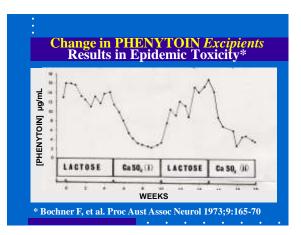
Drug Absorption and Bioavailability

Juan J.L. Lertora, M.D., Ph.D.

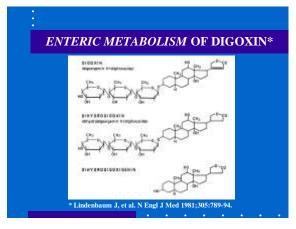
Director Clinical Pharmacology Program September 30, 2010


Office of Clinical Research Training and Medical Education National Institutes of Health Clinical Center

GOALS of Drug Absorption and Bioavailability Lecture

- Factors Affecting Drug Absorption
- Estimation of Bioavailability
- *Clinical Significance* of Differences in Bioavailability
- *Prediction* of Bioavailability in High-Throughput Drug Candidate Screening

Factors Affecting DRUG ABSORPTION


- Biopharmaceutic Factors
 - Tablet compression
 - Coating and Matrix
 - Excipients
- Interactions
 - Food
 - Other Drugs
 - Bacteria
- Physiological Factors

Factors Affecting DRUG ABSORPTION

- Biopharmaceutic Factors
- INTERACTIONS
 - Food
 - Other Drugs
 - Bacteria
- Physiologic Factors

Factors Affecting DRUG ABSORPTION

- Biopharmaceutic Factors
- Interactions
- PHYSIOLOGICAL FACTORS

Drug Absorption

Passive Non-Ionic Diffusion: Primary mechanism for most drugs.

Drug Absorption

- Specialized Transport Mechanisms

Large Neutral Amino Acid Transporter: L-Dopa, Methyldopa, Baclofen

Drug Absorption

- Specialized Transport Mechanisms

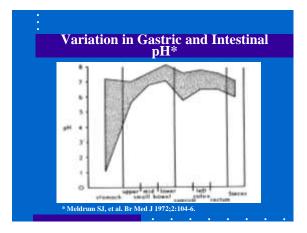
Oligopeptide Transporter (PEPT-1):

Amino-beta-lactams ACE Inhibitors

Drug Absorption

- Specialized Transport Mechanisms

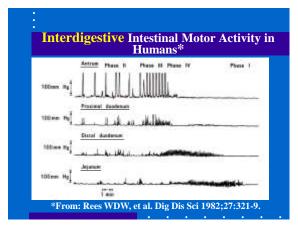

Monocarboxylic Acid Transporter: Salicylic acid Pravastatin


FALLACIES Concerning Gastric Drug Absorption

- Acidic Drugs absorbed in the stomach
- Basic Drugs absorbed in the small intestine
- Gastric pH is always acidic

In Fact, most drug absorption occurs in the SMALL INTESTINE

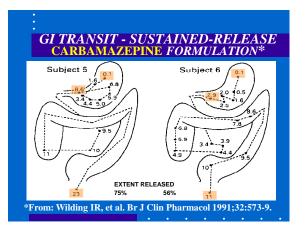
		SORPTION SMALL IN	
TABL	· · /	SORPTION FROM SIM	
рН	ASA ABSORPTION (micromol/100 mg protein/hr)		ASA SERUM LEVEL (mg/100 ml)
	STOMACH	SMALL BOWEL	
3.5	346	469	20.6
6.5	0	424	19.7
* From:	Hollander D, et	: al II ah Clin M	Ind 1081-08-50

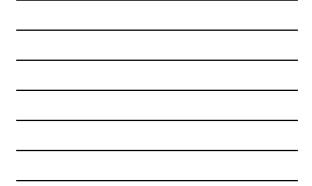

PHYSIOLOGICAL FACTORS Affecting Drug Absorption

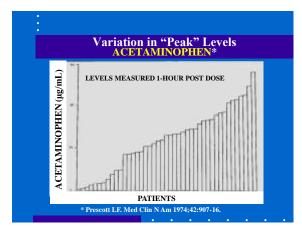
- Rate of gastric emptying is a major determinant of *initial delay* in drug absorption.
- **Intestinal motility** is a determinant of the *extent* of drug absorption.

