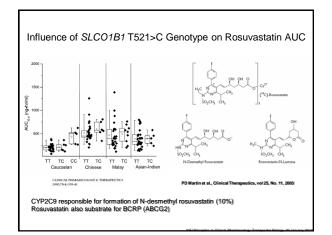
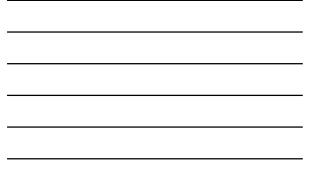


Implications of Drug Transport in Drug Discovery and Development


- Impact of Drug Transport on ADME
- Oral absorption of drug
- Complex metabolism interaction(s)
- Drug Distribution and elimination
- Organ-selective delivery of drugs and prodrugs
- Impact of Drug Transport on Response and Toxicology


- Emerging Role in Toxicology

- Over expression of drug transporter may be a major factor in tumor, bacterial, and fungal multidrug resistance (MDR).
- Transporters as Targets
- Zosuquidar and Tariquidar
- SGLT2 Na-Glucose contransporter

Presentation Objectives

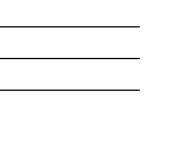
- · Provide an Integrated approach to transporter biology
- Review when drug transport is the rate-limiting step of •
 - Absorption
 - _ Distribution
 - Metabolism and Transporter.
 Elimination (kidney and liver) Metabolism and Transporter Interplay
- Examples of when drug transport is a primary determinant of drug action and drug-induced toxicity.
- · Provide examples of drug-drug and drug-transporter interactions
- · Functional consequences of genetic variations in transporter genes

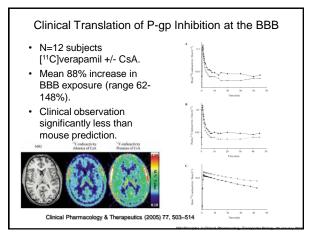
2006 FDA Draft Guidance, International Transport Consortium and FDA Critical Path Workshop

2006 FDA Draft Guidance

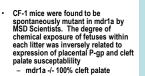
- Knowledge of NME metabolic pathways, interactions, and influence of active transport on drug disposition with respect to DDI potential is key to benefit/risk assessment.
- Integrated approach may reduce number of unnecessary studies and optimize clinical pharmacology studies.
- Classification of CYP inhibitors and substrates can aid in study design and labeling. Substrate (25% metabolism) Inhibitor ([[]/Ki > 0.1) Inducer (40% control)

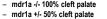
New Molecular Entity (NME) International Transport Consortium (ITC)

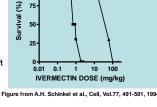

Slide adapted from Shiew-Mei Huang, Ph.D., FDA

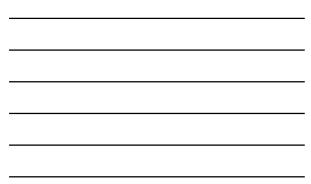


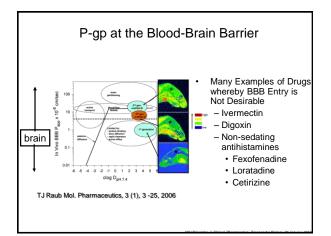
a Intestinal epithelia OCTI-MRP3 BCR d Blood-b = OAT4 URATI TP4C1 -OCT2-PEPTI, PEPTI MRP2 MRP4 OAT MATEI, MA + P-80 OCTNI, OCTN2 Transporters covered Efflux: P-gp, BCRP Renal: OAT/OCT Nature Reviews | Drug Disco Hepatic uptake: OATPs

