STATISTICAL EVALUATION OF THE EFFECTIVENESS OF FEDERAL MOTOR VEHICLE SAFETY STANDARD 207: SEAT BACK LOCKS (ONLY)

Report No. 3 of 7

John Ball Gaylord Northrop Jim Knoop Edward Sweeton

The Center for the Environment and Man, Inc. 275 Windsor Street Hartford, Connecticut 06120

Contract No. DOT HS-8-02014 Contract Amt. \$581,905

OCTOBER 1980 FINAL REPORT

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared For U.S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Washington, D.C. 20590 This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

÷.,

CONTRACT TECHNICAL MANAGER'S ADDENDUM

Prepared for the National Highway Traffic Safety Administration in support of a program to review existing regulations, as required by Executive Order 12044 and Department of Transportation Order 2100.5. Agency staff will perform and publish an official evaluation of Federal Motor Vehicle Safety Standard 207 based on the findings of this report as well as other information sources. The values of effectiveness and benefits found in this report may be different from those that will appear in the official Agency evaluation.

Technical Report Documentation Page

1. Report No.	. Government Accession No. 3.	Recipient's Catalog	No.
DOT-HS-805-659			
4. Title and Subtitle	5.	Report Date	
STATISTICAL EVALUATION	OF THE EFFECTIVENESS OF	Octobe	<u>r 1980</u>
FEDERAL MOTOR VEHICLE	SAFETY STANDARD 207: 6.	Performing Organizat	tion Code
Seat Back L	DCKS (ONLY)		
7. Author's) John Doll	lim Knoon	Performing Organizat	ion Report No.
Gavlord Northrop	Edward Sweeton	4254-674	
9. Performing Organization Name and Address	10.	Work Unit No. (TRA	(S)
THE CENTER FOR THE ENVIR	RONMENT AND MAN. INC.		
		Contract or Grant N	0.
2/5 Windsor	Street	DOT-HS-8-	02014
Hartford, Lonned	13.	Type of Report and I	Period Covered
12. Sponsoring Agency Name and Address		Final Rep	ort
U.S. Department of Irans	Safety Administration)ctoher 1978-	October 1980
400 Seventh Street, S W	14.	Sponsoring Agency (Tode
Washington, D.C. 20590			
15. Supplementary Notes			
16. Abstract			
		ty Standard (EMVSS)	207, Soat Back
Locks (Only). It is one of seven statis	istical evaluation of rederal Motor vehicle sale	act. The seven Sta	indards are:
1. FMVSS 108: Side Marker Lamps	(Only) 5. FMVSS 214: Side Door	Beams	
2. FMVSS 202: Head Restraints 3. FMVSS 207: Seat Back Locks (O	hly) 6. FMVSS 222: School Bi Crash Pi	s Seating and otection	
4. FMVSS 213: Child Restraints	7. FMVSS 301: Fuel Syst	em Integrity	
FMVSS 207 is a death-and-injury-reduct and seat backs, that must meet specifi	ion Standard which requires a self-locking re ed static load tests. The Standard became efi	ective 1 January 19	68.
More than 600,000 cases of driver invo	lvement in frontal collisions were analyzed us	ing <u>mass</u> accident d	ata from Texas
(1972-1974), New York (1974) and North modeling and adjustment to minimize po	"Carolina (1973-1975). Contingency table data tential confounding effects and allow direct (were subjected to comparison of injury	rates between
drivers of 2-door and 4-door cars. The	e results of the analyses do not support the	ypothesis that the cars.	introduction of
While the analysis was not completely	successful in removing all confounding effect	, it can be inferre	ed that the
effect of seat back locks on driver in	jury risk, if any, is amall and very difficul	to quantify, giver	the poten-
between vehicle body style and weight	and driver characteristics.		
The question of possible rear seat occ	upant entrapment in accidents involving fire a	ind/or explosion or	immersion was
to entrapment is far outweighed by the	beneficial effect of a rigid seat back confin	ning rear seat passe	engers to the
rear area during a collision.	NOCE data from Acriet 1070 through 1070 upp	مام بالمراجم حك المطعات الم	to on drivou
A brief, limited study of computerized injury and seat failure. The data ind	icated that the likelihood of fatal or critic	il injury is about f	ive times
greater given seat failure. Conversel	y, the probability of escaping any injury is a tailure. However, the NCSS-derived seat fa	bout three times hi	gher with no
were not lower than those for Pre-Stan	dard cars.		
•			
17. Key Words	18. Distribution Statement		
FMVSS 207: Seat Back Locks	Only). Document is a	vailable to i	the public
Statistical Analysis. Standa	ird Evaluation. through the N	ational Tech	nical
Mass Accident Data Analysis f	or Information	Service, Spri	ingfield,
lexas, New York, North Carol	ina. Virginia 221	ρŢ	
FARS Data. NCSS Data.		21 No -1 0	22 Bater
17. Jecurity Classit, (of this repett)	zu, security Classit, (of this page)	41+ 190, 01 F ages	22. F71C0
Unclassified	Unclassified	202	

Form DOT F 1700.7 (8-72)

METRIC CONVERSION FACTORS

	Approximate Ca	nversions to Metri	ic Measures		•	<u> </u>		Approximate Conv	ersions from Met	ric Measures	
Symbol	When Yes Know	Multiply by	To Find	Symbol			Symbol	When You Knew	Multiply by	To Find	Symbol
						*			LENGTH	_	
		LENGTH			=	<u> </u>					
	**************************************		•				-	millimeters	0.04	inches	1450. 2440.
									3.3	feet	
in.	inches	*2.6	Continuitors	Cm	<u> </u>			malars	1.1	vards	
	1001		Contimeters	CHR .			June .	kilaneters.	6.6	miles	mi
	yerrs miles	1.8	kilometer S	ikan.		Ē					
									AREA		
		AREA				<u> </u>					
				-	•		cm ²	square centimeters	0.16	square inches	in ²
in ²	aquare inches	6.5	Square centimeter	E CHR ²		<u> </u>	m ²	squara meters	1.2	square yards	y#2
h",	square feet	0.09	square melors	m,		<u> </u>	ium ²	aquara hilométera	6.4	square miles	mi ²
yd"	square yards	0.8	square maters	11			he	hectores (10,000 m ²) 2.5	acres	
and "		2.6	Square silometers	lun ⁻							
		0.4	MACIFIAN	84		<u> </u>			MASS (mainht)		
		MASS (weight)				<u> </u>					
ot	ounces.	28	Orama	a			6	grame	0.036	GURCES	92
	pounds	0.45	hilograms	ka			kg	kilograma	2.2	pounds	H
	short lons	0.9	lonnes		<u> </u>		t	tonnes (1000 kg)	1.1	short tons	
	(2000 lb)				•	<u> </u>					
		VOLUME							VOLUME		
						<u> </u>					
tap	leaspoons	5	melléliters	mt		<u></u>	mi	millifitar s	0.03	fluid ounces	fi ez
Thep	tablespoons	15	millitions	mí				liters	2.1	pints	pt.
fi ez	fluid Cunces	30	milliliters	mi	* <u></u>	<u> </u>		Itters	1.00		
с ~1	Clipit	0.24	liters			≧ ≻	_3		9.69 X	geners which faret	23
	putt	0.95	ssters					cubic maters	17	cubic works	<u>ت</u> ي
ani	antican	3.6	liters	:		-	A .				
fr ³	cubic leet	9.03	Cubic meters	, "3							
W ²	cubic yards	0.76	cubic meters	" 3	» <u> </u>			TEM	PERATURE (exa	st)	
	TEMP	FRATINE (event)								_	
	1	CHATCHE JEASEL					°C	Colsius	8/5 (then add 32)	Faix onheit Manade aturti	•#
*F	Fahranhast	5/9 (after	Celsius	°c	_						
•	temperature	subtracting	temperature							e,	r
		32)						•F 32	98-6	2	12
							-	-40 0 40	80 . 120	160 200	1
'i in # 2,54	Invacily). For under stact cur	ANZING THE UNIT OF LAND	NI CADIUS, SHU MBS MILL. PL	di. 286,				╺ ┢╺┟┥┥┥┥┥	-++++++++++	┙┪╹╈╺╻╹╹┑╹	L
Units of Nerg	his and Mussures, Price \$2.25,	SD Calatog No. C13,10:2	9 6.		1		-	-40 -20 0	20 40 37		ົ
					<u> </u>	<u> </u>		- u			

.

1. 1.

.

EXECUTIVE SUMMARY

This is the Final Report of the statistical evaluation of the effectiveness of Federal Motor Vehicle Safety Standard (FMVSS) 207: Seat Back Locks (Only).

FMVSS 207 is a death-and-injury reduction Standard which requires a selflocking restraining device for folding seats and seat backs, that must meet specified static load tests. The Standard became effective 1 January 1968.

The principal objective of this analysis is to determine if the effects of seat back locks on injury avoidance can be determined from statistical analyses of existing mass accident data from Texas (1972-1974), New York (1974) and North Carolina (1973-1975). A total of over 600,000 cases of driver involvement in frontal collisions are analyzed. Only domestic vehicles of known body style, make-model and model year that were involved in single vehicle or two-vehicle accidents were included.

Other objectives are (1) to analyze the fatality rate of front and rear seat occupants using Fatal Accident Reporting System (FARS) data, to determine whether seat back locks increase the possibility of rear seat occupants being trapped and killed in panic situations where quick emergency exit from the car is required and (2) to analyze a limited computerized portion of National Crash Severity Study (NCSS) data on seat failure and injury.

The purpose of these evaluations is to provide a better understanding of the effects of seat back locks on deaths and injury severity. The basic measure of effectiveness is defined as follows:

Thus, effectiveness is measured by computing the percent difference between the Pre- to Post-Standard ratio of injury rates for drivers of 2-door and 4-door cars, respectively. This effectiveness measure is formulated with the realization that 4-door cars received the same modifications (which were mandated by other Standards that went into effect at about the same time as FMVSS 207) as were made in 2-door cars, <u>except</u> the seat back lock. Thus, by looking at the changes in injury distributions of drivers of 2-door cars before and after the implementation

iii

of the Standard and comparing this with the analogous data for drivers of 4-door models, one can expect to assess the impact of the Standard on injury reduction. In effect, the 4-door vehicles are being treated as a control group.

Before effectiveness values were computed, the data were smoothed by fitting hierarchical, log-linear models to contingency tables composed of the variables Injury, PrePost, Vehicle Body Style (2-door or 4-door) and selected control variables for each state-year of data. Three distinct injury dichotomies were used: KA vs. BCO, KAB vs. CO and KABC vs. O. Modeling served the dual purpose of smoothing the data by removing random variability due to small cell frequencies, and of revealing the strength and pattern of various interactions among the variables comprising the contingency tables.

The smoothed data were then adjusted (standardized) to allow for the direct comparison of injury rates. Adjustment of the data was necessary in order to insure that the overall effectiveness estimates were not affected by different distributions of Pre- and Post-Standard, 2-door and 4-door vehicles across different levels of control variables. On the average, the net impact of modeling and adjustment was to increase the value of effectiveness estimates by roughly two to three percent, while slightly reducing the variability of these estimates.

The results of the analyses--shown in the table below--do not support the hypothesis that the introduction of seat back locks in 2-door passenger cars reduces the injury risk to drivers in these cars. That is, the results do demonstrate that this aspect of the Standard has not been significantly effective in reducing injury on a broad basis.

	Year	KABC vs O		KAB v	s CO	KA vs BCO	
State		Effect- iveness	Standard Deviation	Effect- iveness	Standard Deviation	Effect- iveness	Standard Deviation
	1972	-1.6 %	2.9 %	-1.3 %	3.5 %	4.9 %	6.1 %
Texas	1973	-0.7	2.9	-3.5	3.6	-12.7	7.6
	1974	-8.3	3.4	-10.3	4.3	1.9	7.7
New York	1974	-7.2	3.1	-12.1	4.4	-17.9	8.9
	1973	-7.9	6.8	-3.7	8.8	-44.4	23.5
North Carolina	1974	-14.6	7.4	-19.9	10.6	-19.0	20.9
	1975	5.6	6.0	14.9	7.5	26.5	13.7

OBSERVED EFFECTIVENESS OF SEAT BACK LOCKS IN STATE ACCIDENT DATA, FRONTAL CRASHES

See effectiveness formula on page v.

While the analysis was not completely successful in removing all confounding effects, it is reasonable to infer that the effect of seat back locks on driver injury risk, if any, is small and very difficult to quantify, given the potential for confounding effects from the implementation of other Standards, the steady increase in sales of 2-door cars (and the corresponding decrease in 4-door car sales) since 1966, vehicle weight differences among 2-door and 4-door cars, and potential differences of age, sex, socioeconomic and personality factors between drivers of 2-door and 4-door cars.

The question of possible <u>rear seat occupant entrapment</u> in accidents involving <u>fire and/or explosion or immersion</u> was also examined by testing the hypothesis that the presence of seat back locks increases the probability of rear seat occupants of 2-door, Post-Standard cars being killed as a result of their being trapped by the seat back lock in panic situations. Empirically, this "trapping" effect was defined as:

Results obtained from 1975-1978 FARS data indicate that there is an estimated 19 percent <u>decrease</u> in the Pre- to Post-Standard ratio of *rear seat* occupant fatality rates corresponding to 2-door, Post-Standard vehicles. It can be speculated that any potential adverse effect due to entrapment is outweighed by the beneficial effect of a rigid seat back which acts as a restraint on the forward movement of rear seat passengers in a crash, thus reducing the likelihood of serious or fatal injury. In any event, the data do not support the hypothesis that seat back locks increase fatalities due to their trapping effect.

A brief, limited study of computerized <u>NCSS data</u> from April 1978 through 1979 was conducted to study data on driver injury and seat failure. Here, seat failure refers to seat deformation as well as failure of the seat adjuster, seat track or seat back locks. The data indicated that the likelihood of fatal or critical injury is about five times greater given seat failure; the probability of escaping any injury is about three times higher with no seat failure, compared to cases with seat failure.NCSS-derived seat failure rates for Post-Standard cars, however, were not lower than those for Pre-Standard cars.

v

ACKNOWLEDGMENTS

The work performed by CEM in statistically evaluating the effectiveness of seven Federal Motor Vehicle Safety Standards is the product of an interdisciplinary team effort.

Dr. Gaylord Northrop is the Principal Investigator of this project, and participated in the development and implementation of the approach and the analyses of the results. Mr. John Ball and Mr. Jim Knoop are the principal authors of this report. Mr. Edward Sweeton contributed to the computer processing and analysis.

