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1.  INTRODUCTION 
 
      A persistent challenge to forecasters is predicting 
small-scale, high-impact convective weather events 
such as high wind, severe hail, and tornadoes. 
Afforded by the advancement of computing power, 
innovative numerical systems, and assimilation of 
observations at high spatial and temporal density, 
nonhydrostatic numerical models at fine resolutions 
(i.e., 4 km grid spacing)  that are capable of explicitly 
resolving convection are being experimentally applied 
to forecasting convective precipitation and severe 
weather [e.g., NOAA Hazardous Weather Testbed 
(HWT) Spring Experiment (http://hwt.nssl.noaa.gov)]. 
These convection-allowing models can develop 
storms with unique attributes permitting forecasters to 
interrogate characteristics of simulated storms and 
relate them to the likelihood of severe weather 
occurrence.  
      Even with the advancement of storm-scale 
models and data assimilation techniques, forecast 
quality is hindered by limited sampling of the 
atmosphere coupled with imperfect understanding 
and inherent nonlinearity of the physical and 
dynamical atmospheric processes. These sources of 
unpredictability motivate the use of an ensemble 
forecast system as a means by which model error and 
uncertainty can be quantified in the forecast. 
Employing ensemble forecasting methods to the 
storm scale will provide information about a range of 
solutions, including the timing, and location of 
convective storms and their characteristics that are 
sensitive to small changes in the environmental 
conditions. High-resolution ensembles offer beneficial 
output relative to a single deterministic model by 
representing inherent uncertainties through 
probabilistic guidance.  
      This project investigated the capabilities of a 
storm-scale ensemble forecast system to predict 
simulated storm attributes by comparing them to 
observed severe weather events. The study focused 
on the 2008 Storm-Scale Ensemble Forecast (SSEF) 
system developed by the University of Oklahoma 
Center for Analysis and Prediction of Storms (CAPS) 
for experimental forecasting and assessment during 
the 2008 NOAA HWT Spring Experiment. A unique 
dataset of diagnostic convective storm attribute fields 
from the ensemble was examined, including updraft 
 
* Corresponding author’s address:  Amy R Harless, 
NOAA/NWS/NCEP Storm Prediction Center, 120 
David L. Boren Blvd., Norman, OK 73072; Email: 
amy.harless@noaa.gov 

 
helicity (UH), maximum column vertical velocity 
(VVEL) associated with storm updraft, and 4 km AGL 
simulated reflectivity (REFL). The utility of 
probabilistic forecasts of these model-derived fields 
were analyzed as guidance for operational forecasts 
of high-impact, convective weather events. 
Probabilities were extracted using various 
methodologies (i.e., traditional and neighborhood) and 
were evaluated and compared based on skill, 
reliability, and bias scores.  The primary objective of 
this study was to assess the predictability of storm-
scale attributes and determine if this 10-member 
ensemble at 4-km grid spacing provides useful 
objective guidance for making informed decisions in 
severe weather forecasting. 
 
2.  BACKGROUND 
 
       Ensemble forecasts of high-impact, rare weather 
events generated from models that explicitly resolve 
convection have shown potential for greater skill and 
operational value over a single deterministic model 
(e.g., Elmore et al. 2002a,b, 2003; Kong et al 2006, 
2007). Elmore et al. (2002, 2003) employed a storm-
scale ensemble initialized with horizontally 
homogeneous environments and used model-
generated storms with lifetimes of at least 60 minutes 
as proxies for severe weather reports. Results based 
on this methodology indicate forecast skill on days 
that are more likely to experiencing severe weather. 
Kong et al. (2006, 2007) also extended ensemble 
forecasting to the convective scale by applying a full-
physics numerical prediction system initialized with 
fine-scale observations from the WSR-88D radar 
network to a tornadic supercell event. Five-member 
ensemble systems were constructed on nested grids 
with 24-, 6-, and 3-km grid spacing. With explicit 
convection and assimilation of radar data, ensemble 
output from the 3-km configuration generally better 
predicted overall storm structure and translation 
compared to the output from the grids with decreased 
resolution.  
      Clark et al. (2009) compared the precipitation 
forecast skill of a 5-member convection-allowing 
ensemble on a 4-km grid to a 15-member convection-
parameterized ensemble with 20-km grid spacing.  
The results revealed that the storm-scale ensemble 
had a tendency to improve upon the timing and 
location of rainfall systems when compared to the 
coarser-resolution ensemble. Additionally, it was 
found that the probability-matched mean precipitation 
forecasts from the convection-allowing ensemble 



