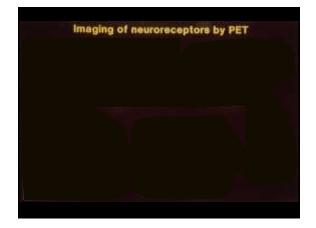
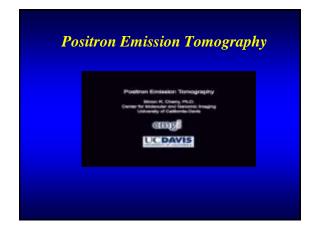
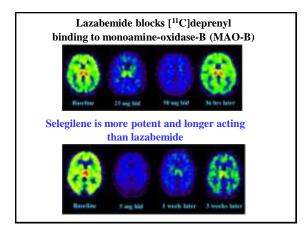

Positron Emission Tomography: Tool to Facilitate Drug Development and to Study Pharmacokinetics



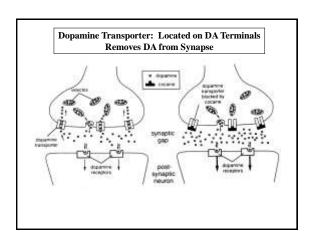

Robert B. Innis, MD, PhD Molecular Imaging Branch National Institute Mental Health

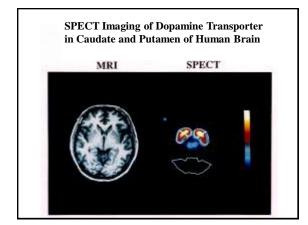
Outline of Talk

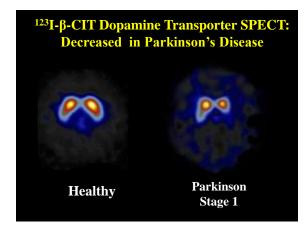
- 1. PET has high sensitivity and specificity
- 2. PET used in therapeutic drug development
- 3. Pharmacokinetic modeling of plasma concentration and tissue uptake can measure receptor density
- 4. Study drug distribution: block distribution to periphery and increase distribution to brain
- 5. Study drug metabolism: inhibit defluorination

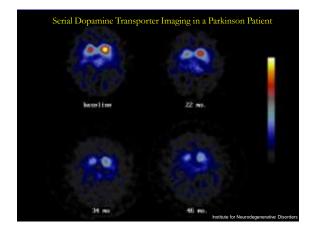

PI	PET vs. MRI				
	PET	MRI			
Spatial Resolution	2 – 6 mm	<< 1 mm			
Sensitivity	10 ⁻¹² M	10 ⁻⁴ M			
Temporal Resolution	minutes	<1 sec			
Radionuclide Ligand (raclo Radioligand & selec	pride): high [¹¹ C]raclopr	selectivity	nsitivity		

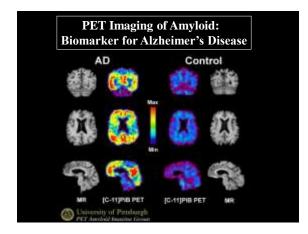
Radioligand = Drug + Radioactivity

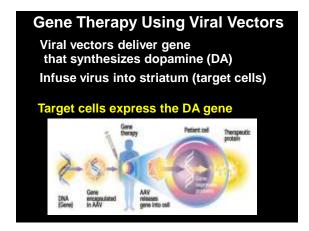

- 1. Drug administered at tracer doses
 - a) No pharm effects
 - b) Labels <1% receptors
 - c) Labeled subset reflects entire population
- 2. Radioligand disposed like all drugs
 - a) Metabolism & distribution
- 3. Radiation exposure

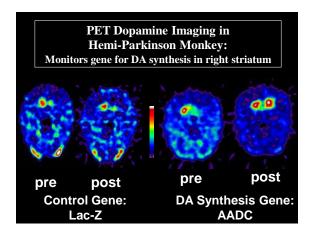

NIH Rodent PET Camera 18F bone uptake rat Developed By: Mike Green & Jurgen Seidel

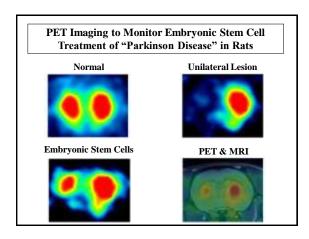

- Determine dose and dosing interval
- Identify homogeneous group
- Biomarker for drug efficacy
- Monitor gene or stem cell therapy


- Determine dose and dosing interval
- Identify homogeneous group
- Biomarker for drug efficacy
- Monitor gene or stem cell therapy

