = GRANT));
SPECAG((u_I=0&f I=1&act=wr) ->AX !(acce ss = GRANT));
SPEC AG((u_I=0&f I =2 &act=rd) -> AX I(acce ss = GRANT));
SPECAG((u_I=1&f I=0&act=wr) ->AX !(acce ss = GRANT));
SPECAG((u_I=1&f I=1&act=rd)->AX I(acce ss = GRANT));
SPEC AG((u_I=1&f | =2 & act =wr) -> AX !(acce ss = GRANT));
SPEC AG((u_I=2&f I =0 & act =rd) -> AX I(acce ss = GRANT));
SPEC AG((u_I =2 &f I =1 & act = wr) -> AX !(acce ss = GRANT));
SPEC AG((u_I=2&f I =2 & act =rd) -> AX I(acce ss = GRANT));
SPEC AG((u_I=0&f_I=0 & act =rd) -> AX I(acce ss = DENY));
SPEC AG((u_I=0&f I=1&act=wr) ->AX !(acce ss = DENY));
SPECAG((u_I=0&f I =2 &act=rd) -> AX I(acce ss = DENY));
SPEC AG((u_I=1&f I=0&act=wr) ->AX !I(acce ss = DENY));
SPECAG((u_I=1&f I=1&act=rd)->AX l(acce ss = DENY));
SPECAG((u_I=1&f I=2 &act=wr) ->AX !I(acce ss = DENY));
SPEC AG((u_I=2&f I =0 &act=rd) -> AX !(acce ss = DENY));
SPECAG((u_I=2&f I =1 &act=wr) -> AX !I(acce ss = DENY));
SPEC AG((u_I=2 &f I=2 & act =rd) -> AX I(acce ss = DENY));
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9.2.3 Generating Tests from Counterexamples

NuSMV produces counterexamples where the inputesalwould disprove the
claims specified in the previous section. Eacthete counterexamples is thus a set of test
data that would have the expected result of GRANDBNY.

For each SPEC claim, if this set of values canndact lead to the particular result
R;, the model checker indicates that this is truer éxample, for the configuration below,
the claim that access will not be granted is thesause the user’s clearance level £
0) is below the file's levelf(I=2 ):
-- specification AG ((u_I=0&f I=2)&act=r d) -> AX
I(access = GRANT)) is true

If the claim is false, the model checker indicateis and provides a trace of
parameter input values and states that will provefalse. In effect this is a complete test
case, i.e., a set of parameter values and expeesedt. It is then simple to map these
values into complete test cases in the syntax mekdehe system under test.

Excerpt from NuSMV output:

-- specification AG ((u_I=0&f I=0)&act=r d) -> AX
access = GRANT)) is false
-- as demonstrated by the following execution seque nce

Trace Description: CTL Counterexample
Trace Type: Counterexample

-> State: 1.1 <-
ul=0
f1=0
act=rd
access = START_
-> |nput: 1.2 <-
-> State: 1.2 <-

access = GRANT

The model checker finds that 6 of the input par@mebnfigurations produce a result of
GRANT and 3 produce a DENY result, so at the cotmpieof this step we have

successfully matched up each input parameter aanafign with the result that should be
produced by the SUT.

We now strip out the parameter names and valuesggiests that can be applied
to the system under test. This can be accompliskady a variety of methods; a simple
script used in this example is given in the appendihe test inputs and expected results
produced are shown below:

O0&f I=0&act=rd->access = GRANT
O0&f I=1&act=wr->access = GRANT
1&f |1=1&act=rd->access = GRANT
1&f |=2&act=wr->access = GRANT
2

I
I
I
I
I &f =0 & act =rd -> access = GRANT
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2&f =2 &act=rd->access = GRANT
0&f I=2&act=rd->access = DENY
1&f =0 &act=wr->access = DENY
2

I
I
I
I &f I =1 & act =wr -> access = DENY

These test definitions can now be post-processed) wmple scripts written in PERL,
Python, or similar tool to produce a test harnbss will execute the SUT with each input
and check the results. While tests for this ttivkxample could easily have been
constructed manually, the procedures introducetigtutorial can, and have, been used to
produce tens of thousands of complete test casadew minutes, once the SMV model
has been defined for the SUT.