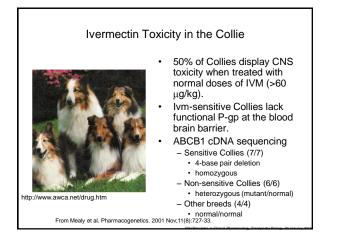

Cancer Chemotherapy	h.	HIV Protease Inhibitors
 Doxorubicin 		 Amprenavir
 Daunorubicin 		– Indinavir
 Vinblastine 		 Ritonavir
- Vincristine		 Saquinavir
– Paclitaxel	1.	Cardiac Drugs
		– Digoxin
- Teniposide		– Quinidine
 Etoposide 		– Posicor
// Immunosuppressive Drugs		 Most statins
 Cyclosporine A 	h.	Anti-thelmintics
– FK506		 Ivermectin
Antihistamine		 Abamectin
- Terfenadine	h.	Miscellaneous
Steroid-like		 Loperamide
- Aldosterone		 Colchicine
 Hydrocortisone et al. 		 Ondansetron

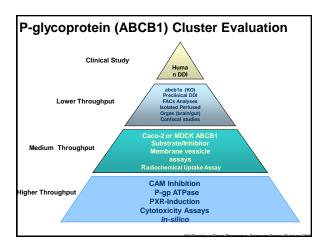


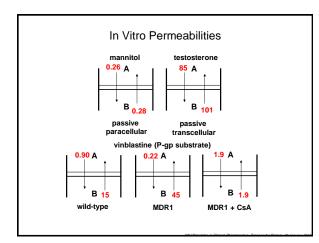

Role of Mdr1a in the Blood-Brain Barrier and the Placenta Mdr1a/b (-/-) were found to be: - Viable - Fertile Without observable phenotype until pharmacological challenge with IVM. _ 100-• mdr1a -/- LD₅₀= 0.7 mg/kg mdr1a (+/+)

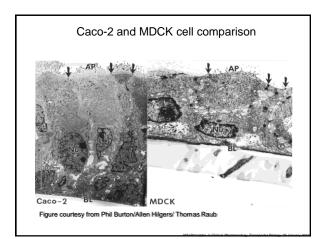


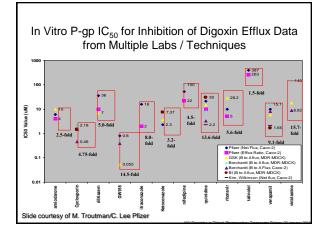

mdr1a +/+ LD₅₀= 60 mg/kg

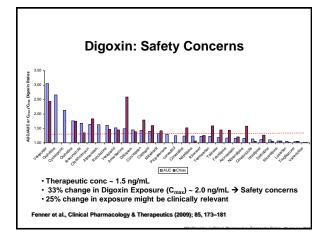

mdr1a +/+ 0%

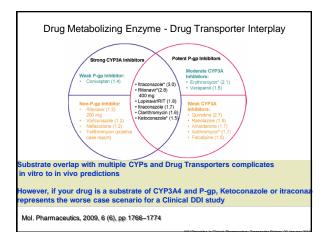


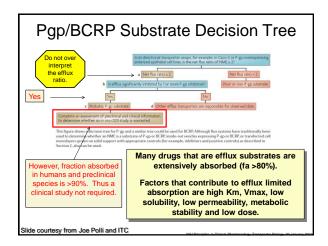




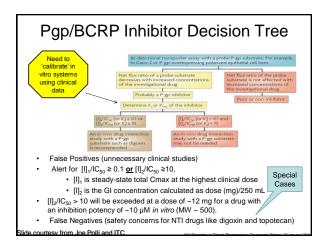






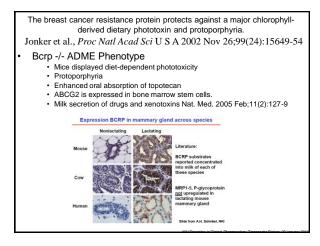

P-gp Mediated Digoxin DDIs

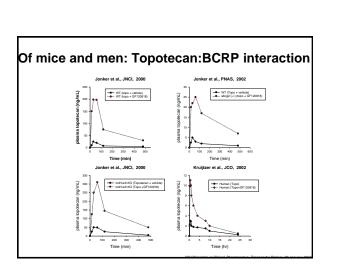
- <2-fold change in digoxin Cmax or exposure were observed in the majority of published cases
 - I/IC50 > 0.1 is predictive of positive clinical digoxin DDI related to P-gp
 - I2/IC50 < 10 is predictive of no clinical digoxin DDI
- For Digoxin or NMEs that have a narrow T.I. (similar to digoxin), P-gp may be an important determinant of PK and response.
- Additional work is needed to fully understand the mechanism of false (-)'s observed with I/IC50 or false (+)'s with I2/IC50

