Noncompartmental vs. Compartmental Approaches to Pharmacokinetic Data Analysis

Paolo Vicini, Ph.D. David M. Foster., Ph.D. Pfizer Global Research and University of Washington Development

Questions To Be Asked

> Pharmacokinetics

- What the body does to the drug
> Pharmacodynamics
- What the drug does to the body
> Disease progression
- Measurable therapeutic effect
> Variability
- Sources of error and biological variation

Pharmacokinetics / Pharmacodynamics

```
> Pharmacokinetics > Pharmacodynamics
>"What the body does to > "What the drug does to
    the drug"
> Fairly well known > Largely unknown
 Useful to get to the PD > Has clinical relevance
```


\qquad

Pharmacokinetic Parameters

\qquad
> Definition of pharmacokinetic parameters \qquad

- Descriptive or observational
- Quantitative (requiring a formula and a means
\qquad to estimate using the formula)
$>$ Formulas for the pharmacokinetic parameters
> Methods to estimate the parameters from the formulas using measured data
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Goals Of This Lecture

\qquad

Description of the parameters of interest
\qquad
> Underlying assumptions of noncompartmental and compartmental models
> Parameter estimation methods
$>$ What to expect from the analysis
\qquad
\qquad
\qquad
\qquad
\qquad

Goals Of This Lecture

$>$ What this lecture is about

- What are the assumptions, and how can these affect the conclusions
- Make an intelligent choice of methods depending upon what information is required \qquad from the data
$>$ What this lecture is not about \qquad
- To conclude that one method is "better" than another

A Drug In The Body: Constantly Undergoing Change

$>$ Absorption
> Transport in the circulation
> Transport across membranes
> Biochemical transformation
> Elimination
\rightarrow ADME

- Absorption, Distribution, Metabolism, Excretion

Kinetics
 And Pharmacokinetics

Kinetics

- The temporal and spatial distribution of a substance in a system.
> Pharmacokinetics
- The temporal and spatial distribution of a drug (or drugs) in a system.

A Drug In The Body:
Constantly Undergoing Change

A Drug In The Body:
Constantly Undergoing Change

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Spatially Distributed Models

$>$ Spatially realistic models:

- Require a knowledge of physical chemistry, irreversible thermodynamics and circulatory dynamics.
- Are difficult to solve.
- It is difficult to design an experiment to estimate their parameter values.
$>$ While desirable, normally not practical.
$>$ Question: What can one do?

Resolving The Problem

\qquad

Reducing the system to a finite number of \qquad components
> Lumping processes together based upon time, location or a combination of the two
> Space is not taken directly into account: rather, spatial heterogeneity is modeled through changes that occur in time

Lumped Parameter Models

$>$ Models which make the system discrete \qquad through a lumping process thus eliminating the need to deal with partial differential equations.
> Classes of such models: \qquad

- Noncompartmental models
- Based on algebraic equations
- Compartmental models
- Based on linear or nonlinear differential equations

Probing The System

> Accessible pools: These are system spaces that are available to the experimentalist for test input and/or measurement.
> Nonaccessible pools:
These are spaces comprising the rest of the system which are not available for test input and/or measurement.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Focus On The Accessible Pool

\qquad INPUT SOURCE MEASURE \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Characteristics Of The Accessible Pool

\qquad
\qquad
\qquad
\qquad
Kinetically Homogeneous
Instantaneously Well-mixed

\qquad

\qquad

The Pharmacokinetic Parameters

$>$ Which pharmacokinetic parameters can we estimate based on measurements in the accessible pool?
> Estimation requires a model

- Conceptualization of how the system works
> Depending on assumptions:
- Noncompartmental approaches
- Compartmental approaches

Accessible Pool \& System
Assumptions \rightarrow Information
> Accessible pool

- Initial volume of distribution
- Clearance rate
- Elimination rate constant
- Mean residence time
> System
- Equivalent volume of distribution
- System mean residence time
- Bioavailability
- Absorption rate constant

