Dose Response and Concentration Response Analysis of Drug Effects

Juan J.L. Lertora, M.D., Ph.D. NIH Clinical Center January 27, 2011

Dose-Effect Relationship

The intensity and duration of a drug's effects are a function of the drug dose and drug concentration at the effect site

(The contribution of Frank M. Balis, M.D. is gratefully acknowledged)

Monitoring Dose-Effect

Level

- Molecular (e.g, enzyme inhibition)
- Cellular (in vitro tissue culture, blood cells)
- Tissue or organ (in vitro or in vivo)
- Organism

Endpoint used to measure effect may be different at each level

Overall effect = sum of multiple drug effects and physiological response to drug effects

Endpoints to Monitor Drug Effect

Farnesyltransferase Inhibitors for Cancer

LEVEL ENDPOINT

Molecular Farnesyltransferase inhibition

Cellular Proliferation rate, apoptosis

Tumor Response (change in tumor size)

Organism Survival, quality of life

Dose-Effect Endpoints

GRADED Continuous scale (\uparrow dose $\rightarrow \uparrow$ effect)

Measured in a single biologic unit

Relates dose to intensity of effect

QUANTAL All-or-none pharmacologic effect

Population studies

Relates dose to frequency of effect

Erythropoietin and Anemia

Chart showing peak hematocrit increment (%) over Erythropoietin Dose [units/kg] Example of Dose-Effect curve.

Eschbach et al. NEJM 316:73-8, 1987

Drug-Receptor Interactions

Graphic illustration of drug-receptor complex with ligand-binding and effector domains.

$$Effect = \underbrace{Maximal\ effect\ x\ [Drug]}_{KD\ +\ [Drug]}$$

$$(KD\ =\ k2/k1)$$

Dose-Effect Relationship

 $Effect = \underbrace{Maximal\ effect\ x\ [Drug]}_{\ (KD+[Drug]}$

 $Effect = Maximal\ effect\ \underline{[Drug]} \\ K_{D+}[Drug]$

Effect = Maximal effect if [Drug]>>KD

Graded Dose-Effect Curve

Chart showing % of Maximal Effect over Drug concentration.

Graphic illustration of EC50.

Log Dose-Effect Curve

Chart showing % of maximal effect over log drug concentration.

Graphic illustration of EC50.

Lidocaine Graded Dose-Effect

Chart showing analog pain score over Lidocaine blood level $[\mu g/ml]$

Ferrante et al. Anesth Analg 82:91-7, 1996

Theophylline Dose-Effect

Chart showing % control over Theophylline $[\mu M]$ for bronchial smooth muscle relaxation and PDE inhibition.

Rabe et al. Eur Respir J 8:637-42, 1995

Theophylline Pharmacodynamics

Graph indicating FEV1 (% normal) over Theophylline [mg/L] with $E_{MAX}\!=\!63\%$ and $EC_{50}\!=\!10$ mg/L

Mitenko & Ogilvie NEJM 289:600-3, 1973

Metformin Dose-Response

Chart showing decrease in FPG from placebo [mg/dl] and decrease in HbA from palacebo (%) over dose [mg/d]

Garber et al. Am J Med 102:491-7, 1997

Dose-Effect Parameters

POTENCY: The sensitivity of an organ or tissue to the drug

EFFICACY: The maximum effect

Comparing Dose-Effect Curves

Chart showing % of maximal effect over [Drug] for Drugs A, B, and C. Illustration of different potency and efficacy.

 $Effect = \underbrace{Maximal\ effect\ x\ [Drug]}_{K_D + \ [Drug]}$

Thiopurine Cytotoxicity

Chart showing % cytotoxic effect over Thiopurine [M] (thioguanine and mercaptopurine).

Adamson et al. Leukemia Res 18:805-10, 1994

Thiopurine Metabolic Activation

Chemical structures

Oral Mercaptopurine

Chart indicating MP AUC [μ M x hr] over MP Dose (mg/M2). AUC = Dose x F

Clearance

Balis et al. Blood 92:3569-77, 1998

Receptor-Mediated Effects

Chart showing % maximum effect over [Drug] for agonist, partial agonist and antagonist

Drug Interactions

Chart showing % of maximal effect over [Drug] for agonist, agonist + competitive antagonist, and agonist + non-competitive antagonist

Graded Dose-Effect Analysis

Identify the therapeutic dose/concentration

Define site of drug action (receptor)

Classify effect produced by drug-receptor interaction (agonist, antagonist)

Compare the relative potency and efficacy of drugs that produce the same effect

Assess mechanism of drug interactions

Quantal Dose-Effect Distribution

Frequency histogram of subjects responding to threshold dose in a population.