often outperformed the parameterized ensemble 
mean forecasts. ROC scores also demonstrated that 
probabilistic forecasts derived from the storm-scale 
ensemble outperformed those forecasts derived from 
the ensemble with parameterized convection. 
      Using model output from the CAPS 10-member 
storm-scale ensemble generated for the 2007 HWT 
Spring Experiment, Schwartz et al. (2010) evaluated 
the sensitivities of the WRF-ARW to varying 
microphysics and planetary boundary layer 
parameterization schemes.  The findings showed that 
the ensemble members on average had a high 
precipitation bias.  Additionally, a “neighborhood” 
approach to extract probabilities was introduced and 
compared to traditional point-based probabilities. 
Verification scores indicated that use of a 
neighborhood approach to calculate probabilities can 
enhance the forecast skill of high-resolution 
ensembles. 
      Playing a pivotal role in utilizing output from state-
of-the-art numerical models for forecast guidance, the 
Storm Prediction Center (SPC) has worked closely 
with CAPS, the National Severe Storms Laboratory, 
and other partners within the HWT to develop and test 
ensemble applications for operational severe weather 
forecasting. Emphasis is currently being placed on 
evaluating the utility of ensemble output at 
convection-allowing resolutions in the annual real-
time spring forecasting experiments. This study and 
the data used herein are a direct consequence of this 
unique collaborative program.  
 
3. DATA  
 
3.1. CAPS Storm Scale Ensemble Forecast System 
 
      During the 2008 HWT Spring Experiment, CAPS 
produced a Storm Scale Ensemble Forecast (SSEF) 
system that was employed as experimental guidance 
for the prediction of severe convective weather. The 
ensemble, comprised of 10 hybrid members, was 
generated from the Weather and Research Forecast 
(WRF) model which used the Advanced Research 
WRF (ARW) dynamic core version 2.2 (does not 
contain convective parameterization). At 4 km grid 
spacing, the ensemble’s spatial domain covered 
approximately the eastern two-thirds of the CONUS 
(Fig. 1) and contained 903 x 675 x 53 grid points. 
Daily 30-hour forecasts were generated for the Spring 
Experiment beginning 14 April 2008 to 06 June 2008.  
The dataset for this study includes 37 days from this 
period for which there were no missing data.  
      The SSEF consisted of two control members (cn 
and c0) and eight perturbed members that are 
initialized at 00 UTC.  Interpolations from the 00 UTC 
12-km NAM analysis provided the background initial 
conditions for all members. Additionally, the 00 UTC 
12-km NAM forecast provided the lateral boundary 
conditions for the two SSEF control members.  Four 
pairs of negative/positive perturbations from NCEP 
Short Range Ensemble Forecast (SREF) members 
(two each from WRF-em, WRF-nmm, eta-KF, and 

eta-BMJ) are applied to the members to introduce 
mesoscale perturbations into the initial conditions. 
Lateral boundary condition perturbations were 
supplied by the corresponding three-hour forecasts of 
the eight 21UTC SREF members scaled to their initial 
perturbation amplitude. To introduce convective-scale 
perturbations, level-2 radial velocity and reflectivity 
data from operational WSR-88D radar network across 
the CONUS are assimilated into all but one of the 
control members (c0) using the CAPS Advanced 
Regional Prediction System (ARPS) Three-
Dimensional Variational (3DVAR) system and cloud 
analysis package. Table 1 describes the configuration 
of each ensemble member including the IC and 
physics perturbations.  In the table, NAM-a and NAM-f 
refer to 12-km NAM analysis and forecast, 
respectively.  
 

 
           Fig. 1: SSEF spatial domain. 
 
 

Table 1:  SSEF member configuration. Long-wave 
radiation physics configuration is RRTM and surface 
physics configuration is Noah for all members. There is 
no cumulus parameterization. 
 
