Clinical Pharmacogenomics

David A Flockhart MD, PhD
Director, Indiana Institute for Personalized Medicine
Professor of Medicine, Genetics and Pharmacology
Indiana University School of Medicine

Outline

- Germline Genomics
- Genome Wide Studies
- Candidate Gene Pharmacogenomics
 - Drug Absorption
 - Elimination
 - Effec
- Clinical Utility of Pharmacogenomics

The Genomic Revolution

Why Genomics?

The Genome Map is available on the web, to anyone, free.

The Human Hapmap is available on the web to anyone, free.

DNA is very stable

DNA can be amplified

Human Migration out of Africa Approximate First Appearance of Marker (vars spo) M130 M1

Scientific American, July 2008

SNP Variability in The Human Genome July 2008

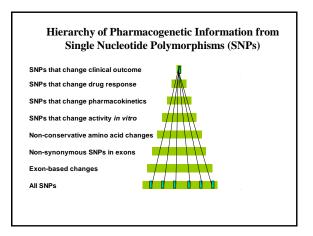
- 2.85 billion base pairs
- ~22,000 genes
- 1.7% of the genome codes for protein
- 3.3% of the genome is as conserved as the 1.7% that codes for protein
- On average 1 SNP/1.2kb
- 10 15 million SNPs that occur at > 1% frequency
- ~450,000 SNPs in Multiply Conserved Regions
- Copy number variations exist in 5-7.5% of the germline genome
- Most tumor DNA sequence is identical to that of the host
- 4-5% of the genome is in areas with high copy number variation

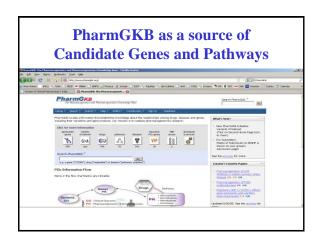
SNP Variability In Exons

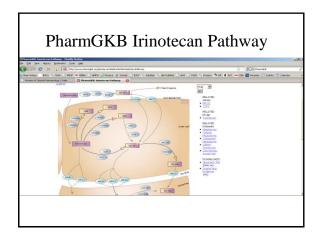
- ~150,000 SNPs in known exons
- 48,451 non-synonymous SNPs
- 1113 introduce a stop codon
- 104 disrupt an existing STOP

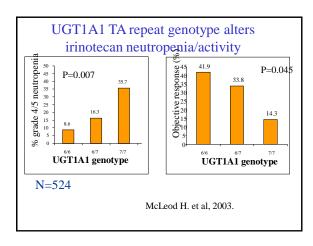
Pharmacogenomic Journals, 2010 Pharmacogenomics Pharmacogenomics Pharmacogenomics Pharmacogenomics Pharmacogenomics Pharmacogenomics

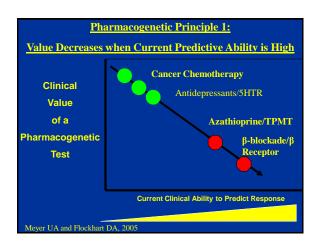
Current Methods for PharmacogeneticTesting

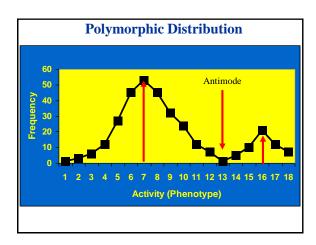

- By phenotype: metabolic probe drug or Western blot or Immunohistochemistry
- By PCR with mutation-specific endonuclease
- By PCR and allele-specific hybrization
- By oligonucleotide chip hybridization
- By laser lithography guided oligonucleotide chip hybridization.
- · By rapid throughput pyrosequencing
- Taqman probe screening
- By genome wide SNP array
- By rapid, robust and high throughput full sequencing
- By including accurate quantitative tests of CNV.