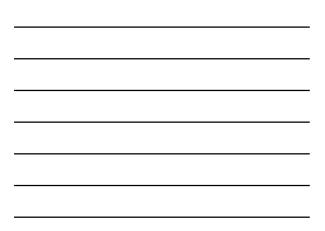


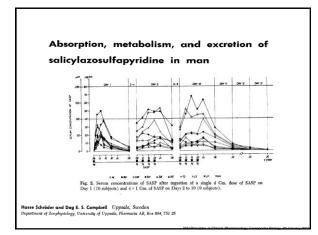
P-gp Summary

- For some compounds, P-gp may hinder drug absorption, moderately change AUC/Cmax and be moderate to major determinant of CNS exposure.
- P-gp may be a target for Drug-Drug Interactions, optimal in-vitro to in-vivo or in-vivo to in-vitro strategy is needed. No Single in-vitro assay appears to be durable enough to perform within diverse chemical libraries and yield consistent 'predictable' in-vivo performance.
 Multi-tiered Assay Cluster Approach used to define NCE/Drug-P-gp interaction.
- Use of mdr1a KO mouse appears to be the most sensitive method to define P-gp substrates, however, cross-species differences in P-gp remains a concern
- Overlap in CYP3A4 and P-gp inhibition may produce 'worse case scenario' for some drugs that are substrates for CYP3A4 and P-gp

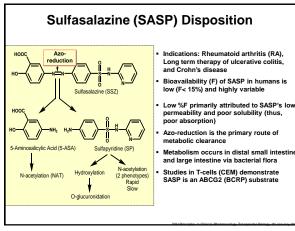


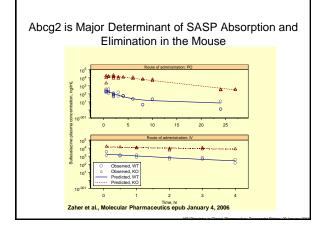


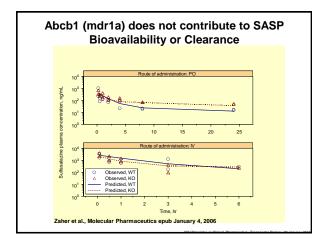

ABCG2 (alias BCRP, MXR, ABCP, BMDP)


- Expressed endogenously in the intestine (small & large), liver, kidney, placenta, skeletal muscle, brain, and in hematopoietic stem cells
- In-vitro role in tumor drug resistance for Topo-1 and Topo-2 inhibitors (MXR, SN-38, Topotecan, J-107088)
- Emerging role in drug absorption of camptothecan analogues (Irinotecan and Topotecan).
 - ABC subfamily 7 (G);member 2 (related to Drosophila White proteins)
 655 amino acid protein
 - > ABCP isolated from human placenta R482 WT (Allikmets, 1996)
 - > BCRP breast cancer resistance protein R482 T (Doyle et al., 1998)
 - > MXR: Mitoxantrone resistance protein R482G (Bates et al., 1999)
 - > BMDP: Brain multidrug resistance protein (Eisenblatter et al., 2003)

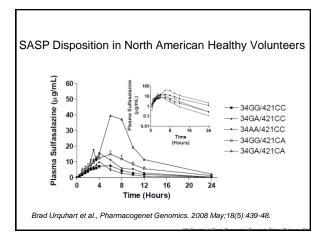
Substr	ates & Inhibitors of AB	CG2
Drugs/NMEs	Xenobiotics Endobiotics	Inhibitors
-Topotecan		– FTC
-CPT-11/SN-38	-PhIP	 Ko134, 143
-J-107088	-Pheophorbide A	 Tryprostatin A
 Mitoxantrone 	-Estrogen SO ₄	- GF120918
-Flavoperidol	-lysotracker (green)	 Lapatinib
-Diflomotecan	-H33342	- Erlotinib
-Methotrexate	-Rhodamine 123	 Gefitinib
-Sulfasalazine	 Bodipy-prazosin 	- CI-1033
-Prazosin	-Riboflavin (vitamin B2)	 Novobiocin
-Benzoylphenylurea		 Imatinib
-Cimetidine -Imatinib		– Ritonavir
		feirel Obereneter Terreneter Dieter 20 Januar 2014