3.2 Diagnostic Output Fields 
 
      Two-dimensional diagnostic fields generated from 
the ensemble were mined and verified against 
observed severe local storm reports. The forecast 
parameters investigated were top-of-the-hour updraft 
helicity (UH), 3-6 km column maximum vertical 
velocity (VVEL), and 4-km AGL simulated reflectivity 
(REFL). These fields were chosen due to their 



predictive capabilities of hazardous convective 
weather (e.g., Sobash et al. 2008). 
      In convection-allowing numerical systems, rotating 
updrafts (i.e., supercells) can be identified by 
measuring the vertical component of helicity and 
integrating over a vertical layer to produce a measure 
of UH (Kain et al. 2008). This variable can be 
interpreted as a proxy for mesocyclone generation in 
the model. While updrafts can rotate cyclonically and 
anticyclonically, only cyclonically rotating updrafts, 
represented by positive UH values, were considered 
in this study. UH is computed by calculating the local 
product of vertical velocity and vertical vorticity and 
averaging over a vertical layer.  
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where ζ is the vertical component of relative vorticity 
(s-1) and w is vertical velocity (ms-1). In this study, UH 
was integrated from zo = 2-km and zt = 5-km AGL 
using a midpoint approximation. With data available 
every 1000 meters AGL, equation (1) is computed as 
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The overbar indicates a layer average, delta z is the 
depth of the layer (1000 m), and the subscripts 
indicate the vertical layers over which the variable is 
averaged.  
      The 4-km AGL simulated REFL (units of dBZ) is a 
derived field based on the predicted concentration of 
hydrometeors. With simulated REFL not being 
mathematically equivalent to observed REFL, the 
REFL output is considered a proxy for observed 
REFL (Kain et al. 2008).  The simulated REFL fields 
are based on hydrometeors at fixed altitudes while 
observed REFL is based on the detection by a radar 
beam at a given elevation angle. For the latter, 
hydrometeors closer to the radar are detected at 
lower altitudes than the hydrometeors farther from the 
radar.  
      The model climatology of each of the diagnostic 
fields used in this study was examined for the 2008 
SSEF.  For every member, the distribution and mean 
of each forecast field across the domain is tabulated. 
For UH and VVEL, the distributions of forecast values 
exceeding a specified threshold at each grid point 
coinciding with a minimum forecast REFL value were 
binned. This provided a distribution of values for the 
diagnostic variables where the model generated 
convection. Data were analyzed at grid points for UH 
(VVEL) meeting a minimum threshold of 25 m2s-2 (4 
ms-1) co-located with REFL values of at least 20 dBZ.  
Results revealed that over one-third of these grid 
points averaged over all members have UH values 
exceeding 25 m2s-2 while a small fraction (~1%) have 
UH values greater than 200 m2s-2.  VVEL exceeds 10 
ms-1 for just over 5% of the grid points. 

      Based on appropriate thresholds for each forecast 
field as determined by the climatological distribution, 
model data were contoured to create continuous 
‘features’ for each date, forecast hour, and member.  
UH data were contoured at thresholds of 25, 50, 75, 
100, 200 m2s-2.  Vertical velocity data were contoured 
at thresholds of 10, 15, and 20 ms-1. Lastly, 4-km AGL 
REFL data were contoured at thresholds of 30, 40, 
and 50 dBZ.  
 
3.3.  Verifying Storm Report Data 
 
      Hail, wind, and tornado report datasets from the 
NOAA National Climatic Data Center (NCDC) Storm 
Data publication were used as verification in this 
study. Report datasets include begin and end time, 
begin and end latitude and longitude, and magnitude 
(if available).  Storm report locations are mapped to 4-
km grids identical to the SSEF data grids and 
converted to XY space.   
 
4. METHODOLOGY 
 
     As numerical models have increased in horizontal 
resolution, the scale of features resolved by models 
has decreased. As a result, verifying probabilistic 
forecasts of discrete diagnostic fields for rare events 
is a challenging task. Point-to-point verification 
methods of forecasts for rare events reveal 
considerable displacement errors and will often 
misrepresent the true skill of a forecast (Gallus 2002, 
Baldwin and Kain 2006). To account for this, multiple 
techniques were considered in this study for the 
development of probabilistic forecasts of diagnostic 
fields at various thresholds. The first method is a 
traditional at-the-grid point frequency-based 
probability. The second method utilizes a 
neighborhood approach by determining whether a 
threshold is exceeded within a given radius of the grid 
point to extract probabilities. For each method, a 
spatial smoother was applied to the probability fields 
which recognized the spatial uncertainty in 
probabilistic forecasts. Verification procedures were 
applied similarly to each probabilistic forecast 
extraction method in order to compare and discern 
the relative skill of each technique in forecasting the 
occurrence of severe weather.   
 
