Posts Tagged ‘Universe’

Alien Vs. Editor: Life As We May (or May Not) Know It

Monday, April 18th, 2011

By Steve Edberg

Alien vs. Editor is a forum for questions and answers about extrasolar planets and NASA’s search for life beyond our solar system. Leave your questions for author Steve Edberg and read more on the PlanetQuest website.

Tubeworms
Tubeworms that grow near the boundary where hot vent fluid mixes with cold seawater on the ocean floor are an example of extremophiles that broaden our perspective on where to look for life. Image credit: Nicolle Rager Fuller, National Science Foundation

A reader’s question (paraphrased): Why do astronomers assume there have to be conditions similar to Earth in order for life to exist? Who are we to define what life looks like and how would we know what we’re looking at if we really don’t know what we are looking for?

This has been a recurring question over the years, and I don’t think anyone interested in finding extraterrestrial life would dispute those thoughts. The problem is that we aren’t as clever as Mother Nature, so we don’t know what else to look for. More practically, we don’t know what other conditions to look for beyond those we are familiar with.

Science fiction writers have used their imaginations to propose other forms of life. Sir Fred Hoyle (an astronomer) wrote a novel titled “The Black Cloud,” (SPOILER/GIVEAWAY ALERT!! SKIP THE REST OF THIS SENTENCE IF YOU THINK YOU WILL READ THE BOOK) about a self-propelling interstellar cloud that came to orbit the sun to acquire energy (it stopped for lunch!) before moving on.

On the TV shows “Star Trek” and “Star Trek: The Next Generation,” the screenwriters came up with at least two forms of life that were completely novel. Naturally enough, the shows involving them were about recognizing that they were life and how to deal with it. The one on “Star Trek” was about rock-beings that tunneled through an asteroid or planet. The other, on “Star Trek TNG,” was about “nanites,” microscopic silicon crystals that were hive-like beings communicating among themselves electrically and with electromagnetic waves with the crew of Enterprise D.

These are three examples of potential life forms far different from what we are familiar with. But knowing what to look for and where is a long step from the presentation of these ideas in science fiction media.

Before the Viking landings on Mars in the 1970s, Carl Sagan gave talks about the life-detecting instruments aboard the landers, which were designed to detect life as we know it. He also mentioned that there was a camera aboard so that we could see any “silicon-based giraffes that might walk by,” so even then scientists were thinking about possible, unfamiliar forms of life.

The strategy being followed is to look for evidence of extraterrestrial life, as we recognize life, now, rather than wait until we figure out all the possibilities. Scientists study and search for new examples of “extremophiles” that live in extreme conditions compared to what most of life on Earth lives in, in order to broaden our perspective on where to look for life.

There are also radio and optical searches for evidence of extraterrestrial intelligence living (by whatever chemical process) on planets orbiting other stars that might be announcing their presence. And I recently heard that there is a meeting planned to consider what else we might look for in this arena, considering that the era of our radio transmissions out to the galaxy (TV and radio) could be coming to an end as we use more cable and fiber communications here on Earth.


Rocks and Stars with Amy: This Year I Saw the Universe

Tuesday, February 1st, 2011

By Amy Mainzer

Rocks and Stars with Amy

With WISE, I roamed the skies — seeing everything from the closest asteroids to the most distant galaxies. When I was a kid, maybe 6 or 7, I remember reading the encyclopedia about Andromeda, Mars and Jupiter. After that, I spent a lot of my free time (and a fair amount of gym class) wishing that I could be “out there” exploring the stars, imagining what it must be like to get close to a black hole or the lonely, cold surface of a moon. Fast-forwarding several decades, I’ve just spent a tremendously satisfying and delightful year using some of our most sophisticated technology to see “out there” for real. It’s pretty cool when your childhood dreams come true!

Today, the operations team sent the command to kill the survey sequence and put WISE into a deep sleep. While I’m sad to see the survey stop, the real voyage of discovery is just getting started as we unpack the treasures that our spacecraft beamed back to us. Although I’m going to miss waking up to see a new slew of pictures fresh from outer space, what I’ve looked at so far is only a tiny fraction of the millions of images we’ve garnered. My colleagues and I are working nonstop now to begin the decades-long process of interpreting the data. But I can already say for certain that we’re learning that the universe is a weirder, more wonderful place than any science fiction I’ve ever read. If I could go back in time to when I was kid, I’d tell myself not to worry and to hang in there through the tough parts — it was all worth it.