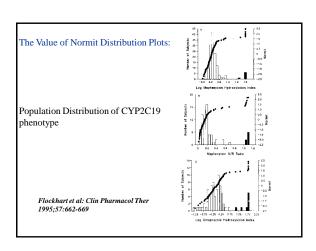

Hierarchy of Pharmacogenetic In Single Nucleotide Polymorph	
SNPs that change clinical outcome	
SNPs that change drug response	
SNPs that change pharmacokinetics	
SNPs that change activity in vitro	
Non-conservative amino acid changes	
Non-synonymous SNPs in exons	
Exon-based changes	
All SNPs	

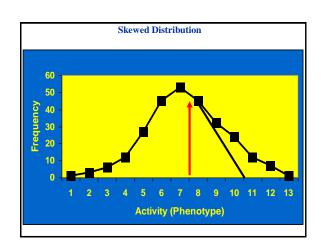

Genome Wide SNP Arrays

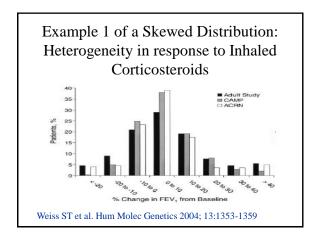

- Affymetrix 6.0 Gen Chip Arrays
 - 906,000 SNPs
 - 1.8 million genetic markers
 - 946,000 copy number probes
- Illumina Infinium Bead Chips
 - Soon to have 5,000,000 common and rare SNPS integrated with copy number variants

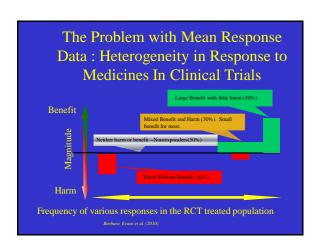

Genome-wide association study identifies novel breast cancer susceptibility loci Nature May 27th, 2007

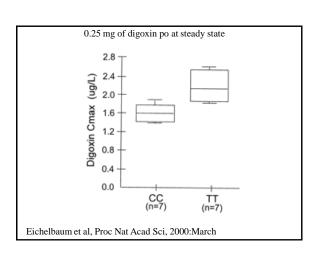


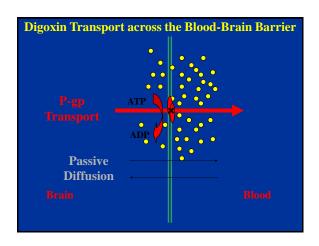








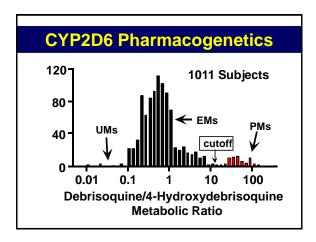




Lessons

- Germline genetic variation is a potentially valuable biomarker for many drug effects
- Extremes of phenotype are often viewed as "discardable data", but outliers (patients or events) should be viewed as important research stimuli
- Drug effects on populations can obscure effects on individual patients. A significant proportion of people may be harmed by a beneficial drug.

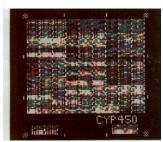
Genetics and Drug Absorption



Genetics	and	Drug	Elin	nination
----------	-----	------	------	----------

Cytochrome P450 2D6

- Absent in 7% of Caucasians
- Hyperactive in up to 30% of East Africans
- Catalyzes primary metabolism of:
 - propafenonecodeine

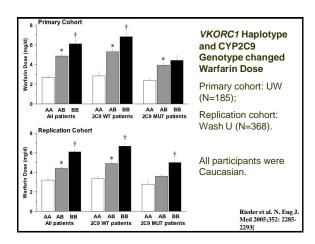

 - β-blockers
 - · tricyclic antidepressants
- Inhibited by:
 - fluoxetine
 - haloperidol
 - paroxetine
 - quinidine

CYP2D6 Alleles

- 69 as of December, 2008
- 24 alleles have no activity
- 6 have decreased activity
- *1, *2, *4 and many others have copy number polymorphisms
- The *2 variant can have 1,2,3,4,5 or 13 copies i.e increased activity

