
This article is part of the Reliability Society 2010 Annual Technical Report

Advanced Combinatorial Test Methods for System Reliability

D. Richard Kuhn*, Raghu N. Kacker*, Yu Lei**
*National Institute of Standards & Technology

Gaithersburg, MD 20899
 **University of Texas at Arlington

Arlington, TX

Every computer user is familiar with software bugs. Many seem to appear almost
randomly, suggesting that the conditions triggering them must be complex, and some famous
software bugs have been traced to highly unusual combinations of conditions. For example, the
1997 Mars Pathfinder mission began experiencing system resets at seemingly unpredictable
times soon after it landed and began collecting data. Fortunately, engineers were able to deduce
and correct the problem, which occurred only when (1) a particular type of data was being
collected and (2) intermediate priority tasks exceeded a certain load, allowing a blocking
condition that eventually triggered a reset.

At 155,000 lines of code (not including the operating system), the Pathfinder program is
small compared with commercial software: a Boeing 777 airliner flies on 6.5 million lines of
code, the Microsoft Windows XP operating system is estimated at 40 million, and within the
next two years the average new car may have more than 100 million lines of code in various
subsystems. Ensuring correct operation of complex software is so difficult that more than half of
a software development budget – frequently tens of millions of dollars – is normally devoted to
testing, and even then errors often escape detection. A 2002 NIST-funded study by the Research
Triangle Institute estimated an annual cost of inadequate software testing infrastructure at $22.2
to $59.5 billion for the US economy [1].

As with any engineered system, cost is a critical issue for quality software. Any
improvement in software testing efficiency can have a huge impact when testing consumes over
half of the development budget. It is clearly possible to build ultra-dependable software (we bet
our lives on this proposition each time we board a commercial aircraft), but the process is
extremely expensive. Much of the cost results from the human effort involved in attempting to
ensure that the software functions correctly in every situation.

 Even before the Pathfinder incident, NASA researchers had shown that the fault density
(number of faults per line of code) can be over 100 times greater in rarely executed code than in
frequently executed portions of a program [2]. In a 1999 study that considered faults arising
from rare conditions, NIST reviewed 15 years of medical device recall data, in an effort to
determine what types of testing could detect the reported faults [3]. For example, one recall
report indicated that the “upper limit CO2 alarm can be manually set above upper limit without
alarm sounding.” In this case, a single parameter – CO2 alarm value – caused the problem, and a
test with the upper limit value exceeded could have detected it. Another report gave an example
of a problem triggered only when two conditions were met simultaneously: “the ventilator could
fail when the altitude adjustment feature was set on 0 meters and the total flow volume was set at
a delivery rate of less than 2.2 liters per minute”. In this case, a test in which the pair of
conditions was true – altitude is 0 and rate is less than 2.2 lpm – could have detected the flaw.

Recognizing that system failures can result from the interaction of conditions that might
be innocuous individually, software developers have long used “pairwise testing”, in which all
possible pairs of parameter values are covered by at least one test. For example, suppose we
wanted to show that a new software application works correctly on PCs that use Windows or

This article is part of the Reliability Society 2010 Annual Technical Report

Linux operating systems, SQL or Access databases, and IPv4 or IPv6 protocols. This is a total of
23 = 8 possibilities, but only four tests are required to test every component interacting with
every other component at least once. A reduction in test set size from 8 to 4 is not that
impressive, but consider a larger example: a manufacturing automation system that has 20
controls, each with 10 possible settings, a total of 1020 combinations. Surprisingly, we can check
all pairs of these values with less than 200 tests, if the tests are carefully constructed. Several
empirical investigations suggest individual values or pairs of values of two parameters are
responsible for roughly 2/3 to more than 95% of faults in real-world applications.

Rationale and Method of Combinatorial Testing

But what about the remaining faults? How many failures will be triggered only by an
unusual combinatorial interaction of more than two parameters? The medical device study
discussed above found one case in which a failure involved a four-way interaction between
parameter values. Subsequent investigations [4, 5] found a similar distribution of failure-
triggering conditions: usually, many were caused by a single parameter value, a smaller
proportion resulted from an interaction between two parameter values, and progressively fewer
were triggered by 3, 4, 5, and 6-way interactions. Figure 1 summarizes these results. With the
web server application, for example, roughly 40% of the failures were caused by a single value,
such as a file name exceeding a maximum length. Another 30% of the problems were triggered
by the interaction of two parameters, and a cumulative total of almost 90% triggered by three or
fewer parameters. Curves for the other applications have a similar shape, reaching 100% fault
detection with 4 to 6-way interactions. While not conclusive, these results suggest that
combinatorial testing which exercises high degree (4-way or above) of combinatorial interactions
is necessary to reach a higher level of software assurance. If we know from experience that t or
fewer variables are involved in failures for a particular application type and we can test all t-way
combinations of discrete variable settings, then we can have reasonably high confidence that the
application will function correctly.