9.3 Cost and Practical Considerations

Model based test generation trades up-front arebysil specification time against the
cost of greater human interaction for analyzingt tessults. The model or formal
specification may be costly to produce, but onds dvailable, large numbers of tests can
be generated, executed, and analyzed without huimnvention. This can be an
enormous cost savings, since testing usually regub0% or more of the software
development budget. For example, suppose a $10@60elopment project expects to
spend $50,000 on testing, because of the staff tegeired to code and run tests, and
analyze results. If a formal model can be crefde®20,000, complete tests generated and
analyzed automatically, with another $10,000 fosnaaller number of human-involved
tests and analysis, then the project will save 20%ne tradeoff for this savings is the
requirement for staff with skills in formal methgdt in some cases this approach may be
practical and highly cost-effective.

9.4 Chapter Summary

1. The oracle problem must be solved for any test autlogy, and it is particularly
important for thorough testing that produces adargimber of test cases. One
approach to determining expected results for eashihput is to use a model of the
system that can be simulated or analyzed to conquifrit for each input.

2. Model checkers can be used to solve the oraclegrobecause whenever a specified
property for a model does not hold, the model ceegenerates a counter-example.
The counter-example can be post-processed intorglete working test harness that
executes all tests from the covering array and khezsults.

3. Several approaches are possible for integratingbowatorial testing with model
checkers, but some present practical problems. midtbod reported in this chapter can
be used to generate full combinatorial test suitéts expected results for each test, in
a cost effective way.
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10 FAULT LOCALIZATION

Developing dependable software requires prevendmgnany bugs as possible and
detecting, then repairing, those that remain. ifigstan identify flaws in software, but
after a failed test is discovered, it is necesgargetermine what caused the failure. In
most cases this may be accomplished for combirsttasting in the same way as other
test methodologies, using a debugger or in-ciremtlator. But one goal of combinatorial
testing is to identify the particul&way combination that triggered a failure. Thelpem
of fault localization, identifying such combinati@), is an area of active research, but
some basic approaches can be identified. The ghgmu in this chapter assumes systems
are deterministic, such that a particular inputaaisvgenerates the same output.

At first glance, fault localization may not appeo be a difficult problem, and in many
cases it will not be, but we want to automate thec@ss as much as possible. To
understand the size of the problem, consider a fedtiat has 20 input parameters. A set
of 3-way covering tests passes 100%, but sevest tkerived from a 4-way covering array
result in failure. (Therefore, at least four paeden values are involved in triggering the
failure. It is possible that a 5-way or higher donation caused the failure, since any set
of t-way tests also includes$+(l)-way and higher strength combinations as wel. est
with 20 input parameters has C(20, 4) = 4,845 g-s@mbinations, yet presumably only
one (or just a few) of these triggered the faluifo determine the combination at fault, a
variety of strategies can be used.

10.1 Set-theoretic Analysis

The analysis presented here applies to a detesticiisiystem, in which a particular set
of input values always results in the same proogsand outputs. Ld&® = {combinations
in passing tests} and = {combinations in failing tests} andC = {fault-triggering
combinations}. TherF \ P, combinations in failing tests that are not ity @assing tests,

must contain the fault-triggering combinatiosbecause if any of those @ were inP,
then the test would have failed. So in most caSes,F \ P, as shown in Figure 30.

G} CcF\P
)

Figure 30. Combinations in failing tests but not in passing tests.
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Continuing with the analysis in this manner, somepprties become apparent. For the
discussion belowPt = {combinations int-way passing tests}, witlirt and Ct defined
analogously. LeTt = {t-way tests} and(x) be a function that indicates whether a test
passes or fails for the system under test. Haus {combinations in 4-way passing tests},
T5= {5-way tests}, etc.

Suppose that a particular combinationtriggers or causes a failure if whenewels
contained in some tegi f(x) = fail. (That is, the system is deterministic and th&ufat
triggering combination is not masked by other patmvalues.) We can now consolidate
these ideas into heuristics for identifying theuie-triggering combination(sJ.

¢ Elimination For a deterministic systenk; \P must contain the fault-triggering
combinationsC because if any of those @ were inP, then the test would have
failed.

¢ Interaction level lower boundIf all t-way tests pass, thert-avay or lower strength
combination did not cause the failure. The failamast have been caused by a
(t+k)-way combination, for somk >t. Note that the converse is not necessarily
true: if somet-way test fails, we cannot conclude that-way test caused the
failure, because artyway test set contains sorka@vay combinations, fok > t.