Compartmental and Noncompartmental Analysis

The only difference between the two methods is in how the nonaccessible portion of the system is described
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Noncompartmental Model

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single Accessible Pool

 Noncompartmental Model$>$ Parameters (IV bolus and infusion)

- Mean residence time
- Clearance rate
- Volume of distribution
$>$ Estimating the parameters from data
> Additional assumption:
- Constancy of kinetic distribution parameters

Mean Residence Time

\qquad
$>$ The average time that a molecule of drug \qquad spends in the system

\qquad
\qquad
\qquad
\qquad
\qquad

Areas Under The Curve

> AUMC

- Area Under the Moment Curve
> AUC
- Area Under the Curve
> MRT \qquad
- "Normalized" AUMC (units = time)

$$
\mathrm{MRT}=\frac{\int_{0}^{+\infty} \mathrm{C}(\mathrm{t}) \mathrm{dt}}{\int_{0}^{+\infty} \mathrm{C}(\mathrm{t}) \mathrm{dt}}=\frac{\mathrm{AUMC}}{\mathrm{AUC}}
$$

\qquad
\qquad
\qquad

What Is Needed For MRT?

> Estimates for AUC and AUMC.

$$
A U C=\int_{0}^{\infty} C(t) d t=\int_{0}^{t_{1}} C(t) d t+\int_{t_{1}}^{t_{n}} C(t) d t+\int_{t_{n}}^{\infty} C(t) d t
$$

$\mathrm{A} U M \mathrm{C}=\int_{0}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}=\int_{0}^{\mathrm{t}_{1}} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}_{1}}^{\mathrm{t}_{\mathrm{n}}} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}_{n}}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}$
> They require extrapolations beyond the time frame of the experiment
$>$ Thus, this method is not model independent as often claimed.

$$
\begin{gathered}
\text { Estimating AUC And AUMC Using } \\
\text { Sums Of Exponentials } \\
\text { AUC }=\int_{0}^{\infty} C(t) d t=\int_{0}^{t_{0}^{1}} C(t) d t+\int_{t_{1}}^{t^{h} C(t) d t+\int_{h_{n}}^{\infty} C(t) d t} \\
\text { AUMC }=\int_{0}^{\infty} \cdot C(t) d t=\int_{0}^{t_{0}^{1} t \cdot C(t) d t+\int_{t_{1}}^{t_{1}} t \cdot C(t) d t+\int_{t_{n}}^{x} t \cdot C(t) d t} \\
C(t)=A_{1} e^{-\lambda_{1} t}+\cdots+A_{n} e^{-\lambda_{n} t}
\end{gathered}
$$

What Is Needed For MRT?
$>$ Estimates for AUC and AUMC.
AUC $=\int_{0}^{\infty} \mathrm{C}(t) d t=\int_{0}^{t_{1}} \mathrm{C}(t) d t+\int_{t_{1}}^{t_{n}} \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{t_{n}}^{\infty} \mathrm{C}(t) d t$
AUMC $=\int_{0}^{\infty} \cdot \mathrm{C}\left(\mathrm{C}(\mathrm{t}) \mathrm{dt}=\int_{0}^{t_{1}} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}_{1}}^{t_{n}} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}_{n}}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}\right.$
$>$ They require extrapolations beyond the time
frame of the experiment
$>$ Thus, this method is not model independent as
often claimed.

\qquad

Bolus IV Injection
Formulas can be extended to other administration modes

$$
\begin{gathered}
A \cup C=\int_{0}^{\infty} C(t) d t=\frac{A_{1}}{\lambda_{1}}+\cdots+\frac{A_{n}}{\lambda_{n}} \\
A U M C=\int_{0}^{\infty} t \cdot C(t) d t=\frac{A_{1}}{\lambda_{1}^{2}}+\cdots+\frac{A_{n}}{\lambda_{n}^{2}} \\
C(0)=A_{1}+\cdots+A_{n}
\end{gathered}
$$

