Continuous Renal Replacement Therapy

Gregory M. Susla, Pharm.D., F.C.C.M. Associate Director, Medical Information MedImmune, LLC Gaithersburg, MD

Definition of Terms

- SCUF Slow Continuous Ultrafiltration
- CAVH Continuous Arteriovenous Hemofiltration
- CAVH-D Continuous Arteriovenous Hemofiltration with Dialysis
- CVVH Continuous Venovenous Hemofiltration
- CVVH-D Continuous Venovenous Hemofiltration with Dialysis
- SLED Sustained Low-Efficiency Dialysis

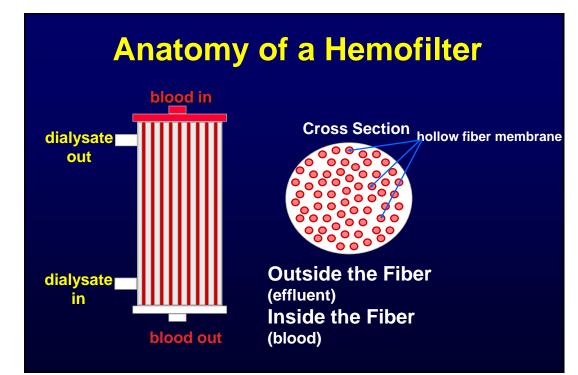
Indications for Renal Replacement Therapy

- Remove excess fluid because of fluid overload
- Clinical need to administer fluid to someone who is oliguric
 - Nutrition solution
 - Antibiotics
 - Vasoactive substances
 - Blood products
 - Other parenteral medications

Advantages of Continuous Renal Replacement Therapy

- Hemodynamic stability
 - Avoid hypotension complicating hemodialysis
 - Avoid swings in intravascular volume
- Easy to regulate fluid volume
 - Volume removal is continuous
 - Adjust fluid removal rate on an hourly basis
- Customize replacement solutions
- Lack of need of specialized support staff

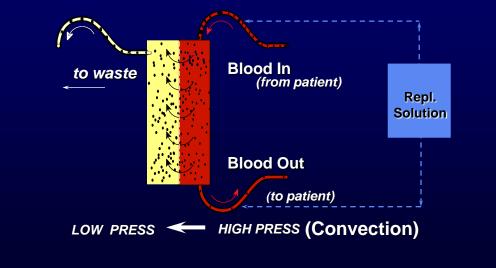
Advantages of SLED


- Hemodynamic stability
 - Avoid hypotension complicating hemodialysis
 - Avoid swings in intravascular volume
- High solute clearance
- Flexible scheduling
- Lack of need for expensive CRRT machines
- Lack of need for custom replacement solutions
- Lack of need of specialized support staff

Disadvantages of Continuous Renal Replacement Therapy

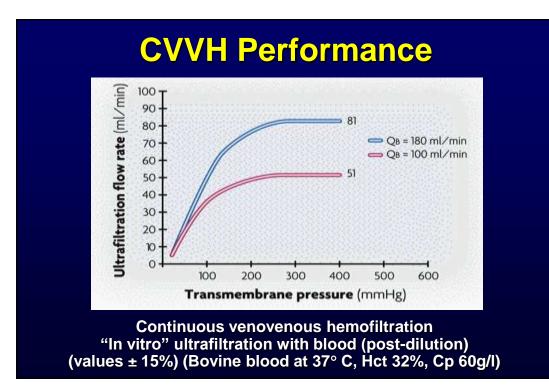
- Lack of rapid fluid and solute removal
 - GFR equivalent of 5 20 ml/min
 - Limited role in overdose setting
 - SLED Developing role
- Filter clotting
 - Take down the entire system

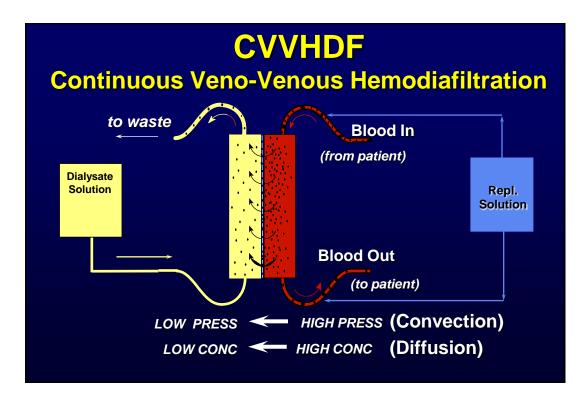
Basic Principles


- Blood passes down one side of a highly permeable membrane
- Water and solute pass across the membrane
 - Solutes up to 20,000 daltons
 - Drugs & electrolytes
- Infuse replacement solution with physiologic concentrations of electrolytes