¢ Interaction continuity Now consider Ct. Becauset-way tests cover all
combinations oft-way or lower strength (e.g., 4-way tests also calé 3-way
combinations), a combination that triggered thdufai in Ft must also occur in
F(t+1), F(t+2), etc. Therefore we can further reduce themtefailure-triggering
combinations by computing=tF(t+2)..NF({t+k for whatever interaction

strengthk we have tests available.

¢ Value dependencdf tests inFt cover all values for away parameter combination
¢, then the failure is independent cf i.e., ¢ is not at-way failure-triggering
combination(s).

Example: In the preceding discussion we assumed that acpkticombinatiore triggers
or causes a failure if whenewvers contained in some testf(x) = fail. However, in many
cases the presence of a particular combination tnigger a failure, but is not guaranteed
to do so (see discussion of interaction level lob@ind above). Consider the following:

1. p(inta,intb,intc,intd,inte){
2. if(a&&hb) return 1;

3. elseif (c && d) return 2;

4. elseif (e) return 3;

5. else return 4;
6. }

If line 3 is incorrectly implemented as “returninstead of “return 27, then p(1,1,1,1,0) =
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1 because “a && b” evaluates to 1, but p(0,1,1,0l detect the error. A complete 3-
way covering test set will detect the error becatisaust include at least one test with
values 0,1,1,1,. and one with 1,0,1,1,. . Figuresiows tests for this example for t = 2, 3,
and 4. Failing tests are underlined.

A 2-way testmay detect the error, since “c && d” is the conditioecessary, but
this will only occur if line 3 is reached, whichqgures either a=0 or b=0. In the example
test set this occurs with the second test. Saigdase, a full 2-way test set has detected
the error, and the heuristics above for 2-way co@ons will find that tests witb=1 and
d=1 occur in bottP andF. In this case, debugging may identify c=1, d=1aasombination
that triggers the failure, but automated analysmai the heuristics will find two 3-way
combinations that occur in failing tests but nosgag tests: a=0, c=1, d=1 and b=0, c=1,
d=1. As Figure 32 illustrates, in most cases wk fivid more than one combination
identified as possible causes of failure.

1 way tests| 2 way tests| 3 way tests| 4 way tests
0,0,0,0,0 |0,0,0,0,0 |0,0,00,0 |0,00,0,0
11111 (0412111 (00,111 |0,0,0,1,1
1,0,2,01 |0,2,0,1,0 |0,0,1,0,2
11010 |0,2,10,1 |0,0,1,1.0
1,1,2,00 (100,11 |0,1,0,0,2
100,21 |1,0,1,0,0 |0O,1,0,1,0
1,1,0,0,1 |0,1,1,0,0
11,120 (0,121,113
00,110 |1,0,0,0,2
1,1,0,0,0 |1,0,0,1,0
0,0,0,0,2 |1,0,1,0,0
11,111 (10,111
0,110 |1,1,0,0,0
1,1,0,1,1
1,1,1,0,1
1,1,1,1,0
Figure 31. Tests for fault location example.

The heuristics above can be applied to combinatiorise failed tests to identify possible
failure-triggering combinations, shown in Figure 32

e The 1-way tests do not detect any failures, butheay tests do, st=2 is a lower
bound for the interaction level needed to detdeilare.

e The value dependence rule applies to combinati®{ = since all four possible

values for this combination occur in failing testsilure must be independent of
combinationbe. In other words, we do not consider the pair dée¢ a cause of
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failure because it does not matter what value plis has. Every test must have
some value for these parameters.

t=2 | ab ac ad ae bc |bd |be |cd |ce |de
01 01 01 01 11 |11 |11 |11 |11 |11

00 11 11 00 01 |01 |01 10 |10
10 11 00
10

t=3 | abc |abd |abe |acd |ace |ade |bcd |bce | bde | cde
011 | 011 |o011 |0O11 |011 |011 |111 | 111 111 |111
001 | 001 |001 |111 |010 |010 | 011 |0O11 011 | 110

101 101 000 111 | 111 010 | 010
101 110 | 110
010

t=4 | abcd | abce | abde | bcde
0111 | 0111 | 0111 | 1111
0011 | 0011 | 0011 | 0111
1011 | 0010 | 0010 | 0110
1011 | 1011 | 1110
0110 | 0110

Figure 32. Combinations in failing tests.