A cast of hundreds, maybe thousands, of people have worked on WISE and deserve far more credit than they get. The scientists will swoop in and write papers, but all those results are squarely due to the brilliance, stubborn persistence and imagination of the technicians, managers, engineers of all stripes (experts in everything from the optical properties of strange materials to the orbital perturbations of the planets), and administrative staff who make sure we get home safely from our travels. Although we may not be able to fly people around the galaxy yet, one thing Star Trek got right is the spirit of camaraderie and teamwork that makes projects like WISE go. For the opportunity to explore the universe with such fine friends and teammates, I am truly grateful.


Rocks and Stars with Amy: Milestones

Tuesday, July 20th, 2010
Rocks and Stars with Amy
By Amy Mainzer

It’s hard to believe that we’ve just crossed the six-month mark on WISE — seems like just yesterday when we were all up at Vandenberg Air Force Base, near Santa Barbara, shivering in the cold at night while watching the countdown clock. But the time is flying (literally!) as WISE whips by over our heads. We’re analyzing data ferociously now, trying to get the images and the data ready for the public release next May. Even though the mission’s lifetime is short, we’ve gotten into a semblance of a routine. We receive and process images of stars, galaxies and other objects taken by the spacecraft every day, and we’re running our asteroid-hunting routine on Mondays and Thursdays. We’ve got a small army (well, okay, three — but they do the work of a small army!) of extremely talented students who are helping us verify and validate the asteroid detections, as well as hunt for new comets in the data. Plus, there is an unseen, yet powerful, cadre of observers out there all over the world following up our observations.

asteroids and comets detected by WISEThis plot shows asteroids and comets observed by NASA’s Wide-field Infrared Survey Explorer, or WISE. Image credit: NASA/JPL-Caltech/ULCA/JHU   |   ›See related video

And so it’s come to pass that we’ve achieved some milestones. We completed our first survey of the entire sky on July 17 — and we just discovered our 100th new near-Earth object! That’s out of the approximately 25,000 new asteroids we’ve discovered in total so far; most of these hang out in the main belt between Mars and Jupiter and never get anywhere near Earth’s orbit. These new discoveries will allow us to conduct an accurate census of both the near-Earth and main belt asteroid populations. We’re really busy chewing on the data right now and calculating what it all means.

Because it’s so short, this mission reminds me a little bit of what the first days of college felt like — a tidal wave of new ideas, new sights and new thoughts. The pace of learning has been incredibly quick, whether I’m trying to get up to speed on asteroid evolution theories or tinkering with the software we use to write papers.

Speaking of papers, we’re in the process of preparing to submit several to science journals; in fact, I’ve already submitted one. The gold standard of science, of course, is the peer-review process. We submit our paper to a journal, and the scientific editor assigns another scientist who is an expert in the field but not involved in the project (and who usually remains anonymous) to read it and offer comments. The referee’s job is to “kick the tires,” so to speak, and ask tough questions about the work to make sure it’s sound. We get a chance to respond, and the referee gets a chance to respond to our responses, and then when everybody’s convinced the results are right, the paper is accepted and can be published. So stay tuned — we should have some of the first papers done soon telling us what these milestones mean for asteroid science.

› Read more from “Rocks and Stars with Amy”


Super Swooper: Cassini wraps up its lowest pass through Titan atmosphere

Monday, June 21st, 2010
Julie Webster
Julie Webster

On Sunday evening, my eyes were glued to eight windows on my computer screen, watching data pop up every few seconds. NASA’s Cassini spacecraft was making its lowest swing through the atmosphere of Saturn’s moon Titan and I was on the edge of my seat. Trina Ray, a Titan orbiter science team co-chair, was keeping me company. Five other members of my team were also at JPL. Between us, we were keeping an eye on about 2,000 data channels.

One of the 34-meter antennas at the Deep Space Network’s Goldstone complex, DSS-24, was pointed at Saturn and listening for the signal that was expected to be here in just a few minutes. The data would be arriving at my computer as quickly as they could be sent back to Earth, though there was an agonizing hour-and-18-minute delay because of the distance the data had to travel. (We call this flyby T70, but it is actually Cassini’s 71st flyby of Titan.)

It was a nervous time for me — the previous night we had been at JPL to send some other real-time commands to the spacecraft when an alarm came in indicating that the magnetometer, the prime instrument taking data for the T70 flyby, needed a reset. Fortunately, the controller on duty immediately called the magnetometer instrument operations team lead in England. Within 90 minutes, the commands were on their way to do a computer reset and clear the alarm. At 2 a.m. Pacific time on Sunday, we got the email indicating all was well and the magnetometer was ready for the Titan closest approach.

So here we were, past one hurdle, hoping nothing else would come up. We had run hundreds of simulations over the past three-and-a-half years, so I knew we had done everything we could think to do. We did more training for this event than anything else we had done since we dropped off the Huygens probe in January 2005 for a descent through the moon’s hazy atmosphere.