4.1 Probabilistic Forecast Extraction 
 
4.1.1  Traditional Approach   
 
      A traditional method for computing forecast 
probabilities exploits model output from each 
ensemble member at individual grid points. The 
traditional ensemble probabilities (TEPs) in this study 
were determined by taking the average of the binary 
probabilities (BPs) from each of the ensemble 
members. BPs were generated based on the 
occurrence or nonoccurrence of a grid point 
exceeding a specified threshold, x, of the forecast 
variable. At each grid point, the BP is given by  
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where Fij is a diagnostic field forecast and x is a 
threshold value. Subscript i refers ith ensemble 
member and j denotes the jth grid point.  The TEPs 
were then computed as the following 
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where N is the total number of ensemble members.   
 
4.1.2   Neighborhood Approach 
 
      An alternative technique to extracting probabilities 
is based on a ‘neighborhood’ approach and is 
employed to account for displacement errors that are 
inherent in convective scale prediction but are not 
accounted for by the traditional method. To create the 
TEP grids with relaxed spatial criteria, the sum of 
members with forecasts exceeding a specified 
threshold within the radius of influence (ROI) of a grid 
point was divided by the total number of members.  
This quantity is referred to as a Binary Neighborhood 
Ensemble Probability (BNEP) and defined 
mathematically as 
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where j is the grid point, i is the ensemble member, N 
is the total number of ensemble members, and ROI is 
the specified radius of influence.                                            
 
 
4.1.3 Gaussian Smoother 
 
      A two-dimensional Gaussian kernel smoothing 
operator was applied to the ensemble probabilities 
generated from the various methods to arrive at 
smoothed probabilities. This allows for spatial 
uncertainty to be represented in the probabilistic 
forecasts. This method is based on that of Brooks et 
al. (1998).  Brooks et al. (1998) sought to produce 
“Practically Perfect” forecasts which are forecasts as 
accurate as can be expected given prior knowledge of 
locations of events. Practically Perfect forecasts are 
generated by smoothing events using a 
nonparametric density estimation with a two-
dimensional Gaussian kernel (Silverman 1986). This 
is given by 
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where N is the total number of grid points, σ is a 
weighting function, and dn is the distance from the 
forecast grid point to the nth location where an event 
occurred (Brooks et al. 1998). The values of σ tested 
in this study were 5, 10, 20, and 30 grid points which 
correspond to 20-, 40-, 80-, and 120-km, respectively, 
where a larger magnitude of σ reflects an increase in 
uncertainty.  
 
4.2 Verification Methods 
 
     Spatial and temporal post processing procedures 
were applied to the raw ensemble data before 
performing verification. To allow for temporal 
uncertainty in the model forecasts, output grids were 
created that contain the maximum value of each 
parameter within 60 minutes of the valid forecast hour 
at each grid point. For example, the 20-hour forecast 
grid contains the maximum value at each grid point 
from the 19-, 20-, and 21-hour forecast grids. Second, 
a land/sea mask was applied to the model output data 
to account for only the region where storm report data 
were available. Only model data bounded by the 
borders of the CONUS, excluding the Great Lakes, 
were verified.  
      Model data were extracted from the 20-28 
forecast hours (valid 20 – 04 UTC) for verification.  
This time frame was chosen to focus on the period 
with the highest climatological frequency of severe 
weather occurrence. 
       The quality of the probabilistic forecasts was 
evaluated quantitatively through several verification 
measures.  Contingency tables were created to 
calculate various skill scores. The reliability and 
resolution of the forecasts were assessed subjectively 
through reliability diagrams and relative operating 
characteristic (ROC) curves, and objectively through 
the Brier score and area under the ROC curve (AUC) 
metrics.     
    When computing the verification metrics, storm 
reports located within 25 miles (~40 km) of a forecast 
location were deemed correct ‘yes’ forecasts. This 
procedure is consistent with the Storm Prediction 
Center outlook forecasts.  
 
 4.2.1 Contingency Table Statistics 
 
      Conventionally, verification data of deterministic 
forecasts are expressed using an I x J contingency 
table which represents the joint distribution of 
forecasts and observations. Dichotomous forecasts 
are represented by a 2 x 2 table which shows the 
frequencies of paired ‘yes’ forecasts and occurrence 
of the event, ‘no’ forecasts and the nonoccurrence of 
an event, ‘yes’ forecasts and the nonoccurrence of an 
event, and ‘no’ forecasts and the occurrence of an 
event.  The construction of a contingency table was 
applied to the probability forecasts of output variables 
defined by a threshold. By setting probability 
thresholds, a probabilistic forecast was converted to a 
dichotomous yes/no forecast. As labeled in Fig. 2, 
quadrant a corresponds to hits, b is referred to as 



false alarms, c is called misses, and d is called 
correct negative. A variety of scalar performance 
metrics and skill scores can be derived from the 
contingency table. 
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Fig. 2: 2 x 2 contingency table (Wilks 1995) 
 