The elimination rule can be applied to determireg there are no 1-way or 2-way
combinations that do not appear in both passingfatidg tests. Results for 3-way
and 4-way combinations are shown in Figure 33. séhesults were produced by
an analysis tool which outputs in the format <tesmber>:¢ level> <parameter
numbers> = <parameter values>. Two different 3-a@ybinations are identified:
a=0, c=1, d=1 and b=0, c=1, d=1. A large numbet-afay combinations are also
identified, but we can use the interaction contiyuile to show that one of the two
3-way combinations occurs in all of the failing @yfailing tests. Therefore we
can conclude that covering all 3-way parameteracttons would detect the error.

1:3way 0,2,3=0,1,1 1:4way 0,1,2,3 = 0,0,1,1
2:3way 0,2,3=0,1,1 2 :4way 0,1,2,3 = 0,0,1,1
3:3way 0,2,3=0,1,1 3:4way 0,1,2,3 = 0,1,1,1
4 :3way 0,2,3=0,1,1 4 :4way 0,1,2,3 = 0,1,1,1
1:3way 1,2,3=0,1,1 5:4way 0,1,2,3 = 1,0,1,1
2:3way 1,2,3=0,1,1 1:4way 0,1,2,4 = 0,0,1,0
5:3way 1,2,3=0,1,1 1:4way 0,1,3,4 = 0,0,1,0
4 :4way 0,1,3,4 = 0111
1:4way 0,2,3,4 = 0,1,1,0
2 :4way 0,2,3,4 = 0111
3:4way 0,2,3,4 = 0,1,1,0
4 :4way 0,2,3,4 = 0,1,1,1
1:4way 1,2,3,4 = 0,1,1,0
2:4way 1,2,3,4 = 0,1,1,1
5:4way 1,2,3,4 = 0,1,1,1

Figure 33. 3-way and 4-way combinations in F\P
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The situation is more complex with continuous MVales. If, for example, a failure-
related branch is taken any time> 100,y = 3,z < 1000, there may be many combinations
implicated in the failure. Analysis will show thiat= 200,y =3, z = 120], [x =201,y =3,
z=119],[x=999,y=3,z2=999], [x =101, y3:z =0], [x =200,y =3, z=0] are all
combinations that trigger the failure. With mohan three input parameters, there may be
dozens or hundreds of failure-triggering combinagioeven though there is most likely a
single point in the code that is in error.

10.2 Cost and Practical Considerations

As shown in the example above, it is a non-trivigdtter to determine the failure-
triggering combination(s) from test results alon®/hen source code is available, the
methods described in this section are probably cessary, and can be replaced with
conventional debugging techniques. In black-bosting situations where there is no
source code, these methods may be useful in nargothie search for failure-triggering
combinations. Tools to implement these method® leeen developed and are available
from the ACTS project site.

10.3 Chapter Summary

When source code is available, the best way taifgehe cause of a failure is with
conventional debugging techniques, since the emast be fixed in code anyway. With
pure black-box testing and no access to source, thedeuristics discussed in this chapter
may help to narrow down possible causes. Usuakyet will be many combinations
identified as possible causes, so substantialiaddlttesting may be needed to determine
the exact cause.
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Appendix A — MATHEMATICS REVIEW

This appendix reviews a few basic facts of comluines, regular expressions, and
mathematical logic that are necessary to undergtedoncepts in this publication.

Combinatorics

Permutations and Combinations

. . ! o
Forn variables, there ane permutations anaﬁ?j = M L ol (“n choos&”) combinations
I(n—t)!
of t variables, also written for convenience a1 Q. To exercise all of thé-way
combinations of inputs to a program, we need teec@ t-way combinations of variable
values, and each combinationtofalues can haveé configurations, where is the number
of values per variable. Thus the total numberamhbinations instantiated with values that

must be covered is

i

Fortunately, each test coversnC{) combination configurations. This fact is the s@uof
combinatorial testing’s power. For example, withiinary variables, we would neetf 2

1.7 * 10°° tests to cover all possible configurations, buthvainly 33 tests we can cover all
3-way combinations of these 34 variables. Thispkap because each test covers C(34, 3)
combinations.

