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Questions To Be Asked 
¾ Pharmacokinetics 

z What the body does to the drug 
¾ Pharmacodynamics 

z What the drug does to the body 
¾ Disease progression 

z Measurable therapeutic effect 
¾ Variability 

z Sources of error and biological variation 
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Pharmacokinetics / Pharmacodynamics 


Chart showing drug concentration over time. Another chart showing drug 
effect and drug concentration. 

¾ Pharmacokinetics 
¾ “What the body does to the drug” 
¾ Fairly well known 
¾ Useful to get to the PD 

¾ Pharmacodynamics 
¾ “What the drug does to the body” 
¾ Largely unknown 
¾ Has clinical relevance 
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PK/PD/Disease Processes 

Three charts showing drug concentration over time (PK), drug effect by 
drug concentration (PD) and disease status over time (Disease). 
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Hierarchical Variability
 No Variation 

Graphical example 
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Hierarchical Variability 

Residual Unknown Variation 


Graph illustrating within-individual variability (what the model does not 
explain – i.e. measurement error) 
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Hierarchical Variability
 Between-Subject Variation 

Graph illustrating between-individual variability 
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Hierarchical Variability 

Simultaneously Present Between-Subject and 


Residual Unknown Variation 


Graph illustrating this concept 
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Pharmacokinetic Parameters 
¾ Definition of pharmacokinetic parameters 

z Descriptive or observational 
z Quantitative (requiring a formula and a means to estimate 

using the formula) 
¾ Formulas for the pharmacokinetic parameters 
¾ Methods to estimate the parameters from the formulas 

using measured data 
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Models For Estimation 

Noncompartmental 


Compartmental 
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Goals Of This Lecture 
¾ Description of the parameters of interest 
¾ Underlying assumptions of noncompartmental and 

compartmental models 
¾ Parameter estimation methods 
¾ What to expect from the analysis 
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Goals Of This Lecture 
¾ What this lecture is about 

z What are the assumptions, and how can these affect the 
conclusions 

z Make an intelligent choice of methods depending upon 
what information is required from the data 

¾ What this lecture is not about 
z To conclude that one method is “better” than another 
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A Drug In The Body: 
Constantly Undergoing Change 

¾ Absorption 
¾ Transport in the circulation 
¾ Transport across membranes 
¾ Biochemical transformation 
¾ Elimination 
→ADME 

� Absorption, Distribution, Metabolism, Excretion 
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A Drug In The Body: 
Constantly Undergoing Change 

Drawing of a man showing internal organs and systems relating to 
information in graphs of drug concentration versus time. 
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Kinetics 

And Pharmacokinetics 


¾ Kinetics 
z The temporal and spatial distribution of a substance in a 

system. 
¾ Pharmacokinetics 

z The temporal and spatial distribution of a drug (or drugs) 
in a system. 
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Definition Of Kinetics: Consequences 
¾ Spatial: Where in the system 

z Spatial coordinates 
z Key variables: (x, y, z) 

¾ Temporal: When in the system 
z Temporal coordinates 
z Key variable: t 

Drawing of a box showing the Z-axis, the X-axis and the Y-axis. 
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A Drug In The Body: 
Constantly Undergoing Change 

Drawing of a man showing internal organs and systems relating to 
information in graphs of drug concentration versus time. 
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A Drug In The Body: 
Constantly Undergoing Change 

Drawing of a man showing internal organs and systems relating to 
information in graphs of drug concentration versus time. 
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Spatially Distributed Models 
¾ Spatially realistic models: 

z Require a knowledge of physical chemistry, irreversible 
thermodynamics and circulatory dynamics. 

z Are difficult to solve. 
z It is difficult to design an experiment to estimate their 

parameter values. 
¾ While desirable, normally not practical. 
¾ Question: What can one do? 

19 



 

 

 
 

 

 

Resolving The Problem 

¾ Reducing the system to a finite number of components 
¾ Lumping processes together based upon time, location 

or a combination of the two 
¾ Space is not taken directly into account: rather, spatial 

heterogeneity is modeled through changes that occur 
in time 
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Lumped Parameter Models 

¾ Models which make the system discrete through a 
lumping process thus eliminating the need to deal with 
partial differential equations. 