Cumulative Dose-Effect Curve

Cumulative % of subjects responding over dose

Cumulative Dose-Effect Study

Dose Level	No. of Subjects	No. Responding	% Response
1	10	0	0
2	10	1	10
3	10	3	30
4	10	5	50
5	10	7	70
6	10	8	80
7	10	9	90
8	10	10	100

Therapeutic and Toxic Effects

Chart showing % responding over dose for therapeutic and toxic effects.

Graphic illustration of ED50, ED99, TD1 and TD50.

Therapeutic Indices

Therapeutic Ratio =
$$\frac{\text{TD50}}{\text{ED50}}$$
 = 2.5

Certain Safety Factor =
$$\frac{TD_1}{ED_{99}}$$
 = 1.3

Standard Safety Margin =
$$\frac{\text{TD}_{1}\text{-}\text{ED}_{99}}{\text{ED}_{99}}$$
 X $100 = 31\%$

Digoxin Therapeutic Index

Digoxin (single oral dose, $\mu g/kg)$ showing ventricular slowing for 90% of patients and vomiting for 55% of patients

Doxorubicin Cardiotoxicity

Chart showing probability of CHF over total doxorubicin dose [mg/m2]

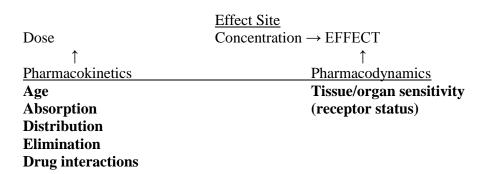
von Hoff et al. Ann Intern Med 91:710-7, 1979

Lidocaine Quantal Dose-Effect

Chart showing % achieving complete analgesia over total lidocaine dose (mg) $ED_{50}\,{=}\,400$ mg, $ED_{90}{=}\,490$ mg

Ferrante et al. Anesth Analg 82:91-7, 1996

Antihypertensive Dose-Effect


Drug		nge [mg] es Present Dose	Lowest Effective Dose [mg]
Propranolol	160-5000	160-320	80
Atenolol 1	00-2000	50-100	25
Hydrochlorthiazide	50-400	25-50	12.5
Captopril	75-1000	50-150	37.5
Methyldopa	500-6000	500-3000	750

Johnston Pharmacol Ther 55:53-93, 1992

Antihypertensive Drugs

Chart showing % with maximal effect over log dose showing desirable dose range, dose range most often used, and adverse effects.

Relating Dose to Effect In Vivo

Effect Compartment (PK/PD Model)

Graphic illustration of a 2-compartment PK model with an effect compartment (PK/PD).

Concentration and Effect vs. Time

Chart showing Non-steady state - Conc./Amount over time in central, peripheral, and effect compartments.

Pharmacodynamic Models

Fixed effect model

Linear model Effect =
$$E_0 + S \times [Drug]$$

Log-linear model Effect = $I + S \times Log([Drug])$

Emax model

Sigmoid E_{max} model
$$Effect = \underbrace{E_{MAX} \times [Drug]^{H}}_{50}$$
$$ECH + [Drug]^{H}$$

Sigmoid $\mathsf{E}_{\mathsf{max}}\,\mathsf{PD}\,\mathsf{Model}$

Two graphs, both indicating effect (%) over drug. The graph on the left indicates $H=5,\,H=2,\,H=1,\,H=0.5$ and H=0.1 with EC50 equal for all. The graph on the right indicates EC50 on log scale.

Hysteresis and Proteresis Loops

Intensity of drug effect over plasma drug concentration

Role of Dose-Effect Studies **Drug development**

Site of action

Selection of dose and schedule

Potency, efficacy and safety

Drug interactions

Patient management

Therapeutic drug monitoring

Risk-benefit (therapeutic indices)