The Integrals

> These other methods provide formulas for \qquad the integrals between t_{1} and t_{n} leaving it up to the researcher to extrapolate to time zero and time infinity.

$$
A U C=\int_{0}^{\infty} C(t) d t=\int_{0}^{t_{1}} C(t) d t+\int_{t_{1}}^{t_{n}} C(t) d t+\int_{t_{n}}^{\infty} C(t) d t
$$

$\mathrm{A} U M C=\int_{0}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}=\int_{0}^{\mathrm{t}_{1}} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}_{1}}^{\mathrm{t}_{\mathrm{n}}} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}_{n}}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Integrals
$>$ These other methods provide formulas for
the integrals between t_{1} and t_{n} leaving it up
to the researcher to extrapolate to time
zero and time infinity.
AUC $=\int_{0}^{\infty} \mathrm{C}(\mathrm{t}) \mathrm{dt}=\int_{0}^{\mathrm{t}_{1}} \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}_{1}}^{t_{n}} \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}_{n}}^{\infty} \mathrm{C}(\mathrm{t}) \mathrm{dt}$
$\mathrm{AUMC}=\int_{0}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}=\int_{0}^{t_{1}} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}_{1}}^{\mathrm{t}_{n}} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{\mathrm{t}_{n}}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Trapezoidal Rule

$>$ For every time $t_{i}, i=1, \ldots, n$ $A \cup C_{i-1}^{i}=\frac{1}{2}\left[y_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}}\right)+\mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}-1}\right)\right]\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}\right)$
AUMC $_{\mathrm{i}-1}^{\mathrm{i}}=\frac{1}{2}\left[\mathrm{t}_{\mathrm{i}} \cdot \mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}}\right)+\mathrm{t}_{\mathrm{i}-1} \cdot \mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}-1}\right)\right]\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}\right)$

\qquad
$t_{i-1} t_{i}$

Log-trapezoidal Rule

\qquad
$>$ For every time $\mathrm{t}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$ \qquad
$\operatorname{AUC}_{i-1}^{i}=\frac{1}{\ln \left(\frac{y_{\text {obs }}\left(t_{i}\right)}{y_{\text {obs }}\left(t_{i-1}\right)}\right)}\left[y_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}}\right)+\mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}-1}\right)\right]\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}\right)$
$\operatorname{AUMC}_{\mathrm{i}-1}^{i}=\frac{1}{\ln \left(\frac{\mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}}\right)}{\mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}-1}\right)}\right)}\left[\mathrm{t}_{\mathrm{i}} \cdot y_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}}\right)+\mathrm{t}_{\mathrm{i}-1} \mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}-1}\right)\right]\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}\right)$

Trapezoidal Rule Potential Pitfalls

\qquad
\qquad
\qquad
As the number of samples decreases, the \qquad interpolation may not be accurate (depends on the shape of the curve)
> Extrapolation from last measurement necessary
\qquad
\qquad

Extrapolating From t_{n} To Infinity

$>$ Terminal decay is assumed to be a monoexponential
$>$ The corresponding exponent is often called λ_{z}.
$>$ Half-life of terminal decay can be calculated:
$t_{z / 1 / 2}=\ln (2) / \lambda_{z}$

Extrapolating From t_{n} To Infinity

\qquad

From last data point:
\qquad
$A \cup C_{\text {extrap -dat }}=\int_{t_{n}}^{\infty} C(t) d t=\frac{y_{\text {oos }}\left(t_{n}\right)}{\lambda_{z}}$
$\mathrm{AUMC}_{\text {extrap-dat }}=\int_{\mathrm{t}_{n}}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}=\frac{\mathrm{t}_{\mathrm{n}} \cdot \cdot_{\text {obss }}\left(\mathrm{t}_{n}\right)}{\lambda_{z}}+\frac{y_{\text {obs }}\left(\mathrm{t}_{\mathrm{n}}\right)}{\lambda_{z}^{2}}$
\qquad