Figure 1. Percentage of failures triggered by t-way interactions

The key ingredient for this form of testing is known as a covering array, a mathematical

object in which all t-way combinations of parameter values are covered at least once [6].
Generating covering arrays for complex interactions (beyond pairwise) is a difficult problem, but

This article is part of the Reliability Society 2010 Annual Technical Report

new algorithms have been developed that make it possible to generate covering arrays several
orders of magnitude faster than previous algorithms, making up to 6-way covering arrays
tractable for many applications.

Test sets based on high strength covering arrays for t-way testing, for t = 2 to 6 or more,
are extensions of traditional Design of Experiments (DoE) for testing software/hardware
systems, but there are significant differences between traditional DoE and software/hardware
combinatorial testing. An objective in DoE (based on fractional factorials, Latin squares,
orthogonal arrays, and other such mathematical objects) is to predict an ‘optimal combination’
using a statistical model estimated from results of experiment. In testing based on covering
arrays, statistical models are not used. Tests sets based on DoE are balanced (each 2-way
combination appears same number of times), but tests sets based on covering arrays are
unbalanced (each t-way combination appears at least once, where t = 2, 3, 4, 5, 6 or more)
because no statistical prediction model needs to be estimated. In DoE, generally, 3-way and
higher order interactions are regarded as error. In contrast, the aim in high strength
software/hardware combinatorial testing is to detect possible t-way combinatorial interactions,
for t = 2, 3, 4, 5, 6 or more, which may cause system failure. In conventional DoE, the number
of parameters is generally less than 10 and the number of test settings for each parameter is 4 or
less. But for software testing, there is no arbitrary limit on the number of parameters or the
number of test settings for each parameter. For example, it is not uncommon for a software
system to have 50 to 100 parameters (input or configuration parameters) with many test settings.
Parameters also typically vary a great deal in the number of settings, e.g., some binary, some
with many possible discrete values, and many that represent continuous variables; for these
parameters, a subset of roughly 10 or fewer representative values is used. Because balance is not
required, the number of test runs in a test suite for combinatorial testing based on a covering
array is often less than the number of test runs in the corresponding DoE.

Designs of experiments have been used in agricultural research since the 1920s.
Subsequently, their use was extended to animal science and the chemical industry. Designs of
experiments based on orthogonal arrays have been used in manufacturing industry since the
1960s. Since the 1980s orthogonal arrays have been used for pairwise (2-way) black-box testing
of software. Use of covering arrays for pairwise software testing has begun to attract interest in
the past decade, and within the past few years, higher strength testing (t > 2) has become possible
with new algorithms to efficiently generate test suites based on high strength covering arrays.
One such tool is ACTS, freely available from NIST.

Figure 2 gives an example of a covering array for all 3-way interactions of 10 binary
parameters (columns) in only 13 tests (rows). It can be seen that any three columns chosen out
of ten columns in Fig. 2, contain all eight possible values of the three parameters:
000,001,010,011,100,101,110,111. Referring back to Fig. 1, 3-way interaction testing detected
roughly 90% of bugs or more. Exhaustive testing (all possible combinations of the values of ten
variables) would require 210 = 1,024 tests.

This article is part of the Reliability Society 2010 Annual Technical Report

Figure 2. 3-way covering array for 10 parameters with 2 values each.

But even with efficient algorithms to produce covering arrays, some other problems must
be solved for practical application of combinatorial testing. Fortunately, since these remaining
problems are common to all types of software testing, reasonable solutions exist that are
compatible with combinatorial testing. An obvious challenge is simply the enormous number of
possible values for input parameters. A 64-bit integer can store more than 18 million trillion
possible values, and software may be manipulating a vast number of integers. Clearly, only a
small selection of discrete values can be tested for each parameter, so testers establish
equivalence classes, representing ranges of values that should be treated differently by the
software. For example, tested values for a bank account may be: a negative value, 0, a positive
value, the largest allowable value, and more than the largest allowable value. Many variations of
this partition may be used, such as the previously listed boundary values +/- 1, depending on the
objective of testing, but the goal is to reduce the testing effort by selecting a reasonably small
number of representative values for each parameter. Some testers also select random test values
from each equivalence class.

The Oracle Problem

A more challenging problem is determining the correct result that should be expected
from the system under test (SUT) for each set of test inputs. For example, an e-commerce
bookstore application that receives inputs of book titles, prices, shipping type, and location,
should produce correct outputs for total order amount, tax, and other accounting information.
Generating 1,000 test data inputs is of little help if we cannot determine what the SUT should
produce as correct (expected) output for each of the 1,000 tests. A test component that
determines the expected result for each set of inputs is known as the test oracle, and producing a
test oracle can be almost as complex as producing the original system under test. Approaches to
solving the oracle problem for combinatorial testing include model-based testing, crash testing,

All eight values,
000,001,010,011,
100,101,110,111,
occur in any three

columns.

A B C D E F G H I J

Tests

This article is part of the Reliability Society 2010 Annual Technical Report

and embedded assertions.