4.2.1.1  HIT RATE 
 
      One metric, known as either the hit rate (H) or 
probability of detection (POD), is the ratio of correct 
forecasts to the total number of occurrences of the 
event. The score ranges from 0 to 1, where 1 is a 
perfect forecast.  Using the categories from the 
contingency table, H is defined as 
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4.2.1.2  FALSE ALARM RATE 
 
       The ratio of false alarms to the total number of 
nonoccurrences of the an event is called the false 
alarm rate (F), or probability of false detection 
(POFD), and is given by 
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Values range from 0 to 1 with a perfect score being 0.  
 
4.2.1.3  BIAS 
 
      The bias score measures the ratio of frequency of 
forecasted events to the occurrence of observed 
events. Scores range from 0 to ∞, where 1 is a perfect 
score, less than one indicates the model tends to 
underforecast, and greater than one reflects a 
tendency to overforecast.  This metric is given by 
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4.2.1.4  CRITICAL SUCCESS INDEX 
 
      The Critical Success Index (CSI) measures the 
correspondence of forecasted events to observed 
events. CSI scores take on values ranging from 0 to 
1. A score of 0 indicates no skill and 1 is a perfect 
score. CSI is defined as            

                       CSI =  
cba

a
++
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4.2.1.5  HEIDKE SKILL SCORE 
 
       To measure the fraction of correct forecasts after 
which forecasts that would be correct by pure 
coincidence are removed, the Heidke Skill Score 
(HSS) is computed.  The range of values is from -∞ to 
1, where 0 indicates no skill and 1 is a perfect score. 
HSS is given by 
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4.2.2 Brier Score 
 
      The Brier Score (BS) is the mean squared error of 
the probability forecasts. Scores range from 0 to 1 
with 0 being a perfect forecast.  The BS is calculated 
by 
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where N is the total number of grid points, j is the grid 
point, p is the probability forecast, and o is the 
observation in binary format.  
 
4.2.3  Reliability Diagrams 
 
      A reliability diagram is a graphical method for 
assessing the agreement between probabilistic 
forecasts of weather events and the occurrence of the 
events, with the observation relative frequency plotted 
against the forecast probabilities. A perfect forecast 
would result in a line that is oriented from the lower 
left corner to the upper right corner. The forecasts are 
said to be conditionally biased when the resultant 
curve deviates from the perfect reliability line. Over-
forecasting is represented when the curve is below 
the line and under-forecasting is signified when the 
curve is oriented above the line.  Reliability diagrams 
are produced for TEPs and  BNEPs.  
 
 
 
 



4.2.4 ROC Curves 
 
      A ROC curve is a graphical tool developed by 
Mason (1972) for evaluating the resolution of a 
forecast system by plotting the hit rate and false alarm 
rates that are derived from the contingency table 
statistics for the probability thresholds. For a single 
quantitative measure from the ROC curve, the area 
under the curve (AUC) is computed. A perfect 
forecast would be represented by an AUC = 1 while 
an AUC = 0.5 signifies random forecasts (Marzban 
2004). AUC values greater than ~0.7 are generally 
considered to represent useful probabilistic forecast 
that discriminate between events and non-events 
(Stensrud and Yussouf 2007). ROC curves were 
generated and AUCs were calculated for the 
probabilities generated using the various methods 
described above.  
 
5. Results 
 
5.1 Traditional Ensemble Probabilities  
 
      Computation of the various skill scores for the 
TEP forecasts yielded results that were inferior to the 
results from the BNEP forecasts, which revealed the 
difficulty in forecasting rare events at the grid point.  
Skill scores for UH (Fig. 3a) and VVEL (not shown) 
tended to peak at the lowest probabilities (~10%) for 
the lowest thresholds of each parameter. This is a 
reflection of the low frequency of members 
forecasting discrete variables at the same grid point. 
The scores decreased for these two parameters with 
an increase in threshold. Applying a smoother slightly 
increased the score but only for the lowest thresholds.   
       Trends in the skill scores for REFL deviated from 
the tendencies associated with the other two 
parameters (not shown).  The highest skill scores 
were associated with slightly higher probabilities and 
increased when the forecast threshold was raised to 
40 dBZ. The values also increased when a 20-grid 
point smoother was applied to the forecasts. Overall, 
TEP forecasts of REFL remained inferior to the BNEP 
forecasts of REFL despite the improvements 
associated with the application of a smoothing 
function.   
       Low ROC AUC values (< 0.7) for UH (Fig. 3b) 
and VVEL (not shown) further illustrated the 
shortcomings of the forecasts associated with TEPs. 
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 Fig. 3: a) CSI values for UH with distribution frequency 
for each probability threshold binned on the bottom and 
b) ROC curves for UH with AUC totals noted in the inset.  
 
