Drug Therapy During Pregnancy and the Perinatal Period

Marilynn C. Frederiksen, M.D. Associate Professor Clinical Ob/Gyne Feinberg Medical School, Northwestern University

Pregnancy Physiology Potentially Affecting Pharmacokinetics

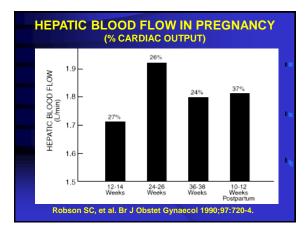
- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes
- · Decrease in albumin concentration
- Enzymatic activity changes
- Increase in GFR
- Gastrointestinal changes

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes

N	lonpreg	ınant Wo	men	
	WEIGHT	PLASMA VOLUME	ECF SPACE	TBW
	(kg)	(mL/kg)	(L/kg)	(L/kg)
NONPREGNANT		49		
	< 70		0.189	0.516
	70 – 80		0.156	0.415
	> 80		0.151	0.389
PREGNANT		67		
	< 70		0.257	0.572
	70 – 80		0.255	0.514
	> 80		0.240	0.454

Cardiovascular System Changes

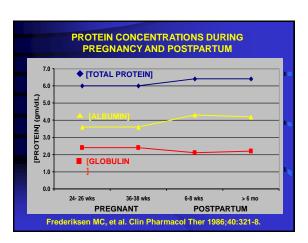

- Plasma volume expansion
 - Begins at 6 8 weeks gestation
 - Volume of 4700 5200 ml peaks at 32 weeks gestation
 - Increase of 1200 1600 ml above nonpregnant women

Cardiovascular System Changes

- Cardiac output increases 30 50%
 - 50% by 8 weeks gestation
- Increase in stroke volume and heart rate
 - Stroke volume in early pregnancy
 - Heart rate in later pregnancy

Regional Blood Flow Changes

- Increased blood flow to uterus 20% of cardiac output at term
- Increased renal blood flow
- Increased skin blood flow
- Increased mammary blood flow
- Decreased skeletal muscle blood flow


Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes

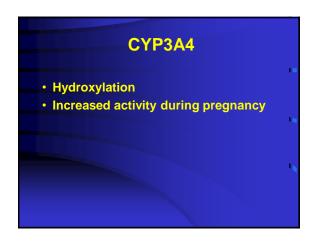
Respiratory Changes Compensated respiratory alkalosis Lowered P_aCO₂ pH 7.44

Pregnancy Physiology Potentially Affecting Pharmacokinetics

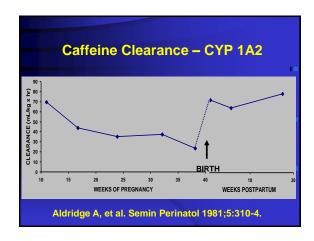
- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes
- Decrease in albumin concentration

Is The Hypoalbuminemia of Pregnancy Dilutional ?

- [GLOBULIN] IS NOT REDUCED
- DISTRIBUTION VOLUME DOES NOT AFFECT C_{SS}

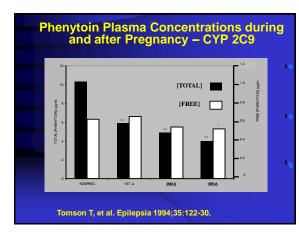

THEREFORE, ↓ [ALBUMIN] REFLECTS EITHER ↓
 SYNTHESIS RATE OR ↑ CL_E.