PATTERNS OF GASTRIC MOTOR ACTIVITY

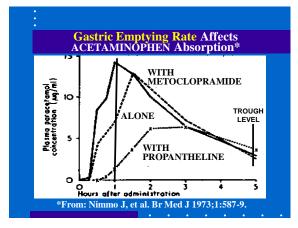
FASTING (*Cyclical Pattern < 2 HR*)

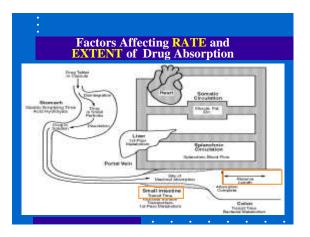

- Phase 1 Quiescence
- **Phase 2 Irregular Contractions**
- Phase 3 Major Motor Complex Burst
- **Phase 4 Transition Period**

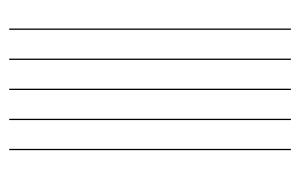


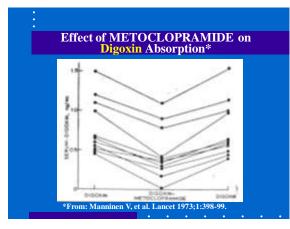

PATTERNS OF GASTRIC MOTOR ACTIVITY

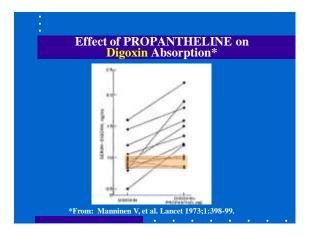
POST PRANDIAL (*Up to 10 hr delay*)

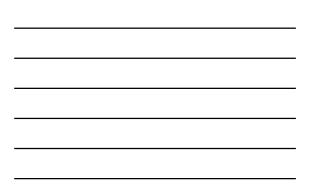

- Pylorus constricted
- Antral contractions reduce particle size

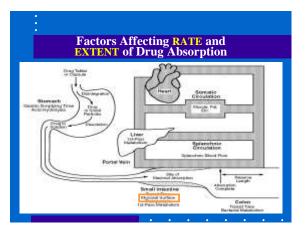


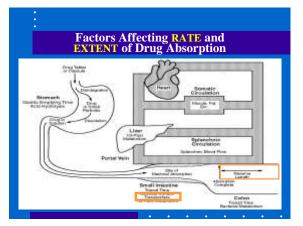


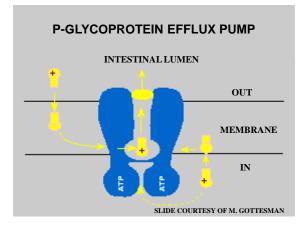





RESERVE LENGTH

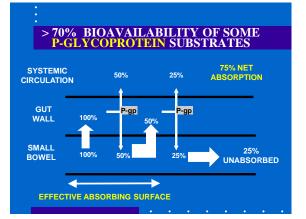

<u>RESERVE LENGTH</u> is the anatomical length over which absorption of a drug *can* occur *MINUS* the length at which absorption is complete.

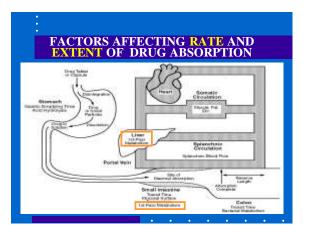


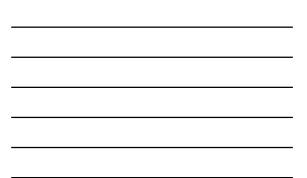

Digoxin Levels in Patients with INTESTINAL MALABSORPTION*

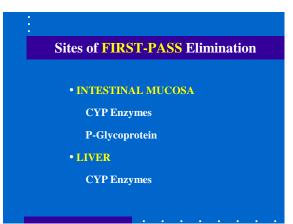
DOSE FOR BOTH GROUPS = 0.25 mg/day.	CONTROLS	MALABSORPTION
[DIGOXIN] (ng/mL)	1.3 ± 0.3	0.4 ± 0.3
URINE D-XYLOSE EXCRETION (gm/5 hr)	$5-8^{\dagger}$	1.1 – 4.1
[†] NORMAL RANGE		