5.2 Binary Neighborhood Ensemble Probabilities 
     
5.2.1 CSI and HSS 
 
      CSI and HSS values for UH were greater than the 
values corresponding to the VVEL and REFL 
parameters. Forecasts of UH ≥ 25 m2s-2 (Fig. 4) 
provided the most skillful results as increasing the 
threshold dampened the peak in CSI and HSS. VVEL 
forecasts resulted in more favorable scores when the 
threshold was increased from 10 ms-1 to 15 ms-1; 
however, increasing the threshold further worsened 
the skill scores. For the REFL forecasts (not shown), 
skill scores improved with each increase in threshold.  
All three parameters exhibited a shift in the maximum 
skill towards higher probabilities as the ROI 
increased.  Beyond a 50-mile ROI, the values of the 
maximum HSS and CSI began to decrease.  Adding a 
smoother to each of the forecasts proved to be 
beneficial for the lowest thresholds. A 30-grid point 
smoother applied to forecasts of UH ≥ 25 m2s-2 within 
a 50- mile ROI yielded the maximum CSI and HSS 
values among all forecasts. This is indicated in CSI 
plots for UH  (Fig. 4) in which the shift and increase in 
the peak CSI value correspond to expanding ROI to 
50 miles and increasing the smoother to 30 grid 
points. The effect of adding a smoother to the 
forecasts is more evident in an upcoming example. 



HSS scores mirrored the CSI magnitude and trends 
and are not shown. 
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Fig. 4: CSI for forecasts of UH ≥ 25 m2s-2 for the five ROI 
distances with a) no smoothing, b) sigma = 10 grid 
points, and c) sigma = 30 grid points with forecast 
frequency distribution binned below the plot. 
 
5.2.2  ROC AUC  
 
      Application of a ROI > 10 miles resulted in AUC 
values that were greater than 0.7 for each parameter, 
which was not realized with the TEP forecasts.  For 
UH, this criterion was met with an ROI of 10 miles 
(Fig. 5). The ROI must be increased further, however, 
as the threshold values increase in order to reach an 

AUC ≥ 0.7.  All VVEL forecasts (not shown) reached 
the 0.7 criterion with an ROI ≥ 25 miles. REFL 
forecasts (not shown) at all thresholds resulted in 
AUC totals ≥ 0.7 at the lowest ROI distance (i.e., 10 
miles). Increasing the UH and VVEL forecast 
thresholds decreased the AUC values; however, 
increasing the REFL threshold led to an increase in 
the AUC.  Applying a smoother slightly improved the 
results for each parameter at a given threshold and 
ROI.  ROC curves for the largest AUC found in this 
study (i.e., UH ≥ 25 m2s-2) are plotted in Fig. 5, which 
indicate AUC values are improved when the threshold 
is increased out to 150 miles and sigma is increased 
to 30 grid points.  This reiterates that grid point 
predictability is low on the convective scale, and 
neighborhood approaches are needed to supply more 
operationally valuable probability forecasts. 
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Fig. 5: ROC curve for UH ≥ 25 m2s-2 at each ROI distance 
with forecasts with a) no smoothing, b) sigma = 10 grid 
points, and c) sigma = 30 grid points. AUC totals are 
indicated in the inset for the different forecasts. 



5.2.3 Bias Score 
 
      High bias scores were associated with BNEP 
forecasts for the three parameters at the varying 
thresholds and degrees of smoothing (not shown).  
Similar to the TEP forecasts, the values were > 100 at 
the lowest probabilities then decreased towards zero 
with increasing probabilities. The bias never stabilized 
at a particular value. 
      Increasing the threshold tended to decrease the 
high bias values and shift the point at which the 
scores indicated a transition from overforecasting to 
underforecasting to higher probabilities. Decreasing 
the ROI and increasing the smoother had the same 
effect as increasing the threshold. UH forecasts had 
lower bias scores compared to the other two 
variables.   
 
