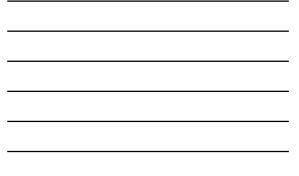
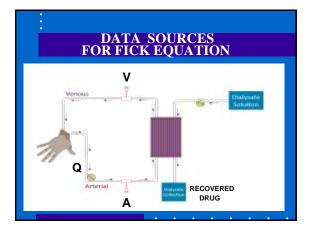

PHARMACOKINETICS IN PATIENTS REQUIRING RENAL REPLACEMENT Rx


PART 1: PK IN PATIENTS REQUIRING HEMODIALYSIS

Arthur J. Atkinson, Jr., M.D. Adjunct Professor Department of Molecular Pharmacology and Biochemistry Feinberg School of Medicine Northwestern University

	CRIPTION OF SIS IN ANIMALS
ON THE REMOVAL OF DI FROM THE CIRCULATE ANIMALS BY	NG BLOOD OF LIVING
JORN J. ADEL, LEONARD G. IC From the Pharmacological Laborator	
thereised for publication	e, Danuket 16, 1911
CONTI	erre .
L. Introductory L. The apportance "types and methods TH. The apportance "types and methods The "types of the compressions". Y. Replayarisms of the host heatman Y. Replayarisms of the same structure data set. Same structure data are nonsitivative of the same structure set.	derestmental to life




ELIMINATION BY DIFFERENT ROUTES

MEASUREMENTS	RENAL	HEPATIC	DIALYSIS
DI COD EL OW			

BLOOD FLOW	+*	+*	
AFFERENT CONC.			
EFFERENT CONC.	0	0	
ELIMINATED DRUG		0	

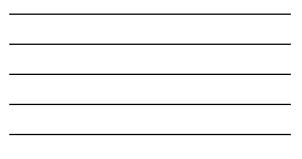
*not actually measured in routine PK studies

$$\mathbf{IMPACT OF CL}_{\mathbf{D}}$$
$$\mathbf{CL}_{\mathbf{E}} = \mathbf{CL}_{\mathbf{R}} + \mathbf{CL}_{\mathbf{NR}} + \mathbf{CL}_{\mathbf{D}}$$

CRITERION FOR DIALYSIS EFFICACY*

 $CL_{EC} > 30\% [CL_{R} + CL_{NR}]$

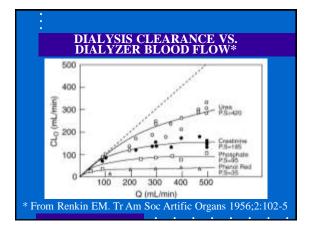
BUT CLEARANCE ESTIMATES MUST BE COMPARABLE


* Levy G. Am J Med 1977;62:461-5.

GOALS OF DIALYSIS DISCUSSION

DISCUSSION OF DIALYSIS CLEARANCE MECHANISTIC - RENKIN APPROACH EMPIRICAL RECOVERY CLEARANCE FICK EQUATION

CLINICAL STUDIES OF DIALYSIS PK MODEL PROSPECTIVE STUDY TREATMENT OF DRUG TOXICITY


RENKIN DIALYSIS EQUATION*

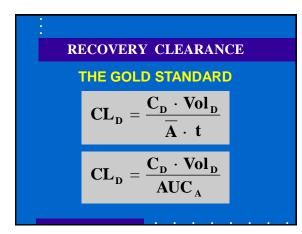
$$CL_{D} = Q(1 - e^{-P \cdot S/Q})$$
Q = DIALYZER BLOOD FLOW
P-S = PERMEABILITY-SURFACE AREA
PRODUCT OF DIALYZING MEMBRANE
NEGLECTS: BOUNDARY EFFECTS, ULTRAFILTRATION
* From Renkin EM. Tr Am Soc Artific Organs 1956;2:102-5

DETERMINANTS OF PERMEABILITY TERM (P or P · S)

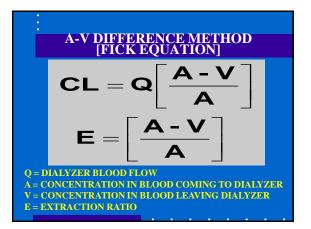
- DIALYZER MEMBRANE CHARACTERISTICS
 - MEMBRANE SURFACE AREA
 - MEMBRANE THICKNESS
 - MEMBRANE POROSITY
- DRUG BINDING TO PLASMA PROTEINS
- SOLUTE SIZE AND DIFFUSIVITY

