

BIOCHEMICAL MECHANISMS OF DRUG TOXICITIES

Lance R. Pohl, Pharm.D., Ph.D. Chief, Section of Molecular and Cellular Toxicology Laboratory of Molecular Immunology pohll@nih.gov 12/18/2008

TYPES OF ADRs

Hepatic Cardiac Skin Renal Pulmonary Neurological Lupus Anaphylaxis Hemolytic anemia Granulocytopenia Thrombocytopenia Aplastic anemia Vasculitis

SEVERITY OF ADRs

Minor

- Severe (SADRs)
 - 6.2-6.7% hospitalized patients in USA
 - over 2 million hospitalized patients
 - similar findings in Europe and Australia
 - tens of billions of dollars cost burden

Wilke, et al., Nature Review-Drug Discovery, 904, 2007

LEADING CAUSES OF DEATH IN USA IN
1994

Heart disease	743,460
Cancer	529,904
Stroke	150,108
SADRs	106,000
Pulmonary disease	101,077
Accidents	90,523
Pneumonia	75,719
Diabetes	53,894
Lazarou et al., JAMA, 279, 1208 (1998)	

DRUG WITHDRAWN I	N USA
------------------	-------

- Azaribine, psoriasis, blood clots, 1976 •
- Ticrynafen, blood pressure, liver injury, 1980 Benoxaprofen, NSAID, liver toxicity, 1982
- Zomepirac, NSAID, anaphylaxis, 1983
- Nomifensine, anti-depressant, hemolytic anemia, 1986
- Suprofen, NSAID, kidney failure, 1987
- Temafloxacin, antibiotic, kidney failure, 1992 Fenfluramine, appetite suppression, heart valve disease, 1997
- Terfenadine, anti-histamine, fatal arrhy-thmia, 1998 .
- Bromfenac, NSAID, liver injury, 1998
- Mibefradil, blood pressure, muscle damage and fatal arrhythmia, 1998 .

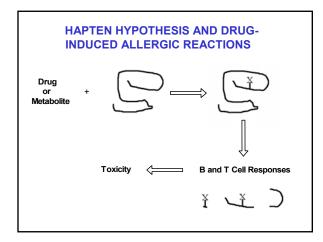
DRUG WITHDRAWN IN USA

- Grepafloxacin, antibiotic, fatal arrhythmia, 1999 •
- Astemizole, antihistamine, fatal arrhythmia, 1999 Cisapride, heartburn, fatal arrhythmia, 2000
- Troglitazone, diabetes, liver toxicity, 2000
- Cerivastatin, cholesterol reduction, muscle damage leading to kidney failure, 2001
- Etretinate, psoriasis, birth defects, 1999
- Levomethadyl, opiate dependence, fatal arrhythmia, 2008
- Rofecoxib, NSAID, heart
- attack, stroke, 2004 Valdecoxib, NSAID, skin disease, 2005
- Pemoline, ADHD, liver toxicity, 2005

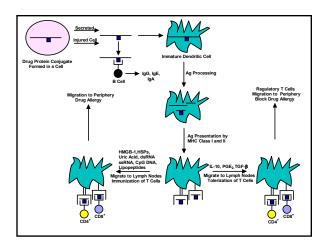
TYPE A ADRs

- 80% of ADRs
- Relatively frequent and often predictable
- Excessive or diminished pharmacologic effects
- Drug-drug interactions and polymorphisms
- Mild to severe ADRs
- Often uncovered preclinically

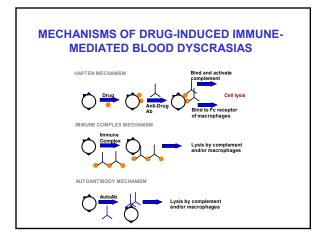
Endres, et al., European Journal of Pharmaceutical Sciences, 27, 501 (2006)


EXAMPLES OF TYPE A ADRS

- Drowsiness from antihistamines
- Hypotension from antihypertensive therapy
- Excess bleeding from warfarin
- Prolonged neuromuscular blockade by serum choline esterase deficiency
- Acetaminophen


TYPE B ADRs

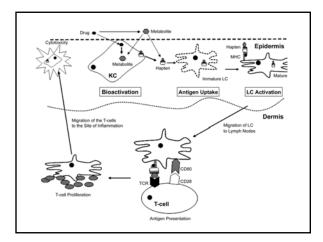
- 20% of ADRs
- Rare, unpredictable, and highly host-dependent
- Mild to severe ADRs
- Rarely uncovered preclinically in animals or in clinical trials
- Mechanisms often unknown but may be due to:


Allergic Reactions Rare Polymorphisms Imbalance in Cellular Homeostasis

CUTANEOUS DRUG REACTIONS

- 95% are self-limiting rashes
- SJS and TEN can be life-threatening with blisters, skin detachment, and mucosa involvement
- Most appear to be immune-mediated by drug-specific IgE antibodies while many others by CD4⁺ and CD8⁺ T cells

Roychowdhury and Svensson, AAPS J., 7, E 434 (2005)


MACULO-PAPULAR EXANTHEM AND TOXIC EPIDERMAL NECROLYSIS

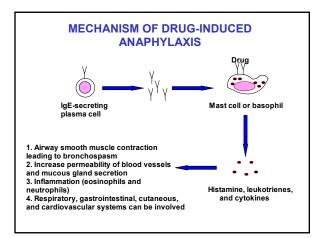
T CELL REACTIVITY TO DRUGS CAUSING CUTANEOUS ADRS

- Lidocaine
- Sulfonamides
- β-Lactam antibiotics
- Phenytoin
- Carbamazepine
- Lebrec et al., Cell Biology and Toxicology, 15, 57 (1999); Naisbitt, et al., Expert Opin. Drug Saf., 6, 109 (2007); Posadas and Pichler, Clin. Experimental Allergy, 37, 989 (2007)

HLA-B*1502 ASSOCIATED WITH CBZ-INDUCED SJS/TEN

- Seen in south-east Asians but not in Caucasians
- 98.3% (59/60) CBZ-SJS/TEN positive
- 4.2% (6/144) CBZ-tolerant positive
- High sensitivity/specificity of this test can be used to screen patients receiving CBZ

Chung, et al., Curr. Opin. Allergy Clin. Immunol., 7, 317 (2007)


IgE-MEDIATED ANAPHYLACTIC DRUG REACTIONS

Alcuronium Cephalosporins

Penicillins Protamine Streptokinase Sulfamethoxazole Suxamethonium Thiopentone Trimethoprine

Tubocurarine

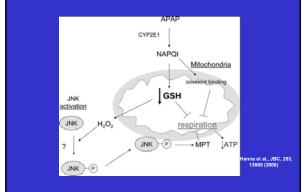
Park et al., Chem. Res. Toxicol., 11, 969 (1998);Thong and Chan, Ann. Allergy Asthma Immunol., 92, 619 (2004)

DRUG-INDUCED LIVER DISEASE IS A MAJOR HEALTH PROBLEM

It is a major cause of acute liver failure and a major safety reason for:

- Stopping preclinical development of drugs
- Terminating clinical trials of drugs
- Withdrawing drugs postmarketing

F. Ballet, J. Hepatol., 26 (Suppl. 2), 26 (1997)


DRUGS WITHDRAWN / NOT APPROVED DUE TO LIVER DISEASE

Iproniazid	1956
Ibufenac (Europe)	1975
Ticrynafen	1980
Benoxaprofen	1982
Perhexilene (France)	1985
Dilevalol (Portugal and Ireland)	1990
Bromfenac	1998
Troglitazone	2000
Nefazodone (Serzone)	2003
Ximelagatran (Exanta)	2004

MITOCHONDRIAL DAMAGE IN AILI

DRUGS CAUSING DILI ASSOCIATED WITH MITOCHONDRIAL INJURY

•

.

.

- Troglitazone
- Diclofenac
- Nimesulide .
- Mefenamic acid .
- Tolcapone
- Valproic acid
- Leflunomide
- Amiodarone
- Trovafloxacin
- Sulindac • Lamivudine

Simvastatin

Isoniazid

Dantrolene

Perhexiline

- Stavudine .
- Fialuridine .
- U.A Boelsterli and P.L.K. Lim., Toxicol. Appl. Pharmacol., 220, 92 (2007)

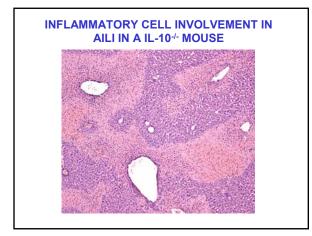
FIALURIDINE-INDUCED MITOCHONDRIAL INJURY IN PATIENTS

- FIAU is a uridine analog developed for hepatitis B treatment
- Administration to 15 patients resulted in 7 developing severe mitochondrial liver damage with 5 dying and 2 receiving liver transplant
- Toxicity was not predicted from rodent studies

MECHANISM OF FIAU LIVER INJURY

- Toxicity of FIAU is apparently due to FIAU-TP which inhibits mitochondrial DNA polymerase-γ and DNA synthesis
- Humans and not rodents have human nucleoside transporter 1 (hENT1) in the mitochondrial membrane