Basic Principles

- Hemofiltration
 - Convection based on a pressure gradient
 - 'Transmembrane pressure gradient'
 - Difference between plasma oncotic pressure and hydrostatic pressure
- Dialysis
 - Diffusion based on a concentration gradient





CVVH

Continuous VV Hemofiltration

- Primary therapeutic goal:
 - Convective solute removal
 - Management of intravascular volume
- Blood Flow rate = 10 180 ml/min
- UF rate ranges 6 50 L/24 h (> 500 ml/h)
- Requires replacement solution to drive convection
- No dialysate

CVVHDF

Continuous VV Hemodiafiltration

- Primary therapeutic goal:
 - Solute removal by diffusion and convection
 - Management of intravascular volume
- Blood Flow rate = 10 180ml/min
- Combines CVVH and CVVHD therapies
- UF rate ranges 12 24 L/24h (> 500 ml/h)
- Dialysate Flow rate = 15 45 ml/min (~1 3 L/h)
- Uses both dialysate (1 L/h) and replacement fluid (500 ml/h)

SLED

Sustained Low-Efficiency Dialysis

- Primary therapeutic goal:
 - Solute removal by diffusion
 - Management of intravascular volume
- Blood Flow rate = 100-300 ml/min
- Dialysate Flow rate = 100-300 ml/min

Pharmacokinetics of Continuous Renal Replacement Therapy

Basic Principles

 Extracorporeal clearance (Cl_{EC}) is usually considered clinically significant only if its contribution to total body clearance exceeds 25 - 30%

 $Fr_{EC} = CI_{EC} / CI_{EC} + CI_{R} + CI_{NR}$

- Not relevant for drugs with high non-renal clearance
- Only drug not bound to plasma proteins can be removed by extracorporeal procedures

Determinants of Drug Removal by CRRT

• Drug

Membrane

Renal replacement
technique

Same as hemodialysis but increased MW range

Permeability, Size Sieving Coefficient

Convection <u>+</u> diffusion Cl Flow rates Blood, Dialysate, UF Duration

Sieving Coefficient (S)

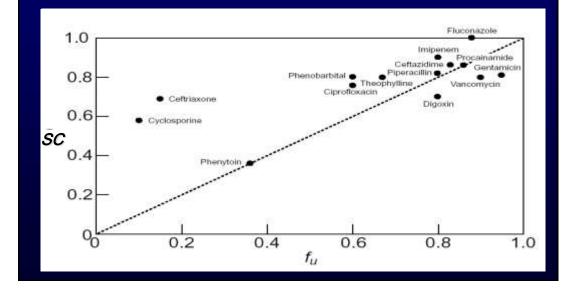
 The capacity of a drug to pass through the hemofilter membrane

$S = C_{uf} / C_{p}$

C_{uf} = drug concentration in the ultrafiltrate

 C_p = drug concentration in the plasma

S = 1 Solute freely passes through the filter


S = 0 Solute does not pass through the filter

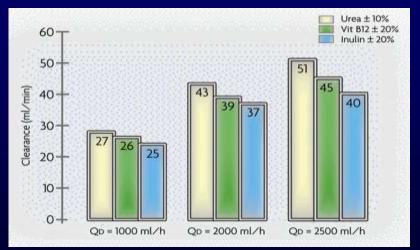
$CL_{HF} = Q_f \times S$

Determinants of Sieving Coefficient

- Protein binding
 - Only unbound drug passes through the filter
 - Protein binding changes in critical illness
- Drug membrane interactions
 - Not clinically relevant
- Adsorption of proteins and blood products onto filter
 - Related to filter age
 - Decreased efficiency of filter

Relationship Between Free Fraction (*fu*) and Sieving Coefficient (*SC*)

Dialysate Saturation (S_d)


- Countercurrent dialysate flow (10 30 ml/min) is always less than blood flow (100 - 200 ml/min)
- Allows complete equilibrium between blood serum and dialysate
- Dialysate leaving filter will be 100% saturated with easily diffusible solutes
- Diffusive clearance will equal dialysate flow

Dialysate Saturation (S_d)

$S_d = C_d / C_p$

C_d = drug concentration in the dialysate C_p = drug concentration in the plasma • Decreasing dialysate saturation – Increasing molecular weight • Decreases speed of diffusion – Increasing dialysate flow rate • Decreases time available for diffusion $Cl_{HD} = Q_d \times S_d$