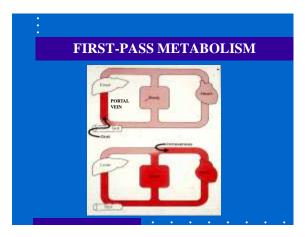
* From: Heizer WD, et al. N Engl J Med 1971;285:257-9.

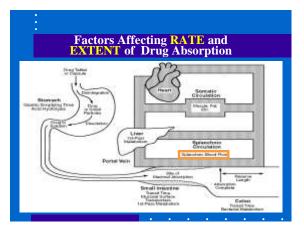





BIOAVAILABILITY OF SOME P-GLYCOPROTEIN SUBSTRATES						
> 70% ABSORPTION		30% - 70% ABSORPTION		< 30% ABSORPTION		
DRUG	F %	DRUG	F %	DRUG	F %	
PHENOBARBITAL	100	DIGOXIN	70	CYCLOSPORINE	28	
LEVOFLOXACIN	99	INDINAVIR	65	TACROLIMUS	25	
METHADONE	92	CIMETIDINE	60	MORPHINE	24	
PHENYTOIN	90	CLARITHROMYCIN	55	VERAPAMIL	22	
METHYLPREDNISOLONE	82	ITRACONAZOLE	55	NICARDIPINE	18	
TETRACYCLINE	77	AMITRIPTYLINE	48	SIROLIMUS	15	
	İ	DILTIAZEM	38	SAQUINAVIR	13	
	l	ERYTHROMYCIN	35	ATORVASTATIN	12	
		CHLORPROMAZINE	32	DOXORUBICIN	5	



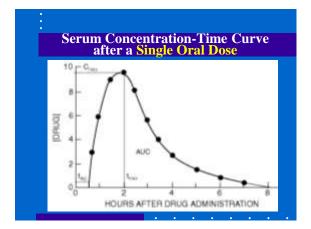




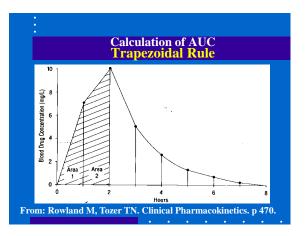
First-Pass Metabolism P-Glycoprotein Transport

ALDOSTERONE	MORPHINE*
CYCLOSPORINE*	NORTRIPTYLINE
ISOPROTERENOL	ORGANIC NITRATES
LIDOCAINE	PROPRANOLOL

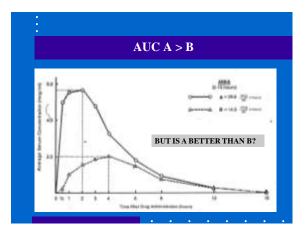
* Known P-Glycoprotein Substrates



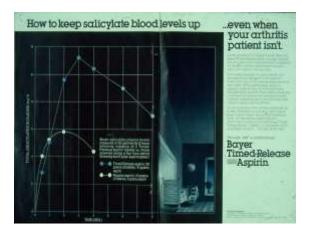
GOALS of Drug Absorption and Bioavailability Lecture

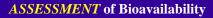

- Factors Affecting Drug Absorption
- ESTIMATION OF BIOAVAILABILITY
- Clinical Significance of Differences in Bioavailability
- Prediction of Bioavailability

BIOAVAILABILITY


BIOAVAILABILITY is the *RELATIVE AMOUNT (F)* of a drug dose that reaches the systemic circulation **unchanged** and the *RATE* at which this occurs.