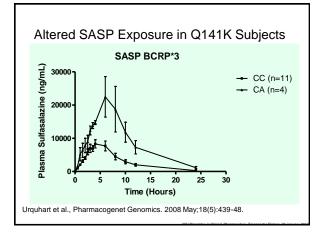



Permeability is an important determinant of In vitro-in vivo extrapolation for both Metabolism and Transport **High Solubility** Low Solubility Class 2 Class 1 High Solubility Low Solubilit High Permeabi High Solubility High Permeability Low Solubility High Permeability Class 2 Efflux transpo effects predominate Class 1 (Rapid D for Biov Low meability Class 3 Class 4 Class 4 Absorptive and efflux transporte effects could be important High Solubility Low Permeability Low Solubility Low Permeability Class 3 Amidon et al., Pharm. Res. 12:413 (1995) Wu and Benet, Pharm. Res. 22:11 (2005)

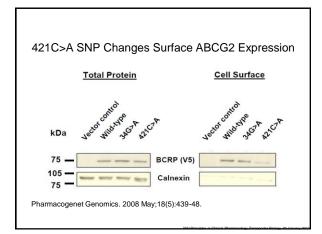

Inter-individual differences in intestinal expression and function of ABCG2 (BCRP) contribute to variability in drug bioavailability, exposure and pharmacological response to SASP.

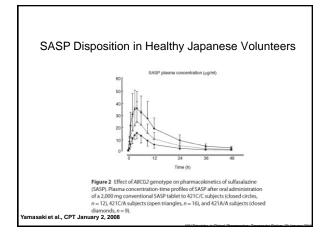
- Metabolism occurs in distal small intesting

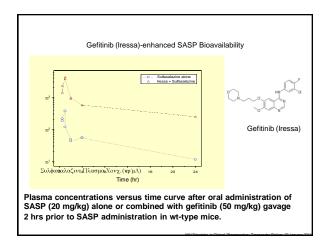


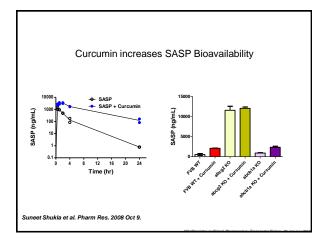

		Dose C _{max} (ng/mL)* AUC (ng.hr/mL)						Dose	C _{max} (ng/mL)*		Relative
Mice	Route	(mg/kg)	WT	KO	Duration (hr)	WT	KO	exposure, AUC _{KO} /AUC _W			
D 1	IV	5	1827	13570	0-4	3015	40343	13			
Bcrp1	PO	20	233	16176	0-24	1189	131822	111			
	IV	5	2749	2266	0-6	5131	3504	1			
Mdr1a	PO	20	349	440	0-24	1098	1781	2			

mice following intravenous (IV) and oral (PO) administration.