Pregnancy Physiology Potentially Affecting Pharmacokinetics


- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes
- Decrease in albumin concentration
- Enzymatic activity changes

Enzymatic Activity Changes

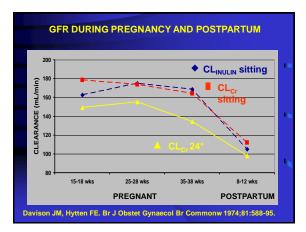
- Thought to be related to pregnancy hormonal changes
- N-demethylation inhibited by progesterone, not by estrogen



CYP1A2 • Activity decreased progressively during pregnancy • Progressive lengthening of caffeine half-life

CYP2C9

- Activity shown to increase during pregnancy
- Lowered total concentration of phenytoin during pregnancy

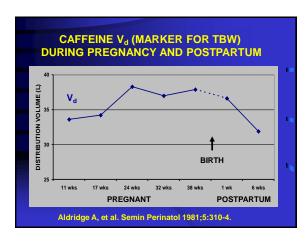

CYP2D6 Activity

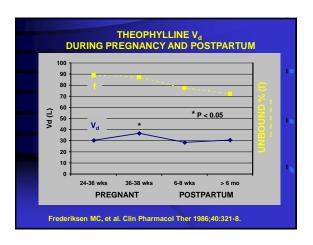
- Genetic determined polymorphism
- Increased clearance of metoprolol observed during pregnancy
- Increased clearance in homozygous and heterozygous extensive metabolizers
- No change in homozygous poor metabolizers

Wadelius M, etal. Clin Pharmacol Ther 1997; 62: 400.

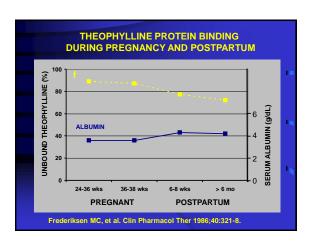
Pregnancy Physiology Potentially Affecting Pharmacokinetics

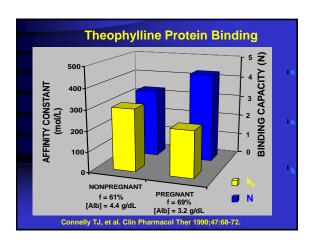
- Cardiovascular System
 - Plasma Volume Expansion
 - Increase in Cardiac Output
 - Regional Blood Flow Changes
- Respiratory Changes
- Decrease in Albumin Concentration
- Enzymatic Activity Changes
- Increase in GFR

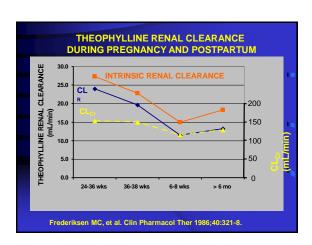

Pregnancy Physiology Potentially Affecting Pharmacokinetics

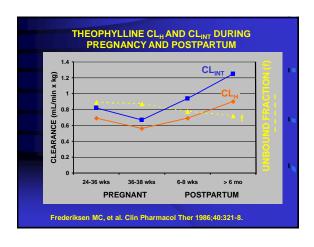

- Cardiovascular System
 - Plasma Volume Expansion
 - Increase in Cardiac Output
 - Regional Blood Flow Changes
- Respiratory Changes
- Decrease in Albumin Concentration
- Enzymatic Activity Changes
- Increase in GFR
- Gastrointestinal Changes

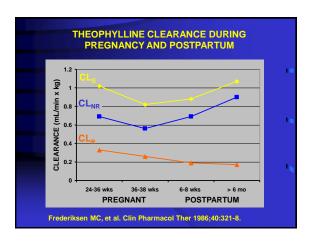
Gastrointestinal Changes Decreased gastric acidityGastric emptying

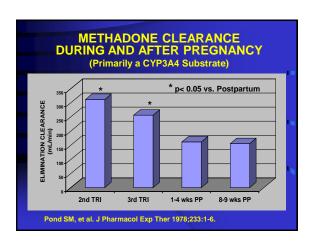

- Delayed in laboring women No difference between 1st & 3rd Δ in non-laboring women
 - No difference from postpartum
- Increased orocecal transit time in 3rd Δ
 - Progesterone effect
 - Pancreatic polypeptide inverse correlation