5.2.4 BS 
 
      The magnitude of the BS was similar for all 
probabilistic forecasts of UH and VVEL (Table 2) at 
the varying thresholds, ROI, and sigma values.  The 
low scores associated with the forecasts give the 
impression of very skillful forecasts.  It should be 
recognized, however, that the low scores are in part 
due to the very large number of correct-negative 
forecasts. The lowest BS scores (highest skill) are 
realized at the lower ROI, largely due to smaller 
forecast area.  Forecast of REFL ≥ 30 dBZ had the 
largest values (i.e., lowest skill). This can be related to 
the more frequent and widespread forecasts of this 
field with respect to severe storm occurrence 
overforecasting. 
 

Brier Score 

Updraft Helicity (m2s-2) 

sigma grid 
point 

10 
miles 

25 
miles 

50 
miles 

100 
miles 

150 
miles 

0 0.0066 0.0067 0.0094 0.0184 0.0471 0.0847 

10 0.0065 0.0062 0.0076 0.0136 0.0342 0.0618 

30 0.0066 0.0061 0.0067 0.0109 0.0288 0.0546 

Vertical Velocity (ms-1) 

sigma 
grid 
point 

10 
miles 

25 
miles 

50 
miles 

100 
miles 

150 
miles 

0 0.0066 0.0075 0.0128 0.0262 0.0623 0.1045 

10 0.0064 0.0065 0.0097 0.0190 0.0452 0.0763 

30 0.0065 0.0062 0.0082 0.0153 0.0387 0.0682 

Reflectivity (dBZ) 

sigma 
grid 
point 

10 
miles 

25 
miles 

50 
miles 

100 
miles 

150 
miles 

0 0.0158 0.0392 0.0731 0.1262 0.2285 0.3259 

10 0.0113 0.0268 0.0510 0.0900 0.1658 0.2382 

30 0.0096 0.0214 0.0413 0.0760 0.1479 0.2183 

Table 2: Brier Score for a) updraft helicity (UH), b) 
vertical velocity (VVEL), and c) reflectivity (REFL) with 
varying values of sigma (grid points). 
 

      Reliability diagrams for UH exemplify the 
propensity for the discrete variables to overforecast 
majority of the time (Fig. 8). Applying a smoother 
adjusts for this; even leading to underforecasting 
dominating at the lower probabilities.  The curves 
associated with the largest values of sigma are closer 
to the diagonal line which indicates more reliability 
and this is reflected in the BS for the varying sigma 
values.  The most reliable forecasts in terms of BS 
and reliability diagrams correspond to UH ≥ 25 m2s-2 
at a 10-mile ROI with a 30-grid point smoother. 
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Fig. 8: Reliability diagram for forecasts of UH ≥ 25 m2s-2 
at each ROI with a) no smoothing, b) sigma = 10 grid 
points, and c) sigma = 30 grid points.  Below the 
reliability diagram is a histogram of forecast frequency 
for the varying ROI. 
 



6. Discussion 
 
      Various skill scores were presented that 
quantitatively described the quality of the forecasts 
derived from the TEPs and the BNEPs.  The lower 
skill scores associated with the TEP forecasts relative 
to BNEP forecasts demonstrated the benefit of using 
a temporal and spatial neighborhood approach. This 
is especially true for UH which can be used as a 
powerful tool for isolating locations of rotating 
updrafts. UH is an infrequent and discrete variable 
that proved to be difficult to verify at the grid point.   
When using a neighborhood approach, values of CSI, 
HSS, BS and AUC indicated UH at the lowest 
threshold (25 m2s-2) was the most effective in 
identifying potential regions of severe convective 
weather.   These scores further indicated that 
applying a smoother yielded more skillful forecasts of 
UH. For this variable, AUC values were the greatest 
for an ROI of 150 miles while the BS indicated that 
forecasts within a 10 mile ROI were the most reliable. 
The reliability diagrams showed that increasing the 
ROI out to 150 miles led to overforecasting.  Given 
these results, it appears appropriate to opt for an ROI 
in between 10 and 150 miles (i.e., 50 miles). This is 
substantiated by the CSI and HSS results for this 
parameter which showed a peak in skill scores at the 
50 mile ROI.  In summary, the results suggest 
forecasts of UH ≥ 25 m2s-2 subject to a 30-grid point 
smoother at an ROI of 50 miles have more skill in 
predicting severe weather events.  
           