r et al., Molecular Pharmaceutics epub January 4, 2006

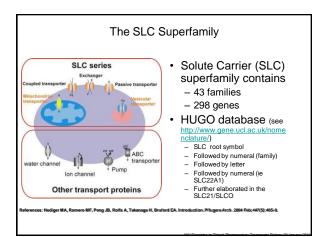


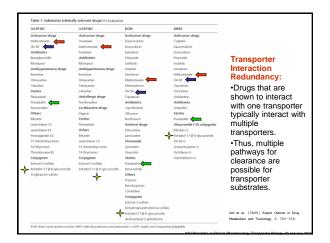

mulation Drug	Structure	Dose, Route	# Patients	Ethnic Group, Gender	Result	Reference
Sulfasalazine	505	2000 mg po	37*	Japanese Male	1.7-3.5X increase in AUC, Cmax	Yamasaki et al (2008) Clin Pharmacol Ther, ePub
Sulfasalazine		1000 mg po	17*	Caucasian Both	1.7-2.4X increase in AUC, Cmax	Urquhart et al (2008) Pharmacogen & Genomics, ePub
 Sulfasalazine 		500 mg po	36*	Chinese Both	No effect on AUC, Cmax	Adkison et al (2008) ASCPT mtg poster
Geftinib (IRESSA)	°,ab	250 mg po	124*	Caucasian Both	44% with mutation had diarrhea vs. 12% with WT	Cusats et al (2007) JNCI 98(23):1739
Topotecan	, the second sec	<2.5 mg po, iv	18^	Caucasian Both	1.35X increase in oral bioavailability	Spaneboom et al (2005) Canc Biol The 4:850
Rosuvastatin	max	20 mg po	14*	Chinese Both	1.8X increase in AUC and Cmax	Zhang et al (2006) Clin Chim Acta 373:99
Diffornatecan	mag	<0.5 mg po, iv	22^	Caucasian Both	3X increase in AUC and Cmax for iv only	Sparreboom et al (2004) Clin Pharmaco Ther 76:38
Imatinb (GLEEVEC)	ရွက်	100-1000 mg po	82^	Caucasian Both	No difference	Gardner et al (2006) Clin Pharmacol Ther 80:192
Pitavastatin	appun	2 mg po	38*	Japanese Male	No difference	leiri et al (2007) Clin Pharmacol Ther. 82:541


ABCG2 Polymorphisms and Ethnic Distribution of SNPs.

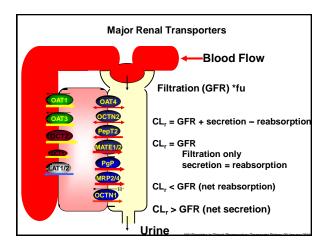

- The ABCG2 Q141K genotype significantly affected the pharmacokinetics of diflomotecan (Clin Pharmacol Ther. 2004) Gefitinib-induced diarrhea correlates with Q141K (J Natl Cancer Inst. 2006).
- ABCG2 expression correlates with flavopiridol-induced myelotoxicity.

Allelic var- iant	Caucasians	African- Americans	Asians	Hispanics	Africans	Middle Easterns
V12M	2	4	20-45	40		5
Q141K	11-14	2.3-5.0	15-35	10	1.0	13
1206L	0	0	0	10		0
N590Y	1					




ABCG2 Summary

- ABCG2 (BCRP/ABCP) has a role in the absorption and the elimination of a growing list of drugs, endobiotics, and xenobiotics.
- Additional probe substrates and inhibitors are needed to investigate cross-species to human comparisons and to improve *in-vitro* to *in-vivo* predictions.
 - SASP <u>dose</u> and <u>formulation</u> are important determinants of ABCG2's influence on F.
- ABCG2-transfected LLC-PK1 or MDCK cells may be useful to evaluate the interaction of this transporter with NCEs or Drugs, however, many BCRP (ABCG2) substrates require a basolateral uptake transporter.
- The abcg2 KO mouse in combination with ABCG2 (BCRP) assay cluster may be best way to define ABCG2 substrates and inhibitors.



When is it Important to Study Renal Transporters?

- Does scientific evidence suggest that it is necessary to investigate renal transport DDI potential for NMEs?
 - Toxicologic significance
 - Primary determinant of systemic CL
 - NME inhibits the CL_R of compound with narrow TDI
- Is there a need to perform both probenecid and cimetidine studies in healthy volunteers if in vitro and preclinicial data support that compound is a prototypical transport substrate?

Renally-Mediated DDIs

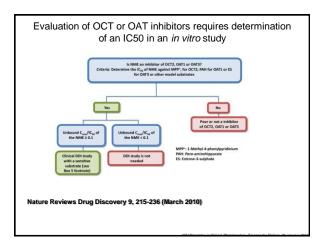
Penicillin/Probenecid one of the earliest examples of ATS (Active Tubular Secretion) inhibition.