Other members of the Study Team who contributed in various ways to the report include:

Ms. Kayla Costenoble Mr. Thomas Bzik Dr. Hans Joksch Mr. Joseph Reidy Dr. Michael Sutherland Dr. Brian Hickie

CEM is grateful for assistance provided by the Texas Highway Department, the New York Department of Motor Vehicles and the Highway Safety Research Center (University of North Carolina) in the acquisition and processing of their state's accident data. Mrs. Carmela Miller, Ms. Marjorie Wallace, Mrs. Teresa Mayer and Mrs. Arlene Bene also provided invaluable clerical support in the preparation of this report.

This study has benefitted throughout from the detailed reviews and constructive comments of the NHTSA Contract Technical Manager, Dr. Charles Kahane. Any errors in analysis or interpretation of data and results are, of course, solely the responsibility of the authors of this report.

ví

TABLE OF CONTENTS

Section	Title	Page
1.0	INTRODUCTION	1-1
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Background Objective and Purpose Scope of Analysis Approach Limitations of the Study Outline of the Report References for Section 1	1-1 1-3 1-3 1-4 1-5 1-5 1-5
2.0	SUMMARY OF ANALYSES PERFORMED FOR FMVSS 207	2-1
2.1 2.2 2.2.1 2.2.2 2.2.3 2.3 2.3.1 2.3.2 2.3.3 2.4 2.4.1 2.4.2	Measures of Effectiveness Estimated Effectiveness of FMVSS 207 Effectiveness of FMVSS 207 in Reducing Driver Injuries Analyses for Trapping Occupant Injury and Seat Failures Evaluation of the Driver Injury Analysis Overall Success of the Analysis Limitations of the Driver Injury Analysis Credibility of the Analysis Evaluation of the Rear Seat Occupant Analysis Overall Success of the Analysis Evaluation of the Rear Seat Occupant Analysis Overall Success of the Analysis	2-1 2-1 2-2 2-6 2-7 2-8 2-8 2-8 2-9 2-10 2-10 2-10
2.4.3	Credibility of the Analysis	2-10
3.0	ANALYSIS OF MASS ACCIDENT DATA AND NCSS DATA	3-1
3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 3.3.2 3.4	Analysis of Driver Injuries Analysis Approach Data Characteristics and Variable Selection Analysis of Mass Accident Data Analysis of Rear Seat Occupant Fatalities Background Data Analysis of FARS Data Analysis of NCSS Data on Seat Intrusion Background Data Analysis References for Section 3	3-2 3-2 3-4 3-36 3-66 3-66 3-68 3-70 3-70 3-70 3-73
APPEND	IX A: FULLY CROSS CLASSIFIED TABLES OF OBSERVED STATE MASS ACCIDENT DATA	A-1
APPEND	IX B: COMPLETE MARGINAL ASSOCIATIONS OF MODEL EFFECTS FOR STATE MASS ACCIDENT DATA	B-1
APPENDI	IX C: SUMMARY OF EFFECTIVENESS RESULTS FOR OBSERVED UNADJUSTED STATE MASS ACCIDENT DATA	C-1
APPEND	IX D: CONFIDENCE LIMITS FOR A DOUBLE RATIO OF PROBABILITIES	D-1

. .

ABBREVIATIONS USED

FMVSS Federal Motor Vehicle Safety Standard CEM The Center for the Environment and Man, Inc. HSRC Highway Safety Research Center FARS Fatal Accident Reporting System NHTSA National Highway Traffic Safety Administration TAD Traffic Accident Data Vehicle Damage Scale "K" Killed; "A", "B", "C" Injury Levels; "O" No Injury KABCO Biomedical Computer Programs BMDP National Crash Severity Study NCSS Abbreviated Injury Scale AIS Society of Automotive Engineers SAE

1.0 INTRODUCTION

1.1 Background

This report is the third in a series of Task 3 Final Reports on the statistical evaluation of the effectiveness of seven Federal Motor Vehicle Safety Standards (FMVSS). This work has been conducted under Contract DOT-HS-8-02014 by The Center for the Environment and Man, Inc. (CEM) and its subcontractor, The Highway Safety Research Center (HSRC) of the University of North Carolina. The seven FMVSS statistically evaluated are:

- FMVSS 108: Side Marker Lamps (Only)
- FMVSS 202: Head Restraints
- FMVSS 207: Seat Back Locks (Only)
- FMVSS 213: Child Seating Systems
- FMVSS 214: Side Door Beams
- FMVSS 222: School Bus Seating and Crash Prevention
- FMVSS 301: Fuel System Integrity

The statistical evaluation of the effectiveness of FMVSS 207 (Seat Back Locks only) is presented in this report. Previous work is described in [1] and [2].

FMVSS 207 originally went into effect on 1 January 1968, at which time it was applicable to passenger cars only. The Standard was basically adapted from the Society of Automotive Engineers (SAE) Recommended Practice J879 which originally appeared in November 1963. The major impact of the Standard was that it required a self-locking restraint device for folding seats and seat backs. In fact, the introduction of seat back locks was the only apparent change made by the manufacturers in response to FMVSS 207. The application of the Standard was extended to multipurpose passenger: vehicles, trucks and buses as of 1 January 1972. At this time, additional requirements and specifications were added to the Standard, including the proviso that the seat remain in its adjusted track position during load application. In addition, various aspects of the Standard were clarified and restructured.

The general requirements of FMVSS 207 are listed below. They apply to passenger cars, multipurpose passenger vehicles, trucks and buses.

- 1. Each occupant seat, with the exception of folding auxiliary jump seats and side facing seats, must be able to withstand specified loads in forward and rearward longitudinal directions. These loads include an amount equal to 20 times the weight of the seat and a load equal to a 3300 inch pound moment about a defined seating reference point. The seat must remain in its adjusted position during the application of each force.
- 2. With the exception of a passenger seat in a bus or a seat having a back that is adjustable only for the comfort of its occupants, hinged or folding seats or seat backs must

be equipped with a self-locking restraining device. Each device must have a release control. The device must not release or fail when:

- A force of 20 times the weight of the seat back is applied through the center of gravity of a forward facing seat back, or
- A force of 8 times the weight of the seat back is applied through the center of gravity of a rearward facing seat back.

Additionally, the restraining device must not release or fail when subjected to an acceleration of 20 g.

- 3. The control for releasing the restraining device must be readily accessible to the seat occupant. It must also be readily accessible to any occupant in a seat immediately to the rear.
- 4. Seats that are not designated for occupancy while the motor vehicle is in motion must be conspicuously labeled to that effect.

There are two important factors related to the evaluation of the effective-

ness of FMVSS 207 which should be noted:

- Between the model years MY 66 and MY 72 there was a significant shift in sales from 4-door to 2-door cars (see Table 3-1, page 3-2). This trend must be taken into account in the evaluation of FMVSS 207. Possible implications of this market shift are discussed when appropriate in Section 3.1.
- 2. FMVSS 207 and many other Standards were applied nearly simultaneously during the late 1960's. It is not immediately obvious as to how to distinguish between the effects of one Standard and another; for example, FMVSS 207 (Seat Back Locks, Only) and FMVSS 202 (Head Restraints) may possibly have related effects. It is conceivable that there is a relation between these two Standards which influences possible effectiveness. In the evaluation of FMVSS 207, it is assumed that the other Standards are equally effective on 2-door and 4-door cars. FMVSS 207 (Seat Back Locks, Only) applies to 2-door passenger vehicles. Thus, in the evaluation of seat back restraints, 4-door cars may be regarded as a "control group." There is the possibility that if another Standard or industry-introduced safety measure had a significantly different effect in 2- and 4-door cars in frontal crashes, it may act as a confounding influence on the evaluation of the Standard. For example, General Motors and Chrysler introduced collapsible steering columns in 1967, and Ford modified the steering wheel in 1967 and introduced collapsible columns in 1968. The effects of collapsible columns may be different in 2-door and 4-door vehicles and also ultimately related to the presence of seat back locks in the 2-door vehicles (at least as far as driver injuries are concerned). Possible confounding factors on the evaluation of the Standard are discussed in Section 3.1.3.

1.2 Objective and Purpose

The principal objective of this analysis is to determine if any effects of seat back locks on fatalities and injury avoidance can be determined from the statistical analyses of mass accident data from:

- Texas 1972-1974
- North Carolina 1973-1975
- New York 1974.

Other objectives are (1) to analyze the fatality rate of front and rear seat occupants, using the Fatal Accident Reporting System (FARS) data, to determine whether the presence of seat back locks increases the possibility of rear seat occupants being trapped and killed in panic situations where quick exit from the car is required, and (2) to analyze National Crash Severity Study (NCSS) accident data on seat failure and driver injury.

1.3 Scope of Analysis

- The analysis of the effects of seat back locks on injury avoidance is primarily concerned with fatalities and injuries to drivers.
- In injury avoidance evaluation the statistical analyses rely on a comparison of 2-door and 4-door Pre- and Post-Standard cars.
- Mass accident data from Texas (3 years), North Carolina (3 years) and New York (1 year) are used.
- The analysis of the effects of seat back locks on rear seat occupant fatalities uses the FARS data for the years 1975 through 1978.
- The analysis of driver injury and seat failures uses NCSS computerized accident data from April 1, 1978 through 1979.

1.4 Approach

The statistical evaluation of the effects of FMVSS 207 is here limited to three specific studies:

1. Injury Analysis for Seating Systems, Using State Accident Data.

2. Rear Occupant Fatality Analysis, Using FARS Data.

3. NCSS Data on Driver Injury and Seat Failure.

The <u>first</u> and major study is concerned with determining if the self-locking seat back devices are an important deterrent to fatalities and injuries of <u>drivers</u>. The <u>second</u> study deals with assessing whether the seat back locks may trap rear seat passengers in severe accidents and increase the risk of death to <u>rear passengers</u> in 2-door cars. The <u>third</u> study briefly reviews limited computerized NCSS data on driver injury and seat failure.

The hypothesis investigated in the first analysis is that drivers of 2-door cars will benefit from reduced injuries in frontal collisions by having the seat back fixed, rather than free to dynamically rotate forward, thus forcing the driver and the passenger(s) into the steering wheel and/or dash panel in front of them. Because there were many other injury reducing Standards introduced at approximately the same time as FMVSS 207, as well as various changes in the vehicles and in sales trends, it is assumed that the degree to which seat back locks are effective can be determined by comparing the difference in the changes of injury rates between 2-door cars and 4-door cars before and after the implementation of FMVSS 207. Specifically, one would expect drivers in 2-door cars to have a slightly greater injury reduction than drivers in 4-door cars, if, in fact, the seat back locks are effective. However, two factors deserve mention at this point. First, the analysis is restricted to drivers in frontal collisions only. Second, if other FMVSS were differentially applied or had significantly greater effectiveness in 2-door or 4-door cars, then any difference in the reduction of injury rates could be attributed to these factors as well as to the presence of seat back locks.

The rear occupant fatality analysis considers the possibility of rear seat occupants becoming trapped due to the inability to release seat back locks in panic-producing situations such as post-crash fires or immersion, where quick exit is essential. It would appear from the analysis that trapping is not an important effect; rather, seat back locks appear to have a beneficial effect of containing rear seat occupants in the rear seat area during a collision and preventing them from being projected into the front seat area, where they might strike objects after having gained momentum.

1-4

1.5 Limitations of the Study

This study does not provide a measure of the overall effectiveness of all aspects of FMVSS 207. It is limited to a consideration of the effects of the self-locking restraining devices for folding seat backs in 2-door passenger cars.

As was pointed out previously, seat back locks were introduced in the model years 1967-1968 in 2-door cars. Seat back locks are the only requirements mandated by FMVSS 207 which do not apply to 4-door cars as well and, hence, the Pre- and Post-Standard 4-door vehicles may be regarded as a control group in the evaluation of seat back locks.

It should also be noted that the other major aspect of FMVSS 207, specifications for seating system strengths, would be difficult to evaluate for two reasons. First, it appears unlikely that the strength of seating systems has changed significantly over the past 30 years. Second, unlike seat back locks, these specifications apply equally to both 2-door and 4-door vehicles.

1.6 Outline of the Report

Section 2 of this report summarizes the analyses performed in the evaluation of the effectiveness of FMVSS 207 with regard to seat back locks. It includes a discussion of the measure of effectiveness; the estimated effectiveness of the Standard; confidence limits on the estimated effectiveness; overall success of the evaluation and the credibility of the analysis. Also included in Section 2 are various comparisons of results and the final conclusions, findings and recommendations obtained from the analysis.

In Section 3, the detailed analyses of the data are described. The Appendices include relevant data in the form of completely cross-classified tables (Appendix A), and a complete description of resultant models (Appendix B) for the Texas, New York and North Carolina accident data samples, as well as effectiveness results for observed unadjusted data (Appendix C) and a description of the effectiveness computations and error estimation procedure (Appendix D).

1.7 References for Section 1

- 1. Ball, J.T., J.C. Reidy and G.M. Northrop. Final Design and Implementation Plan for Evaluating the Effectiveness of FMVSS 202: Head Restraints, and FMVSS 207: Seating Systems, DOT HS 803 392, National Technical Information Service, Springfield, Virginia, 1977.
- Northrop, G.M., J.T. Ball, D. Bancroft and J.C. Reidy. Methodologies for Nine Federal Motor Vehicle Safety Standards: FMVS 105, 108, 122, 202, 207, 213, 221, 222, DOT HS 803 388, National Technical Information Service, Springfield, Virginia, 1977.

2.0 SUMMARY OF ANALYSES PERFORMED FOR FMVSS 207

2.1 Measures of Effectiveness

The effectiveness measure used for evaluating the effects of seat back locks on driver injury is defined as follows.

The question of possible rear seat occupant entrapment in accidents involving fire and/or explosion or immersion was also examined by testing the hypothesis that the presence of seat back locks increased the probability of rear seat occupants of 2-door, Post-Standard cars being killed as a result of their being trapped by the seat back lock in panic situations. Empirically, this "trapping" effect was defined as:

$$\begin{bmatrix} Trapping \\ Effect \end{bmatrix} = \begin{bmatrix} Fatality Rate for Occupants & Fatality Rate for Occupants \\ \frac{of Post-Standard, 2-Door Cars}{Fatality Rate for Occupants} & x & \frac{of Pre-Standard, 4-Door Cars}{Fatality Rate for Occupants} \\ for Pre-Standard, 2-Door Cars & of Post-Standard, 4-Door Cars \end{bmatrix} - 1 \\ x 100 \\ x 10$$

Positive values indicates that a trapping effect may be occurring.