Right on time, at 7:26 p.m., the Deep Space Network locked on the spacecraft downlink, a good start. I was focused on the data for spacecraft pointing. As long as we stayed within an eighth of a degree of the expected pointing, everything would be fine. At 7:45 p.m., we got the data from closest approach, a mere 880 kilometers (547 miles) in altitude. Over the vocabox, a cross between a telephone and walkie-talkie, the attitude control team reported that the thrusters were firing about twice as much as we expected. The Titan atmosphere appeared to be a little thicker than we expected, even though we had fed about 40 previous low Titan flybys by Cassini and the descent data from Huygens into our modeling.

But spacecraft control was right on the money, keeping the pointing within our predicted limits. Even with the extra thrusting, we stayed well within our safety margin.

At 7:53 p.m., the spacecraft turned away to go to the next observation. I let out a sigh of relief, happy that everything during closest approach had gone just as we planned. Five attitude control guys crowded into my office with smiles on their faces. Trina and I were marveling at what a wonderful spacecraft we have to work with. Another first for the Cassini mission!

Now, as Trina says, we have to finish the job by returning all the great science data. We have data playbacks today at two different Deep Space Network stations to make sure we have - as we say here - both belts and suspenders. Engineers will also go back to analyze the data with the scientists to see just how dense the Titan atmosphere turned out to be at our flyby altitude.

But last night, at least, my team and I went home happy!


Cassini to Swing Low Into Titan’s Atmosphere

Thursday, June 17th, 2010
César Bertucci
César Bertucci

This weekend, Cassini will embark on an exciting mission: trying to establish if Titan, Saturn’s largest moon, possesses a magnetic field of its own. This is important for understanding the moon’s interior and geochemical evolution.

For Titan scientists, this is one of the most anticipated flybys of the whole mission. We want to get as close to the surface with our magnetometer as possible for a one-of-a-kind scan of the moon. Magnetometer team scientists (including me) have a reputation for pushing the lower limits. In a world of infinite possibilities, we would have liked many flybys at 800 kilometers. But we went back and forth a lot with the engineers, who have to ensure the safety of the spacecraft and fuel reserves. We agreed on one flyby at 880 kilometers (547 miles) and both sides were happy.

Artist's concept of Cassini's Titan flyby
Cassini flies to within 880 kilometers (547 miles) of Titan’s surface during its 71st flyby of Titan, known as “T70,” the lowest in the entire mission. Image credit: NASA/JPL/Space Science Institute
› Full image and caption

Flying at this low altitude will mark the first time Cassini will be below the moon’s ionosphere, a shell of electrons and other charged particles that make up the upper part of the atmosphere. As a result, the spacecraft will find itself in a region almost entirely shielded from Saturn’s magnetic field and will be able to detect any magnetic signature originating from within Titan.

Titan orbits within the confines of the magnetic bubble around Saturn and is permanently exposed to the planet’s magnetic disturbances. Previous measurements by NASA’s Voyager spacecraft and Cassini at altitudes above 950 kilometers (590 miles) have shown that Titan does not possess an appreciable magnetic field capable of counterbalancing Saturn’s. However, this does not imply that Titan’s field is zero. We’d like to know what the internal field might be, no matter how small.

The internal structure of Titan can be probed remotely from its gravitational field or its magnetic properties. Planets with a magnetic field — like Titan’s parent Saturn or our Earth — are believed to generate their global-scale magnetic fields from a mechanism called a dynamo. Dynamo magnetic fields are generated from currents in a molten core where charge-conducting materials such as metals are flowing around each other and also undergoing other stresses because of the planet’s rotation.

We might not find a magnetic field at all. A positive detection of an internal magnetic field from Titan could imply one of the following:

a) Titan’s interior still bears enough energy to sustain a dynamo.
b) Titan’s interior is “cold” (and therefore has no dynamo), but its crust is magnetized in a similar way as Mars’ crust. If this is the case, we should find out how this magnetization took place.
c) Something under the surface of Titan got charged temporarily by Saturn’s magnetic field before this Cassini flyby. While I said earlier that the ionosphere shields the Titan atmosphere from Saturn’s magnetic bubble, the ionosphere is only an active shield when the moon is exposed to sunlight. During part of its orbit around the planet, Titan is in the dark and magnetic field lines from Saturn can reach the Titan surface. A temporary magnetic field can be created if there is a conducting layer, like an ocean, on or below the moon’s crust.

Once Cassini leaves Titan, the spacecraft will perform a series of rolls to fine-calibrate its magnetometer in order to assess T70 measurements with the highest precision. We’re looking forward to poring through the data coming down, especially after all the negotiations we had to make for them!