R-

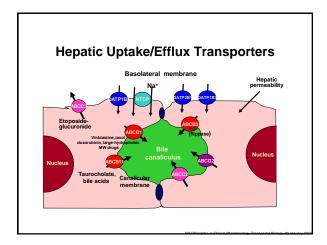
Dofetilide (Tikosyn™)

> Concomitant administration OCT inhibitors increase potential for cardiac toxicity

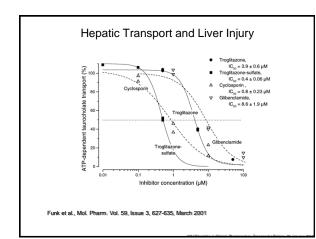
-CH2


-CH₂ N·SO₂ OH

- Cidofovir (Vistide™)
- > Concomitant administration of OAT inhibitors decrease potential for nephrotoxicity

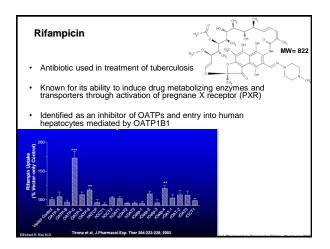

Package Inserts: Clinical Studies and DDI Potential

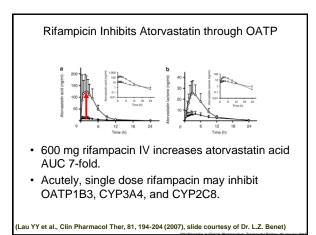
Drug (CL _R)	Results (Bedside)
Mirapex (400 mL/min)	N=12 subjects/treatment arm.
+ cimetidine	50% 个 in AUC; 40% 个 in T 1/2
+ probenecid	No effect on PK
Tikosyn (420 mL/min)	Narrow TI
+ cimetidine	40% ↑ in AUC; CLR ↓ 33%; QTc ↑17-19 ms
+ probenecid	No effect
Metformin (600 mL/min)	Narrow TI
+ cimetidine	40% ↑ in AUC and 60% ↑ in Cmax
+ probenecid	No effect
Oseltamivir	N=12-18/treatment (see Hill et al.)
+cimetidine	No change on PK
+probenecid	2.5-fold AUC of Ro64-0802 (active metab)

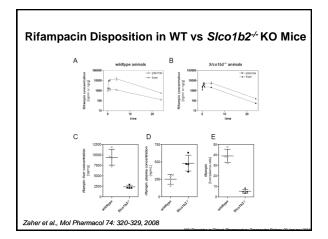


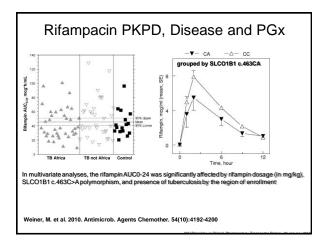
Hepatic Transporters

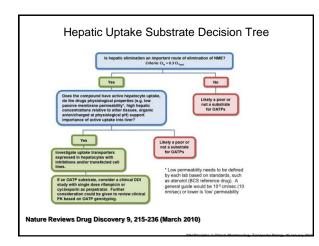
- Question 1. Is uptake transport the rate-Limiting Step of total clearance (assume low/no metabolism).
- Question 2. Is it possible to predict the DDI potential mediated through hepatic uptake or efflux or are we only able to define potential mechanisms of a PK observation?
- Question 3. Toxicological significance of bile acid uptake, synthesis, or efflux inhibition

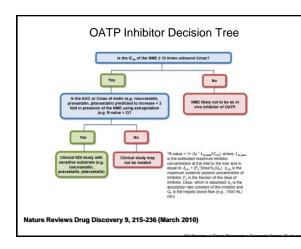












Future Direction of Drug Transport in Preclinical Development and Clinical Pharmacology

- Drug-Drug Interactions mediated through drug transporter(s) have received increased attention and are recognized as important contributors of ADME
- Significant substrate overlap exists between drug metabolizing enzymes and drug transporters.
- Evaluation of *in-vitro* screens to predict *in-vivo* drug-drug interactions is an area of increased awareness during drug development. Therefore, the accuracy of the predicted DDI is dependent on the *Quality* of the *in-vitro* assay and our ability to translate the interaction into the Clinic