Example. If we have five binary variables, b, ¢, d ande, then expression (1) says we
will need to cover 2* C(5, 3) = 8*10 = 80 configurations.  For 3-wagmbinatorial
testing, we will need to take all 3-variable condsians, of which there are 10:

abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde

Each of these will need to be instantiated withBgtlossible configurations of three binary
variables:

000, 001, 010, 011, 100, 101, 110, 1112
The test [0 1 0 0 1] covers the following C(5, 3)Gconfigurations:

abc abd abe acd ace ade bcd bce bde cde
010 000 011 001 001 001 100 101 101 001

Orthogonal Arrays

Many software testing problems can be solved witlodghogonal array, a structure
that has been used for combinatorial testing ilddi®ther than software for decades. An
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orthogonal arrayOA (N;t,K,V)is anN x k array. In everN x t subarray, each t-tuple

occurs exactly times. We refer tbas thestrengthof the coverage of interactiorisas the
number of parameters or components (degree)yvasdthe number of possible values for
each parameter or component (order).

Example. Suppose we have a system with three on-off sestcltontrolled by an
embedded processor. The following table testpaills of switch settings exactly once
each. Thu$ = 2,% =1,v=2. Note that there axé= 2* possible combinations of values
for each pair: 00, 01, 10, 11. There are C(3,3)ways to select switch pairs: (1,2), (1,3),
and (2,3), and each test covers three pairs, simtingests cover a total of 12 combinations
which implies that each combination is covered dyamce. As one might suspect, it can
be very challenging to fit all combinations to lmered into a set of tests exactly the same
number of times.

Test|S
1

1|Sw 2|Sw 3

Rik|lo|lo|=
Rlolk|lol2
olr|r|lo|s

2
3
4

Covering Arrays

An alternative to an orthogonal array is a setechicovering array which includes
all t-way combinations of parameter values, for therddsstrengtit. A covering array,
CA(N;t,k,v) , is anN x k array. In ever\ x t subarray, eactituple occursat least times.

Note this distinction between covering arrays amthagonal arrays discussed in the
previous section. The covering array relaxes #wriction that each combination is
covered exactly the same number of times. Thugrooy arrays may result in some test
duplication, but they offer the advantage that tlvap be computed for much larger
problems than is possible for orthogonal arraysftv&re described elsewhere in this book
can efficiently generate covering arrays up torgjtet = 6, for a large number of
variables.

The problems discussed in this publication deay ovith the case wheh = 1, (i.e.
that everyt-tuple must be covered at least once). In softwaséing, each row of the
covering array represents a test, with one coluotnefich parameter that is varied in
testing. Collectively, the rows of the array irtdueveryt-way combination of parameter
values at least once. For example, Figure 1 sleowwsvering array that includes all 3-way
combinations of binary values for 10 parametersachEcolumn gives the values for a
particular parameter. It can be seen that any tbobemns in any order contain all eight
possible combinations of the parameter values.leClely, this set of tests will exercise
all 3-way combinations of input values in only 18sts, as compared with 1,024 for
exhaustive coverage.
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e NeloNeN JNeNel Nl )
HF O, OO O, OOKFHFO
oOoOrHrKHrRPRHOOO+HrORHO
OO0OR O OFHOFOFKFO
HOOORrROORFHRLRFHFOFO
HOORFR,RORFH P, ORLROORO
HFHHPR,OOOH, OO, OKFHO
O O0OO0ORKFHFFRFOOORO
HF O, OOOOOFHO

OO O, OO, OFHKFFO

Figure 1. 3-way covering array for 10 parameters with 2iealeach.

Number of Tests Required

The challenge in computing covering arrays is talfthe smallest possible array that
covers all configurations of t variables. If evergw test generated covered all previously
uncovered combinations, then the number of testdewwould be

R

()
t
Since this is not generally possible, the coveangy will be significantly larger

thanV/, but still a reasonable number for testing. tt ba shown that the number of tests in
a t-way covering array will be proportional to

V' logn 2)
for n variables withv values each.