2.2 Estimated Effectiveness of FMVSS 207

FMVSS 207 applies to passenger cars, multipurpose passenger vehicles, trucks and buses. The main impact of the Standard was to require a self-locking restraining device for folding seats and seat backs. Other requirements relate to the strength of seats and seat track devices. Because seat back locks were installed on two-door passenger cars generally in the 1968 model year, the analysis basically focuses on the change in the frequency of injury to drivers of two-door cars between Pre-Standard and Post-Standard models. Secondary investigations (1) study the possibility of increased fatalities of rear seat passengers due to being trapped and (2) analyze NCSS data on seat failures. The major analysis springs from the hypothesis that with seat back locks in a frontal collision, (a) the front seat passenger will not have an additional load or impact from the seat back, and (b) items in the back seat, particularly passengers, will not be thrown against the front seat passengers. The second analysis stems from speculation that seat back lock releases are sometimes difficult to

2-1

locate and operate, especially in panic situations, and may "trap" rear seat passengers, which would be extremely dangerous in situations where fire, explosion or immersion is a post-crash event. The third study is a very limited investigation of the association of driver injury with the failure of seat back locks and other aspects of seat failure using NCSS data.

2.2.1 Effectiveness of FMVSS 207 in Reducing Driver Injuries

The effectiveness of seat back locks for reducing the injury risk of drivers in 2-door passenger cars involved in frontal collisions was evaluated using mass accident data as summarized in Table 2-1. Thus, the effectiveness results are based on more than 600,000 cases from Texas, New York and North Carolina, covering seven state-years of accident data.

TABLE 2-1

MASS ACCIDENT DATA USED TO EVALUATE THE EFFECTIVENESS OF SEAT BACK LOCKS

State	Year	Sample Size	Total		
Texas	1972	156,943			
	1973	158,897	459,228		
	1974	143,388			
New York	1974	65,593	65,593		
North	1973	27,345			
Carolina	1974	26,707	82,463		
	1975	28,411			
	Total Cases				

Before effectiveness values were computed, the data were smoothed by fitting hierarchical, log-linear models to contingency tables composed of the variables Injury, PrePost, Vehicle Body Style (2-door or 4-Door) and selected control variables for each state-year of data. Three distinct injury dichotomies were used: KA/BCO, KAB/CO and KABC/O. Modeling served the dual purpose of smoothing the data by removing random variability due to small cell frequencies, and of revealing the strength and pattern of various interactions among the variables comprising the contingency tables.

The smoothed data were then adjusted (standardized) to allow for the direct comparison of injury rates. Adjustment of the data was necessary in order to insure that the overall effectiveness estimates were not affected by different

2-2

distributions of Pre- and Post-Standard, 2-door and 4-door vehicles across different levels of control variables.

The effectiveness results obtained are summarized in Table 2-2 and Table 2-3 for observed, unadjusted mass accident data and smoothed, adjusted data, respectively. Effectiveness percentages are given together with an associated standard deviation and confidence interval for three injury dichotomies (KA/BCO, KAB/CO and KABC/O) for each state and year analyzed. * On the average, the net impact of modeling and adjustment was to increase the value of effectiveness estimates by roughly two to three percent.

The effectiveness values computed for the smoothed, adjusted data are most often negative. In Texas (the largest sample), effectiveness ranged from 4.9 percent to -12.7 percent for KA/BCO; -1.3 percent to -10.3 percent for KAB/CO; and -0.7 percent to -8.3 percent for KABC/O. The effectiveness values computed from the New York 1974 sample were negative for all three injury dichotomies (-7.2 percent to -17.9 percent). In North Carolina, the effectiveness was negative in 1973 and 1974 for all three injury dichotomies and positive in 1975.**

The results of the analyses are consistent with the null hypothesis that the introduction of seat back locks in 2-door passenger cars had no effect on the injury risk to drivers in these cars. That is, the results do not demonstrate that this aspect of the Standard has been effective in reducing injury.

From Tables 2-2 and 2-3, the following observations are made.

- A comparison of the effectiveness results obtained for the observed (raw) unadjusted with the smoothed (modeled) adjusted data shows that usually a greater effectiveness is obtained with the smoothed adjusted data. In the observed data, the reduction in injury rates from Pre-Standard to Post-Standard cars is greater in 4-door cars than in 2-door cars. Thus, modeling and adjustment to remove confounding effects does increase effectiveness; however, for most samples, negative values remain.
- The variability in results among years is greater in North Carolina with the small data base than in Texas with the much larger number of cases.

"Definitions of injury levels are: K = killed; A = severely injured; B = moderately injured; C = minor injuries; O = no injury.

^{**} In general, negative effectiveness values do not allow rejection of the null hypothesis that seat back locks do not reduce the incidence or severity of injuries in the broad class of frontal crashes between two passenger automobiles. Negative effectiveness values do not imply that the Standard is causing injuries.

TABLE 2-2

SUMMARY OF PERCENT EFFECTIVENESS FOR OBSERVED UNADJUSTED MASS ACCIDENT DATA FOR FRONTAL CRASHES INVOLVING ONE OR TWO VEHICLES

Iniury	ury			Standard	95 % Confidence Interval		
Level	State	Year	Effectiveness	Deviation	From	Τo	
	Texas	1972	5.1	6.1	-4.9	15.1	
		1973	-6.7	7.2	-18.5	5.1	
		1974	-2.8	8.0	-16.0	10.3	
	New York	1974	-27.4	9.7	-43.2	-11.5	
КА	North Carolina	1973	-49.8	24.0	-89.8	-9.8	
		1974	-29.2	22.2	-65.7	7.3	
		1975	20.1	14.6	-3.8	43.9	
	Texas	1972	4.4	7.8	-8.3	17.17	
	Model Year Cars	1973	-2.5	9.0	-17.3	12.3	
		1974	3.2	9.8	-12.9	19.3	
	Texas	1972	-3.2	3.6	-9.1	2.6	
		1973	-1.0	3.5	-6.8	4.8	
		1974	-16.3	4.5	-23.6	-9.0	
	New York	1974	-14.6	4.5	-22.0	-7.3	
кав	North Carolina	19 73	-6.8	9.1	-21.6	8.1	
		1974	-26.9	11.1	-45.0	-8.7	
		1975	12.0	7.7	-0.7	24.7	
	Texas	1972	-1.8	4.5	-9.2	5.5	
	1965-1971 Model Year Cars	1973	3.4	4.4	-3.9	10.6	
		1974	-15.4	5.7	-24.8	-6.0	
	Texas	1972	-2.3	2.9	-7.1	2.5	
		1973	1.2	2.8	-3.4	5.9	
		1974	-12.5	3.5	-18.2	-6.7	
	New York	1974	-8.3	3.1	-13.4	-3.2	
КАВС	North Carolina	1973	-9.7	6.9	-21.0	1.5	
		1974	-18.9	7.5	-31.2	-6.5	
		1975	1.2	6.2	-9.1	11.4	
	Texas	1972	-0.7	3.6	-6.7	5.2	
	1965-1971 Model Year Cars	1973	5.0	3.5	0.3	11.8	
		1974	-10.7	4.5	-18.1	-3.4	

TABLE 2-3

SUMMARY OF PERCENT EFFECTIVENESS FOR SMOOTHED ADJUSTED MASS ACCIDENT DATA FOR FRONTAL CRASHES INVOLVING ONE OR TWO VEHICLES

Inture			Standard		95 % Confi	dence Inte
Level	, State	Year	Effectiveness	Deviation	From	To
	Texas	1972	4.9	6.1	-5.1	14.9
		1973	-12.7	7.6	-25.0	-0.3
	, ,	1974	1.9	7.7	-10.7	14.6
	New York	1974	-17.9	8.9	-32.5	-3.3
KA	North Carolina	1973	-44.4	23.5	-82.9	-5.9
	-	1974	-19.0	20.9	-53.3	15.2
		1975	26.5	13.7	4.0	49.0
	Texas	1972	6.0	7.7	-6.6	18.5
	Model Year Cars	1973	~5.3	9.3	-20.5	9.9
		1974	5.0	9.7	-10.8	20.9
	Texas	1972	-1.3	3.5	-7.1	4.4
		1973	-3.5	3.6	-9.4	2.5
		1974	-10.3	4.3	-17.4	-3.3
	New York	1974	-12.1	4.4	-19.4	-4.9
кав	North Carolina	1973	-3.7	8.8	-18.1	10.7
		1974	-19.9	10.6	-37.4	-2.5
		1975	14.9	7.5	2.6	27.1
	Texas	1972	-0.4	4.5	-7.7	6.9
	1965-1971 Model Year Care	1973	1.3	4.5	-6.1	8.7
	Hoder fear cars	1974	-10.3	6.5	-19.4	-1.3
	Texas	1972	-1.6	2.9	-6.3	3.1
		1973	-0.7	2.9	-5.4	4.1
		1974	-8.3	3.4	-13.9	-2.6
	New York	1974	-7.2	3.1	-12.2	-2.1
KABC	North Carolina	1973	-7.9	6.8	-19.0	3.3
		1974	-14.6	7.4	-26.6	-2.5
		1975	5.6	6.0	-4.2	15.4
	Texas	1972	0.3	3.6	-5.6	6.2
	1965-1971 Model Year Care	1973	4.7	3.6	-1.2	10.5
	nouer rear cars	1974	-7.1	4.4	-14.3	0.0

,

• A reduced sample for Texas was created by including only 1965-1971 model year cars. This eliminates very old cars, includes only model years fairly close to the time of Standard implementation, and reduces the effects of the market shift from 4-door cars to 2-door cars which took place over an extended period. The results, however, were about the same, indicating that the inclusion of very old and very new cars in the Texas 1972-1974 sample did not confound the results.

2.2.2 Analyses for Trapping

The analysis of a potential trapping effect for rear seat occupants in Post-Standard 2-door passenger cars was conducted using fatal accidents involving fire, explosion or immersion derived from the Fatal Accident Reporting System (FARS) for 1975, 1976, 1977 and 1978. The results are summarized in Table 2-4. The results do not support the hypothesis that seat back locks increase the possibility of trapping a rear seat occupant in a panic situation, resulting in increased fatalities. If this were so, one would expect positive values for rear seat occupants and possibly negative values for front seat occupants. Contrary to this expectation, there is an estimated 19 percent decrease in the Pre- to Post-Standard ratio of rear seat occupant fatality rates corresponding to 2-door, Post-Standard vehicles while a 4 percent decrease occurs for front seat occupants. It can be speculated that the locked front seat back may act as a restraint on the forward movement of rear seat passengers during a crash, reducing the likelihood of fatal or serious injury. This beneficial effect is perhaps more important than a possible trapping effect.

TABLE 2-4

RESULTS FOR FRONT AND REAR SEAT OCCUPANTS TO EVALUATE TRAPPING IN FIRE/EXPLOSION/IMMERSION ACCIDENTS

Occupant Location	Weighted Change in Post Standard/Pre-Standard Fatality Ratio
Rear Seat	- 19 % N = 513
Front Seat	- 4 % N = 3086
Total	N = 3599

2.2.3 Occupant Injury and Seat Failures

An analysis of a limited sample of computerized National Crash Severity Study (NCSS) data indicated that the probability of avoiding injury is three times greater when no seat failure occurs. Seat failure was defined to include any seat deformation as well as failure of the seat adjuster, track and lock. Fatal or serious injury occurs about five times more often with seat failure. The NCSS seat failure rates were 2.4 percent in Pre-Standard cars and 3.7 percent in Post-Standard cars. It should be noted that seat failure occurred in only four percent of the NCSS cases. Seat failure tends to occur primarily in very violent crashes, where the failure of the seat is likely to be only one of many possible mechanisms causing or contributing to death or serious injury.

2.3 Evaluation of the Driver Injury Analysis

2.3.1 Overall Success of the Analysis

The analysis of the effects of seat back locks on driver injuries does not support the hypothesis that seat back locks reduce injury risk to drivers of 2-door passenger cars involved in frontal collisions. The observed, unadjusted data with confounding effects has an injury reduction that is greater in 4-door Post-Standard cars than in 2-door Post-Standard cars, resulting in negative effectiveness. The process of modeling and adjusting the data to remove confounding effects increases the computed effectiveness. However, with the single exception of results for one year (North Carolina 1975), the effectiveness is negative or near zero.

It is reasonable to infer that the effect of seat back locks on driver injury risk in 2-door cars is at most very small and difficult to quantify, given the potential for confounding effects from the implementation of other Standards implemented about the same time; the changing distribution of 2-door and 4-door cars in the automotive population; vehicle weight differences among 2-door and 4-door cars; and potential differences of age, sex, socioeconomic and personality factors among drivers of 2-door and 4-door cars.

2.3.2 Limitations of the Driver Injury Analysis

The analysis of the driver injury reduction effect of FMVSS 207 is limited in the following ways.

- State mass accident data do not indicate whether injury was due to the seat back itself, or to other mechanisms.
 Obviously, the conclusive determination of this information would be virtually impossible in most accident situations.
- 2. There was a large shift from 4-door to 2-door cars during the period considered in this analysis. It is apparent that if this trend had been ignored in the analysis, any relative changes in injury rates could be attributed to the market trend rather than to seat back locks. This effect is controlled for but not entirely eliminated by the modeling and adjustment process that was used with the data.
- 3. Only driver injuries have been studied. Insufficient data were available to analyze the effectiveness of seat back locks for front seat passengers.

2-8

4. Mass accident data recording techniques result in missing data and the misclassification of data.

It is known that the police assignment of injuries to the intermediate KABCO is somewhat subjective and ambiguous, particularly for the B, C, and O levels. Missing information for some variables has prevented some useful comparisons between states from being made. In some cases, certain types of information are not collected, e.g., vehicle weight in Texas. Data limiations such as this have been partially offset by using make/model/year information.

5. The analytic approach imposes some practical and theoretical constraints.

The use of categorical data analysis techniques limits the modeling of smooth relationships between factors, e.g., relations between driver age and injury severity.

2.3.3 Credibility of the Analysis

The credibility of the analysis is quite high even considering the limitations noted in Section 2.3.2. More than 600,000 cases of driver involvement in frontal crashes were studied, and the cars were rather evenly divided among 2-door and 4-door cars and Pre-Standard and Post-Standard cars, assuring a large sample in each cell. The analysis was carried out in three states of widely divergent locations and somewhat different economic and demographic characteristics, as well as driving habits.

2.4 Evaluation of the Rear Seat Occupant Analysis

2.4.1 Overall Success of the Analysis

The question of possible rear seat occupant entrapment in accidents involving fire and/or explosion or immersion was addressed by the analysis. The results, while based on a small number of cases, suggest that any effect due to entrapment is outweighed by the beneficial effect of a rigid seat back confining rear seat passengers to the rear area during a collision, thus reducing the likelihood of serious or fatal injury.

2.4.2 Characteristics and Limitations of the Rear Seat Occupant Analysis Two important aspects should be pointed out:

- 1. This analysis was carried out on the basis of the FARS data for the period 1975-1978, and FARS is a census of fatal accidents for that period.
- 2. Using police reported accident data, it is not possible to determine the cause of death or other factors which might indicate the importance of the seat back lock.