 Model-based test oracle generation uses a mathematical model of the SUT and one or
more tools that can interpret the model and generate tests together with the expected result for
each input. Since tests can be produced independently of each other, the test generation effort
can be distributed across a cluster of processors, so even if tens of thousands of test oracles are
needed, they can be produced. Model based test generation can be expensive, but its
effectiveness has been demonstrated with a variety of test methods, and it has been successfully
integrated with combinatorial testing.

Crash testing: A much simpler approach is to simply run tests against the SUT to check
whether any unusual combination of input values causes a crash or other easily detectable
failure. This is much easier and less expensive to implement than model-based test generation,
which requires a full mathematical model of the system. But crash testing clearly produces much
less information – a bookstore application that crashes is clearly faulty, but one that runs and
produces incorrect results may cost the e-commerce firm its business. Nonetheless, crash testing
using combinatorial methods can be an inexpensive way of checking a system’s reaction to rare
input combinations that might take months or years to occur in normal operation.

Embedded assertions: A method that falls between simple crash testing and model-based test
generation is embedding assertions within code to ensure proper relationships between data.
Assertions are a commonly used programming practice in which logical statements that should
always be true are placed at critical points in a program. For example, if a program contains the
statement “y = sqrt(x);”, an assertion “assert(y*y == x);” may be placed immediately following it to
ensure that the square root function worked correctly. Sufficiently thorough placement of assertions
at the beginning and end of program functions can be highly effective in ensuring correct operation.
Notations such as the Java Modeling language (JML) [7] can be used to introduce very powerful
assertions, effectively embedding a formal specification within the code. The embedded assertions
serve as an executable form of the specification, thus providing an oracle for the testing phase. With
embedded assertions, exercising the application with all t-way combinations can provide reasonable
assurance that the code works correctly across a very wide range of inputs. This approach has been
used successfully in testing smart cards, with one experiment showing that embedded JML
assertions acting as a test oracle found up to 90% of seeded faults [8].

Configuration Testing with Combinatorial Methods

In addition to testing input values, combinatorial methods can be used for testing
configurations of a software system. Many, if not most, software systems have a large number
of configuration parameters, such as alternative operating systems, CPUs, and databases. Many
of the earliest applications of combinatorial testing were in testing all pairs of system
configurations for telephone switching equipment. For example, telecommunications software
may be configured to work with different types of call (local, long distance, international),
billing (caller, phone card, 800), access (ISDN, VOIP, PBX), and server for billing (Windows
Server, Linux/MySQL, Oracle). The software must work correctly with all combinations of
these, so a single test suite could be applied to all pairwise combinations of these four major
configuration items. Any system with a variety of configuration options is a suitable candidate
for this type of testing. Configuration coverage is perhaps the most developed form of
combinatorial testing. It has been used for years with pairwise coverage, particularly for
applications that must be shown to work across a variety of combinations of operating systems,
databases, and protocols.

This article is part of the Reliability Society 2010 Annual Technical Report

Conclusions

While the most basic form of combinatorial testing – pairwise – is well developed, it is
only in the past few years that efficient algorithms for complex covering arrays – for up to 6-way
coverage – have become available. New algorithms, coupled with fast, inexpensive processors,
are making sophisticated combinatorial testing a practical approach that may hold the promise of
better software testing at a lower cost.

References

1. NIST. Economic Impacts of Inadequate Infrastructure for Software Testing (May 2002).
2. H. Hecht, P. Crane, "Rare Conditions and their Effect on Software Failures", Proceedings of

the 1994 Reliability and Maintainability Symposium, pp. 334 - 337, January 1994.
3. D.R. Wallace, D.R. Kuhn, Failure Modes in Medical Device Software: an Analysis of 15

Years of Recall Data, International Journal of Reliability, Quality, and Safety Engineering,
Vol. 8, No. 4, 2001.

4. D.R. Kuhn, D.R. Wallace, and A. Gallo, “Software Fault Interactions and Implications for
Software Testing,” IEEE Trans. Software Engineering, 30(6): 418-421, 2004

5. K.Z. Bell, Optimizing Effectiveness and Efficiency of Software Testing: a Hybrid
Approach, PhD Dissertation, North Carolina State University, 2006.

6. Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, “IPOG/IPOG-D: Efficient Test
Generation for Multi-Way Combinatorial Testing”, Software Testing, Verification, and
Reliability.

7. G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed design. In H. Kilov, B.
Rumpe, and I. Simmonds, editors, Behavioral Specifications of Businesses and Systems.
Kluwer, 1999.

8. L. du Bousquet, Y. Ledru, O. Maury, C. Oriat, J.-L. Lanet, A case study in JML-based
software validation. Proceedings of 19th Int. IEEE Conf. on Automated Sofware

Engineering, pp. 294-297, Linz, Sep. 2004.

Disclaimer: We identify certain software products in this document, but such identification does
not imply recommendation by the US National Institute for Standards and Technology or other
agencies of the US government, nor does it imply that the products identified are necessarily the
best available for the purpose.