From last calculated value:

$$
\begin{gathered}
A U C_{\text {extrap-calc }}=\int_{t_{n}}^{\infty} C(t) d t=\frac{A_{2} e^{-\lambda_{2} t_{n}}}{\lambda_{2}} \\
A U M C_{\text {extap-calc }}=\int_{t_{n}}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}=\frac{\mathrm{t}_{\mathrm{n}} \cdot \mathrm{~A}_{2} \mathrm{e}^{-\lambda_{2} t_{n}}}{\lambda_{z}}+\frac{\mathrm{A}_{2} \mathrm{e}^{-\lambda \lambda_{2} t_{n}}}{\lambda_{z}^{2}}
\end{gathered}
$$

Extrapolating From t_{n} To Infinity

Extrapolating function crucial \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Estimating The Integrals

> To estimate the integrals, one sums up the individual components.

$A U C=\int_{0}^{\infty} C(t) d t=\int_{0}^{t_{1}} C(t) d t+\int_{t_{1}}^{t_{n}} C(t) d t+\int_{t_{n}}^{\infty} C(t) d t$
$A U M C=\int_{0}^{\infty} t \cdot C(t) d t=\int_{0}^{t_{1}} t \cdot C(t) d t+\int_{t_{1}}^{t_{n}} t \cdot C(t) d t+\int_{t_{n}}^{\infty} t \cdot C(t) d t$

\qquad

Advantages Of Using Function Extrapolation (Exponentials)

> Extrapolation is automatically done as part of the data fitting
> Statistical information for all parameters (e.g. their standard errors) calculated
$>$ There is a natural connection with the solution of linear, constant coefficient compartmental models
> Software is available

Clearance Rate

> The volume of blood cleared per unit time, \qquad relative to the drug

$$
\mathrm{CL}=\frac{\text { Elimination rate }}{\text { Concentration in blood }}
$$

It can be shown that

$$
\mathrm{CL}=\frac{\text { DrugDose }}{\text { AUC }}
$$

\qquad
\qquad

Single Accessible Pool Models

\qquad
> Noncompartmental
> Compartmental

A Model Of The System

Compartmental Model

> Compartment

- Instantaneously well-mixed
- Kinetically homogeneous
> Compartmental model
- Finite number of compartments
- Specifically connected
- Specific input and output

Compartmental Model
> Compartment
- Instantaneously well-mixed
- Kinetically homogeneous
> Compartmental model
- Finite number of compartments
- Specifically connected
- Specific input and output

\qquad

Kinetics And The Compartmental Model

$>$ Time and space
$\frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}$
$\rightarrow X(x, y, z, t)$
$\rightarrow \frac{\partial X(x, y, z, t)}{\partial x}, \frac{\partial X(x, y, z, t)}{\partial y}, \frac{\partial X(x, y, z, t)}{\partial z}, \frac{\partial X(x, y, z, t)}{\partial t}$
> Time
$\frac{\mathrm{d}}{\mathrm{dt}} \rightarrow \mathrm{X}(\mathrm{t}) \rightarrow \frac{\mathrm{dX}(\mathrm{t})}{\mathrm{dt}}$

Demystifying Differential

Equations

It is all about modeling rates of change, i.e. slopes, or derivatives:

Rates of change may be constant or not

Ingredients Of Model Building

$>$ Model of the system

- Independent of experiment design
- Principal components of the biological system
> Experimental design
- Two parts:
- Input function (dose, shape, protocol)
- Measurement function (sampling, location)

\qquad

Single Compartment Model
> The rate of change of the amount in the
 compartment, $\mathrm{q}_{1}(\mathrm{t})$, is equal to what enters the compartment (inputs or initial conditions), minus what leaves the compartment, a quantity proportional to

$$
\frac{\mathrm{dq}_{1}(\mathrm{t})}{\mathrm{dt}}=-\mathrm{k}(0,1) \mathrm{q}_{1}(\mathrm{t}) \quad \begin{aligned}
& \mathrm{q}_{1}(\mathrm{t}) \\
& >\mathrm{k}(0,1) \text { is a rate constant }
\end{aligned}
$$