2.4.3 Credibility of the Analysis

The credibility of the results is as high as practicable, because the analysis is based on the entire FARS census and not on a sample. A trapping effect of -19 percent was determined, which is the opposite of what would be expected if there were an increase in trapping. From this, it would appear that seat back locks are possibly beneficial to rear seat passengers, even in fire/explosion/immersion situations, by confining them to the rear seat and keeping them from being thrown into the front seat region, where they might strike the windshield, windows and supports, the dash, and front seat occupants. Also, because of the seat back locks, the occupants of rear seats in 2-door cars are less likely to be ejected through open front windows or doors.

Overview

This section contains a detailed description of two analyses performed on mass accident data and a brief examination of NCSS data. The analyses described in this section include:

- 3.1 Analysis of Driver Injuries
- 3.2 Analysis of Rear Seat Occupant Fatalities
- 3.3 Analysis of NCSS Data on Seat Intrusion

The first analysis is the principal effort for studying the effectiveness of seat back locks in 2-door passenger cars. The analysis contains a discussion of the analytic approach; a description of the data files used and how they were derived; and a step-by-step presentation of the analysis through the determination of effectiveness and estimation of errors for FMVSS 207. More briefly, the second analysis investigates the question of trapping rear seat occupants, while the third analysis examines the relation between driver injury and seat failure as determined from a portion of NCSS accident data.

3.1 Analysis of Driver Injuries

3.1.1 Analysis Approach

The purpose of this analysis is to assess whether the requirement for seat back locks in 2-door passenger cars reduces the severity or frequency of injuries to drivers. This effect has been investigated by using state accident data to analyze the injury characteristics of drivers in passenger car frontal crashes.

As was outlined in Section 1.1, FMVSS 207 went into effect on 1 January 1968. Prior to the implementation of the Standard, only General Motors had included (in 1967) seat back locks on all their 2-door models. There also were self-locking seat back restraints on some types of foreign cars implemented over a period of years prior to 1967. However, foreign cars are excluded from the sample.

To address the question of whether seat back locks reduce the frequency or severity of injury to front seat occupants, a comparison is made between drivers of 2- and 4-door cars before (Pre) and after (Post) the Standard took effect. The 4-door cars received the same modifications (which were mandated by other Standards that went into the effect at roughly the same time as FMVSS 207) as were made in 2-door cars, <u>except</u> the seat back lock. Thus, by looking at the changes in injury distribution of drivers of 2-door cars before and after the implementation of the Standard and comparing this with the analogous data for drivers of 4-door models, one might hope to assess the impact of the Standard on injury reduction. In effect, the 4-door vehicles are being treated as a control group.

t

There is a difficulty in a straightforward approach to the analysis outlined above caused by a rather large change in the relative sales of 2 and 4door cars. The following table presents the distribution of domestic factory sales by vehicle type.

	TAE	3LE 3-			
DOMESTIC	FACTORY	SALES	ΒY	VEHICLE	түре
	(Pe	ercent)		

Year	Vehicle Type						Vehicle Type					
	2-Door	4-Door	Chassis/Convertibles									
1966 1967 1968 1969 1970 1971 1972	45.3 48.2 50.8 51.9 53.6 53.2 54.3	50.0 47.6 46.0 45.6 45.0 45.7 45.0	4.7 4.2 3.2 2.5 1.4 1.1 0.7									

Source: Automobiles Facts and Figures Compiled Annually by Motor Vehicle Manufacturers Association of U.S. [1] It is apparent that there has been a marked shift away from 4-door cars and, unless controlled for, any relative differences in injury rates may be attributable to the market shift rather than to seat back locks.

CEM's analytic approach to evaluating FMVSS 207 has three major aspects:

- Definition of effectiveness measures.
- Smoothing of the data to remove chance variation.
- Adjustment of the data to control for differences of the injury rates that are not due to FMVSS 207.

The basic variables used in the analysis are Pre/Post, 2-door/4-door, and injury severity; other variables are selected for adjusting and/or modeling the data. Driver injury distributions between Pre- and Post-Standard 2- and 4-door cars are not directly comparable without adjustment. There are differences among the four classes in the distribution of other variables such as vehicle weight, driver age and driver sex. In order to address the question of how many (driver) injuries were avoided due to seat back locks on 2-door, Post-Standard cars, the data have to be adjusted for these differences. Once this is done, the driver injury distribution of other classes of accidents can be directly compared to the driver injury distribution for all 2-door car accidents.

With the above comments in mind, the analysis of the effectiveness of FMVSS 207 is carried out in the following steps:

- Select the full mass accident data base. The data bases analyzed are Texas 1972-1974, North Carolina 1973-1975 and New York 1974.
- Extract the partial data set to be directly used in evaluation of the Standard. The partial data set consists of drivers in passenger cars involved in frontal impact collisions.
- 3. Define variables to be considered for modeling and adjustment. In addition to Model Year Class (Pre/Post), Vehicle Body Style (Style) and Driver Injury (Injury), all available variables that might account or control for possible confounding effects and random variability of the data are considered for modeling and adjustment.
- 4. Apply the variable selection procedure. From the group of potential variables, at most four can be selected for modeling and adjustment. This reflects the limitation of a maximum of seven variables in the modeling procedure. The variable selection procedure consists of ranking all potential variables according to the strength of their interactions with Prepost, Style and Injury and choosing those variables with the highest degree of interaction.

- 5. Model the data defined by the table, Injury x Pre/Post x Style x Variable, x Variable x ... Variable, using the log-linear modeling routine in the Biomedical Computer Programs P-Series.[2] The purpose of modeling is to remove random variability and smooth the data. Modeling also reveals the strengths of interactions among variable groups. Modeling is carried out separately for 3 injury dichotomies (KA x BCO, KAB x CO, KABC x O).
- 6. Adjust the smoothed data to allow for the direct comparison of injury rates. Adjustment is necessary in order to insure that the overall effectiveness estimates will not be affected by a different distribution of 2-door and 4-door vehicles across all levels of the relevant pre-crash factors identified in the variable selection procedure.
- 7. Compute the effectiveness of the Standard for each state-year data subset and compare results. The effectiveness measure which is used in this analysis is a ratio of the change (Pre vs. Post) in injury rates for drivers of 4-door cars relative to the change (Pre vs. Post) for drivers of 4-door cars. If P₁ are defined as in Table 3-2, then the effectiveness is computed as follows.

$$\mathbf{E} = \left[1 - \left\{ \frac{\mathbf{P}_{21}}{\mathbf{P}_{11}} \mathbf{x} \; \frac{\mathbf{P}_{12}}{\mathbf{P}_{22}} \right\} \right] \mathbf{x} \quad 100$$

An error estimate of each effectiveness computation is made.

TABLE 3-2

Condition	2-Door	4-Door
Pre-Standard	P11	P ₁₂
Post-Standard	P ₂₁	P ₂₂

CLASSIFICATION OF DRIVER INJURY RATES

- 8. Repeat Steps 5-7 for data that include only drivers in passenger cars with model years from 1965 through 1971 (i.e., close to the time of Standard implementation) and evaluate any differences in the effectiveness and error estimate.
- 9. If positive effectiveness is found, extrapolate the results based on Texas, North Carolina and New York to nationwide estimates of the number of injuries avoided assuming all 2-door cars have seat back locks compared with no 2-door having seat back locks.

3.1.2 Data Characteristics and Variable Selection

The data characteristics and variable selection for each state are presented separately in this subsection. The five generic tables that document each data set are:

- Relation of partial data set to full data base.
- Univariate frequency distribution of relevant variables.
- Injury rates for Pre/Post Standard x 2-door/4-door vehicle x relevant variables.
- Chi-squares of interaction terms of variables considered for modeling and adjustment.
- Completely cross-classified contingency table of data prior to modeling (Appendix A).

Texas 1972, 1973, 1974

The size of the seat back lock drivers-only data set relative to the entire 1972-1974 Texas accident data base can be characterized by noting the fraction of accidents, vehicles and fatalities contained in the data set as given in Table 3-3. The low fatality rates in the Texas partial data sample (and also in North Carolina and New York) result from the screening procedure used to establish a data set that might reflect the effects of adding seat back locks. The partial data set excluded vehicles that overturned or had run off the road. Only drivers were included. Since average occupancy is 1.6 persons per vehicle, a significant number of other occupants are excluded. Foreign cars were excluded, because many foreign manufacturers had seat back locks before 1968. Convertibles were not included as passenger cars and passenger cars towing anything were excluded. All of the above factors tend to lessen the number of fatalities and fatal accidents included in the partial data set.

TABLE 3-3 ACCIDENTS, VEHICLES AND FATALITIES IN 1972-1974 TEXAS DATA BASE

Year	Variable	Full Data Base	Partial Data Set	Percent
1972	Accidents	432,998	125,555	29.0
	Vehicles	744,699	156,943	21.1
	Fatalities	3,688	362	9.8
1973	Accidents	464,226	127,779	27.5
	Vehicles	800,545	158,897	19.9
	Fatalities	3,692	334	9.1
1974	Accidents	434,194	114,711	26.4
	Vehicles	747,834	143,388	19.2
	Fatalities	3,046	261	8.6

Specifically, the partial data set was derived by selecting cases that satisfied the following values of the screening criteria:

- Vehicle Type = Passenger Car.
- Point of Impact = Front.
- Accident Type = Frontal Collision with:
 - 1. another motor vehicle,
 - 2. a parked car, or
 - 3. a fixed object.
- Manner of Collision Between Two Motor Vehicles, or Single Vehicle Striking Fixed Object.
- Number of Vehicles in Accident = 1 or 2.
- Vehicle Make and Model = "Domestic."
- Vehicle Body Style 2-door or 4-door Passenger Car.
- Vehicle Model Year is known.
- "Drivers" of parked cars are eliminated.

The univariate frequencies of some key variables in the Texas 1972-1974 driver-only 10 percent sample are given in Table 3-4. The 10 percent random sampling yielded 49,355 cases for the three years. The univariate distributions are shown for each year and the three years combined. The table contains few surprises and only a few remarks concerning the data will be noted. Only 2.3 percent of the drivers suffered fatal or serious injury. This distribution of driver injury indicates that a KABC vs. O injury dichotomy may be required to yield interpretable results, since almost 89 percent of the drivers are listed as uninjured. The percentage of Pre-Standard cars shifts from 44 percent in 1972 to 29 percent in 1974, with an overall 36 percent for the three years. This percentage is considerably higher than in the North Carolina and New York data bases and reflects, of course, the closer overall proximity in time to the Standard implementation date in Texas. The Model Year Category variable indicates that 63 percent of the vehicles have a model year between 1965 and 1971, within reasonably close proximity of Standard implementation. The distribution of the overall sample between 2-door and 4-door cars is 56 percent and 44 percent, respectively.

Injury rates (KABC percentages) and the number of drivers on which the rates are based are given in Tables 3-5, 3-6 and 3-7 for the Texas 1972, 1973 and 1974 drivers-only 10 percent sample. The rates are given for each category of all variables considered for modeling and are depicted separately for 2-door/4-door cars and Pre/Post Standard.

3-6

TABLE 3-4

FREQUENCY DISTRIBUTIONS OF KEY VARIABLES IN DRIVER-ONLY TEXAS 10 PERCENT SAMPLE

		1972		1973		1974		Total: 1972-1974	
Variable	Category	Absolute Frequency	% of Known	Absolute Frequency	% of Known	Absolute Frequency	% of Known	Absolute Frequency	% of Known
Driver Injury	K A B C O	27 432 923 591 14,991	0.2 2.5 5.4 3.5 88.4	34 350 866 599 15,055	0.2 2.1 5.1 3.5 89.1	24 248 950 561 13,704	0.2 1.6 6.1 3.6 88.5	85 1,030 2,739 1,751 43,750	0.2 2.1 5.6 3.5 88.6
Model Year	Pre	7,442	43.9	6,004	35.5	4,441	28.7	17,887	36.2
Class	Post	9,522	56.1	10,900	64.5	11,046	71.3	31,468	63.8
Vehicle Body	2-Door	9,198	54.2	9,529	56.4	9,046	58.4	27,773	56.3
Style	4-Door	7,766	45.8	7,375	43.6	6,441	41.6	21,582	43.7
City Size	Rural	1,373	8.1	1,309	7.7	1,051	6.8	3,733	7.6
	LT 2,500	445	2.6	417	2.5	413	2.7	1,275	2.6
	2,500- 5,000	389	2.3	395	2.3	337	2.2	1,121	2.3
	5,000- 10,000	679	4.0	693	4.1	623	4.0	1,995	4.0
	10,000- 25,000	1,401	8.3	1,437	8.5	1,344	8.7	4,182	8.5
	25,000- 50,000	908	5.4	928	5.5	882	5.7	2,718	5.5
	50,000-100,000	2,173	12.8	2,265	13.4	2,018	13.0	6,456	13.1
	100,000-250,000	1,273	7.5	1,261	7.5	1,186	7.7	3,720	7.5
	GT 250,000	8,323	49.1	8,199	48.5	7,633	49.3	24,155	48.9
Road Classifi- cation	Interstate U.S. & State Farm to Market County Road City Street Turnpike	1,635 5,039 710 348 9,202 30	9.6 29.7 4.2 2.1 54.2 0.2	1,718 4,818 742 327 9,261 38	10.2 28.5 4.4 1.9 54.8 0.2	1,433 4,446 663 304 8,623 18	9.3 28.7 4.3 2.0 55.7 0.1	4,786 14,303 2,115 979 27,086 86	9.7 29.0 4.3 2.0 54.9 0.2
Weather	Clear-Cloudy	14,239	83.9	13,739	81.3	12,895	83.3	40,873	82.8
	Rain	2,549	15.0	2,929	17.3	2,415	15.6	7,893	16.0
	Snow	64	0.4	130	0.8	35	0.2	229	0.5
	Fog	108	0.6	99	0.6	135	0.9	342	0.7
	Dust/Smoke	4	0.0	7	0.0	7	0.0	18	0.0
Accident Type	Collision w MV	14,709	86.7	14,552	86.1	13,308	85.9	42,569	86.3
	Coll.w Prkd Car	870	5.1	922	5.5	859	5.5	2,651	5.4
	Coll.w Fixd Obj	1,385	8.2	1,430	8.5	1,320	8.5	4,135	8.4
Light Condition	Daylight Dawn Dark-No Lights Dark-Lights Dusk	12,453 73 2,981 1,128 329	73.4 0.4 17.6 6.6 1.9	12,413 65 2,890 1,222 314	73.4 0.4 17.1 7.2 1.9	11,248 103 2,545 1,350 241	72.6 0.7 16.4 8.7 1.6	36,114 241 8,416 3,700 884	73.2 0.5 17.1 7.5 1.8
Road Surface Condition	Dry Wet Muddy Snowy Icy	13,371 3,250 3 31 309	78.8 19.2 0.0 0.2 1.8	12,765 3,730 9 68 332	75.5 22.1 0.1 0.4 2.0	12,250 3,078 2 14 143	79.1 19.9 0.0 0.1 0.9	38,386 10,058 14 113 784	77.8 20.1 0.0 0.2 1.6
TAD	1-2	10,341	62.1	10,750	64.7	9,844	64.8	30,935	63.8
	3-5	5,758	34.6	5,437	32.7	5,010	33.0	16,205	33.4
	6-7	545	3.3	433	2.6	349	2.3	1,327	2.7
	Missing	320	-	284	-	284	-	888	-
Driver Age	15-24 25-54 55-98 Missing	6,719 7,654 2,298 293	40.3 45.9 13.8	6,816 7,582 2,177 329	41.1 45.7 13.1	6,492 6,710 1,968 317	42.8 44.2 13.0 -	20,027 21,946 6,443 939	41.4 45.3 13.3
Driver Sex	Male	11,077	65.8	10,929	65.1	9,826	63.9	31,832	65.0
	Female	5,768	34.2	5,869	34.9	5,541	36.1	17,178	35.0
	Missing	119	-	106	-	120	-	345	-