CVVHDF Clearance

Continuous venovenous hemofiltration - post dilution QB = 150 ml/min - QD = 2000 ml/h (in vitro saline)

Extracorporeal Clearance

 Hemofiltration clearance (Cl_{HF} = Q_f x S) Q_f = Ultrafiltration rate S = Seiving coefficient
 Hemodialysis clearance (Cl_{HD} = Q_d x S_d)

Q_d = Dialysate flow rate

S_d = Dialysate saturation

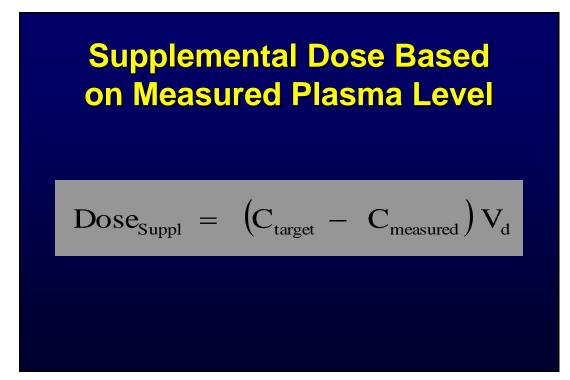
Hemodialfiltration clearance

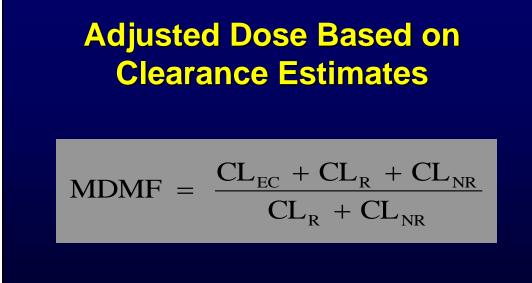
 $CI_{HDF} = (Q_f \times S) + (Q_d \times S_d)$

Case History

- AP 36yo HM s/p BMT for aplastic anemia
- Admitted to ICU for management of acute renal failure
- CVVH-D initiated for management of uremia
- ICU course complicated by pulmonary failure failure requiring mechanical ventilation, liver failure secondary to GVHD and VOD, and sepsis

Case History Antibiotic Management on CRRT


- Gentamicin 180 mg IV q24h
- Vancomycin 1 g IV q24h
- Dialysis rate 1000 ml/hour
 - 12 hour post gentamicin levels: 3 4 mg/L
 - 12 hour post vancomycin levels: 20 23 mg/L
- Dialysis rate increased to 1200 ml/hour
 - 12 hour post gentamicin levels: < 0.4 mg/L
 - 12 hour post vancomycin levels: < 4 mg/L</p>


Dosage Adjustments in CRRT/SLED

- Will the drug be removed?
 - Pharmacokinetic parameters
 - Protein binding < 70 80%
 - Normal values may not apply to critically ill patients
 - Volume of distribution < 1 L/kg
 - Renal clearance > 35%
- How often do I dose the drug?
 - Hemofiltration: 'GFR' 10 20 ml/min
 - Hemofiltration with dialysis: 'GFR' 20 50 ml/min
 - SLED: 'GFR" 10 50 ml/min

Dosage Adjustments in CRRT/SLED

- Loading doses
 - Do not need to be adjusted
 - Loading dose depends solely on volume of distribution
- Maintenance doses
 - Standard reference tables
 - Base on measured loses or blood levels
 - Calculate maintenance dose multiplication factor (MDMF)

COMPARISON OF DRUG REMOVAL BY INTERMITTENT HD AND CRRT

DRUG	$CL_R + CL_{NR}$	MDMF		
	(mL/min)	INTERMITTENT HEMODIALYSIS	CONTINUOUS RENAL REPLACEMENT	
CEFTAZIDIME	11.2	1.6	2.2	
CEFTRIAZONE	7.0	1.0	3.4	
CIPROFLOXACIN	188	1.0	2.4	
THEOPHYLLINE	57.4	1.1	1.4	
VANCOMYCIN	6	3.9	4.9	

COMPARISON OF DRUG REMOVAL BY SLED AND CRRT

DRUG	$CL_R + CL_{NR}$	$L_R + CL_{NR}$ MDMF	
	(mL/min)	SLED	CONTINUOUS RENAL REPLACEMENT
LINEZOLID	76	1.1	1.4
LEVOFLOXACIN	37	1.4	1.6
MEROPENEM	21	1.6	1.8
VANCOMYCIN	6	2.9	4.8