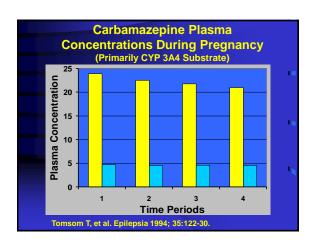

Maternal Physiologic Changes Altering PK of Drugs • Volume Expansion

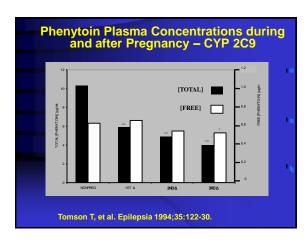


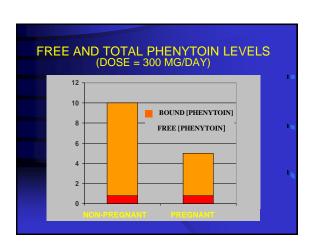

Maternal Physiologic Changes Altering PK of Drugs • Volume expansion • Protein binding-increase in free fraction of drugs bound to albumin

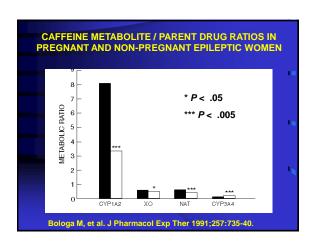


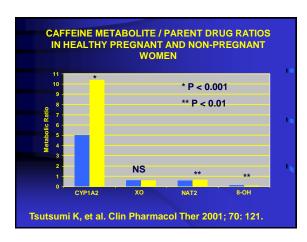



Maternal Physiologic Changes Altering PK of Drugs • Volume expansion • Protein binding • Clearance changes









	Twin Pregna	
Parameter	Singleton	Twin
V _d (L)	67.5 ± 27.9	70.9 ± 28.4
CI (L/h)	5.7 ± 3.1	8.4 ± 6.4 **
T½ (h)	9.0 ± 2.7	7.2 ± 2.4 *
	*P<.0	17 ** P < .06

Lamotrigine Clearance in Pregnancy

- Phase II biotransformation by glucuronidation
- Increased clearance in second and third trimesters (> 65%)
- May require dose adjustment
- Rapid decrease in clearance in the first two weeks postpartum

Tran TA, et al. Neurology 2002; 59: 251-55.

Pharmacokinetics of Cefuroxime in Pregnancy Pt Category V_D(L) Cl(ml/min) T(1/2) Pregnant 17.8±1.9 282±34* 44±5* At Delivery 19.3±3.1 259±35* 52±10 Postpartum 16.3±2.1 198±27 58±8 *p<0.05 on comparison to PP Philipson A et al. Am J Obstet Gynecol 1982; 142: 823.

Study Period	CI _R (L/hr)	CI _s (ml/min)
18 - 22 wks	24.8±6.7*	280 ± 105*
30 – 34 wks	24.0 ± 3.9*	259 ± 54*
Postpartum	15.3 ± 2.6	167 ± 47

Tobramycin Pharmacokinetics

- Cl higher in mid-trimester with a corresponding shorter half-life
- CI lower in the third trimester with a corresponding longer half-life

Bourget P, et al. J Clin Pharm Ther 1991;16:167-76

Metformin PK in Pregnancy

- C_{max} in pregnancy 81% lower than postpartum values
- Mean metformin concentrations 69% of the postpartum values
- Mean AUC for metformin during pregnancy is 80% of the postpartum AUC

Hughes RCE et al. Diabetes Medicine 23:323-6, 2006.

Pharmacokinetics of Metformin during Pregnancy 2nd △ 3rd Δ PP CI_R ml/min 723 ± 243* 625 ± 130° 447 ± 132 Cr Cl ml/min 240 ± 70* 207 ± 56** 165 ± 44 Secretion CI 480 ± 190* 419 ± 78* 313 ± 98 ml/min *P<0.01 **P<0.05 Eyal S, et al. Drug Metab Dispos. 2010 38: 833-40

-	
-	

Heparin PK during Pregnancy Shorter time to peak heparin concentration and effect Lower peak effect Brancazio et al. Am J Obstet Gynecol 1995; 173: 1240.