¾ Classes of such models: 
o Noncompartmental models

� Based on algebraic equations 


o	 Compartmental models 
�	 Based on linear or nonlinear differential 

equations 
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Probing The System 
¾ Accessible pools: These are system spaces that are 

available to the experimentalist for test input and/or 
measurement. 

¾ Nonaccessible pools: These are spaces comprising the rest 
of the system which are not available for test input and/or 
measurement. 

Drawing of a man showing internal organs and systems 
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Focus On The Accessible Pool 


Diagram of system, input source, accessible pool and elimination pathway 
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Characteristics Of The 

Accessible Pool 


Kinetically Homogeneous 

Instantaneously Well-mixed 
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Accessible Pool 
Kinetically Homogeneous 

Illustration of homogeneous distribution of drug molecules 

(see e.g. Cobelli et al.) 
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Accessible Pool 
Instantaneously Well-Mixed 

Two illustrations (A and B) for the accessible pool 

¾ A = not mixed 
¾ B = well mixed 

Ref. see e.g. Cobelli et al. 
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Probing The Accessible Pool 

Diagram of accessible pool 

Drawing of a man showing internal organs and systems 
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The Pharmacokinetic Parameters 

¾ Which pharmacokinetic parameters can we estimate 

based on measurements in the accessible pool? 
¾ Estimation requires a model 

z Conceptualization of how the system works 
¾ Depending on assumptions: 

z Noncompartmental approaches 
z Compartmental approaches 
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Accessible Pool & System 
Assumptions → Information 

¾ Accessible pool 
z Initial volume of distribution 
z Clearance rate 
z Elimination rate constant 
z Mean residence time 

¾ System 
z Equivalent volume of distribution 
z System mean residence time 
z Bioavailability 
z Absorption rate constant 
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Compartmental and Noncompartmental Analysis 

The only difference between the two methods is in how the 
nonaccessible portion of the system is described 
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The Noncompartmental Model 

Two illustrations: system and model 
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Recirculation-exchange Assumptions 


Illustration of recirculation-exchange features in non-compartmental model 
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Recirculation-exchange Assumptions 


Illustration of recirculation/exchange features. Neither input nor output can 
occur through this component of the model 
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Single Accessible Pool Noncompartmental Model 
¾  Parameters (IV bolus and infusion) 

z  Mean residence time 
z  Clearance rate 
z  Volume of distribution 

¾  Estimating the parameters from data 
¾  Additional assumption: 

z  Constancy of kinetic distribution parameters 
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Mean Residence Time 

¾ The average time that a molecule of drug spends in the 

system 

Chart showing drug over time – concentration time-curve center of mass 
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Areas Under The Curve 
¾ AUMC 

z Area Under the Moment Curve 
¾ AUC 

z Area Under the Curve 
¾ MRT 

z “Normalized” AUMC (units = time) 

Equation 
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What Is Needed For MRT? 
¾ Estimates for AUC and AUMC. 

Illustration of drug over time and AUC 
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What Is Needed For MRT? 
¾ Estimates for AUC and AUMC. 

Equations 

¾ They require extrapolations beyond the time frame of the 
experiment 

¾ Thus, this method is not model independent as often claimed. 
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Estimating AUC And AUMC Using Sums Of 
Exponentials 

Equations for AUC and AUMC 
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Bolus IV Injection 

Formulas can be extended to other administration modes 

Equations for AUC and AUMC 
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Estimating AUC And AUMC 
Using Other Methods 

¾ Trapezoidal 
¾ Log-trapezoidal 
¾ Combinations 
¾ Other 
¾ Role of extrapolation 

Chart showing drug over time 
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The Integrals 

¾ These other methods provide formulas for the integrals 

between t1 and tn leaving it up to the researcher to 
extrapolate to time zero and time infinity. 

Equations for AUC and AUMC 
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Trapezoidal Rule 
¾ For every time ti, i = 1, …, n 

Equations 

Chart showing drug over time and the use of the trapezoidal rule 
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Log-trapezoidal Rule 
¾  For every time ti, i = 1, …, n 

Additional equation to estimate AUC and AUMC 
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Trapezoidal Rule Potential Pitfalls 

Two charts showing a drug over time 

¾ As the number of samples decreases, the interpolation may 
not be accurate (depends on the shape of the curve) 

¾ Extrapolation from last measurement necessary 
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Extrapolating From tn To Infinity 
¾ Terminal decay is assumed to be a monoexponential 
¾ The corresponding exponent is often called �z. 
¾ Half-life of terminal decay can be calculated: 

Equation for t-lambda ½ 
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Extrapolating From tn To Infinity 

Equations for AUC and AUMC 

From last data point: 

From last calculated value: 
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Extrapolating From tn To Infinity 
¾ Extrapolating function crucial 

Chart showing drug over time and how extrapolating function can change 
terminal slope 
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Estimating The Integrals 

¾ To estimate the integrals, one sums up the individual 

components. 