DIALYZER PERMEABILITY VS. FREE WATER DIFFUSION COEFFICIENTS			
PROCAINAMIDE/NAPA:			
· · · · · · · · · · · · · · · · · · ·			
RATIO OF DIALYZER			
PERMEABILITY COEFFICIENTS*	1.28 ± 0.23		
RATIO OF FREE WATER			
DIFFUSION COEFFICIENTS	1.23		
* From Gibson TP et al. Clin Pharmacol Ther	1976;20:720-6.		

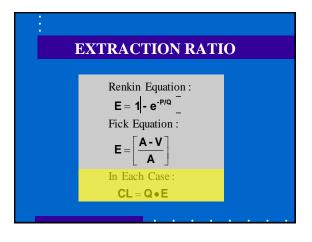
POSSIBLE USE FOR INTRA-DIALYZER TRANSFER OF RESULTS


- PERFORM PRELIMINARY *IN VITRO* STUDY TO OBTAIN P RATIO FOR DRUG & STANDARD COMPOUND FOR DIALYZER BEING USED IN DIALYSIS STUDY (RECORD Q & RBC/PLASMA).
- THIS RATIO CAN BE USED TO ESTIMATE DRUG CL_D FOR OTHER DIALYZERS AND OTHER Q VALUES IF P OF STANDARD COMPOUND FOR THAT DIALYZER IS KNOWN.
- NEED TO SELECT APPROPRIATE STANDARD COMPOUND (? CREATININE).

GOALS OF DIALYSIS DISCUSSION


DISCUSSION OF DIALYSIS CLEARANCE MECHANISTIC - RENKIN APPROACH EMPIRICAL RECOVERY CLEARANCE

FICK EQUATION


CLINICAL STUDIES OF DIALYSIS PK MODEL PROSPECTIVE STUDY TREATMENT OF DRUG TOXICITY



TWO DIALYSIS MYTHS

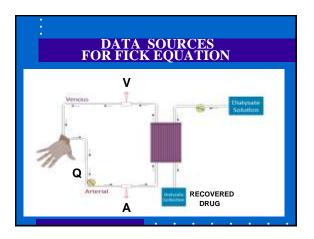
- NEED TO USE BLOOD CONCENTRATIONS WHEN CALCULATING BLOOD CLEARANCE BUT PLASMA CONCENTRATIONS PROPORTIONAL TO BLOOD CONCENTRATIONS, SO MAKES NO DIFFERENCE IN A/[A + V] RATIO
- NEED TO USE PLASMA FLOW WHEN CALCULATING PLASMA CLEARANCE

PLASMA VS. BLOOD CLEARANCERECOVERY :
$$CL_p = \frac{U \bullet V}{P}$$
 $CL_p = \frac{U \bullet V}{P}$ $CL_p = Q_{pK} \left(\frac{A - V}{A} \right)$ CL_p = Q_{pK} $\left(\frac{A - V}{A} \right)$ CL_p = Q_{pK} $\left(\frac{A - V}{A} \right)$ IF B > P : $CL_p > CL_g$, SO : $Q_{pK} > Q_g > Q_p$

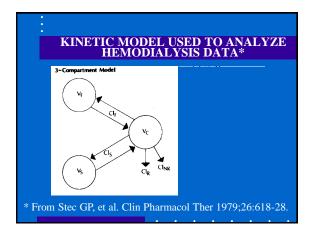
:	NAPA IN RBC	IS DIALYZED
FL	OW PARAMETER	MEAN VALUE mL/min
	Qpk	223
	Q _{MEAS}	195 (p < 0.2)
	Q _{EFF} *	217 (p > 0.2)

 $CL_{D} = Q_{d} \frac{C_{d}}{C_{p}}$ RECOVERY CLEARANCE :

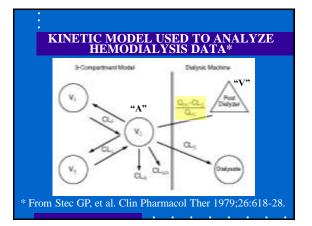
$$CL_{p} = \frac{UV}{P\tau} = \frac{C_{d}V_{d}}{C_{p}\tau}$$