Enoxaprin PK during Pregnancy

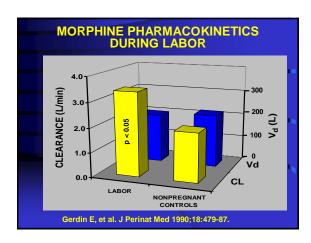
- T_{max} shows no change
- C_{max} lower during pregnancy
- Cl decreases in late pregnancy
- Lower anti-factor Xa activity
- AUC lower during pregnancy

Casele, et al. Am J Obstet Gynecol 1999; 181: 1113.

Maternal Physiologic Changes Altering PK of Drugs

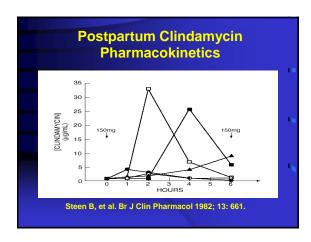
- Volume expansion
- Protein binding
- Clearance changes
- Gastrointestinal changes

NUC(cm²)	8.2+4.1	40 6 . 4 2*
	<u> </u>	12.6 <u>+</u> 4.3*
eak Level (µg/ml)	2.2 <u>+</u> 1.0	3.7 <u>+</u> 1.5*
Bioavailability (%)	45.6 <u>+</u> 20.2	48.1 <u>+</u> 19.3**


PK of Oral Valacyclovir & Acyclovir

- The pro-drug Valacyclovir converted by first pass metabolism to Acyclovir
- Non-pregnant Valacyclovir gives 3 5 times higher plasma level as Acyclovir
- Valacyclovir PK study in pregnancy gave plasma levels 3 times higher than Acylovir

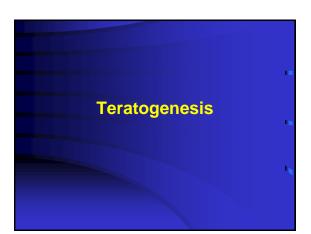
Kimberlin DF, et al. Amer J Obstet Gynecol 1998; 179: 846


Peripartum Pharmacologic Considerations

- Increased cardiac output
- Blood flow changes
- Uterine contractions
- ? Pharmacodynamic changes

	Pre	gnancy	
Category	V _D (L)	CI (ml/min)	T(½)
Pregnant	17.8 <u>+</u> 1.9	282 <u>+</u> 34*	44 <u>+</u> 5*
At Delivery	19.3 <u>+</u> 3.1 2	59 <u>+</u> 35* 52 ₅	<u>+</u> 10
Postpartum	16.3 <u>+</u> 2.1	198 <u>+</u> 27	58 <u>+</u> 8
	*p<0.05 on c	omparison to PP	

Postpartum PK Considerations Increased cardiac output maintained GFR increased Diuresis Breastfeeding Great variability



Drug Studies for Pregnancy • Pregnancy Specific Drugs - Tocolytic agents - Oxytocic agents - Eclampsia agents • Drugs commonly used by women of childbearing potential - Antidepressants - Asthma drugs

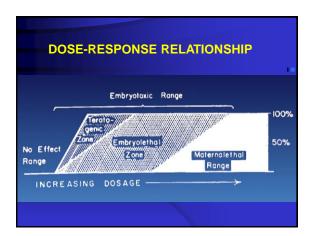
Technical Considerations • Ethical and IRB concerns • Serial studies – Spanning pregnancy – Specific to peripartum period – Controls

Study Design

- Use population PK analysis
- Incorporate in vitro protein binding studies
- Use stable isotopes for bioavailability studies
- Use established tracer substances as reference markers