Equations for AUC and AUMC 
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Advantages Of Using Function Extrapolation 
(Exponentials) 

¾ Extrapolation is automatically done as part of the data 
fitting 

¾ Statistical information for all parameters (e.g. their 
standard errors) calculated 

¾ There is a natural connection with the solution of linear, 
constant coefficient compartmental models 

¾ Software is available 
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Clearance Rate 

¾ The volume of blood cleared per unit time, relative to 

the drug 

Formula for clearance = elimination rate over concentration in blood 

It can be shown that clearance = drug dose over AUC 
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Remember Our Assumptions 
¾ If these are not verified the estimates will be incorrect 
¾ In addition, this approach cannot straightforwardly handle 

nonlinearities in the data (time-varying rates, saturation 
processes, etc.) 

Illustration showing recirculation/exchange 
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The Compartmental Model 


53 



 

 

 
Single Accessible Pool 

Illustration of system and the source and elimination 
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Single Accessible Pool Models 

Illustration of a noncompartmental model 

Illustration of a compartmental model 
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A Model Of The System 

Illustration of a house with multiple systems and a drawing of a human 
figure trying to determine the accessible and inaccessible components  
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Compartmental Model 
¾ Compartment 

z Instantaneously well-mixed 
z Kinetically homogeneous 

¾ Compartmental model 
z Finite number of compartments 
z Specifically connected 
z Specific input and output 
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Kinetics And The 
Compartmental Model 

¾ Time and space 

Differential equations 

¾ Time 

Differential equations 
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Demystifying Differential Equations 

¾ It is all about modeling rates of change, i.e. slopes, or 

derivatives: 

Chart showing concentration over time 

¾ Rates of change may be constant or not 
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Ingredients Of Model Building 
¾ Model of the system 

z Independent of experiment design 
z Principal components of the biological system 

¾ Experimental design 
z Two parts: 

• Input function (dose, shape, protocol) 

• Measurement function (sampling, location) 
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Single Compartment Model 

Drawing of a single compartmental model 

¾ The rate of change of the amount in the compartment, q1(t), is 
equal to what enters the compartment (inputs or initial 
conditions), minus what leaves the compartment, a quantity 
proportional to q1(t) 

¾ k(0,1) is a rate constant 

Differential equation 

61 



 

 

 
 

 
 

 
 

 

Experiment Design 

Modeling Input Sites 


Drawing of a single compartment model 

¾ The rate of change of the amount in the compartment, q1(t), is 
equal to what enters the compartment (Dose), minus what 
leaves the compartment, a quantity proportional to q(t) 

¾ Dose(t) can be any function of time 

Differential equation 
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Experiment Design 

Modeling Measurement Sites 


Drawing of a single compartment model 

¾	 The measurement (sample) s1 does not subtract mass or perturb the system 
¾	 The measurement equation s1 links q1 with the experiment, thus preserving the 

units of differential equations and data (e.g. q1 is mass, the measurement is 
concentration 
� s1 = q1 /V 

¾	 V = volume of distribution of compartment 1 

Equation 
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Notation 

Illustration of one-compartment model  
 
 

• 	The fluxes Fij (from j to i) describe material transport in units 
of mass per unit time 
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The Compartmental Fluxes (Fij) 
¾ Describe movement among, into or out of a 

compartment 
¾ A composite of metabolic activity 

z transport 
z biochemical transformation 
z both 

¾ Similar (compatible) time frame 
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A Proportional Model For The Compartmental 
Fluxes 

¾ q = compartmental masses 
¾ p = (unknown) system parameters 
¾ kji = a (nonlinear) function specific to the transfer from i 

to j 

Equation for Fij as a function of q, p and Kij 

(ref. see Jacquez and Simon) 
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Nonlinear Kinetics Example 
¾ Remember the one-compartment model: 

