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Every computer user is familiar with software bugs.  Many seem to appear almost 
randomly, suggesting that the conditions triggering them must be complex, and some famous 
software bugs have been traced to highly unusual combinations of conditions.  For example, the 
1997 Mars Pathfinder mission began experiencing system resets at seemingly unpredictable 
times soon after it landed and began collecting data.  Fortunately, engineers were able to deduce 
and correct the problem, which occurred only when (1) a particular type of data was being 
collected and (2) intermediate priority tasks exceeded a certain load, allowing a blocking 
condition that eventually triggered a reset. 

At 155,000 lines of code (not including the operating system), the Pathfinder program is 
small compared with commercial software:  a Boeing 777 airliner flies on 6.5 million lines of 
code, the Microsoft Windows XP operating system is estimated at 40 million, and within the 
next two years the average new car may have more than 100 million lines of code in various 
subsystems.  Ensuring correct operation of complex software is so difficult that more than half of 
a software development budget – frequently tens of millions of dollars – is normally devoted to 
testing, and even then errors often escape detection.  A 2002 NIST-funded study by the Research 
Triangle Institute estimated an annual cost of inadequate software testing infrastructure at $22.2 
to $59.5 billion for the US economy [1].  

As with any engineered system, cost is a critical issue for quality software.  Any 
improvement in software testing efficiency can have a huge impact when testing consumes over 
half of the development budget.  It is clearly possible to build ultra-dependable software (we bet 
our lives on this proposition each time we board a commercial aircraft), but the process is 
extremely expensive.  Much of the cost results from the human effort involved in attempting to 
ensure that the software functions correctly in every situation.  

 Even before the Pathfinder incident, NASA researchers had shown that the fault density 
(number of faults per line of code) can be over 100 times greater in rarely executed code than in 
frequently executed portions of a program [2].  In a 1999 study that considered faults arising 
from rare conditions, NIST reviewed 15 years of medical device recall data, in an effort to 
determine what types of testing could detect the reported faults [3].  For example, one recall 
report indicated that the “upper limit CO2 alarm can be manually set above upper limit without 
alarm sounding.”  In this case, a single parameter – CO2 alarm value – caused the problem, and a 
test with the upper limit value exceeded could have detected it.  Another report gave an example 
of a problem triggered only when two conditions were met simultaneously:  “the ventilator could 
fail when the altitude adjustment feature was set on 0 meters and the total flow volume was set at 
a delivery rate of less than 2.2 liters per minute”.  In this case, a test in which the pair of 
conditions was true – altitude is 0 and rate is less than 2.2 lpm – could have detected the flaw.  

Recognizing that system failures can result from the interaction of conditions that might 
be innocuous individually, software developers have long used “pairwise testing”, in which all 
possible pairs of parameter values are covered by at least one test.   For example, suppose we 
wanted to show that a new software application works correctly on PCs that use Windows or 
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Linux operating systems, SQL or Access databases, and IPv4 or IPv6 protocols.  This is a total of 
23 = 8 possibilities, but only four tests are required to test every component interacting with 
every other component at least once.  A reduction in test set size from 8 to 4 is not that 
impressive, but consider a larger example:  a manufacturing automation system that has 20 
controls, each with 10 possible settings, a total of 1020 combinations.  Surprisingly, we can check 
all pairs of these values with less than 200 tests, if the tests are carefully constructed.  Several 
empirical investigations suggest individual values or pairs of values of two parameters are 
responsible for roughly 2/3 to more than 95% of faults in real-world applications. 

 

Rationale and Method of Combinatorial Testing 

But what about the remaining faults?  How many failures will be triggered only by an 
unusual combinatorial interaction of more than two parameters?  The medical device study 
discussed above found one case in which a failure involved a four-way interaction between 
parameter values.  Subsequent investigations [4, 5] found a similar distribution of failure-
triggering conditions:  usually, many were caused by a single parameter value, a smaller 
proportion resulted from an interaction between two parameter values, and progressively fewer 
were triggered by 3, 4, 5, and 6-way interactions.  Figure 1 summarizes these results.  With the 
web server application, for example, roughly 40% of the failures were caused by a single value, 
such as a file name exceeding a maximum length.  Another 30% of the problems were triggered 
by the interaction of two parameters, and a cumulative total of almost 90% triggered by three or 
fewer parameters.   Curves for the other applications have a similar shape, reaching 100% fault 
detection with 4 to 6-way interactions.   While not conclusive, these results suggest that 
combinatorial testing which exercises high degree (4-way or above) of combinatorial interactions 
is necessary to reach a higher level of software assurance.  If we know from experience that t or 
fewer variables are involved in failures for a particular application type and we can test all t-way 
combinations of discrete variable settings, then we can have reasonably high confidence that the 
application will function correctly.   