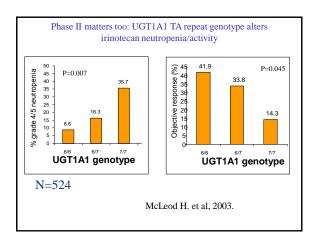
Oligonucleotide array for cytochrome P450 genotesting

From: Flockhart DA and Webb DJ. Lancet End of Yea


CYP2D6 variant genotype and CYP2D6 inhibitors lower [Endoxifen]

Lessons from CYP Pharmacogenetics

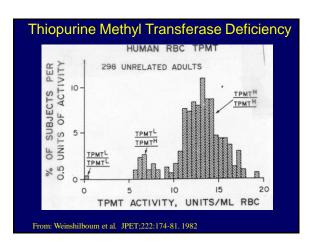
- Multiple genetic tests of one gene may be needed to accurately predict phenotype
- Gene duplication in the germline exists
- The environment in the form of Drug Interactions can mimick a genetic change


Metrics of Clinical Biomarker Value

- Analytical Validity
- Is the genetic test robust in the lab?
 - Clinical Validity
- Does the test predict a clinical event?
 - Clinical Utility
- Would the test change what you do?

Warfarin Pharmacogenomic Testing

- Analytical Validity OK
- Clinical Validity OK
 - Clinical Utility
- limited because a viable alternative (INR) is available in many, but not all practice settings.
 - Not in widespread use.



Irinotecan Pharmacogenomic Testing

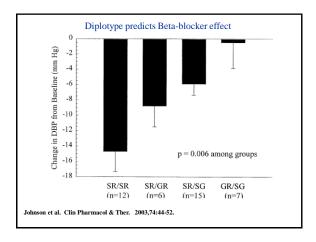
- Analytical Validity OK
- Clinical Validity OK
- Clinical Utility unclear because the tests value is limited to specific dosing regimes
 - Not in widespread use

Thiopurine Methyl Transferase

- Homozygous mutants are 0.2% of Caucasian Populations
- Heterozygotes are ~ 10%
- Homozygous wild type is 90%
 - Metabolism of Azathioprine
 - 6-Mercaptopurine

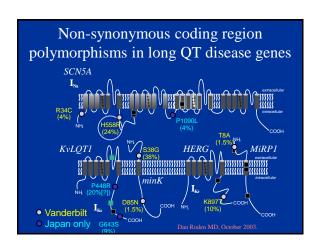
Examples of Human Receptors shown to be genetically polymorphic with *possible* alterations in clinical phenotype

- · G-proteins
- · Angiotensin II receptor and angiotensinogen
- Angiotensin converting enzyme
- *G*√₂receptor
- Dopamine D4 receptor
- · Endothelial NO synthase
- 5HT₄receptor

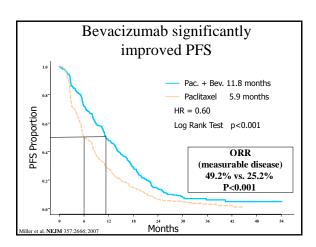

25	NPs: 10 possible hapoltypes
Haplotypes	Diplotypes
Ser Arg	Ser Arg Ser Gly Gly Arg Gly Gly
Ser Gly	Ser Gly Ser Gly Ser Gly
Gly Arg	Ser Gly Gly Arg Gly Gly
Gly Gly	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Ying-Hong Wang PhD, Indiana University School of Medicine

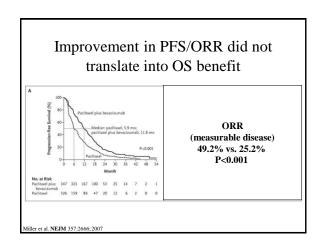
Observed β_1AR Haplotypes in Caucasians and African American Women (WISE study)