E.W. Lee, et al., J.Biol.Chem., 281, 16700 (2006)


INNATE IMMUNE CELL INJURY CAN FOLLOW INITIAL INTRINSIC DILI

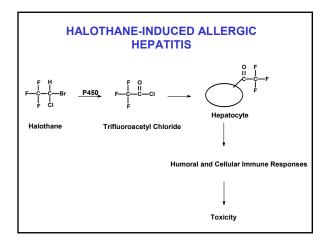
DAMPs: HMGB-1, MIF, HSPs

Protoxicant Factors: IFN-γ, osteopontin, IL-6, ROI, RNI

Protective Factors: IL-4, IL-6, IL-10, IL-13, COX-2

- Cells: Kupffer cells, PMNs, NK, NKT cells and hepatocytes
- M.E. Bianchi, J. Leukoc. Biol., 81, 1 (2007); D.J. Antoine et al., Expert Opin. Drug Metab.Toxicol, 4, 1415 (2008)

PAMPS CAN ACTIVATE THE INNATE IMMUNE SYSTEM

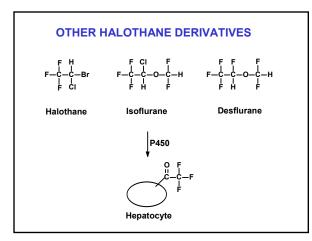

- TLR1/2 and TLR2/6 activated by bacterial triacylated and diacylated lipopeptides, respectively
- TLR4 activated by LPS, several HSPs, heparan sulfate products, hyaluronic acid fragments
- TLR5 activated by bacterial flagellin
- TLR 3 activated by viral dsRNA
- TLR7 and 8 activated by viral ssRNA
- TLR9 activated by bacterial unmethylated CpG DNA

E. Seki and D.A. Brenner, Hepatology, 48, 322 (2008)

POTENTIAL ROLE OF GUT-DERIVED LPS ENDOTOXIN IN DILD

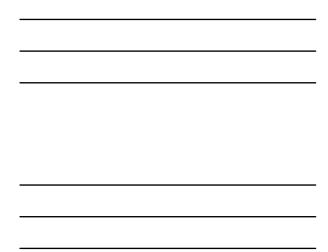
- Rat and mouse models of DILD have been produced by LPS + drug treatments
- Diclofenac, chlorpromazine, trovafloxacin, and ranitidine
- LPS activates TLR4 which can lead to activation of monocytes, macrophages, dendritic cells, mast cells and other cells.

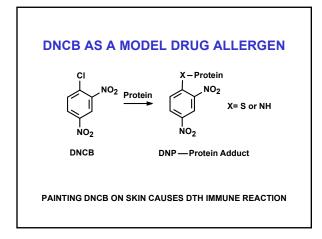
P. J. Shaw et al., Toxicol. Sci. 107, 270 (2009)



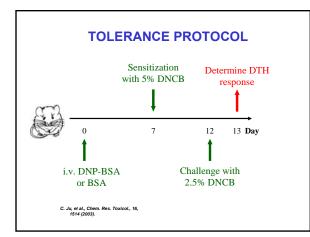
HALOTHANE HEPATITIS PATIENTS' SERUM ANTIBODIES (% REACTIVITY)


Antigen	TFA-Protein	Native-Protein
PDI	10	5
PDI isoform	55	25
Carboxylesterase	13	5
Calreticulin	5	3
ERP72	30	25
GRP94	65	28
CYP2E1		45


ANTIBODIES ASSOCIATED WITH OTHER DRUGS CAUSING HEPATITIS		
Drug	Antigen	
Tienilic acid	CYP2C9	
Dihydralazine	CYP1A2	
Ethanol	CYP2E1, CYP3A4, CYP2E1-hydroxy- ethyl radical	



T CELL REACTIVITY ASSOCIATED WITH DRUGS CAUSING ALLERGIC HEPATITIS


Cotrimoxazole
Erythromycin
Ketoconazole
Ampicillin
Allopurinol
Ibuprofen
Captopril
α-Methyldopa
Enalapril
Gut, 41, 534 (1997)

Chlorpromazine Amineptine Dothiepine Phenytoin Carbamazepine Tamoxifen Glibenclamide Lovastatin Propylthiouracil

Summary

- Drug-drug interactions are the major cause of ADRs, but are often predictable. Polymorphisms can also play a role.
- Many SADRs are rare, highly host-dependent and difficult to predict. Multiple genetic and environmental factors may have a role as well as the innate and adaptive immune systems.
- Designing drugs that will not be metabolized to reactive metabolites may eliminate many SADRs
- Newer preclinical screening tests may also prevent many SADRs