 
Figure 1.  Percentage of failures triggered by t-way interactions 

 
The key ingredient for this form of testing is known as a covering array, a mathematical 

object in which all t-way combinations of parameter values are covered at least once [6].  
Generating covering arrays for complex interactions (beyond pairwise) is a difficult problem, but 
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new algorithms have been developed that make it possible to generate covering arrays several 
orders of magnitude faster than previous algorithms, making up to 6-way covering arrays 
tractable for many applications.   

Test sets based on high strength covering arrays for t-way testing, for t = 2 to 6 or more, 
are extensions of traditional Design of Experiments (DoE) for testing software/hardware 
systems, but there are significant differences between traditional DoE and software/hardware 
combinatorial testing.  An objective in DoE (based on fractional factorials, Latin squares, 
orthogonal arrays, and other such mathematical objects) is to predict an ‘optimal combination’ 
using a statistical model estimated from results of experiment.  In testing based on covering 
arrays, statistical models are not used.  Tests sets based on DoE are balanced (each 2-way 
combination appears same number of times), but tests sets based on covering arrays are 
unbalanced (each t-way combination appears at least once, where t = 2, 3, 4, 5, 6 or more) 
because no statistical prediction model needs to be estimated.  In DoE, generally, 3-way and 
higher order interactions are regarded as error.  In contrast, the aim in high strength 
software/hardware combinatorial testing is to detect possible t-way combinatorial interactions, 
for t = 2, 3, 4, 5, 6 or more, which may cause system failure.  In conventional DoE, the number 
of parameters is generally less than 10 and the number of test settings for each parameter is 4 or 
less.  But for software testing, there is no arbitrary limit on the number of parameters or the 
number of test settings for each parameter. For example, it is not uncommon for a software 
system to have 50 to 100 parameters (input or configuration parameters) with many test settings.  
Parameters also typically vary a great deal in the number of settings, e.g., some binary, some 
with many possible discrete values, and many that represent continuous variables; for these 
parameters, a subset of roughly 10 or fewer representative values is used.  Because balance is not 
required, the number of test runs in a test suite for combinatorial testing based on a covering 
array is often less than the number of test runs in the corresponding DoE. 

Designs of experiments have been used in agricultural research since the 1920s.  
Subsequently, their use was extended to animal science and the chemical industry.  Designs of 
experiments based on orthogonal arrays have been used in manufacturing industry since the 
1960s.  Since the 1980s orthogonal arrays have been used for pairwise (2-way) black-box testing 
of software.  Use of covering arrays for pairwise software testing has begun to attract interest in 
the past decade, and within the past few years, higher strength testing (t > 2) has become possible 
with new algorithms to efficiently generate test suites based on high strength covering arrays.  
One such tool is ACTS, freely available from NIST.  

Figure 2 gives an example of a covering array for all 3-way interactions of 10 binary 
parameters (columns) in only 13 tests (rows).  It can be seen that any three columns chosen out 
of ten columns in Fig. 2, contain all eight possible values of the three parameters:  
000,001,010,011,100,101,110,111.  Referring back to Fig. 1, 3-way interaction testing detected 
roughly 90% of bugs or more.  Exhaustive testing (all possible combinations of the values of ten 
variables) would require 210 = 1,024 tests.   
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Figure 2.  3-way covering array for 10 parameters with 2 values each. 
 
 

But even with efficient algorithms to produce covering arrays, some other problems must 
be solved for practical application of combinatorial testing.  Fortunately, since these remaining 
problems are common to all types of software testing, reasonable solutions exist that are 
compatible with combinatorial testing.  An obvious challenge is simply the enormous number of 
possible values for input parameters.  A 64-bit integer can store more than 18 million trillion 
possible values, and software may be manipulating a vast number of integers.  Clearly, only a 
small selection of discrete values can be tested for each parameter, so testers establish 
equivalence classes, representing ranges of values that should be treated differently by the 
software.  For example, tested values for a bank account may be: a negative value, 0, a positive 
value, the largest allowable value, and more than the largest allowable value.  Many variations of 
this partition may be used, such as the previously listed boundary values +/- 1, depending on the 
objective of testing, but the goal is to reduce the testing effort by selecting a reasonably small 
number of representative values for each parameter.  Some testers also select random test values 
from each equivalence class. 