INDEL J=4 (CONCINACA)	TABLE 3-4 (C	ontinued)
-----------------------	--------------	-----------

	Category	1972		1973		1974		Total: 1972-1974	
Variable		Absolute Frequency	% of Known	Absolute Frequency	% of Known	Absolute Frequency	% of Known	Absolute Frequency	% of Known
Number of Occupants	One Two or More	15,839 1,125	93.4 6.6	15,882 1,020	94.0 6.0	14,533 953	93.3 6.2	46,254 3,098	93.7 6.3
Person Behind Driver	Yes No Missing	194 16,761 9	1.1 98.9 -	182 16,712 10	1.1 98.9 -	153 15,325 9	1.0 99.0 -	529 48,798 28	1.1 98.9 -
Vehicle Weight	LT 2690 lbs 2690-4089 lbs GT 4090 lbs Missing	1,594 13,331 1,658 381	9.6 80.4 10.0	1,563 12,946 2,039 356	9.4 78.2 12.3 -	1,422 11,561 2,249 255	9.3 75.9 14.8 -	4,579 37,838 5,946 992	9.5 78.2 12.3 ~
Number of Vehicles	One Two	2,238 14,726	13.2 86.8	2,343 14,561	13.9 86.1	2,169 13,318	14.0 86.0	6,750 42,605	13.7 86.3
Manufacturer	GM Ford Other	9,588 4,603 2,773	56.5 27.1 16.3	9,535 4,666 2,703	56.4 27.6 16.0	8,592 4,461 2,434	55.5 28.8 15.7	27,715 13,730 7,910	56.2 27.8 16.0
Model Year Category	Pre-Stnd-LT 65 Pre-Stnd-GE 65 Post-Stnd-LT 72 Post-Stnd-GE 72	3,740 3,702 7,802 1,720	22.0 21.8 46.0 10.1	2,670 3,334 7,258 3,642	15.8 19.7 42.9 21.5	1,781 2,660 6,411 4,635	11.5 17.2 41.4 29.9	8,191 9,696 21,471 9,997	16.6 19.6 43.5 20.3
Total Number of Cases		16,964	-	16,904	-	15,487	-	49,355	-

TABLE 3-5

INJURY RATES FOR TEXAS 1972 DRIVER-ONLY 10 PERCENT SAMPLE

7

	Category	I	njury Rate	e (Percent)	Number of Drivers				
Variable		2-Door		4-Door		2-Door		4-Door		
		Pre	Post	Pre	Post	Pre	Post	Pre	Post	
Accident Type N = 16,964	Coll.w Motor Veh Coll.w Parked Car Coll.w Fixed Obj	11.2 14.5 35.3	9.1 13.9 31.3	10.9 18.1 31.6	7.6 18.8 19.2	2781 227 337	5169 201 483	3421 309 367	3338 133 198	
Driver Age N = 16,671	15-24 25-34 35 or Older	13.6 13.6 15.3	11.0 10.8 12.1	11.2 15.6 14.7	8.5 8.5 8.9	1700 736 848	2684 1649 1449	1519 712 1766	816 669 2123	
City Size N = 16,964	LT 5,000 5,000-249,999 GE 250,000	20.7 12.1 13.5	23.4 10.0 9.1	21.8 10.9 12.9	16.5 7.4 7.0	411 1277 1657	675 2104 3074	559 1652 1886	562 1401 1706	
Vehicle Weight N = 16,583	LT 3000 1bs 3000-3599 1bs GE 3600 1bs	14.1 13.5 14.3	13.2 10.3 10.7	15.3 13.3 12.3	14.2 9.9 7.6	1148 1456 601	1314 2899 1563	692 1904 1351	226 950 2479	
TAD N = 16,644	1-2 3-4 5-7	3.6 23.1 67.3	2.3 17.9 57.8	3.4 22.5 65.6	1.6 14.9 60.3	1995 1099 202	3508 1823 422	2465 1280 262	2373 1006 209	
Light Condition N = 16,964	Daylight Reduced Light	11.2 19.7	9.2 16.2	10.4 21.0	7.7 11.8	2312 1033	4291 1562	2983 1114	2867 802	
Driver Sex N = 16,845	Male Female	13.0 16.5	9.9 13.4	12.8 14.8	7.5 10.5	2380 935	3730 2092	2729 1325	2238 1416	
Road Surface Condition N = 16,964)	Dry Other	14.7 10.8	11.3 10.3	13.9 10.8	9.0 7.0	2622 723	4588 1265	3288 809	2873 796	
Number of Vehicles N = 16,964	One Two	26.6 11.3	25.7 9.2	25.0 11.0	19.0 7.6	560 2785	676 5177	671 3416	331 3338	
Manufacturer N = 16,964	GM Ford Other	13.8 13.9 13.8	9.9 12.6 13.1	12.5 15.4 12.9	7.9 8.8 10.7	1614 1208 523	3462 1534 857	2336 1011 750	2176 850 643	
Road Classifi- cation N = 16,964	US/State/Inter- state Hwy County/Farm Rd City Street	15.9 18.9 12.0	12.8 16.7 9.1	14.5 18.3 11.9	10.3 13.4 6.6	1223 2 201 1921	2413 360 3080	1519 273 2305	1549 224 1896	
Number of Occupants N = 16,964	One Two or More	10.1 56.0	8.5 54.4	10.1 51.7	6.1 51.0	3070 275	5524 329	3780 317	3465 204	
Weather N = 16,964	Clear/Cloudy Other	14.3 11.2	11.3 10.2	13.7 10.8	8.8 7.7	2810 535	4872 981	3497 600	3060 609	
Person Behind Driver N = 16,955	Yes No	64.2 13.0	61.6 10.6	68.0 12.6	56.8 8.1	53 3291	54 5794	50. 4045	37 3631	

		Injury Rate (Percent))	Number of Drivers				
Variable	Category	2-Do	or	4-Do	oor	2-Door		4-Door		
		Pre	Post	Pre	Post	Pre	Post	Pre	Post	
City Size N = 16,904	LT 50,000 50,000-249,999 GE 250,000	14.1 9.9 13.2	12.5 9.1 9.9	13.6 12.5 11.3	12.3 6.9 8.2	746 625 1304	1919 1390 3545	1063 703 1563	1451 808 1787	
Road Classifi- cation	US/State/Inter- state Hwy	12.5	11.4	14.0	12.4	928	2700	1198	1748	
N = 16,908	City Street	12.5	9.5	10.3	6.5	1579	3741	1908	2033	
Driver Age N = 16,575	15-24 25-34 35 or Older	12.8 13.4 12.5	10.6 9.6 11.6	11.9 15.3 12.1	6.8 10.8 10.3	1370 561 678	3217 1825 1717	1268 577 1383	961 767 2251	
Vehicle Weight N = 16,548	LT 3000 lbs 3000-3999 lbs GE 4000 lbs	15.2 10.9 13.8	12.8 10.1 8.4	16.0 12.2 7.7	9.7 9.8 8.8	921 1445 189	1550 4240 960	582 2320 310	248 2346 1437	
Manufacturer N = 16,904	GM Ford Other	11.4 14.8 11.1	10.3 10.7 10.7	11.3 14.3 12.5	8.9 10.5 9.8	1276 1029 370	4027 1846 981	1861 830 638	2371 961 714	
Accident Type N = 16,904	Coll.w Motor Veh Coll.w Parked Car Coll.w Fixed Obj	9.7 18.6 32.2	8.6 18.8 26.7	9.5 16.7 32.6	7.8 11.5 30.2	2206 199 270	6013 271 570	2738 269 322	3595 182 268	
Number of Occupants N = 16,904	One Two or More	9.9 47.0	8.3 50.3	9.6 48.5	6.9 51.5	2475 200	6494 360	3096 233	3817 229	
Person Behind Driver N = 16,894	Yes No	45.7 12.2	44.9 10.2	68.3 11.6	52.6 8.8	35 2637	49 6800	41 3285	57 3989	
TAD N = 16,620	1-2 3-4 5-7	3.2 22.2 62.2	2.7 17.9 58.7	3.2 24.0 66.5	2,1 16.6 65.7	1672 798 172	4296 2036 409	2158 939 173	2624 1136 207	
Light Condition N = 16,904	Daylight Reduced Light	10.0 19.0	8.0 17.2	9.4 19.9	7.6 15.6	1892 783	4995 1859	2399 930	3127 919	
Weather N = 16,904	Clear/Cloudy Other	13.2 10.6	10.6 9.9	12.5 11.5	9,6 8,6	2164 511	5555 1299	2765 564	3255 791	
Road Surface Condition N = 16,904	Dry Other	13.3 10.8	10.7 9.8	13.0 10.0	9.7 8.6	1999 676	5163 1691	2590 739	3013 1033	
Number of Vehicles N = 36,904	One Two	26.1 9.8	24.1 8.6	25.5 9.5	22.1 7.8	467 2208	841 6013	588 2741	447 3599	
Driver Sex N = 16,798	Male Female	12.4 13.9	10.1 11.3	11.4 14.6	8.5 · 11.0	1885 762	4294 2532	2262 1033	2488 1542	

TABLE 3-6INJURY RATES FOR TEXAS 1973 DRIVER-ONLY 10 PERCENT SAMPLE
INJURY RATES FOR TEXAS 1974 DRIVER-ONLY 10 PERCENT SAMPLE

		Injury Rate (Percent)			:)	Number of Drivers			
Variable	Category	2-D	00r	4-D	4-Door 2-Door 4		4-0	4-Door	
		Pre	Post	Pre	Post	Pre	Post	Pre	Post
City Size N = 15,487	LT 50,000 50,000-244,999 GE 250,000	15.7 11.6 14.6	14.1 9.7 10.2	14.2 15.5 12.4	10.9 7.0 8.9	528 431 1005	1938 1448 3696	801 542 1134	1383 783 1798
Accident Type N = 15,487	Coll.w Motor Veh Coll.wParked Car Coll.w Fixed Obj	11.4 15.0 34.1	8.9 15.6 32.2	10.9 19.0 31.1	7.4 21.5 30.0	1611 127 226	6145 353 584	2004 216 257	3548 163 253
TAD N = 15,203	1-2 3-4 5-7	3.7 27.0 62.5	3.0 20.4 61.4	4.1 26.2 62.0	2.0 19.3 61.7	1208 610 112	4456 2135 363	1574 744 129	2606 1086 180
Vehicle Weight N = 15,232	LT 3000 1bs 3000-3999 1bs GE 4000 1bs	15.8 13.4 10.9	14.0 10.6 9.9	13.5 13.8 13.0	11.3 9.8 8.6	717 1027 137	1590 4257 1173	474 1708 207	240 2128 1574
Driver Age N = 15,170	15-24 25-34 35 or Older	13.8 13.6 16.8	11.1 10.7 12.2	13.4 13.6 14.4	10.7 9.3 9.0	1002 411 493	3451 1870 1659	969 403 1034	1070 774 2034
Road Classifi- cation N = 15,487	US/State/Inter- state Hwy County/Farm Rd City Street	14.1 18.9 13.9	12.0 · 14.3 10.3	15.7 22.5 11.7	9.7 13.5 8.7	687 122 1155	2736 462 3884	873 138 1466	1601 245 2118
Light Condition N = 15,487	Daylight Reduced Light	11.4 20.9	9.0 16.6	11.2 20.0	7.3 16.3	1370 594	5041 2041	1781 696	3056 980
Number of Vehicles N = 15,487	One Two	27.2 11.4	25.8 9.0	25.6 10.9	26.0 7.5	353 1611	932 6150	472 2005	412 3552
Road Surface Condition N = 15,487	Dry Other	15.6 9.0	11.6 9.7	14.3 11.2	9.7 8.4	1575 389	5603 1479	1977 500	3095 869
Weather N = 15,487	Clear/Cloudy Other	15.2 9.4	11.5 9.7	14.1 11.2	9.4 9.1	1655 309	5893 1189	2085 392	3262 702
Number of Occupants N = 15,487	One Two or More	11.4 53.8	8.5 52.6	11.0 49.4	7.0 50.5	1832 132	6652 430	2301 176	3748 216
Person Behind Driver N = 15,478	Yes No	59.3 13.6	64.2 10.7	33.3 13.5	50.0 9.1	27 1937	67 7010	27 2448	32 3930
Manufacturer N = 15,487	GM Ford Other	14.0 14.5 14.4	10.6 11.5 13.0	14.3 13.6 12.3	9.4 9.5 9.3	857 823 284	4177 1927 978	1257 685 535	2301 1026 637
Driver Sex N = 15,367	Male Female	13.2 17.3	10.4 12.7	12.7 15.9	8.6 10.6	1360 573	4459 2579	1635 816	2372 1573

1

3-11

The choice of cutting points used to categorize a variable was not completely arbitrary. Whenever appropriate (and possible), several different "versions" of a given variable---each with different cutting points, and in many cases, with a different number of categories--were input into the variable selection procedure. Only one "version" of a variable, that with the highest harmonic mean of $LR\chi^2$'s, was used in subsequent analyses. Figure 3-1 illustrates a typical example of the effort involved in determining the "optimal" cutting points of the variable City Size in the Texas 1974 sample. (The 50,000 and 250,000 cutting points are chosen.)

The variables given in Tables 3-5, 3-6 and 3-7 are ranked in descending order according to the strength of their interaction terms with Driver Injury, Pre/Post Standard and Vehicle Body Style. A number of patterns are evident such as frequently higher injury rates with high values of TAD, reduced lighting, female drivers, lighter cars, and accidents in which the seat behind the driver is occupied.

Figure 3-1. Example of determination of "optimal" cutting points of categorical variables.

The information used in the variable selection procedure to determine those variables selected for modeling in the Texas 1972, 1973 and 1974 data is given in Tables 3-8, 3-9 and 3-10. The interaction terms considered here and in all subsequent samples are the following:

- Variable x Style.
- Variable x Prepost.
- Variable x Prepost x Style.
- Variable x Injury.
- Variable x Injury x Prepost.
- Variable x Injury x Style.
- Variable x Injury x Style x Prepost.