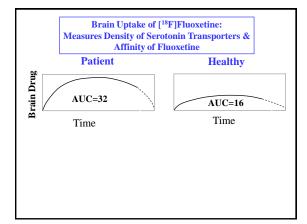


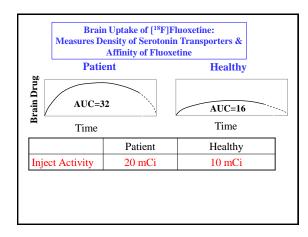


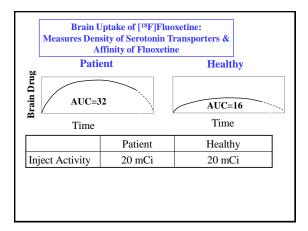

- Determine dose and dosing interval
- Identify homogeneous group
- Biomarker for drug efficacy
- Monitor gene or stem cell therapy

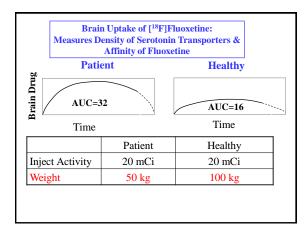


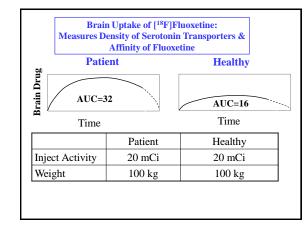
- Determine dose and dosing interval
- Identify homogeneous group
- Biomarker for drug efficacy
- Monitor gene or stem cell therapy

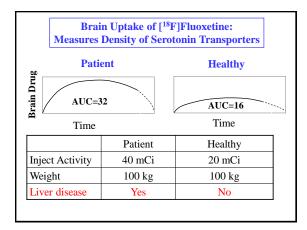


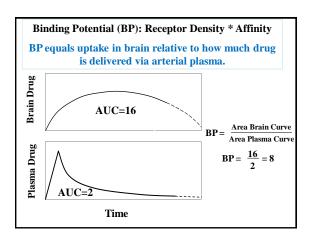


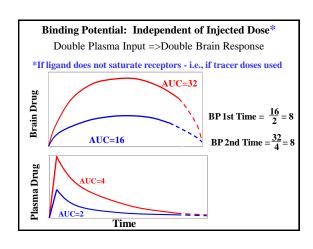



Outline of Talk


- 1. PET has high sensitivity and specificity
- 2. PET used in therapeutic drug development
- 3. Pharmacokinetic modeling: plasma concentration and tissue uptake
- 4. Study drug distribution: "peripheral" benzodiazepine receptor
- 5. Study drug metabolism: inhibit defluorination







BP can be calculated from the Area Under Curve (math integral) as well as rate constants (math differential).

From curves of plasma and brain radioactivity over time, estimate rate constants of entry and removal to/from tissue.

Plasma

$$K_1$$
 k_2
Brain

$$BP = \frac{K_1}{k_2}$$

Tissue uptake is proportional to density of receptors and the affinity of the drug

Binding
$$BP = \frac{B_{\text{max}}}{K_{\text{D}}} = B_{\text{max}} \times \frac{1}{K_{\text{D}}} = B_{\text{max}} \times \text{affinity}$$

$$B_{\text{max}} = \text{receptor density}$$

$$K_{\rm D}$$
 = dissociati on binding constant

$$\frac{1}{K_{\rm D}}$$
 = binding affinity drug

SUMMARY PET KINETICS

- · Organ uptake is proportional to receptor density and affinity of drug
- Binding Potential (BP) = density X affinity
- "Drug Exposure" to tissue is AUC of: plasma concentration vs. time
- "Response" (uptake) of tissue is AUC of: tissue concentration vs. time

$$BP = \frac{\text{Response}}{\text{Exposure}} = \frac{AUC_{\text{tissue}}}{AUC_{\text{plasma}}}$$

· BP also equals ratio of rate constants of entry and removal to/from tissue

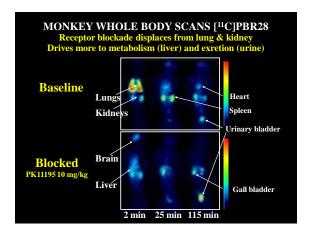
$$BP = \frac{K_1}{k_2}$$

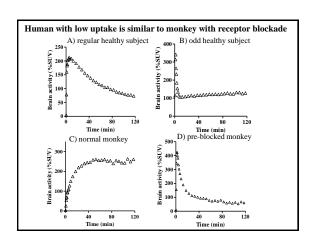
Major Point of PET Pharmacokinetics

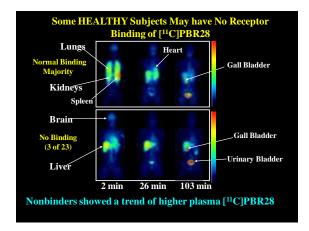
(in words)

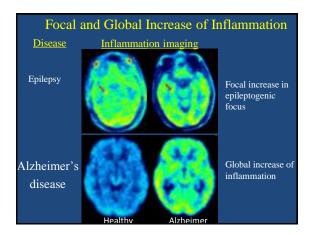
- Plasma pharmacokinetics provides a limited view of what's happening to drug in plasma.
- PET provides a limited view of what's happening to drug in tissue.
- Concurrent measurement of drug in plasma and of drug in tissue allows quantitation of the target of drug action – i.e., receptor.

