Structure and Function of ABC Transporters in Health and Disease

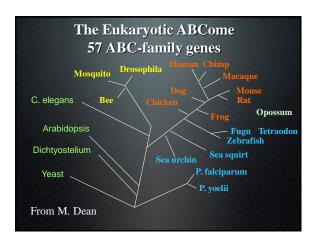
Michael M. Gottesman, M.D. Chief, Laboratory of Cell Biology Center for Cancer Research, NCI National Institutes of Health, DHHS Clinical Pharmacology, January 13, 2011

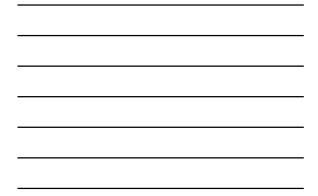
Drug Resistance in Cancer

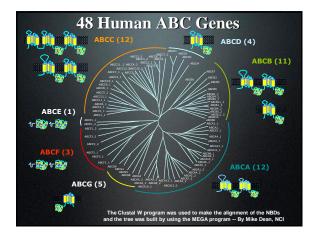
- May affect multiple drugs used simultaneously: known as multidrug resistance (MDR)
- Affects all classes of drugs, including newly designed targeted drugs
- Just as oncogene targets have been catalogued, we need to enumerate all mechanisms of drug resistance in cancer to solve this problem and circumvent resistance

Ultimate Goals

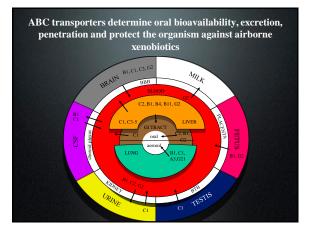
- 1. Molecular analysis of human cancers to predict response to therapy
- 2. Use this information to develop novel drugs to treat cancer and new imaging modalities for cancer
- 3. To learn more about cellular pharmacology and pharmacokinetics of drugs

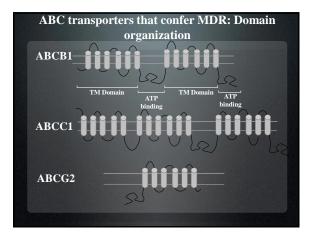


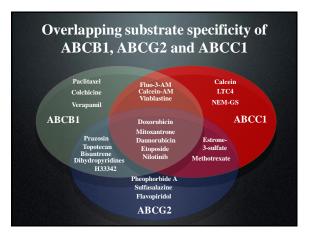

Why study multidrug transporters?

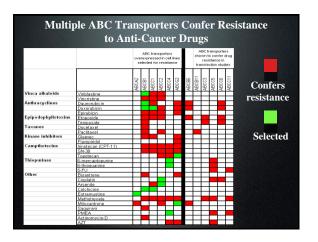

- Important role in multidrug resistance in cancer and in pathogens
- Important role in drug pharmacokinetics (uptake, distribution, and excretion)
- Important role in drug toxicity
- Key role in development (stem cells, morphogenesis)
- To learn about the biology of all transport systems

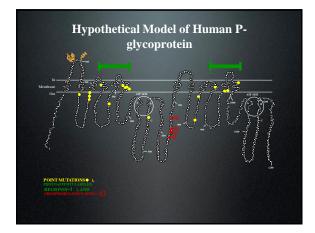
ATP-Binding Cassette (ABC) Transporter Superfamily

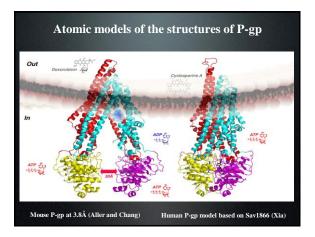

- One of the largest family of transport proteins known. Currently, more than 2000 members have been identified.
- Transport substrates include-- ions, sugars, glycans, phospholipids, cholesterol, peptides, proteins, toxins, antibiotics, and hydrophobic natural product anticancer drugs
- Structurally, consist of various combinations of ATP-binding cassettes and segments with 6 trans-membrane domains.






Human diseases associated with an ABC			
	Disease Transport	er Transporter	
	Cancer	ABCB1, ABCC1, ABCG2	
	Cystic fibrosis	ABCC7 (CFTR)	
	Stargardt disease & AMD	ABCA4 (ABCR)	
	Tangier Disease (HDL deficiency)	ABCA1 (ABC1)	
	Progressive familial intrahepatic cholestasis	ABCB11(SPGP), ABCB4 (MDR2)	
	Dubin-Johnson syndrome	ABCC2 (MRP2)	
	Pseudoxanthoma elasticum	ABCC6 (MRP6)	
	Persistent hypoglycemia of infancy, neonatal diabetes	ABCC8 (SUR1), ABCC9 (SUR2)	
	Sideroblastic anemia and ataxia	ABCB7 (ABC7)	
	Adrenoleukodystrophy	ABCD1 (ALD)	
	Sitosterolemia	ABCG5, ABCG8	
•	Immune deficiency	ABCB2 (Tap1), ABCB3 (Tap2)	







Physiologic Role of P-glycoprotein

Role of P-glycoprotein in cancer

- Approximately 50% of human cancers express P-glycoprotein at levels sufficient to confer MDR
- Cancers which acquire expression of P-gp following treatment of the patient include leukemias, myeloma, lymphomas, breast, ovarian cancer; preliminary results with P-gp inhibitors suggest improved response to chemotherapy in some of these patients
- Cancers which express P-gp at time of diagnosis include colon, kidney, pancreas, liver; these do not respond to P-gp inhibitors alone and have other mechanisms of resistance
- Animal models with human cancer xenografts and BRCA1driven mouse mammary cancers show role for P-gp in MDR (Pajic et al., Cancer Res. 69, 6396-6404, 2009)