The first three interaction terms are obtained from a saturated log-linear model of Prepost, Style and Variable while the last four interaction terms come from a saturated model containing Injury, Prepost, Style and Variable.

The variables are listed in an order determined by the nagnitude of the harmonic mean (also given in the tables) of the seven interaction terms. The use of the harmonic mean results in greater weight being given to the third and fourth order interaction terms than would be the case if the arithmetic mean was used.

Using the harmonic mean as the ordering criteria, City Size was among the three selected variables in the 1972, 1973 and 1974 data bases. Driver Age and Accident Type were selected in two of the three years. Road Classification and TAD were selected in a single year. For completeness and the convenience of the reader, the completely cross-classified tables of Injury, Prepost, Style and the three selected variables that were obtained for the full Texas Drivers-Only data sample for 1972, 1973 and 1974 prior to modeling are given in Appendix A.

3-13

INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE

TEXAS 1972

	Interaction Terms from Saturated Model Containing Prepost, Style and Variable			Interaction Terms from Saturated Model Containing Injury, Prepost, Style and Variable				
Variable	Var x Style	Var x Prepost	Var x Prepost x Style	Var x Injury	Var x Injury x Prepost	Var x Injury x Style	Var x Injury x Style x Prepost	Harmonic Mean of the Interaction Terms
	$LR \chi^2$	LR χ^2	$LR \chi^2$	$LR \chi^2$	LR x ²	LR x ²	LR x ²	
Accident Type /	22.96*	154.75*	8.13*	437.19*	1.39	6.83*	1.85	4.43
Driver Age 🖌	1192.01*	96.01*	95.06*	1.93	5.24	3.38	1.76	4.39
City Size /	52.62*	12.86*	5.42	177.44*	13.07*	1.33	1.30	3.72
Vehicle Weight /	1401.37*	489.94*	184.22*	30.79*	5.95	10.71*	0.59	3.51
TAD 🖌	14.92*	10.20*	10.09*	2970. 28*	2.46	1.21	1.82	3.42
Light Condition	27.13*	34.53*	1.38	185.32*	2.09	0.49	2.57	1.89
Driver Sex	10.97*	74.61*	1.83	26.76*	1.73	0.60	0.50	1.42
Road Surface Condition	2.26	2.81	2.38	15.94*	1.64	0.57	0.75	1.41
Number of Vehicles	1.06	128.75*	7.01*	355.58*	2.30	0.73	0.27	1.06
Manufacturer 🖌	81.89*	67.58*	32.93*	16.94*	4.91	0.15	3.09	0.96
Road Classification	0.67	40.22*	0.81	67.46*	2.36	0.25	1.05	0.86
Number of Occupants	0.13	37.17*	0.18	1308.79*	4.65	0.07	2.09	0.25
Weather	2.62	6.50*	1.15	8.90*	1.22	0.15	0.02	0.12
Person Behind Driver	0.07	6.71*	1.46	293.28*	0.02	0.16	0.02	0.06 [,]

^{*}p < 0.05

⁺Interaction terms associated with variables marked with "/" have two degrees of freedom. Interaction terms associated with the unmarked variables have one degree of freedom.

INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE

TEXAS 1973

	Interaction Terms from Saturated Model Containing Prepost, Style and Variable			Inter Pr	Unument			
Variable	Var x Style	Var x Prepost	Var x Prepost x Style	Var x Injury	Var x Injury x Prepost	Var x Injury x Style	Var x Injury x Style x Prepost	Mean of the Interaction Terms
	$LR \chi^2$	LR x ²	LR x ²	$LR \chi^2$	LR x ²	LR x ²	LR x ²	·
City Size +	77.06*	8.90*	11.51*	31.41*	3.21	1.69	4.29	5.07
Road Classification 🖌	9.85*	48.20*	2.53	47.20*	3.34	13.80*	1.68	4.67
Driver Age 🖌	1101.75*	75.68*	78.32*	1.42	4.13	8.38*	2.19	4.52
Vehicle Weight /	820.47*	614.80*	96.75*	40.33*	0.59	1.22	6.69*	2.59
Manufacturer /	99.48*	70.01*	39.98*	11.51*	3.03	0.78	0.79	2.32
Accident Type 🖌	14.18*	125.71*	3.13	479.00*	0.27	4.64	1.97	1.45
Number of Occupants	1.09	21.77*	1.27	1050.30*	6.85*	0.73	0.30	1.06
Person Behind Driver	7.71*	3.06	6.00*	197.01*	0.18	4.43*	0.70	0.89
TAD /	13.41*	0.12	0.18	2792.82*	1.81	3.70	1.08	0.45
Light Condition	15.07*	18.27*	5.37*	265.24*	0.10	0.07	0.82	0.27
Weather	1.06	4.12*	4.82*	3.96*	0.22	0.02	0.51	0.12
Road Surface Condition	1.49	4.25*	7.99*	8.65*	1.58	0.45	0.01	0.07
Number of Vehicles	0.32	104.54*	2.08	417.07*	0.12	0.01	0.01	0.03
Driver Sex	0.26	91.50*	1.05	11.62*	0.14	2.30	0.01	0.001

*p < 0.05

Interaction terms associated with variables marked with "/" have two degrees of freedom. Interaction terms associated with the unmarked variables have one degree of freedom.

TABLE 3-10 INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE TEXAS 1974

	Inter Saturat Prepost	action Term ed Model Co , Style and	s from ntaining Variable	Interaction Terms from Saturated Model Containing Injury, Prepost, Style and Variable				Unumeric
Variable	Var x Style	Var x Prepost	Var x Prepost x Style	Var x Injury	Var x Injury x Prepost	Var x Injury x Style	Var x Injury x Style x Prepost	Mean of the Interaction Terms
	$LR \chi^2$	LR x ²	$LR \chi^2$	$LR \chi^2$	LR x ²	LR x ²	LR x ²	
City Size ≠	86,85*	6.04*	1.23	22.43*	4.63	4.02	4.21	4.03
Accident Type ≠	7.12*	103.48*	14.40*	494.26*	5.63	4.95	0.75	3.62
TAD ≠	9.38*	4.21	0.85	2490.96*	4.27	1.18	3.04	2.39
Vehicle Weight ≠	751.27*	722.17*	86.26*	32.26*	3.06	2.56	0.43	2.27
Driver Age 🖌	991.31*	55.68*	48.63*	1.45	2.44	5.02	0.45	1.97
Road Classification /	1.89	28.32*	0.97	25.50*	0.85	1.63	2.70	1.84
Light Condition	34.01*	8.72*	6.48*	201.65*	0.42	1.17	1.18	1.60
Number of Vehicles	0.73	103.23*	11.58*	422.62*	5.60*	0.44	0.93	1.40
Road Surface Condition	0.83	2.95	0.17	16.69*	2.91	0.29	1.04	0.57
Weather	0.48	4.09*	0.34	10.18*	2.44	0.76	0.16	0.52
Number of Occupants	0.11	6.33*	1.41	1029.41*	6.72*	0.06	0.66	0.25
Person Behind Driver	0.59	3.16	0.04	172.26*	6.38*	5.16*	0.82	0.24
Manufacturer 🖌	62.11*	155.85*	50.46*	2.22	2.45	3.15	0.02	0.14
Driver Sex	7.92*	51.53*	0.18	17.91*	0.34	0.02	0.06	0.09

*p < 0.05

⁺Interaction terms associated with variables marked with "+" have two degrees of freedom. Interaction terms associated with the unmarked variables have one degree of freedom.

,

New York 1974

The size of the seat back lock drivers-only data set relative to the entire 1974 New York accident data base is characterized by noting the fraction of accidents, vehicles and fatalities contained in the data set as given in Table 3-11. The reasons for the low fatality rate are basically the same as those given in the discussion of the Texas partial data set (page 3-5).

TABLE 3-11 ACCIDENTS, VEHICLES AND FATALITIES IN 1974 NEW YORK STATE DATA BASE

Variable	Full Data Base	Partial Data Set	Percent
Accidents Vehicles	377,818 704,477	52,475 65,593	13.9 9.3
Fatalities	2,664	208	7.8

The partial data set was derived by selecting cases that satisfied the following criteria:

- Number of Vehicles in Accident = 1 or 2.
- First Event = Collision with Motor Vehicle or Fixed Object.
- Area of Impact = Frontal, front right fender or front left fender.
- Vehicle Body Type = 2-door or 4-door Sedan.
- Vehicle Model Year is known.
- Vehicle Make and Model = "Domestic."
- Vehicle Occupant = Driver.

The univariate frequencies of some key variables in the New York driversonly sample are given in Table 3-12. It is noted that almost 6 percent of the drivers suffered a fatal or serious injury (KA), a much higher percent than in Texas or North Carolina. The much higher incidence of serious injury is related to the fact that KABCO in New York was derived from more accurate information describing type of injury, location of injury and drivers' physical and emotional status. Perhaps the principal reason that injury rates are higher in New York is that the dollar damage reporting threshold is higher. The New York sample is tilted toward 2-door, Post-Standard cars. There are twice as many 2-door cars as 4-door cars and four times as many Post-Standard as Pre-Standard vehicles. The preference for 2-door cars is higher in New York than in Texas or North Carolina. The frequencies of associated inclement weather and surface road conditions other than dry are also higher in New York compared with the other two states analyzed.

FREQUENCY DISTRIBUTIONS OF KEY VARIABLES IN DRIVER-ONLY NEW YORK 1974 SAMPLE

Variable	Category	Absolute Frequency	% of Known
Driver Injury	K A B C O Injured Extent - Unknown	208 3,568 8,383 7,714 45,413 307	0.3 5.5 12.8 11.8 69.6
Model Year Class	Pre Post	12,996 52,597	19.8 80.2
Vehicle Body Style	2-Door 4-Door	43,767 21,826	66.7 33.3
Road Classification	State or Interstate Hwy County or Town Road City Street. Limited Access Missing	21,929 15,208 22,595 3,542 2,319	34.7 24.0 35.7 5.6 -
Weather	Clear Cloudy Rain Snow Sleet/Hail/Freezing Rain Fog/Smog/Smoke Other Missing	37,227 12,721 10,272 3,746 871 439 66 251	57.0 19.5 15.7 5.7 1.3 0.7 0.1
Road Surface Condition	Dry Wet Muddy Snow-Ice Slush Other Missing	41,746 16,066 95 6,229 817 166 274	64.2 24.6 0.1 9.5 1.3 0.3
Vehicle Damage	None Light Moderate Severe Demolished Missing	765 19,049 34,280 9,893 560 1,046	1.2 29.5 53.1 15.3 0.9
Driver Age	15-24 25-34 35-49 50+ Missing	23,039 14,964 12,991 14,453 146	35.2 22.9 19.8 22.1

Variable	Category	Absolute Frequency	% of Known
Driver Sex	Male	45,196	68.9
	Female	20,397	31.1
Number of Occupants	One Two or More Missing	36,742 23,882 4,969	60.6 39.4 -
Restraint Usage	None Used	34,341	72.1
	Lap Belt	11,243	23.6
	Harness	533	1.1
	Lap Belt and Harness	1,372	2.9
	Child Restraint	3	0.0
	Other	113	0.2
	Missing	17,988	-
Vehicle Weight	LT 3000 lbs 3000-3599 lbs 3600-4399 lbs GE 4000 lbs Missing	15,386 21,321 22,684 4,797 1,405	24.0 33.3 35.3 7.5
Number of	One	9,949	15.2
Vehicles	Two or More	55,644	84.8
Manufacturer	GM	33,414	50.9
	Ford	15,988	24.4
	Other	16,191	24.7
Total Number of	Cases	65,593	-

TABLE 3-12 (Continued)

INJURY RATES FOR NEW YORK 1974

· · · · · · · · · · · · · · · · · · ·		I	njury Rat	e (Percent	.)	Number of Drivers			
Variable	Category	2-D	oor	4-D	oor	2-D	por	4-0	oor
		Pre	Post	Pre	Post	Pre	Post	Pre	Post
Road Classifi- cation N = 63,274	State or Inter- state Highway County or Town Road City Street	38.3 40.8 31.3	31.8 33.5 29.2	35.8 38.8 30.7	28.8 30.3 24.4	2,608 1,884 2,498	14,508 8,823 11,868	2,096 1,310 2,232	6,259 3,191 5,997
Driver Age N = 65,447	15-24 25-49 50 or Older	37.0 35.9 33.6	32.1 31.0 28.0	37.8 33.2 30.6	28.3 27.4 25.5	3,256 2,730 1,189	14,008 15,751 6,727	2,087 2,449 1,240	3,688 7,025 5,297
Manufacturer N = 65,593	GM Ford Other	35.4 36.7 36.3	29.3 31.7 33.4	33.6 36.8 33.5	25.7 27.6 28.8	3,547 2,262 1,399	19,115 8,969 8,475	2,758 1,202 1,828	7,994 3,555 4,489
Number of Occupants N = 60,624	One Two or More	39.2 33.5	33.8 27.8	39.3 29.2	29.8 24.0	3,830 2,801	20,995 12,843	3,014 2,312	8,903 5,926
Road Surface Condition N = 65,319	Dry Other	36.8 34.8	31.4 30.0	33.9 35.1	27.6 26.1	4,640 2,542	23,505 12,914	3,579 2,178	10,222 5,739
Point of Impact N = 65,593	Hood & Front Right Front Left Front	42.4 28.9 26.3	37.6 23.2 22.8	41.5 26.2 25.1	33.5 20.8 19.2	4,062 1,738 1,408	19,591 9,116 7,852	3,118 1,541 1,129	8,253 4,224 3,561
Towaway N = 65,593	No Yes	21.7 55.8	17.5 50.7	20.1 55.1	15.4 48.6	4,198 3,010	21,884 14,675	3,508 2,280	10,447 5,591
Vehicle Weight N = 64,188	LT 3,000 lbs 3,000 lbs or More	39.1 34.3	36.0 28.8	39.6 33.3	34.1 26.4	2,502 4,705	10,176 26,205	1,199 4,347	1,509 12,545
Restraint Usage N = 47,605	No Yes	46.0 35.4	40.5 34.1	44.5 35.6	36.3 31.0	4,599 810	18,179 8,508	3,701 579	7 ,9 78 3,251
Number of Vehicles N = 65,593	One Two	76.4 27.3	65.0 24.5	77.1 25.4	64.1 21.8	1,273 5,935	5,715 30,844	985 4,803	1,976 14,062
Driver Sex N = 65,593	Male Female	34.2 40.8	28.6 35.6	31.7 40.6	24.8 31.9	5,293 1,915	24,627 11,932	4,142 1,646	11,134 4,904
Vehicle Damage N = 64,547	None-Light Moderate Severe- Demolished	20.9 35.4 63.3	17.5 30.2 57.4	19.7 34.2 63.6	15.3 27.5 55.6	2,050 3,757 1,285	10,732 19,211 6,070	1,756 2,999 929	5,276 8,313 2,169
Weather N = 65,342	Clear-Cloudy Other	36.5 34.9	30.9 31.0	34.0 35.3	27.3 26.2	5,526 1,658	27,858 8,562	4,371 1,390	12,193 3,784

INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE NEW YORK 1974

· ·	Interaction Terms from Saturated Model Containing Prepost, Style and Variable			Inter Pi	Harmonic			
Variable	Var x Style	Var x Prepost	Var x Prepost x Style	Var x Injury	Var x Injury x Prepost	Var x Injury x Style	Var x Injury x Style x Prepost	Mean of the Interaction Terms
	$LR \chi^2$	$LR \chi^2$	LR x ²	$LR \chi^2$	LR x ²	LR x ²	LR x ²	
Road Classification	196.33*	59.74*	2.67	151.73*	8.65*	2.34	3.90	5.823
Driver Age	1818.67*	466.75*	118.89*	63.90*	1.55	1.19	4.09	3.985
Manufacturer	356.84*	66.30*	115.20*	57.76*	9.65*	0.85	1.00	3.013
Number of Occupants	18.39*	61.04*	0.75	266.10*	0.89	2.43	4.08*	2.196
Road Surface Condition	5.36*	2.44	3.99*	11.46*	0.86	0.53	2.95	1.620
Point of Impact	30.58*	38.74*	1.87	1631.16*	0.76	0.46	1.99	1.527
Towaway	130.03*	34.44*	9.64*	8100.39*	2,78	2.44	0.13	0.814
Vehicle Weight	2324.08*	431.34*	136.67*	243.04*	5.62*	0.87	0.07	0.448
Restraint Usage	35.91*	1125.01*	0.11	170.02*	5.80*	0,80	0.05	0.230
Number of Vehicles	83.48*	76.82*	18.07*	6739.11*	47.94*	5.26*	0.01	0.070
Driver Sex	9.43*	96.48*	18.08*	334.49*	0.01	1.57	0.67	0.069
Vehicle Damage	119.75*	28.74*	5.85	5141.41*	0.16	2.21	0.01	0.066
Weather	1.06	0.04	1.04	0.57	0.01	0.11	3.36	0.051

*p <0.05

Note: The degrees of freedom for all interaction terms for all variables are one except for: road classification, driver age, manufacturer, point of impact and vehicle damage. For these variables, the degrees of freedom are two for all interaction terms.

Injury rates (KABC percentages) and the number of drivers on which the rates are based are given in Table 3-13. High injury rates occur for towaway accidents, direct frontal impacts, lighter-weight vehicles, severely damaged vehicles, lack of restraint usage, female drivers and drivers age 15-24 years old. The last variable result requires comment since it appears to differ from the results for Texas and North Carolina. In Texas, Driver Age is a dichotomy and drivers 35 years and older have higher injury rates. The categories of Driver Age differ in North Carolina among years but in no case does the category 15-25 years old have the highest rates. Environmental and socioeconomic factors that differ among the three states could be important in explaining this difference. Also, it should be noted that the overall injury rate is much higher in New York (31%) compared to Texas (11%) and North Carolina (15%).

The information used in the variable selection procedure to determine those variables selected for modeling of the New York 1974 data is given in Table 3-14. Ordering the variables according to the harmonic mean of the seven interaction terms resulted in Road Classification, Driver Age and Manufacturer being the leading three variables that were selected for modeling of the New York 1974 data sample. The completely cross-classified tables of the New York Driver-Only 1974 data prior to modeling are given for Injury, Prepost, Style, Road Classification, Driver Age and Manufacturer in Appendix A. A separate table is given for each of the three injury dichotomies--KA vs BCO, KAB vs CO and KABC vs O.

North Carolina 1973, 1974, 1975

The size of the seat back lock drivers-only data set relative to the entire 1973-1975 North Carolina accident data base can be characterized by noting the fraction of accidents, vehicles and fatalities contained in the data set as given in Table 3-15. The reasons for the low fatality rate have been discussed previously (page 3-5).

TABLE 3-1	5
-----------	---

ACCIDENTS,	VEHICLES	AND FAT	FALITIES	IN	1973-1975
	North Ca	arolina	Data Ba	se	

Year	Variable	Full Data Base	Partial Data Set	Percent
1973	Accidents	129,150	21,876	16.9
	Vehicles	232,825	27,345	11.7
	Fatalities	1,859	54	2.9
1974	Accidents	121,568	21,366	17.6
	Vehicles	218,506	26,707	12.2
	Fatalities	1,585	47	3.0
1975	Accidents	129,013	22,729	17.6
	Vehicles	232,180	28,411	12.2
	Fatalities	1,519	56	3.7

The basic data set was derived by selecting all drivers in passenger vehicles that satisfied the following criteria:

- Involved in two-car head-on collision.
- Involved in two-car collision other than head-on, and sustained front end damage.
- Involved in single-car collision with a fixed object and sustained front end damage.
- Collided with a parked car and sustained front end damage.

Thus, the data subset includes all passenger cars involved in frontal impact accidents that could indicate the effects of seat back locks. Vehicles involved in multi-vehicle accidents are excluded from the sample as are all struck vehicles. Vehicles striking non-fixed objects such as animals, bicyclists and pedestrians are similarly excluded.

The data base was screened using the following variables and conditions:

- Means of Involvement in Accident = More than 2 Vehicles Involved.
- Vehicle Type = 2-door or 4-door Sedan.
- Vehicle Body Style = 2-door Sedan or 2-door Hardtop, or 4-door Sedan or 4-door Hardtop.
- Vehicle Model Year = 1960 or later.
- Vehicle Make = Domestic.
- Region of Impact = Frontal Collision.
- Accident Type = Hit Parked Vehicle, Hit Fixed Object Head-On, Other 2-Vehicle.

The univariate frequencies of some key variables in the North Carolina driversonly sample are given in Table 3-16. Unique features of the North Carolina sample include a high frequency of known information on Alcohol Involvement (97%) and Restraint Usage (93%). Other unique information in the North Carolina sample includes Estimated Vehicle Speed and Adjusted Vehicle Speed. Estimated Vehicle Speed refers to the speed of the vehicle prior to impact. This speed is adjusted in two-vehicle collisions to account for the speed of the other vehicle to obtain Adjusted Vehicle Speed. Note that TAD is not included in the table, as 54 percent of the data are missing.

Injury Rates (KABC percentages) and the number of drivers on which the rates are based are given in Tables 3-17, 3-18 and 3-19 for the North Carolina 1973, 1974 and 1975 drivers-only sample. Higher injury rates occur for lower vehicle weights, higher estimated and adjusted vehicle speeds, state and interstate highways, alcohol involvement, failure to use restraints, reduced light conditions and presence of an occupant seated behind the driver.

3-23

FREQUENCY DISTRIBUTIONS OF KEY VARIABLES IN DRIVER-ONLY NORTH CAROLINA SAMPLE

**************************************		1973		1974		1975		Total: 197	Total: 1973-1975	
Variable	Category	Absolute Frequency	% of Known	Absolute Frequency	% of Known	Absolute Frequency	% of Known	Absolute Frequency	% of Known	
KABCO	K A B C O	54 626 1,674 1,713 23,278	0.2 2.3 6.1 6.3 85.1	47 564 1,654 1,791 22,651	0.2 2.1 6.2 5.7 84.8	56 550 1,799 2,029 23,977	0.2 1.9 6.3 7.1 84.4	157 1,740 5,127 5,533 69,906	0.2 2.1 6.2 6.7 84.8	
Model Year Class	Pre Post	8,936 18,409	32.7 67.3	7,331 19,376	27.4 72.6	6,708 21,703	23.6 76.4	22,975 59,488	27.9 72.1	
Vehicle Body Style	2-Door 4-Door	15,522 11,823	56.8 43.2	14,990 11,717	56.1 43.9	15,787 12,624	55.6 44.4	46,299 36,164	56.1 43.9	
City Size	Rural Under 1,000 1,000- 4,999 5,000- 9,999 10,000-14,999 15,000-19,999 20,000-24,999 25,000-34,999 35,000-49,999 50,000-75,000 GT 75,000	10,877 309 1,688 1,448 1,101 1,030 633 1,058 1,407 1,434 6,360	39.8 1.1 6.2 5.3 4.0 3.8 2.3 3.9 5.1 5.2 23.3	9,743 324 1,689 1,424 1,125 1,067 665 1,144 1,333 1,523 6,670	36.5 1.2 6.3 5.3 4.2 4.0 2.5 4.3 5.0 5.7 25.0	9,919 382 1,838 1,600 1,268 1,204 770 1,294 1,265 1,718 7,153	34.9 1.3 6.5 5.6 4.5 4.2 2.7 4.6 4.5 6.0 25.2	20,183 4,675 4,005 3,496 2,068 3,301 2,494 4,472 5,215 1,015 30,539	24.5 5.7 4.9 4.2 2.5 4.0 4.2 5.4 6.3 1.2 37.0	
Road Classifi- cation	Interstate U.S. North Carolina Rural Paved Rd Rural Unpaved Rd City Street Missing	403 4,801 2,985 3,987 382 14,661 126	1.5 17.6 11.0 14.6 1.4 53.9	255 4,302 2,670 3,695 420 15,300 65	1.0 16.1 10.0 13.9 1.6 57.4	294 4,325 2,840 3,850 350 16,678 74	1.0 15.3 10.0 13.6 1.2 58.9	952 13,428 8,495 11,532 1,152 46,639 265	1.2 16.3 10.3 14.0 1.4 56.7	
Weather	Clear Cloudy Rain Snowing Fog Sleet or Hail Missing	18,104 4,816 3,581 359 286 44 155	66.6 17.7 13.2 1.3 1.1 0.2 -	17,416 4,792 3,927 101 270 46 155	65.6 18.0 14.8 0.4 1.0 0.2 -	18,264 4,992 4,548 165 242 41 159	64.6 17.7 16.1 0.6 0.9 0.1	53,784 14,600 12,056 625 798 131 469	65.6 17.8 14.7 0.8 1.0 0.2	
Accident Type	Coll.w Fixed Obj Coll.w Motor Veh	1,558 25,787	5.7 94.3	1,432 25,275	5.4 94.6	1,374 27,037	4.8 95.2	4,363 78,099	5.3 94.7	
Lignt Condition	Daylight Dusk Dawn Dark/Lit Dark/Unlit Missing	20,582 393 276 3,078 2,484 32	75.4 3.3 1.0 11.3 9.1 -	19,951 863 270 3,307 2,261 55	74.9 3.2 1.0 12.4 8.5 -	21,489 947 281 3,365 2,253 76	75.8 3.3 1.0 11.9 8.0	62,022 2,703 827 9,750 6,998 163	75.4 3.3 1.0 11.8 8.5 -	
Road Surface Condition	Dry Wet Oily Muddy Snowy Icy Missing	21,264 4,981 26 43 380 611 40	77.9 18.2 0.1 0.2 1.4 2.2	20,864 5,571 20 24 74 100 54	78.3 20.9 0.1 0.1 0.3 0.4	21,848 6,200 11 30 111 122 89	77.1 21.9 0.0 0.1 0.4 0.4 -	63,976 16,752 57 97 565 833 183	77.8 20.4 0.1 0.1 0.7 1.0	
Investigating Agency	City Police Sheriff Rural Cnty Police Highway Patrol Other	16,267 7 145 10,919 7	59.5 0.0 0.5 39.9 0.0	16,740 11 76 9,869 11	62.7 0.0 0.3 37.0 0.0	18,198 16 53 10,126 18	64.1 0.1 0.2 35.6 0.1	51,205 34 274 30,914 36	62.1 0.0 0.3 37.5 0.0	

FREQUENCY DISTRIBUTIONS OF KEY VARIABLES IN DRIVER-ONLY NORTH CAROLINA SAMPLE (Continued)

		1973		1974		1975		Total: 1973-1975	
Variable	Category	Absolute Frequency	% of Known	Absolute Frequency	% of Known	Absolute Frequency	% of Known	Absolute Frequency	% of Known
Estimated Vehicle Speed	1-29 mph 30-49 mph 50+ mph Missing	13,834 9,313 2,884 1,314	53.1 35.8 11.1 -	13,863 9,287 2,474 1,083	54.1 36.2 9.7	14,765 10,118 2,521 1,007	53.9 36.9 9.2 -	42,462 28,718 7,879 3,404	53.7 36.3 10.0
Adjusted Vehicle Speed	1-29 mph 30-49 mph 50+ mph Missing	10,802 11,098 3,474 1,971	42.6 43.7 13.7 -	10,920 11,443 2,891 1,453	43.2 45.3 11.4 -	11,938 12,305 2,882 1,285	44.0 45.3 10.6 -	33,660 34,846 9,248 4,709	43.3 44.8 11.9
Driver Age	15-25 26-55 56+ Missing	11,606 11,846 3,671 222	42.8 43.7 13.5 -	11,228 11,466 3,826 187	42.3 43.2 14.4	11,800 12,294 4,211 106	41.7 43.4 14.9	34,634 35,606 11,708 515	42.3 43.4 14.3
Driver Sex	Male Female Missing	17,464 9,808 73	64.0 36.0	16,883 9,752 72	63.4 36.6 -	17,643 10,751 17	62.1 37.9	51,990 30,311 162	63.2 36.8 -
Alcohol Involvement	No Drnkng-Impaired Drnkng-Imp Unk Missing	24,838 812 910 785	93.5 3.1 3.4 -	23,926 1,046 915 820	92.4 4.0 3.5	25,601 1,042 865 903	93.1 3.8 3.1	74,365 2,900 2,690 2,508	93.0 3.6 3.4
Restraint Usage	No Belt Lap Belt Lap & Shoulder Shoulder Only Missing	21,053 3,331 121 104 2,736	85.6 13.5 0.5 0.4	21,729 3,044 506 129 1,299	85.5 12.0 2.0 0.5	23,505 2,853 623 26 1,404	87.0 10.6 2.3 0.1	66,287 9,228 1,250 259 5,439	86.1 12.0 1.6 0.3 -
Number of Occupants	One Two or More Missing	16,964 9,804 577	63.4 36.6 -	16,526 10,175 6	61.9 38.1 -	17,318 11,087 6	61.0 39.0	50,808 31,066 589	62.1 37.9 -
Person Behind Driver	Yes No	2,065 25,280	7.6 92.4	2,043 24,664	7.6 92.4	2,377 26,034	8.4 91.6	6,485 75,978	7.9 92.1
Vehicle Weight	LT 3,000 lbs 3,000-3,599 lbs GT 3,600 lbs Missing	5,601 11,544 10,065 135	20.6 42.4 37.0	5,182 10,351 11,006 168	19.5 39.0 41.5 -	5,420 10,473 12,343 175	19.2 37.1 43.7	16,203 32,368 33,414 478	19.8 39.5 40.8
Number of Vehicles	One Two	198 27,147	0.7 99.3	208 26,499	0.8 99.2	227 28,184	0.8 99.2	633 81,830	0.8 99.2
Manufacturer	GM Ford Other	14,335 8,654 4,356	52.4 31.6 15.9	14,311 8,160 4,236	53.6 30.6 15.9	15,148 8,795 4,468	53.3 31.0 15.7	43,794 25,609 13,060	53.1 31.1 15.8
Model Year Category	Early Pre-Stnd Late Pre-Stnd Early Post-Stnd Late Post-Stnd	4,689 4,247 16,102 2,307	17.1 15.5 58.9 8.4	3,584 3,747 14,727 4,646	13.4 14.0 55.1 17.4	3,130 3,578 14,999 6,704	11.0 12.6 52.8 23.6	11,403 11,572 45,828 13,660	13.8 14.0 55.6 16.6
Total Number of Cases		27,345	-	26,707	-	28,411	-	82,463	-