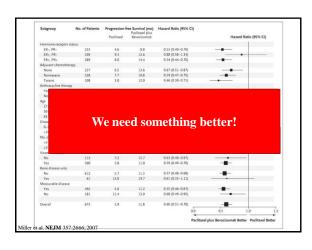
	Frequency	Frequency		
Haplotype	(C)	(AA)		
AC (Ser49/Arg389)	0.65 (0.64)	0.42 (0.42)		
AG (Ser49/Gly389)	0.26 (0.25)	0.36 (0.28)		
GC (Gly49/Arg389)	0.09 (0.08)	0.22(0.18)		
GG (Gly49/Gly389)	0 (0.03)	0 (0.12)		

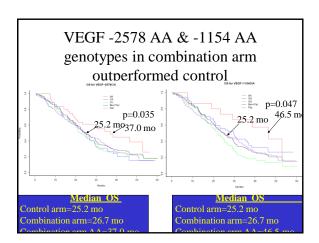

Terra et al. Clin. Pharmacol. Ther. 71:70 (2002)

Haplotypes		population Diplotypes							
Ser	Arg	Ser		Ser		Ser		Ser	Ar
		Ser	Arg			Gly		Gly	Gly
Ser	Gly	SR/	SR	SR/S	G	SR	/GR		
			Gly			Gly	Ser		
Gly	Arg						Gly		
-77				S	G/GI	R			
		Gly			ly				
Gly	Gly	Gly	Arg	G	ly				
							Ying-Hon		
						1	Ying-Hon Indiana Ui of Medicii	niversity 5	

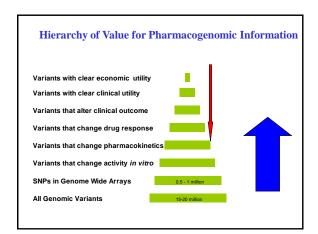

Lesson: Diplotype *may* be a better predictor of effect than Genotype


A SNP that tags a Haplotype (tagSNP) may be an economical means of screening




Biotech Pharmacogenomics

- Bevacizumab (AvastinTM)
 - Interferon and IL 28b
 - Erlotinib and K-Ras



Bevacizumab increased grade 3/4 toxicity Serious but rare Serious, frequent, & unique Likely related to duration of taxane exp P (<mark>%</mark>) **Toxicity** P#B (%) p-value Infection 2.9 9.3 <0.001 Fatigue 4.9 9.1 0.04 Neuropathy 17.7 23.5 0.05 CNS ischemia 0 1.9 0.02 Headache 0 2.2 800.0 Proteinuria b 3.5 <0.001 0 14.8% < 0.001 Hypertension filler et al. **NEJM** 357:2666; 2007

Fourteen Drugs and Their Available Pharmacogenetic Tests December 2010 • HLA *B5701 Abacavir CYP2C19 Clopidogrel Tamoxifen · CYP2D6 metformin • OATP3 Imatinib • BCR-ABL 5-Fluorouracil • DPYD-TYMS Clozapine · 2 SNPs in HLA-DQB1 FamilionTM QT-prolonging Drugs • UGT1A1 Irinotecan Azathioprine and Mercaptopurine • TPMT Warfarin CYP2C9 and VKCoR Carbamazepine • HLA-B* 1502 Interferon • IL 28b

Summary

- Pharmacogenomic testing is now being widely applied to some of the most wodely prescribed drugs
- Pharmacogenomic biomarkers require demonstration of clinical utility before widespread implementation
 - This has happened in very few cases to date
- Clinical pharmacogenomic predictive tests must provide real value over existing predictors
- · Economic utility is often as important as clinical utility

Pharmacogenetics Websites

- · www.pharmgkb.org
- The SNP consortium: http://brie2.cshl.org
- The Human Genome:

www.ncbi.nlm.nih.gov/genome/guide/H_sapiens.html

- CYP alleles: www.imm.ki.se/CYPalleles/
- Drug Interactions: www.drug-interactions.com