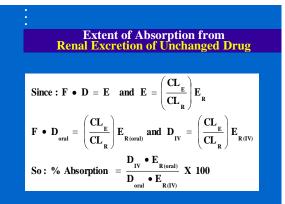
Significance of AUC
$$dE = CL_{E} \bullet C dt$$
$$E = CL_{E} \int_{0}^{\infty} C dt$$
$$D \bullet F = CL_{E} \bullet AUC$$




ABSOLUTE Bioavailability

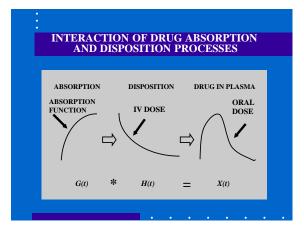
 % Absorption
 =

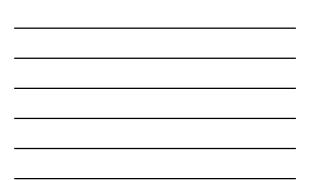
$$\frac{D_{IV} \bullet AUC}{D_{oral} \bullet AUC} x 100$$

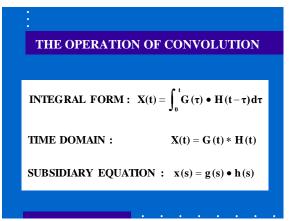

 Comparison here is between an ORAL and an IV Formulation

RELATIVE Bioavailability% Relative B.A.
$$=$$
 $\frac{D_{Ref.} \bullet AUC}{D_{Test}} \bullet AUC_{Ref.}$ x 100AUC Values have to be
Normalized for Dose

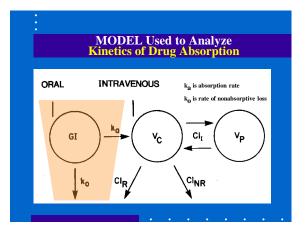
- AUC Estimates can be used to estimate Extent of Drug Absorption
- Recovery of Parent Drug in Urine can be used to estimate Extent of Drug Absorption
- How is ABSORPTION RATE assessed?
 - T_{MAX}
 - Integrated Pharmacokinetic Analysis of Absolute Bioavailability.

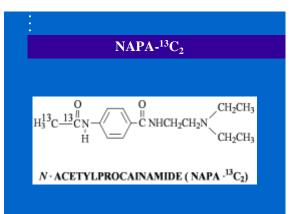


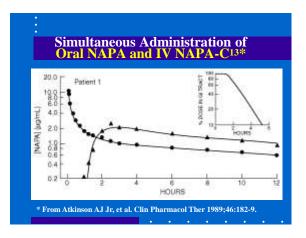

ASSESSMENT OF Bioavailability


- AUC Estimates Can Be Used to Estimate Extent of Drug Absorption.
- Recovery of Parent Drug in Urine Can Be Used to Estimate Extent of Drug Absorption.
- HOW IS ABSORPTION RATE ASSESSED?

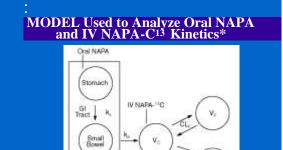
- T_{MAX}


- Integrated Pharmacokinetic Analysis of Absolute Bioavailability.


$$\mathbf{F} = \frac{\mathbf{k}_{a}}{\mathbf{k}_{a} + \mathbf{k}_{o}}$$


Methods for Assessment of ABSOLUTE BIOAVAILABILITY

- CONVENTIONAL:
 - IV and ORAL doses given on two separate occasions.
 - Requires two study sessionsRequires two sets of blood samples


 - Assumes no change in disposition parameters between
 - studies
- STABLE ISOTOPE:

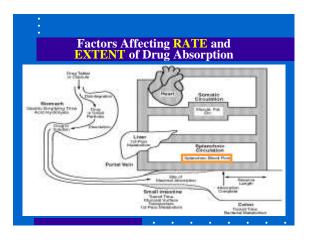
 - One study and set of blood samples
 Special synthesis requirements
 Mass Spectrometer Assay required

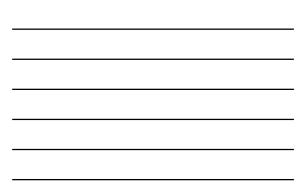
* From Atkinson AJ Jr, et al. Clin Pharmacol Ther 1989;46:182-9.