Equations of a single compartment model 

¾ What if we had a concentration-dependent drug 
elimination rate? 
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Nonlinear Kinetics: 
Michaelis-Menten 

¾ Michaelis-Menten kinetics: 

Equation of a single compartment model with Michaelis-Menten elimination 

¾ Vm = maximal metabolic rate 
¾ Km = Michaelis-Menten constant 
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Linear vs. Nonlinear Kinetics 
¾ If Km >> c(t) then: 

Equation showing first-order elimination rate 

¾ The concentration declines at a rate proportional to it 
(first-order kinetics) 

¾ This is true at low concentrations (w.r.t. Km) 
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Linear vs. Nonlinear Kinetics 
¾ If Km << c(t) then: 

Equation showing zero-order elimination rate 

¾ The concentration declines at a constant rate (zero-
order kinetics) 

¾ This is true at high concentrations (w.r.t. Km) 
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Tracking Nonlinearities 
¾ How to find nonlinear behavior? 

Equation of a single compartment model with nonlinear elimination rate 

¾ Watch: Simulated concentration time profile for D = 
180 mg, Vm = 20 mg/L/hr, Km = 1 mg/L, v1 = 5 L 
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Tracking Nonlinearities 

Equation of a single compartment model 

Graph of concentration over time on a linear scale 
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Tracking Nonlinearities 

Equation of a single compartment model 

Graph of concentration over time on a semilogarithmic scale 
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The Fractional Coefficients (kij) 

• 	The fractional coefficients kij are called fractional 
transfer functions 

• 	If kij does not depend on the compartmental masses, 
then the kij is called a fractional transfer (or rate) 
constant. 

Equations for Kij 
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Compartmental Models And Systems Of Ordinary
 
Differential Equations 

¾ Good mixing 
z permits writing qi(t) for the ith compartment. 

¾ Kinetic homogeneity 
z permits connecting compartments via the kij. 
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The ith Compartment 

Differential equation for change in mass Qj over time 

76 



 

 

 
 

 
 

Linear, Constant Coefficient Compartmental Models 
¾ All transfer rates kij are constant. 

z This facilitates the required computations greatly 
¾ Assume “steady state” conditions. 

z Changes in compartmental mass do not affect the values 
for the transfer rates 
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The ith Compartment 

Differential equation for change in mass Qj over time 
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The Compartmental Matrix 

Equations for transfer rate constants 
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Compartmental Model 

¾ A detailed postulation of how one believes a system 

functions. 
¾ The need to perform the same experiment on the 

model as one did in the laboratory. 
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Underlying System Model 

Illustration of multiple compartmental model 
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System Model with Experiment 

Illustration of a multiple compartmental model 
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System Model with Experiment 

Illustration of a multiple compartmental model 

83 



 

 

 
 

 
 

 
 

Experiments 
¾ Need to recreate the laboratory experiment on the 

model. 
¾ Need to specify input and measurements 
¾ Key: UNITS 

z Input usually in mass, or mass/time 
z Measurement usually concentration 

• Mass per unit volume 
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Model Of The System? 

Illustration of reality (data), conceptualization (model) and data analysis 
and simulation 
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Pharmacokinetic Experiment 

Collecting System Knowledge 


Chart illustrating concentration (mg/dl) over time (days) and a two 
compartment model. 

Illustration of a hypodermic needle 

¾ The model starts as a qualitative construct, based on known 
physiology and further assumptions 
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Data Analysis 

Distilling Parameters From Data 


Differential equations 

Chart illustrating concentration (mg/dl) over time (days) 

o	 Qualitative model -> quantitative differential equations with 
parameters of physiological interest  

o	 Parameter estimation (nonlinear regression) 
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Parameter Estimates 
¾ Principles of model building 

z Model definition: structure, error model 
z Model selection: parsimony criteria 
z Estimation methods: maximum likelihood 

¾ Model parameters: kij and volumes 
¾ Pharmacokinetic parameters: volumes, clearance, 

residence times, etc. 
¾ Reparameterization - changing the parameters from kij 

to the PK parameters. 
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Recovering The PK Parameters From 
Compartmental Models 

¾ Parameters can be based upon 
z The model primary parameters 

• Differential equation parameters 

• Measurement parameters 

z The compartmental matrix 


• Aggregates of model parameters 
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Compartmental Model ⇒ Exponential 