\qquad
> The rate of change of the amount in the
 compartment, $q_{1}(t)$, is equal to what enters the compartment (Dose), minus what leaves the compartment, a quantity proportional to $q(t)$
$\frac{d q_{1}(t)}{d t}=-k(0,1) q_{1}(t)+\operatorname{Dose}(t)$ Dose(t) can be any function of time
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Experiment Design
 Modeling Input Sites

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Experiment Design Modeling Measurement Sites	
	> The measurement (sample) s1 does not subtract mass or perturb the system
	> The measurement equation $s 1$ links q_{1} with the experiment, thus preserving the units of differential equations and data (e.g. q_{1} is mass, the measurement is concentration
$s_{1}(t)=\frac{q_{1}(t)}{V}$	$\begin{aligned} & \overline{\Rightarrow \mathrm{ss} 1=q_{1} N} \\ & >V=\text { volume of distribution of } \\ & \text { compartment } 1 \end{aligned}$

Notation

- The fluxes $\mathrm{F}_{\mathrm{ij}(\text { from j to } i \text {) }}$ describe material transport in units of mass per unit time

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Compartmental Fluxes (F_{ij})

$>$ Describe movement among, into or out of
\qquad a compartment
$>$ A composite of metabolic activity

- transport
- biochemical transformation
- both
>Similar (compatible) time frame
A Proportional Model For The
Compartmental Fluxes
$>\mathrm{q}=$ compartmental masses
$>\mathrm{p}=$ (unknown) system parameters
$>\mathrm{k}_{\mathrm{ji}}=\mathrm{a}$ (nonlinear) function specific to the
transfer from i to j
$\mathrm{F}_{\mathrm{ji}}(\mathrm{q}, \mathrm{p}, \mathrm{t})=\mathrm{k}_{\mathrm{ji}}(\mathrm{q}, \mathrm{p}, \mathrm{t}) \cdot \mathrm{q}_{\mathrm{i}}(\mathrm{t})$
(ref: see Jacquez and Simon)

Nonlinear Kinetics Example

Remember the one-compartment model:

$$
\begin{aligned}
& \frac{d q 1(t)}{d t}=-k(0,1) q 1(t)+\operatorname{Dose}(t) \\
& s 1(t)=\frac{q 1(t)}{V}
\end{aligned}
$$

$>$ What if we had a concentrationdependent drug elimination rate?

Nonlinear Kinetics:
 Michaelis-Menten

> Michaelis-Menten kinetics:

$$
\begin{aligned}
& \frac{d q 1(t)}{d t}=-\frac{V m}{K m+c(t)} q 1(t)+\operatorname{Dose}(t) \\
& s 1(t)=\frac{q 1(t)}{V}
\end{aligned}
$$

$>$ Vm $=$ maximal metabolic rate
$>$ Km $=$ Michaelis-Menten constant

Linear vs. Nonlinear Kinetics

$>$ If $\mathrm{Km} \gg \mathrm{c}(\mathrm{t})$ then:

$$
\begin{aligned}
& \frac{d q 1(t)}{d t} \cong-\frac{V m}{K m} q 1(t)+\operatorname{Dose}(t) \\
& s 1(t)=\frac{q 1(t)}{V}
\end{aligned}
$$

$>$ The concentration declines at a rate proportional to it (first-order kinetics)
> This is true at low concentrations (w.r.t. Km)

Tracking Nonlinearities

> How to find nonlinear behavior?

$$
\begin{aligned}
& \frac{d q 1(t)}{d t}=-\frac{V m}{K m+c(t)} q 1(t)+\operatorname{Dose}(t) \\
& s 1(t)=\frac{q 1(t)}{V}
\end{aligned}
$$

Watch: Simulated concentration time profile for $\mathrm{D}=180 \mathrm{mg}, \mathrm{Vm}=20$ $\mathrm{mg} / \mathrm{L} / \mathrm{hr}, \mathrm{Km}=1 \mathrm{mg} / \mathrm{L}, \mathrm{v} 1=5 \mathrm{~L}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Fractional Coefficients (k_{ij})