It's worth considering the components of this egpren to gain a better
understanding of what will be required to do coralbamial testing. First, note that the
number of tests grows exponentially with the intéom strength t. The number of tests
required fort+1-way testing will be in the neighborhoodwtimes the number required for
t-way testing. The table below shows hewgrows for values of andt. Although the
number of tests required for high-strength comlminat testing can be very large, with
advanced software and cluster processors it isutodf reach.
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v to 2 3 4 5 6
2 4 8 16 32 64
4 16 64 256 1024 4096
6 36 216 1296 7776 46656

Table 1. Growth of!

Despite the possibly discouraging numbers in tietabove, there is some good news.
Note that formula (2) grows only logarithmicallytivithe number of variables, This is
fortunate for software testing. Early applicatiaiscombinatorial methods were typically
involved with small numbers of variables, such asewa different types of crops or
fertilizers, but for software testing, we must deéth tens, or in some cases hundreds of
variables.

Regular Expressions

Regular expressions are formal descriptions ohgériof symbols, which may represent
text, events, characters, or other objects. Theydaveloped within automata theory and
formal languages, where it is shown that theredarect mappings between expressions
and automata to process them, and are encounteredny areas within computer science.
In combinatorial testing they may be encounteredaquence covering or in processing
test input or output. Implementations vary, bahsiard syntax is explained below.

Expression Operators
Basic elements of regular expressions include:

| “or” alternation. Ex: ablac matches “ab” or™ac
0 or 1 of the preceding element. Ex: ab?c negtthc” or “abc”

* 0 or more of the preceding element. Ex: ab*chaes “a”, “ab”,
“abb”, “abbb” etc. + 1 or more of the precedingmeént. Ex: ab+
matches “ab”, “abb”, “abbb” etc.

0 grouping. Ex: (abclabcd) matches “abc” or ‘@bc

: matches any single character. Ex: a.c matchles’;'“axc”, “a@c” etc.

[] matches any single character within brackéig: [abc] matches “a”
or “b” or “c”.

A range may also be specified. Ex: [a-z] matamgssingle lower
case character.
(This option depends on the character set supporte

[*] matches any single character that is not doethin the brackets.
Ex: ["ab] matches any character except “a” or “b”

A matches start position, i.e., before the firsrelater

$ matches end position, i.e., after the last cliarac
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Combining Operators

The operators above can be combined with symbaisstate arbitrarily complex
expressions. Examples include:

Fa*b.*c.xr  “a” followed by “b” followed by “c” with zero or more
symbols prior to “a”, following “c”, or intersperdewith the three

symbols
a|b* null or “a” or zero or more occurrences of “b
a+ equivalent to aa*

Many regular expression utilities such egrepsupport a broader range of operators and
features. Readers should consult documentationgfep, egrep or other regular
expression processors for detailed coverage abphtiens available on particular tools.
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Appendix B - EMPIRICAL DATA ON SOFTWARE FAILURES

One of the most important questions in softwarértgds "how much is enough"?
For combinatorial testing, this question includéstermining the appropriate level of
interaction that should be tested. That is, if edailure is triggered only by an unusual
combination of more than two values, how many mgstiombinations are enough to detect
all errors? What degree of interaction occurs ial reystem failures? This section
summarizes what is known about these questiongsilmaseesearch by NIST and others [4,
7, 34, 35, 36, 65].

Table 1 below summarizes what we know from emgirstadies of a variety of
application domains, showing the percentage ofifed that are triggered by the interaction
of one to six variables. For example, 66% of thedital devices were triggered by a
single variable value, and 97% were triggered ltlyegione or two variables interacting.
Although certainly not conclusive, the availablatad suggest that the number of
interactions involved in system failures is relatwlow, with a maximum from 4 to 6 in
the six studies cited below. (Note: TCAS studyediseeded errors, all others are
"naturally occurring”, * = not reported.)

Medical NASA | Network

Vars Devices Browser | Server GSFC | Security TCAS
1 66 29 42 68 17 *
2 97 76 70 93 62 53
3 99 95 89 98 87 74
4 100 97 96 100 98 89
5 99 96 100 100
6 100 100

Table 1. Number of variables involved in triggering software failures
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System | System type | Release stage Size (LOC)

Medical | Embedded Fielded 10° - 10°

Devices products (varies)

Browser | Web browser | Development/ | approx. 2 x 10°
beta release

Server | HTTP server | Development/ approx. 10°
beta release

NASA Distributed | Development, approx. 10°
database scientific | integration test

database
Network Network Fielded 10° - 10°
security protocols products (varies)

Table 2. System characteristics
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Figure 1. Cumulative percentage of failures triggered-ay interactions.