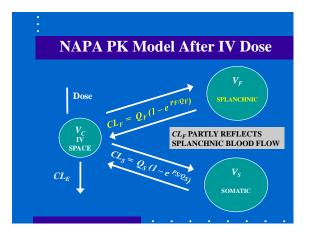
CL.

k

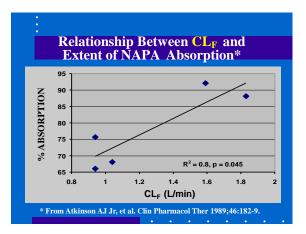
\a


V.



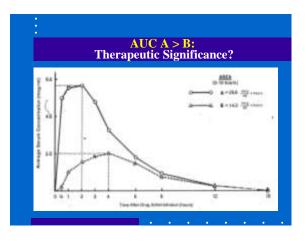

. BIOAVAILABILITY Estimates From Kinetic Analysis and URINE RECOVERY

PATIENT NUMBER	KINETIC ANALYSIS (%)	NAPA RECOVERY IN URINE* (%)	
1	66.1	65.9	
2	92.1	92.1	
3	68.1	69.9	
4	88.2	73.1	
5	75.7	75.6	
* Corrected for absorption lag time.			

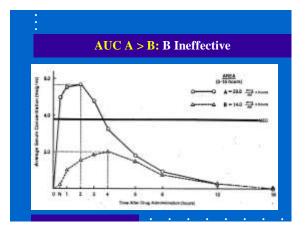


THOUGHTS About Absolute Bioavailability Studies

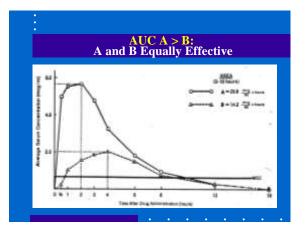
- Absolute Bioavailability is usually studied in Healthy Subjects, NOT in the Patient Population for whom the drug is intended.
- The Stable Isotope Method is ideally suited for studies in *Special Populations* (e.g. Pediatrics, Pregnant Women, other)

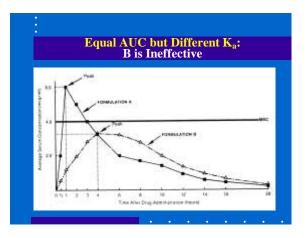

GOALS of Drug Absorption and Bioavailability Lecture

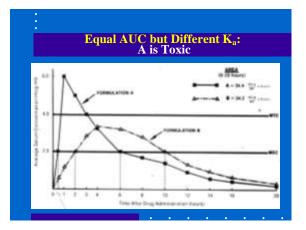
- Factors Affecting Drug Absorption
- Estimation of Bioavailability
- Clinical Significance of Differences in Bioavailability
- Prediction of Bioavailability


RELATIVE Bioavailability Terms

Bioequivalence: AUC and Cmax within 80% - 125% of reference compound.


- *Bioinequivalence:* Greater difference in bioavailability.
- **Therapeutic Equivalence:** Similar clinical effectiveness and safety.
- *Therapeutic Inequivalence:* Important clinical difference in bioavailability.





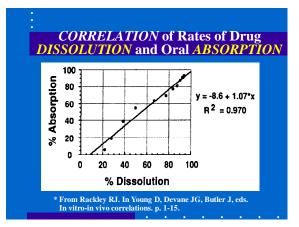
RELATIVE BIOAVAILABILITY CONCLUSIONS

- BIOEQUIVALENCE = THERAPEUTIC EQUIVALENCE
- BIOINEQUIVALENCE *NOT NECESSARILY* = THERAPEUTIC INEQUIVALENCE

GOALS of Drug Absorption and Bioavailability Lecture

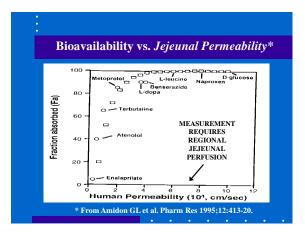
- Factors Affecting Drug Absorption
- Estimation of Bioavailability
- Clinical Significance
- PREDICTION of Bioavailability as part of High-Throughput Drug Candidate Screening