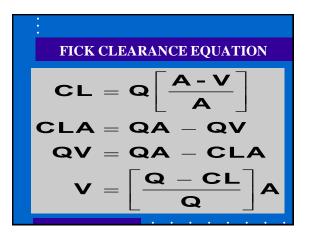

BUT :

 $Q_{d} = \frac{V_{d}}{\tau}$ so expressions are equivalent

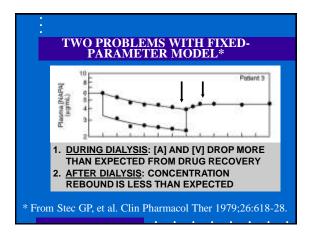

GOALS OF DIALYSIS DISCUSSION

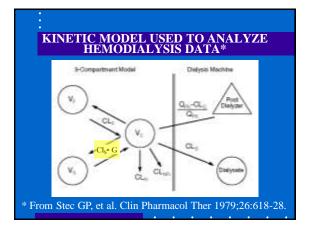
DISCUSSION OF DIALYSIS CLEARANCE MECHANISTIC - RENKIN APPROACH EMPIRICAL RECOVERY CLEARANCE FICK EQUATION

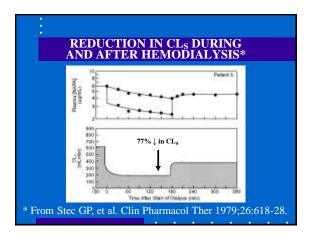

CLINICAL STUDIES OF DIALYSIS PK MODEL PROSPECTIVE STUDY TREATMENT OF DRUG TOXICITY











CONDUCT OF PK STUDIES IN HEMODIALYSIS PATIENTS

Chapter 6 – Principles of Clinical Pharmacology

Atkinson AJ Jr, Umans JG: Pharmacokinetic Studies in Hemodialysis Patients. Clin Pharmacol Ther 2009;86:548-52.

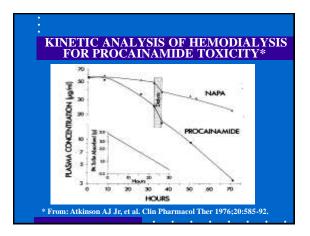
CDER, FDA: Draft Guidance for Industry – Pharmacokinetics in Patients with Impaired Renal Function – Study Design, Data Analysis, and Impact on Dosing and Labeling. http://www.fda.gov downloads/Drugs/GuidanceComplianceRegulatory Information/Guidances/UCM204959.pdf

GOALS OF DIALYSIS DISCUSSION

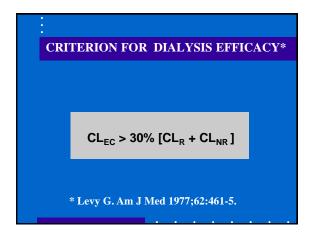
DISCUSSION OF DIALYSIS CLEARANCE MECHANISTIC - RENKIN APPROACH EMPIRICAL RECOVERY CLEARANCE FICK EQUATION

CLINICAL STUDIES OF DIALYSIS PK MODEL PROSPECTIVE STUDY TREATMENT OF DRUG TOXICITY

CASE HISTORY


A 67 year-old woman became lethargic and confused and developed hypotension, renal insufficiency, junctional tachycardia and intraventricular conduction delay after ingesting an estimated 7gm of procainamide (PA). Plasma PA and NAPA concentrations were 57 μ g/mL and 55 μ g/mL, respectively.

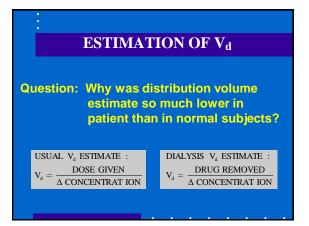
CASE HISTORY (cont.)

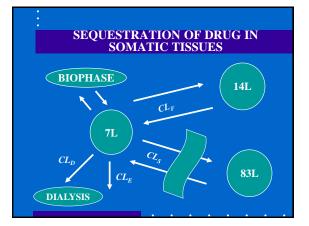

Hemodialysis was performed for 4 hr. By the end of the second hour BP was maintained in the range of 110/80 mm Hg without vasopressor therapy. At the end of dialysis, the patient was alert and oriented although only 340 mg of PA and 470 mg of NAPA had been removed by this procedure.