We have also investigated a particular class ofiemalbilities, denial-of-serivce,
using reports from the National Vulnerability Dadgk (NVD), a publicly available
repository of data on all publicly reported softer@ecurity vulnerabilities. NVD can
be queried for fine-granularity reports on vulneliibs. Data from 3,045 denial-of-
service vulnerabilities have the distribution shownTable 3. We present this data
separately from that above because it covers amdyparticular kind of failure, rather
than data on any failures occurring in a particplamgram as shown in Figure 1.

NVD
Vars cumulative
%
1 93%
2 99%
3 100%
4 100%
5 100%
6 100%

Table 3. Cumulative percentage of denial-of-service
vulnerabilities triggered bisway interactions.

Why do the failure detection curves look this wayfat is, why does the error rate
tail off so rapidly with more variables interactthgOne possibility is that there are simply
few complex interactions in branching points intaafre. If few branches involve 4-way,
5-way, or 6-way interactions among variables, tthes degree of interaction could be rare
for failures as well. The table below (Table 4 &ng. 2) gives the number and percentage
of branches in avionics code triggered by one tovdBables. This distribution was

67



Practical Combinatorial Testing

developed by analyzing data in a report on theaiddCDC testing in avionics software
[16], which contains 20,256 logic expressions wefdifferent airborne systems in two
different airplane models. The table below includ# 7,685 expressions frofnandwhile
statements; expressions from assignment (:=) statemvere excluded.

Table 4. Number of variables in avionics software b ranches

Vars Count Pct Cumulative
1 5691 74.1% 74.1%
2 1509 19.6% 93.7%
3 344 4.5% 98.2%
4 91 1.2% 99.3%
5 23 0.3% 99.6%
6 8 0.1% 99.8%
7 6 0.1% 99.8%
8 8 0.1% 99.9%
9 3 0.0% 100.0%

15 1 0.0% 100.0%
19 1 0.0% 100.0%

100.0% |

90.0%

80.0% =

70.0%

60.0%

50.0%

40.0% +

30.0%

20.0%

10.0%

0.0%

1 2 3 4 ] i [i i 9

Figure 2. Cumulative percentage of branches containingriables.

As shown in Fig. 2, most branching statement exgioaes are simple, with over 70%
containing only a single variable. Superimposing turve from Fig. 2 on Fig. 1, we see
(Fig. 3) that most failures are triggered by mooenplex interactions among variables. It
is interesting that the NASA distributed databasdufes, from development-phase
software bug reports, have a distribution similarekpressions in branching statements.
This distribution may be because this was devetogrphase rather than fielded software
like all other types reported in Fig. 1. As fadarare removed, the remaining failures may
be harder to find because they require the intemacif more variables. Thus testing and
use may push the curve down and to the right.
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Figure 3. Branch distribution (green) superimposed on Eig.
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Appendix C - TooLs FOR COMBINATORIAL TESTING

A variety of software tools are available to assisth combinatorial testing
projects. Here we summarize those available froen NIST ACTS project. The
ACTS covering array generator is generally fastedt produces smaller test arrays
than others, based on comparisons we have dor@® ZThe other tools, to the best
of our knowledge, have functions that are not add elsewhere.

¢ ACTS covering array generator — produces compaaysithat will cover 2-way
through 6-way combinations. It also supports camsts that can make some
values dependent on others, and mixed level coyerirays which offer different
strength coverage for subsets of the parametegs, @way coverage for one
subset but 4-way for another subset of parametédsifput can be exported in a
variety of formats, including human-readable, numeand spreadsheet. Either
“‘don’t care” or randomized output can be specifiga tests that include
combinations already fully covered by previousgest

e Coverage measurement tool — produces a comprelkeessiv of data on the
combinatorial coverage of an existing set of teats,explained in Chapter 6.
Output can be generated in spreadsheet formatldev aasy processing and
graphing.

e Sequence covering array generator — produces seguemvering arrays as
defined in Chapter 5. It includes an option fomstaints in the form of
prohibited sequences.

To obtain any of these, see the ACTS web siteratrast.gov/acts.
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