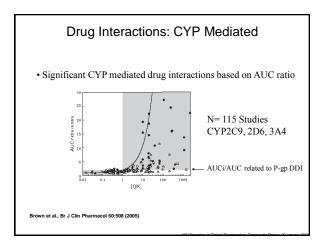
 Clinical Translation with respect to physiologic PK of transport probe substrates and inhibitors is needed.
- Preclinical and clinical differences in transporter expression remain important determinants of drug-induced toxicity and an important consideration in drug development.
 - Additional KO and Tg models to investigate the *in-vivo* contribution of drug transporters are needed.

Acknowledgment(s) and Contributors

Academia:			Industry:	
Les Benet		UCSF	Xiaoyan Chu	Merck
Kim Brouwer		UNC	Raymond Evers Merch	
Amber Dahlin		UCSF	Volker Fischer	Abbott
Kathy Giacomini	UCSF		Kate Hillgren	Lilly
Toshi Ishikawa	Rikon, Tol	kyo	Keith A. Hoffmaster Nova	tis
Dietrich Keppler	Heidelberg		Caroline Lee	Pfizer
Richard Kim		W. Ontario	Joe Polli	GSK
Mikko Niemi		Helsinki	Donald Tweedie BI	
Yuichi Sugiyama	Tokyo		Joe Ware	Genentech
Peter Swann		Maryland	Maciej Zamek-	
Steve Wright		Arizona	Gliszczynski	Lilly
Sook Wah Yee		UCSF		
Regulatory:				
Shiew Mei Huang	FDA			
Lei Zhang		FDA		

Transporter Nomenclature

SLC Family


- Basolateral
 - OCT2 = SLC22A2
 - OAT1 = SLC22A6
 - OAT3 = SLC22A8
 - System L = SCL7A5/8
- Apical
 - PepT2 = SLC15A2
 - OCTTN1 = SLC22A4
 - OCTN2 = SLC22A5
 - OAT4 = SLC22A11
 - hMATE1 =SLC47A1
 - hMATE2=SLC47A2

ABC Family

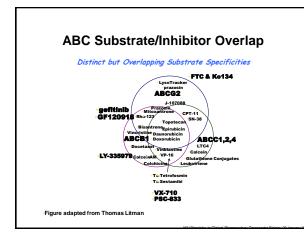
- Apical
 - MDR1 = ABCB1
 - MRP2 = ABCC2
 - MRP4 = ABCC4
 - MRP4 = ABCC4
 BCRP = ABCG2

Hepatic Drug-Drug and Drug Transporter Interaction Potential

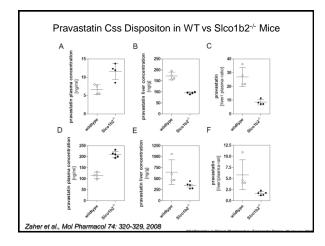
- Is Drug eliminated unchanged in the bile and is a substrate of uptake transporter or transporters?
- Permeability
- Multiplicity
- Affinity and Capacity
 - Relative abundance of OATP1B1, OATP1B3, OAT2B1, NTCP
 - Selective vs pan-inhibitors (ie CsA)
- Is Drug a substrate of uptake and efflux transporters
 Multiplicity (ABCB1, ABCC2, and ABCG2)
- Uptake/efflux synergy

CYP Summary

- CYP interactions were complex when first recognized
- Largest CYP-mediated DDIs


 Increase AUC 20X, C_{max} 12X
- Mechanism of CYP inhibition
 - Competitive or non-competitive
 - Potent inhibitors in sub-nanomolar range
- Many CYP liabilities are thought to be 'screened' out at an early stage of preclinical development, however, what liabilities are we selecting for?

The rate determining process


"To understand the transporter-mediated drug-drug interaction, we have to know the rate determining process of a substrate in the overall clearance."

uptake, basolateral efflux, apical excretion, metabolism

Professor Sugiyama, Keynote address AAPS, November 2007