- The fractional coefficients k_{ij} are called \qquad fractional transfer functions
- If k_{ij} does not depend on the compartmental masses, then the kij is called a fractional transfer (or rate) constant.

$$
k_{i j}(q, p, t)=k_{i j}
$$

Compartmental Models And Systems Of Ordinary Differential Equations

\qquad
$>$ Good mixing

- permits writing $q_{i}(t)$ for the $i^{i \text { th }}$ compartment.
$>$ Kinetic homogeneity \qquad
- permits connecting compartments via the k_{ij}. \qquad
\qquad
\qquad

Linear, Constant Coefficient
 Compartmental Models

$>$ All transfer rates k_{ij} are constant.

- This facilitates the required computations greatly
Assume "steady state" conditions.
- Changes in compartmental mass do not affect
the values for the transfer rates
\qquad

The $\mathrm{i}^{\text {th }}$ Compartment

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Compartmental Matrix

$$
\begin{gathered}
\mathrm{k}_{\mathrm{ii}}=-\left(\sum_{\substack{\mathrm{j}=0 \\
j=1}}^{\mathrm{n}} \mathrm{k}_{\mathrm{ji}}\right) \\
\mathrm{K}=\left[\begin{array}{cccc}
\mathrm{k}_{11} & \mathrm{k}_{12} & \cdots & \mathrm{k}_{11} \\
\mathrm{k}_{21} & \mathrm{k}_{22} & \cdots & \mathrm{k}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{k}_{\mathrm{n} 1} & \mathrm{k}_{\mathrm{n} 2} & \cdots & \mathrm{k}_{\mathrm{nn}}
\end{array}\right]
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Compartmental Model

\qquad
\qquad
> A detailed postulation of how one believes a system functions.
$>$ The need to perform the same experiment
\qquad on the model as one did in the laboratory.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Experiments

\qquad
> Need to recreate the laboratory \qquad experiment on the model.
Need to specify input and measurements
\qquad
Key: UNITS

- Input usually in mass, or mass/time
- Measurement usually concentration \qquad
- Mass per unit volume

\qquad

Parameter Estimates

$>$ Principles of model building \qquad

- Model definition: structure, error model
- Model selection: parsimony criteria \qquad
- Estimation methods: maximum likelihood
$>$ Model parameters: k_{ij} and volumes
> Pharmacokinetic parameters: volumes, clearance, residence times, etc.
$>$ Reparameterization - changing the parameters from $k_{i j}$ to the PK parameters.

Recovering The PK Parameters From Compartmental Models

Parameters can be based upon

- The model primary parameters
- Differential equation parameters
- Measurement parameters
- The compartmental matrix
- Aggregates of model parameters

Compartmental Model \Rightarrow

 Exponential$$
\begin{aligned}
& \frac{d q_{1}(t)}{d t}=-k(0,1) q_{1}(t)+\operatorname{Dose} \delta(t) \\
& s 1(t)=\frac{q_{1}(t)}{V}
\end{aligned}
$$

For a pulse input $\delta(\mathrm{t})$
$q_{1}(t)=$ Dose $\cdot e^{-k(0,1) t}$
$s 1(t)=\frac{q_{1}(t)}{V}=\frac{\text { Dose }}{V} e^{-k(0,1) t}$
$C L=k(0,1) \times V$

Compartmental Residence Times

Rate constants
Residence times
Intercompartmental clearances

Parameters Based Upon The Compartmental Matrix

\qquad
\qquad
\qquad

$$
K=\left[\begin{array}{cccc}
k_{11} & k_{12} & \cdots & k_{11} \\
k_{21} & k_{22} & \cdots & k_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
k_{n 1} & k_{n 2} & \cdots & k_{n n}
\end{array}\right] \quad \Theta=-K^{-1}=\left(\begin{array}{cccc}
\vartheta_{11} & \vartheta_{12} & \cdots & \vartheta_{1 n} \\
\vartheta_{21} & \vartheta_{22} & \cdots & \vartheta_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\vartheta_{n 1} & \vartheta_{n 2} & \cdots & \vartheta_{n n}
\end{array}\right)
$$