 

The Oracle Problem 

A more challenging problem is determining the correct result that should be expected 
from the system under test (SUT) for each set of test inputs.  For example, an e-commerce 
bookstore application that receives inputs of book titles, prices, shipping type, and location, 
should produce correct outputs for total order amount, tax, and other accounting information.  
Generating 1,000 test data inputs is of little help if we cannot determine what the SUT should 
produce as correct (expected) output for each of the 1,000 tests.  A test component that 
determines the expected result for each set of inputs is known as the test oracle, and producing a 
test oracle can be almost as complex as producing the original system under test.  Approaches to 
solving the oracle problem for combinatorial testing include model-based testing, crash testing, 
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and embedded assertions.  

 Model-based test oracle generation uses a mathematical model of the SUT and one or 
more tools that can interpret the model and generate tests together with the expected result for 
each input.  Since tests can be produced independently of each other, the test generation effort 
can be distributed across a cluster of processors, so even if tens of thousands of test oracles are 
needed, they can be produced.  Model based test generation can be expensive, but its 
effectiveness has been demonstrated with a variety of test methods, and it has been successfully 
integrated with combinatorial testing.   

Crash testing:  A much simpler approach is to simply run tests against the SUT to check 
whether any unusual combination of input values causes a crash or other easily detectable 
failure.  This is much easier and less expensive to implement than model-based test generation, 
which requires a full mathematical model of the system. But crash testing clearly produces much 
less information – a bookstore application that crashes is clearly faulty, but one that runs and 
produces incorrect results may cost the e-commerce firm its business.  Nonetheless, crash testing 
using combinatorial methods can be an inexpensive way of checking a system’s reaction to rare 
input combinations that might take months or years to occur in normal operation.     

Embedded assertions:  A method that falls between simple crash testing and model-based test 
generation is embedding assertions within code to ensure proper relationships between data.  
Assertions are a commonly used programming practice in which logical statements that should 
always be true are placed at critical points in a program.  For example, if a program contains the 
statement “y = sqrt(x);”, an assertion “assert(y*y == x);” may  be placed immediately following it to 
ensure that the square root function worked correctly.  Sufficiently thorough placement of assertions 
at the beginning and end of program functions can be highly effective in ensuring correct operation.   
Notations such as the Java Modeling language (JML) [7] can be used to introduce very powerful 
assertions, effectively embedding a formal specification within the code.  The embedded assertions 
serve as an executable form of the specification, thus providing an oracle for the testing phase.  With 
embedded assertions, exercising the application with all t-way combinations can provide reasonable 
assurance that the code works correctly across a very wide range of inputs.   This approach has been 
used successfully in testing smart cards, with one experiment showing that embedded JML 
assertions acting as a test oracle found up to 90% of seeded faults [8]. 

 

Configuration Testing with Combinatorial Methods 

In addition to testing input values, combinatorial methods can be used for testing 
configurations of a software system.  Many, if not most, software systems have a large number 
of configuration parameters, such as alternative operating systems, CPUs, and databases.  Many 
of the earliest applications of combinatorial testing were in testing all pairs of system 
configurations for telephone switching equipment.  For example, telecommunications software 
may be configured to work with different types of call (local, long distance, international), 
billing (caller, phone card, 800), access (ISDN, VOIP, PBX), and server for billing (Windows 
Server, Linux/MySQL, Oracle).  The software must work correctly with all combinations of 
these, so a single test suite could be applied to all pairwise combinations of these four major 
configuration items.  Any system with a variety of configuration options is a suitable candidate 
for this type of testing.  Configuration coverage is perhaps the most developed form of 
combinatorial testing.  It has been used for years with pairwise coverage, particularly for 
applications that must be shown to work across a variety of combinations of operating systems, 
databases, and protocols.   
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Conclusions 

While the most basic form of combinatorial testing – pairwise – is well developed, it is 
only in the past few years that efficient algorithms for complex covering arrays – for up to 6-way 
coverage – have become available.  New algorithms, coupled with fast, inexpensive processors, 
are making sophisticated combinatorial testing a practical approach that may hold the promise of 
better software testing at a lower cost.   
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Disclaimer:  We identify certain software products in this document, but such identification does 
not imply recommendation by the US National Institute for Standards and Technology or other 
agencies of the US government, nor does it imply that the products identified are necessarily the 
best available for the purpose. 