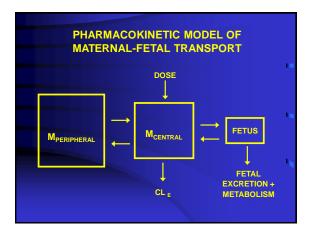
General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus
- Effects depend upon the development stage when exposed
- Genotype of mother and fetus effect susceptibility


General Principles of Teratology

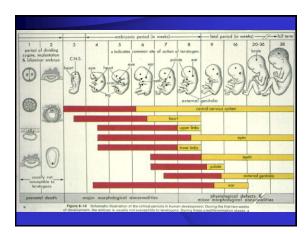
Teratogens act with specificity

PHOCOMELIA DUE TO THALIDOMIDE


General Principles of Teratology • Teratogens act with specificity • Teratogens demonstrate a doseresponse relationship

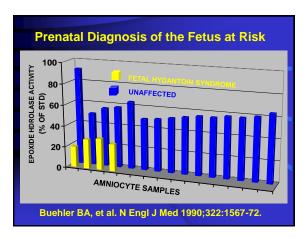
General Principles of Teratology Teratogens act with specificity Teratogens demonstrate a doseresponse relationship Teratogens must reach the conceptus

Placental Transport


- Passive diffusion
- P-glycoprotein expressed on trophoblastic cells of placenta
- Active transport of P-glycoprotein substrates back to the mother
- Pore system
- Endocytosis

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus
- Effects depend upon the development stage when exposed



General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus
- Effects depend upon the development stage when exposed
- Genotype of mother and fetus effect susceptibility

Phenytoin

- Animal evidence for an arene oxide (epoxide) reactive metabolite
- Genetic susceptibility to the Dilantin Syndrome related to variation in Epoxide hydrolase activity

Genetic Polymorphisms

- Decreased risk for fetal alcohol syndrome in African American women carrying alcohol dehydrogenase isoform 2

Mechanisms of Teratogenesis All theoretical Most not understood well Implications of a genetic component

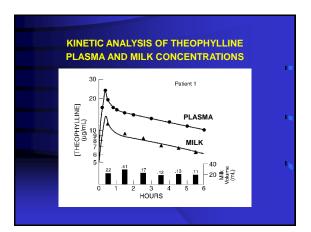
Thalidomide

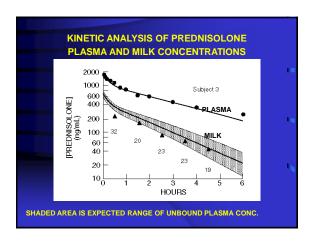
- Thalidomide causes DNA oxidation in animals susceptible to teratogenesis
- Pre-treatment with PBN (free radical trapping agent) reduced thalidomide embryopathy
- Suggesting that the mechansim is free radical-mediated oxidative DNA damage

Parman T,et al. Nature Medicine 1999; 5: 582

Teratogen?

- Is there a specific pattern of abnormalities?
- Was the agent present during development of that organ system?
- Is there a dose-response curve?
- Could there be a genetic component?


-	


Evaluation of Drugs in Breast Milk

- Measure the M / P radio
- · Estimate breast milk dose
- Estimate infant dose
- Measure blood level in the infant

Drugs in Breast Milk

- Free drug transferred into milk
- Milk concentrations usually less than serum concentrations
- Exchange is bi-directional

Factors Effecting the Milk / Plasma Concentration Ratio

- Maternal protein binding
- Protein binding in milk
- Lipid solubility of drug
- Physiochemical factors of drug effecting diffusion

Drugs Generally Contraindicated during Lactation

- Antineoplastics
- Immune suppressants
- Ergot Alkaloids
- Gold
- lodine
- Lithium carbonate
- Radiopharmaceuticals
- · Social drugs & drugs of abuse
- Certain antibiotics

General Recommendations

- Drugs considered safe for pregnancy are usually safe during lactation
- Decrease the drug dose to the infant by feeding just prior to a dose
- Infant blood levels can be monitored and should be less than therapeutic

			_
			_
			_