DIALYSIS CASE HISTORY (cont.)

Fifteen hours after dialysis, PA and NAPA levels were 9.2 μ g/mL and 33 μ g/mL, respectively. The patient had returned to normal sinus rhythm with QRS = 0.12 sec.


WAS DIALYSIS EFFICACIOUS?


- DIALYSIS INCREASED DRUG CLEARANCE
 PA TWO FOLD
 NAPA 3.8 FOLD
- BUT 4 hr OF DIALYSIS REMOVED < 1 gm of 7 gm DOSE
 340 mg PA
 470 mg NAPA
- HOWEVER, BLOOD LEVELS FELL SUBSTANTIALLY
 PA: 25.7 μg/mL → 15.5 μg/mL
 NAPA: 47.0 μg/mL → 35.5 μg/mL


 AND PATIENT'S CONDITION STABILIZED

13

PA & NAPA K	INETI	CS IN T	OXIC F	ATIEN
	NORMAL		PATIENT	
	PA	NAPA	PA	NAPA
t _{1/2} (hr)	2.5	6.2	10.5	35.9
CL _E (mL/min)	590	233	66.8	16.1
CL _D (mL/min)			68.3	45.8
V _{dβ} (L/kg)	1.80	1.76	0.76	0.63

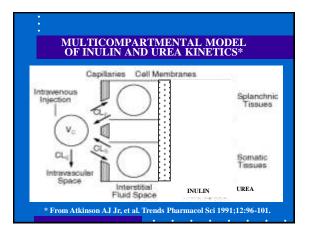
EFFICACY OF EXTRACORPOREAL TREATMENT OF DRUG TOXICITY

- TOTAL EXTENT OF DRUG REMOVAL MAY BE COMPROMIZED BY \downarrow $\mathsf{CL}_s.$
- ↓ CL_S FROM SOMATIC TISSUES CAN ACCELERATE ↓ IN DRUG CONCENTRATION TO WHICH VITAL ORGANS (CNS, HEART) ARE EXPOSED AND RESULT IN A BENEFICIAL CLINICAL RESPONSE > EXTENT OF DRUG REMOVAL.
- ↓ CL_s FROM SOMATIC TISSUES ALSO ATTENUATES POST-DIALYSIS REBOUND.

GOALS OF DIALYSIS DISCUSSION

DISCUSSION OF DIALYSIS CLEARANCE MECHANISTIC - RENKIN APPROACH EMPIRICAL RECOVERY CLEARANCE FICK EQUATION

CLINICAL STUDIES OF DIALYSIS PK MODEL PROSPECTIVE STUDY TREATMENT OF DRUG TOXICITY

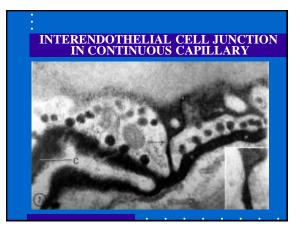

PHYSIOLOGIC CHANGES DURING DIALYSIS USE OF KINETIC METHODS FOR ANALYSIS PATHOPHYSIOLOGIC CONSEQUENCES

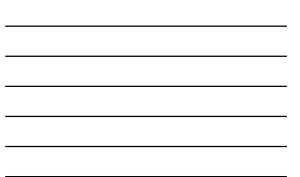
WHY DOES CL_S ↓ DURING DIALYSIS ?

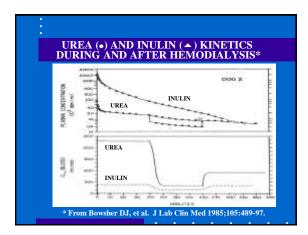
$$CL = Q(1 - e^{-P \cdot S/Q})$$

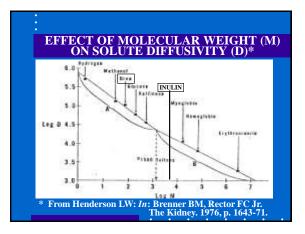
POSSIBILITIES:

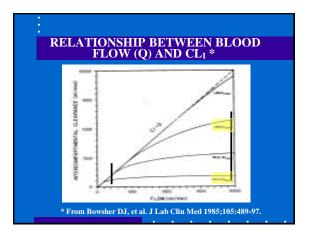
CAPILLARY BLOOD FLOW (Q) DECREASES CAPILLARY P S PRODUCT DECREASES BOTH DECREASE