Differential equations. Calculation of clearance as product of K(0,1) times 
compartment volume. 
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Compartmental Residence Times 

Illustration of a two compartment model showing 

¾ Rate constants 
¾ Residence times 
¾ Intercompartmental clearances 
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Parameters Based Upon The Compartmental Matrix 

Formulas for transfer rate constants 

Theta, the negative of the inverse of the compartmental matrix, is called the 
mean residence time matrix 
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Parameters Based Upon The Compartmental Matrix
 
Generalization of Mean Residence Time 

The average time the drug entering compartment j for the first time 
spends in compartment i before leaving the system. 

The probability that a drug particle in compartment j will eventually 
pass through compartment i before leaving the system. 
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Compartmental Models: 
Advantages 

¾ Can handle nonlinearities 
¾ Provide hypotheses about system structure 
¾ Can aid in experimental design, for example to design 

dosing regimens 
¾ Can support translational research 
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Bias That Can Be Introduced By Noncompartmental 

Analysis 

¾ Not a single sink 

= Clearance rate 

↓ Mean residence time 

↓ Volume of distribution 

↑ Fractional clearance 

¾ Not a single sink / not a single source 
↓ Clearance rate 

↓ Mean residence time 

↓ Volume of distribution 

↑ Fractional clearance 

JJ DiStefano III. 

Noncompartmental vs compartmental analysis: some bases for choice.   

Am J. Physiol. 1982;243:R1-R6
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Nonlinear Pharmacokinetics 
¾ Example: antibody pharmacokinetics 
¾ Often, antibodies exhibit target-mediated disposition, 

and thus their elimination may occur at sites remote 
from plasma due to binding and internalization 
processes 

¾ This is one of many possible biological processes 
causing nonlinear (capacity-limited) pharmacokinetic 
behaviors 
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Impact of Noncompartmental Analysis Assumptions 
¾ When drug elimination is influenced by binding to its 

pharmacological target, the assumptions of 
noncompartmental analysis may not be met to a 
varying degree and parameter estimates may be 
misleading 

¾ Noncompartmental analysis always requires linearity 
and time invariance, but it can be useful to explore 
nonlinearities 
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Example of Dose Nonlinearities 

Four panels showing AUC, Clearance, VSS and Half-life 

PK example from Sheremata et al. (1999) as reported in Mager 
(2006) 

Target-mediated drug disposition and dynamics 
Biochemical Pharmacology 72(2006) 1-10 
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Target-Mediated Drug Disposition 

Diagram of a compartmental model 

Mager 
Target-mediated drug disposition and dynamics 
Biochemical Pharmacology 72(2006) 1-10 
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Take Home Message 
¾ To estimate traditional pharmacokinetic parameters, either 

model is probably adequate when the sampling schedule is 
dense, provided all assumptions required for 
noncompartmental analysis are met 

¾ Sparse sampling schedule and nonlinearities may be an issue 
for noncompartmental analysis 

¾ Noncompartmental models are not predictive 
¾ Best strategy is probably a blend: but, careful about 

assumptions! 
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¾ General references (compartmental models) 


z Jacquez, JA. Compartmental Analysis in Biology and Medicine. 
BioMedware 1996. Ann Arbor, MI. 

z Cobelli, C, D Foster and G Toffolo. Tracer Kinetics in Biomedical 
Research. Kluwer Academic/Plenum Publishers. 2000, New York. 

¾ Theory of noncompartmental and compartmental models 
z JJ DiStefano III. Noncompartmental vs compartmental analysis: 

some bases for choice. Am J. Physiol. 1982;243:R1-R6 
z DG Covell et. al.  Mean Residence Time.  Math. Biosci. 

1984;72:213-2444 
z Jacquez, JA and SP Simon. Qualitative theory of compartmental 

analysis. SIAM Review 1993;35:43-79 
¾ Selected applications (nonlinear pharmacokinetics) 

z Mager DE. Target-mediated drug disposition and dynamics. 
Biochem Pharmacol. 2006 Jun 28;72(1):1-10. 

z Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics 
and pharmacodynamics. J Pharm Sci. 2004 Nov;93(11):2645-68. 

¾ Thanks: Kenneth Luu (PGRD) 
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