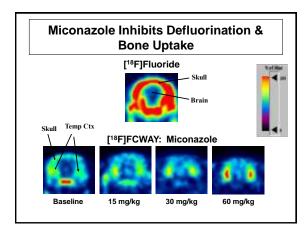

Outline of Talk

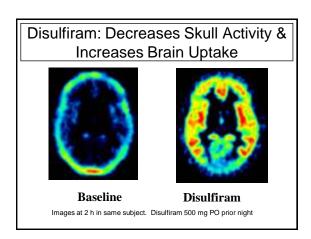

- 1. PET has high sensitivity and specificity
- 2. PET used in therapeutic drug development
- 3. Pharmacokinetic modeling: plasma concentration and tissue uptake
- Study drug distribution: "peripheral" benzodiazepine receptor
- 5. Study drug metabolism: inhibit defluorination

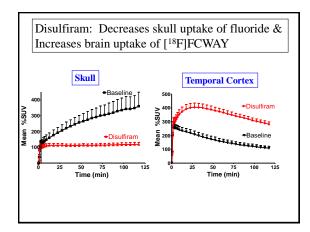

Translocator Protein (18 kDa) a.k.a. "peripheral benzodiazepine receptor"

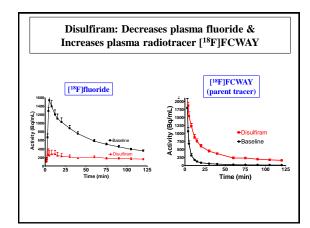

- 1. Mitochondrial protein highly expressed in macrophages and activated microglia
- 2. Exists in periphery and brain
- 3. Multiple potential functions: steroid synthesis, nucleotide transport
- 4. Distinct from typical benzodiazepine GABA_A receptor in brain
- 5. Marker for cellular inflammation


1	2






Outline of Talk


- 1. PET has high sensitivity and specificity
- 2. PET used in therapeutic drug development
- 3. Pharmacokinetic modeling: plasma concentration and tissue uptake
- 4. Study drug distribution: "peripheral" benzodiazepine receptor
- 5. Study drug metabolism: inhibit defluorination

Summary

- 1. PET has high sensitivity and specificity
- 2. PET used in therapeutic drug development
- 3. Pharmacokinetic modeling of plasma concentration and tissue uptake can measure receptor density
- 4. Study drug distribution: block distribution to periphery and increase distribution to brain
- 5. Study drug metabolism: inhibit defluorination

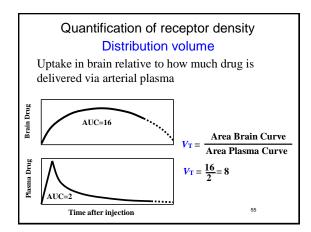
Self-Assessment Quiz: True or False?

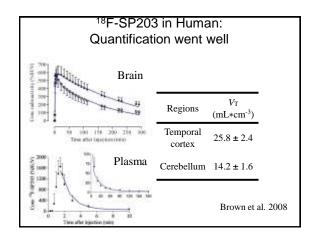
- Positron emission tomography (PET) studies involve the injection of a radioactively labeled drug that emits a particle called a positron.
- PET shows the location of radioactivity in a cross section (or tomograph) of the body.
- PET can be used to quantify the density of specific proteins in the body.
- Compartmental modeling of PET data typically uses measurements over time of 1) PET images of the target tissue and 2) concentrations of unchanged parent radioligand in plasma.

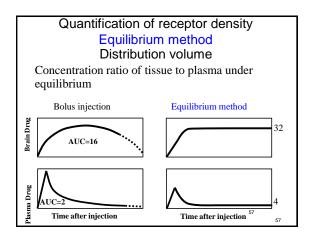
FDA Critical Path Initiative

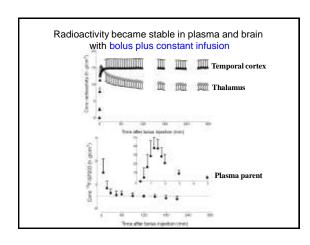
- Approvals for new drugs declining
- R&D funding by industry and NIH is increasing
- Problem: tools are inadequate for efficient evaluation of new drugs in the "critical path" of development
- Still using old tools like liver enzymes and hematocrit to evaluate safety and efficacy
- Need new Product Development Toolkit

1	7


<u>CRITICAL PATH</u> to New Medical Products FDA, March 2004


"There is currently an urgent need for additional **public-private collaborative work** on applying technologies such as ... new imaging technologies.


Opportunity: **Imaging technologies**, such as molecular imaging tools in neuropsychiatric diseases or as measures of drug absorption and distribution, may provide powerful insights into the distribution, binding, and other biological effects of pharmaceuticals."



Advantages of equilibrium method

- Determine VT directly from concentration ratio of tissue to plasma under equilibrium
- Less invasive
- Rapid equilibrium can be achieved with bolus and constant infusion

Rapid equilibrium with bolus plus constant infusion +