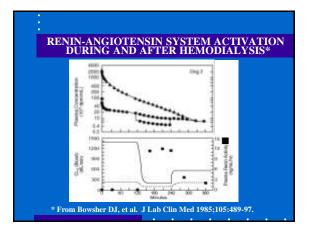

BASIS FOR KINETIC HETEROGENETIY OF INTERSTITIAL FLUID SPACE

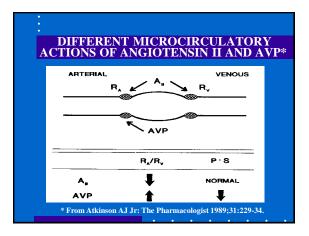

EFFECTIVE PORE SIZE	CAPILLARY STRUCTURE	PRIMARY LOCATION
LARGE	FENESTRATED	SPLANCHNIC BED
SMALL	CONTINUOUS	SOMATIC TISSUES





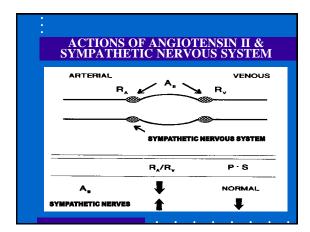




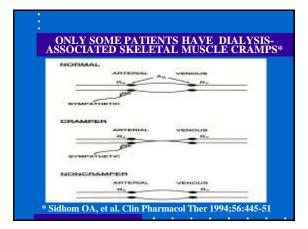


UREA AND INULIN KINETICS DURING AND AFTER HEMODIALYSIS			
PARAMETER	BEFORE	DURING	AFTER
BLOOD FLOW			
Q _S (mL/min)	1991	199	405
$Q_F\left(mL/min ight)$	2332	2591*	2965*
C.O. (mL/min)	4399	2790	3370
PS			
INULIN (mL/min)	186	169	238
UREA (mL/min)	1649	1541	2164
* ESTIMATED AS C.	0 Q _s	• •	

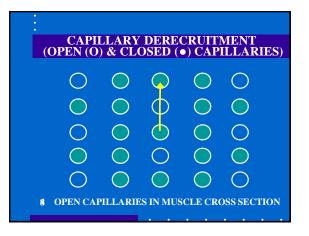
	_
	_
	_


GOALS OF DIALYSIS DISCUSSION

DISCUSSION OF DIALYSIS CLEARANCE MECHANISTIC - RENKIN APPROACH EMPIRICAL RECOVERY CLEARANCE FICK EQUATION


CLINICAL STUDIES OF DIALYSIS PK MODEL PROSPECTIVE STUDY TREATMENT OF DRUG TOXICITY

HEMODIALYSIS-ASSOCATED SKELETAL MUSCLE CRAMPS


- COMPLICATE MORE THAN 20% OF HEMODIALYSIS SESSIONS
- PATHOGENESIS UNCLEAR
- SYMPTOMATIC THERAPY: NaCl, MANNITOL
- PREVENTIVE THERAPY: NaCI INFUSION
- OCCUR MORE FREQUENTLY IN SOME PATIENTS THAN OTHERS

PATHOGENESIS OF DIALYSIS-ASSOCIATED SKELETAL MUSCLE CRAMPS

HEMODIALYSIS X -- NaCl. MANNITOL PLASMA VOLUME CONTRACTION ACCINHIBITOR -- +X -- PRAZOSIN MODULATED SYMPATHETIC ACTIVATION PERIPHERAL VASOCONSTRICTION DERECRUITMENT OF MUSCLE CAPILLARIES IMPAIRED MUSCLE OXYGENATION SKELETAL MUSCLE CRAMPS

CONCLUDING THOUGHT

ALTHOUGH NON-COMPARTMENTAL ANALYSIS OF PK DATA IS CURRENTLY IN VOGUE, IT IS UNABLE TO PROVIDE INSIGHT INTO SOME IMPORTANT PHENOMENA:

- IMPACT OF DIALYSIS-ASSOCIATED
- HEMODYNAMIC CHANGES (↓ CL_s)
- IMPACT OF \downarrow SPLANCHNIC BLOOD FLOW
 - (CL_F) ON BIOAVAILABILITY