\qquad
\qquad

Theta, the negative of the inverse of the compartmental
\qquad matrix, is called the mean residence time matrix. \qquad

Parameters Based Upon The Compartmental Matrix

Generalization of Mean Residence Time

$\vartheta_{\mathrm{ij}} \quad$| The average time the drug entering compartment j |
| :--- |
| for the first time spends in compartment i before |
| leaving the system. |

$\frac{\vartheta_{\mathrm{ij}}}{\vartheta_{\mathrm{ii}}}, \quad \mathrm{i} \neq \mathrm{j} \quad$| The probability that a drug particle in |
| :--- |
| compartment j will eventually pass through |
| compartment i before leaving the system. |

Compartmental Models:

 Advantages> Can handle nonlinearities
> Provide hypotheses about system structure
> Can aid in experimental design, for example to design dosing regimens
> Can support translational research

Bias That Can Be Introduced By Noncompartmental Analysis

> Not a single sink
= Clearance rate
\downarrow Mean residence time
\downarrow Volume of distribution
\uparrow Fractional clearance
> Not a single sink / not a single source
\qquad
\downarrow Clearance rate
\downarrow Mean residence time
\downarrow Volume of distribution
\uparrow Fractional clearance
JJ DiStefano III.
Noncompartmental vs compartmental analysis: some bases for choice.
Am J. Physiol. 1982;243:R1-R6

Nonlinear Pharmacokinetics

> Example: antibody pharmacokinetics
> Often, antibodies exhibit target-mediated disposition, and thus their elimination may occur at sites remote from plasma due to binding and internalization processes \qquad
> This is one of many possible biological processes causing nonlinear (capacity- \qquad limited) pharmacokinetic behaviors

Impact of Noncompartmental Analysis Assumptions

When drug elimination is influenced by binding to its pharmacological target, the assumptions of noncompartmental analysis may not be met to a varying degree and parameter estimates may be misleading
> Noncompartmental analysis always requires linearity and time invariance, but it can be useful to explore nonlinearities

Example of Dose Nonlinearities

PK example from Sheremata et al. (1999)as reported in Mager (2006)
Target-mediated drug disposition and dynamics
Biochemical Pharmacology 72(2006) 1-10

Take Home Message

> To estimate traditional pharmacokinetic parameters, either model is probably adequate when the sampling schedule is dense, provided all assumptions required for noncompartmental analysis are met
> Sparse sampling schedule and nonlinearities may be an issue for noncompartmental analysis
$>$ Noncompartmental models are not predictive
$>$ Best strategy is probably a blend: but, careful about assumptions!

Selected References

\qquad
> General references (compartmental models)

- Jacquez, JA. Compartmental Analysis in Biology and Medicine. BioMedware 1996. Ann Arbor, MI.
- Cobelli, C, D Foster and G Toffolo. Tracer Kinetics in Biomedical Research. Kluwer Academic/Plenum Publishers. 2000, New York.
> Theory of noncompartmental and compartmental models
- JJ DiStefano III. Noncompartmental vs compartmental analysis: some bases for choice. Am J. Physiol. 1982;243:R1-R6
- DG Covell et. al. Mean Residence Time. Math. Biosci. 1984;72:213-2444
- Jacquez, JA and SP Simon. Qualitative theory of compartmental analysis. SIAM Review 1993;35:43-79
> Selected applications (nonlinear pharmacokinetics)
- Mager DE. Target-mediated drug disposition and dynamics. Biochem Pharmacol. 2006 Jun 28;72(1):1-10.
- Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004 Nov;93(11):2645-68.
> Thanks: Kenneth Luu (PGRD)
\qquad