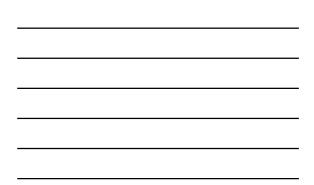
WHY DRUG DEVELOPMENT FAILS

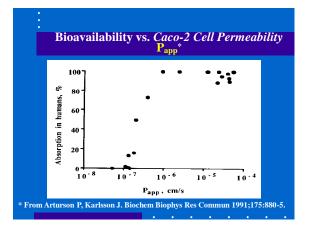

- Unsuitable Biopharmaceutical Properties
- Unsuitable Clinical Pharmacokinetics
- Pharmacology (PD) Doesn't Work in Humans
- Unexpected Toxicity is Encountered
- * Ronald E. White, Bristol-Myers Squibb (From Good Ligands to Good Drugs, AAPS-NIGMS Symposium, February 19-21, 1998)

BIOPHARMACEUTIC DRUG CLASSIFICATION *

CLASS I: High Solubility-High Permeability CLASS II: Low Solubility-High Permeability CLASS III: High Solubility-Low Permeability CLASS IV: Low Solubility-Low Permeability *From: Amidon GL, et al. Pharm Res 1995;12:413-20


Three CRITICAL Biopharmaceutical Properties


- Drug Solubility Relative to Dose
 GOOD = Highest Dose in 250 mL H₂0, PH 1.0-7.5
- Dissolution Rate of Formulation GOOD = 85% Dissolution in 15 min
- Intestinal Permeability of Drugs



Three CRITICAL Biopharmaceutical Properties

- Drug Solubility Relative to Dose
- Dissolution Rate of Formulation
- INTESTINAL PERMEABILITY of Drug

Evaluation of Caco-2 Cell Model

- ADVANTAGES
 - In Vitro Method
 - Suitable for High-Throughput
- DISADVANTAGES
 - ↓ Paracellular Permeability
 - ↓ Drug Metabolizing Enzymes and Transporters
 - No Hepatic First-Pass Metabolism

BIOPHARMACEUTIC DRUG CLASSIFICATION

CLASS I:

- HIGH SOLUBILITY-HIGH PERMEABILITY
- in vitro- in vivo correlation generally good
- *but* no way to account for 1st pass metabolism

*From: Amidon GL, et al. Pharm Res 1995;12:413-20

BIOPHARMACEUTIC DRUG CLASSIFICATION *

CLASS II:

- LOW SOLUBILITY-HIGH PERMEABILITY
- rate of absorption limited by dissolution rate
- *in vitro in vivo* correlation tenuous since many factors may affect dissolution

*From: Amidon GL, et al. Pharm Res 1995;12:413-20

BIOPHARMACEUTIC DRUG CLASSIFICATION

CLASS III: HIGH SOLUBILITY-LOW PERMEABILITY

- Intestinal reserve length is marginal.
- If dissolution is rapid, bioavailability will reflect intestinal permeability and transit time.

* From: Amidon GL, et al. Pharm Res 1995;12:413-20

BIOPHARMACEUTIC DRUG CLASSIFICATION*

CLASS IV:

LOW SOLUBILITY-LOW PERMEABILITY

- in vitro- in vivo correlation poor
- good bioavailability not expected

*From: Amidon GL, et al. Pharm Res 1995;12:413-20

THE BOTTOM LINE

CLASS I DRUGS:

HIGH SOLUBILITY-HIGH PERMEABILITY

- Preferred as development candidates
- FDA may *waive* repeat *in vivo* testing if initial formulation has good bioavailability*.
- * Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmacentics Classification System, CDER Guidance for Industry, August 2000.