7. Case Study 
 
      On 2 May 2008, the Storm Prediction Center 
issued a convective outlook that included a “Moderate 
Risk” area valid during the afternoon and evening 
hours for the likelihood of severe convection 
developing ahead of a surface cold front.  The region 
with the greatest potential for significant severe 
weather included northeastern Louisiana, 
southeastern Arkansas and northern Mississippi (Fig. 
9.), where a “hatched region” was included in the 
tornado outlook indicating the >10% potential for EF2-
EF5 tornadoes within 25 miles of a point (Fig. 9b).   
      TEP and BNEP forecasts of UH ≥ 25 m2s-2 with a 
ROI of 50 miles (i.e., the most skillful combination 

found in this study) are compared for this event to 
highlight the potential benefits of the neighborhood 
approach.  Figure 10 displays TEP without smoothing 
for 23 UTC on 02 May 2008 through 02 UTC on 03 
May 2008.  Storm reports that occur during each 
corresponding hour are overlaid with the model data.  
As expected, the TEPs are characterized by lower 
probabilities of generally <30%. This reflects the 
inherent lower predictability of convective features, as 
evidenced by the relative lack of agreement among all 
members of the ensemble at the grid point when 
forecasting discrete variables (e.g., UH).  The highest 
of these probabilities match up with the location of the 
outlined moderate risk region and associated threats 
for significant tornadoes and higher probabilities of 
wind and hail. Additionally, probability maxima show 
some agreement with the location of severe events.  
However, the relatively low probabilities associated 
with TEPs of UH do not provide convincing visual 
representation of a high-impact event. 
      Applying a neighborhood approach results in 
higher probabilities for this event (Fig. 11, left panel) 
compared to the TEPs, which provides more 
confidence to the forecaster that severe weather is 
likely to occur. Comparing the forecasts for the 
different smoothing values (Fig. 11), BNEPs with the 
lowest value of sigma have the highest probabilities 
(even 100% in some areas). These probability 
maxima correspond reasonably well with observed 
events. As the smoothing is increased to sigma of 30 
grid points (Fig. 11, right panel), there is some 
evidence of higher skill and less displacement error 
owing to the removal of the spurious regions of lower 
probabilities.  This is represented quantitatively in the 
previous sections.   
      Details in the forecasts afforded by a storm-scale 
model can be lost, however, when smoothing is 
applied to the probabilities.  Additionally, smoothing 
the probabilities can remove regions where only one 
or two members are indicating the potential for a 
severe event. This can degrade a forecast of isolated 
events and suggest that perhaps displays of 
smoothed and non-smoothed output fields may both 
have benefits to forecasters.  

 



SPC Day 1 Convective Outlook/Valid 20 UTC 02 May 2008 – 12 UTC 03 May 2008
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    Fig. 9:  (a) SPC Day 1 Convective Outlook, (b) probabilistic tornado outlook, (c), probabilistic wind   
    outlook, and (d) probabilistic hail outlook. 
 



  

 
Fig. 10: Hourly SSEF TEP forecasts of UH ≥ 25 m2s-2 valid 23 UTC 02 May 2008 through  02 UTC 03 May 2008 
with no smoother. Triangles represent tornado (black), hail (green), and wind (blue) reports. 
 



 
Fig. 11: Hourly SSEF BNEP forecasts of UH ≥ 25 m2s-2 BNEP valid 23 UTC 02 May 2008 (first row) through 02 
UTC 03 May 2008 (bottom row) with sigma = 0 (left panel), sigma = 10 grid points (center panel), and sigma = 
30 grid points (right panel).  Triangles represent tornado (black), hail (green), and wind (blue) reports. 
 
8. Conclusions and Future Work 
 
      This study analyzed probabilistic forecasts of 
diagnostic variables derived from a storm-scale 
ensemble forecast system. Two methods of extracting 
probabilities were presented and the skill of each at 
predicting convective weather events was discussed.  
The verification scores demonstrated the quality of 
the forecast was improved when a neighborhood 
approach was applied to the probability extraction 
methodology.  Scores were maximized at the lower 
thresholds for lower probabilities and the peak shifted 

toward higher probabilities with increase in ROI.  
Quantitatively, the scores indicated that applying a 
smoother improved the forecasts.  However, the 
smoothed UH plots for the case study illustrate that 
probabilities are reduced and some details are lost in 
the forecast, which may inhibit a forecaster’s 
confidence in isolating regions of severe convective 
weather. 
      Future work will explore the statistical significance 
in the differences among the scores associated with 
the varying variables, thresholds, ROI, and sigma 
values.  Additionally, another method for extracting 



probabilities based on a fractional neighborhood 
approach will be studied and the findings will be 
compared to the results presented here.  
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