INJURY RATES FOR NORTH CAROLINA 1973

	· ·	I	njury Rat	e (Percent	:)		Number o	of Drivers	;
Variable	Category	2-D	oor	4-D	oor	2-D	or	4-1	Door
		Pre	Post	Pre	Post	Pre	Post	Pre	Post
Vehicle Weight N = 27,210	LT 3,000 lbs 3,000-3,599 lbs 3,600+ lbs	18.3 17.0 12.8	17.3 14.5 12.7	19.3 15.4 15.4	18.7 14.3 12.0	1,543 2,476 695	2,736 5,031 3,021	739 2,034 1,388	583 2,003 4,961
Manufacturer N = 27,345	GM Ford Other	16.9 17.0 16.0	13.8 15.9 15.4	15.5 16.7 17.1	12.3 13.3 15.8	1,943 2,326 462	5,682 3,165 1,944	2,168 1,458 579	4,542 1,705 1,371
Adjusted Vehicle Speed N = 25,373	1-29 MPH 30-49 MPH 50+ MPH	8.1 21.3 25.9	7.3 17.7 27.9	9.0 19.1 31.4	7.2 16.4 23.4	1,770 2,000 603	4,274 4,317 1,424	1,661 1,757 481	3,097 3,024 966
Driver Age N = 27,123	15-25 26-55 56+	15.8 18.3 17.7	14.5 15.3 13.5	14.5 17.7 16.1	11.8 13.6 13.7	2,629 1,712 351	5,837 4,239 615	1,455 1,731 983	1,685 4,164 1,722
Estimated Vehicle Speed N= 26,031	1-29 MPH 30-49 MPH 50+ MPH	9.6 22.2 28.5	8.5 18.2 29.9	11.1 20.9 32.5	8.1 18.1 25.2	2,275 1,731 513	5,215 3,788 1,262	2,269 1,400 323	4,075 2,394 786
City Size N = 27,345	LT 50,000 50,000+	17.1 16.3	15.9 13.0	16.9 13.9	13.9 11.6	3,500 1,231	7,473 3,318	3,126 1,079	5,452 2,166
Road Classifi- cation N = 27,219	State or Inter- state Highway Rural Road City Street	19.3 18.0 15.1	17.9 14.4 12.9	19.1 17.7 14.0	16.3 14.0 11.2	1,335 942 2,435	3,350 1,713 5,682	1,173 673 2,333	2,331 1,041 4,212
Accident Type N = 27,345	Coll.wFixed Obj Coll.wMotor Veh	21.1 16.5	21.3 14.4	20.1 15.9	16.6 13.0	350 4,381	558 10,233	259 3,946	391 7,227
Restraint Usage N = 24,609	Yes No	13.9 17.7	12.5 15.8	12.4 17.1	12.2 14.3	267 3,984	1,604 8,152	291 3,489	1,394 5,428
Light Condition N = 27,313	Daylight Reduced Light	15.5 20.6	13.0 19.6	15.2 19.3	12.1 17.0	3,443 1,284	7,948 2,832	3,207 995	5,984 1,620

TABLE 3-17 INJURY RATES FOR NORTH CAROLINA 1973 (Continued)

		I	njury Rate	e (Percent)		Number o	f Drivers	
Variable	Category	2-D0	or	4-Do	oor	2-Door		4-Door	
		Pre	Post	Pre	Post	Pre	Post	Pre	Post
Road Surface Condition N = 27,305	Dry Other	16.9 16.7	15.1 13.4	16.4 15.0	13.6 11.7	3,669 1,056	8,309 2,467	3,310 891	5,976 1,627
Investigating Agency N = 27,186	City Police Highway Patrol	15.2 18.9	13.1 17.2	14.4 18.8	11.4 16.0	2,677 2,037	6,376 4,339	2,549 1,635	4,665 2,908
Weather N = 27,190	Clear-Cloudy Other	16.8 17.7	14.8 14.8	15.9 17.8	13.1 13.5	3,985 713	8,946 1,796	3,556 619	6,433 1,142
Person Behind Driver N = 27,345	No Yes	16.6 19.7	14.6 16.4	15.8 20.4	13.1 13.6	4,356 375	9,991 800	3,896 309	7,037 581
Driver Sex N = 27,272	Male Female	15.6 22.1	12.8 18.2	13.0 21.6	10.9 16.8	3,282 1,436	6,892 3,869	2,651 1,540	4,639 2,963
Number of Vehicles N = 27,345	One Two	37.8 16.6	34.9 14.6	33.3 16.0	34.9 13.0	45 4,686	86 10,705	24 4,181	43 7,575
Alcohol Involvement N = 26,560	No Yes	15.4 27.3	13.8 24.7	15.2 22.9	12.7 19.1	4,158 388	9,849 648	3,758 336	7,073 350
Number of Occupants N = 26,768	One Two or More	15.9 18.6	14.0 16.2	15.2 18.0	12.6 14.5	2,800 1,824	6,678 3,884	2,618 1,493	4,868 2,603

3-27

۰.		Ir	njury Rate	(Percent)		Number o	f Drivers	
Variable	Category	2-Dc	or	4-Do	or	2-Do	or	4-D	oor
		Pre	Post	Pre	Post	Pre	Post	Pre	Post
Vehicle Weight N = 26,539	LT 3,000 1bs 3,000-3,599 1bs 3,600+ 1bs	17.6 16.8 16.9	19.7 15.1 13.2	21.4 17.3 13.9	18.3 14.3 12.0	1,224 1,886 592	2,744 4,768 3,724	641 1,754 1,176	573 1,943 5,514
Manufacturer N = 26,707	GM Ford Other	16.2 17.4 18.5	14.4 16.4 17.9	17.3 17.1 15.4	12.4 13.6 14.4	1,492 1,871 363	6,105 3,236 1,923	1,968 1,138 499	4,746 1,915 1,451
Adjusted Vehicle Speed N = 25,254	1-29 MPH 30-49 MPH 50+ MPH	8.3 19.9 31.2	7.8 18.2 32.4	9.4 20.8 33.0	6.9 15.8 25.9	1,423 1,692 398	4,616 4,780 1,269	1,508 1,511 373	3,373 3,460 851
Road Classifi- cation N = 26,642	State or Inter- state Highway Rural Road City Street	19.0 20.0 15.2	18.5 17.0 13.8	20.4 18.5 15.2	15.5 15.8 11.2	968 712 2,039	3,082 1,749 6,413	936 547 2,108	2,241 1,107 4,740
Driver Age [、] N = 26,520	15-25 26+	15.0 19.5	15.1 16.0	15.9 17.6	12.1 13.4	2,016 1,686	5,988 5,194	1,270 2,309	1,954 6,103
Light Condition N = 26,652	Daylight Reduced Light	15.9 20.1	14.1 19.5	14.9 23.5	12.1 16.5	2,703 1,011	8,272 2,972	2,709 892	6,267 1,826
Restraint Usage N ≈ 25,408	Yes No	11.6 17.6	14.3 16.2	16.1 17.3	10.4 13.8	215 3,331	1,821 8,928	193 3,216	1,450 6,254
Investigating Agency N = 26,609	City Police Highway Patrol	14.9 20.1	13.7 18.5	15.2 20.2	11.2 16.2	2,229 1,489	7,022 4,194	2,294 1,296	5,195 2,890
Estimated Vehicle Speed N = 25,624	1-29 MPH 30-49 MPH 50+ MPH	10.3 21.1 31.7	9.2 19.8 31.0	11.1 22.3 38.2	8.2 17.7 27.5	1,855 1,367 347	5,550 4,104 1,160	2,007 1,160 280	4,451 2,656 687
Number of Vehicles N = 26,707	One Two	32.0 16.9	35.1 15.4	50.0 16.8	27.1 12.9	25 3,701	111 11 , 153	24 3,581	48 8,064

TABLE 3-18 INJURY RATES FOR NORTH CAROLINA 1974

TABLE 3-18INJURY RATES FOR NORTH CAROLINA 1974 (Continued)

		I	njury Rate	e (Percent)	Number of Drivers				
Variable	Category	2-Do	or	4-D	oor	2-Do	or	4-Door		
		Pre	Post	Pre	Post	Pre	Post	Pre	Post	
City Size N = 26,707	LT 5,000 5,000+	19.1 15.2	17.4 14.1	19.3 15.1	15.4 11.3	1,745 1,981	4,936 6,328	1,598 2,007	3,477 4,635	
Person Behind Driver N = 26,707	No Yes	16.7 20.5	15.4 18.1	16.9 18.5	12.8 15.6	3,428 298	10,442 822	3,291 314	7,503 609	
Road Surface Condition N - 26,653	Dry Other	17.0 17.1	15.6 15.3	17.3 16.0	13.0 13.1	2,918 795	8,763 2,485	2,832 769	6,351 1,740	
Alcohol Involvement N = 25,887	No Yes	15.4 26.4	14.5 26.2	15.9 25.6	12.5 19:3	3,204 390	10,181 770	3,127 344	7,414 457	
Driver Sex N = 26,635	Male Female	14.8 22.2	13.2 19.7	15.1 20.4	11.2 15.8	2,604 1,110	7,085 4,146	2,337 1,259	4,857 3,237	
Number of Occupants N = 26,701	One Two or More	16.6 17.7	15.1 16.3	16.2 18.4	12.5 14.0	2,199 1,525	6,956 4,307	2,240 1,365	5,131 2,978	
Accident Type N = 26,707	Coll.w Fixed Obj Coll.w Motor Veh	21.6 16.7	20.4 15.3	22.9 16.6	19.3 12.7	232 3,494	565 10,699	236 3,369	399 7,713	
Weather N = 26,552	Clear-Cloudy Other	17.2 16.2	15.4 16.3	17.4 15.2	13.1 12.5	3,072 625	9,361 1,843	3,022 564	6,753 1,312	

TABLE 3-19INJURY RATES FOR NORTH CAROLINA 1975

		l	njury Rate	(Percent)	Number of Drivers				
Variable	Category	2-Do	oor	4-Do	oor	2 - Do	or	4-D	oor	
		Pre	Post	Pre	Post	Pre	Post	Pre	Post	
Vehicle Weight N = 28,236	LT 3,000 lbs 3,000-3,599 lbs 3,600+ lbs	18.2 17.8 16.8	19.8 14.3 14.3	18.8 16.1 15.2	19.8 15.7 13.5	1,200 1,694 475	2,908 4,907 4,539	634 1,619 1,044	678 2,253 6,285	
Driver Sex N = 28,394	Male Female	15.1 24.2	12.7 20.3	14.6 19.5	11.8 18.6	2,369 1,010	7,640 4,756	2,070 1,253	5,564 3,722	
Manufacturer N = 28,411	GM Ford Other	17.7 17.7 18.3	14.0 18.1 16.2	16.0 17.0 16.7	13.7 16.7 14.3	1,274 1,726 382	6,743 3,717 1,945	1,670 1,136 520	5,461 2,216 1,621	
Driver Age N = 28,305	15-25 26-55 56+	15.8 20.6 18.9	15.1 16.3 15.5	15.5 17.3 16.6	13.5 15.5 13.5	1,860 1,200 302	6,403 5,097 864	1,197 1,293 820	2,340 4,704 2,225	
Estimated Vehicle Speed N = 27,404	1-29 MPH 30-49 MPH 50+ MPH	10.3 22.4 39.8	9.1 20.9 29.3	10.4 23.4 29.3	9.0 19.7 30.0	1,668 1,266 334	6,180 4,601 1,181	1,859 1,139 213	5,058 3,112 793	
Adjusted Vehicle Speed N = 27,126	1-29 MPH 30-49 MPH 50+ MPH	8.8 20.6 38,8	8.2 19.1 30.0	9.0 20.5 31.1	7.3 18.0 30.1	1,347 1,517 384	5,190 5,398 1,250	1,400 1,448 305	4,001 3,942 944	
City Size N = 28,411	LT 25,000 25,000+	18.4 16.6	16.7 14.1	16.4 16.5	15.3 13.4	2,167 1,215	7,207 5,198	2,074 1,252	5,533 3,765	
Road Classifi- cation N = 28,337	State & Inter- state Highway Rural Road City Street	21.1 19.3 15.7	18.7 18.0 13.6	20.3 16.5 14.8	18.4 16.1 12.5	904 611 1,855	3,269 1,851 7,250	824 496 2,001	2,462 1,242 5,572	
Number of Occupants N = 28,405	One Two or More	16.5 19.6	15.5 15.8	16.7 16.1	14.3 14.9	1,980 1,401	7,610 4,792	1,949 1,376	5,779 3,518	
Number of Vehicles N = 28,411	One Two	36.4 17.6	38.3 15.4	64.7 16.2	35.5 14.4	33 3,349	115 12,290	17 3,309	62 9 ,2 36	

		I	njury Rate	e (Percent)		Number o	f Drivers	
Variable	. Category	2-D0	por	4-D	oor	2-D0	or	4-Door	
		Pre	Post	Pre	Post	Pre	Post	Pre	Post
Weather N = 28,252	Clear-Cloudy Other	18.2 16.0	15.3 16.9	16.1 18.3	14.2 16.1	2,766 601	10,120 2,217	2,751 563	7,619 1,615
Investigating Agency N = 28,324	City Police Highway Patrol	15.4 21.5	13.7 19.1	14.8 19.4	12.5 18.4	2,038 1,332	7,949 4,424	2,150 1,167	6,061 3,203
Accident Type N = 28,411	Coll.w Fixed Obj Coll.w Motor Veh	20.5 17.6	21.7 15.3	24.2 16.0	17.2 14.4	200 3,182	572 11,833	194 3,132	408 8,890
Light Condition N = 28,335	Daylight Reduced Light	16.2 22.0	14.5 18.6	15.2 20.5	13.7 17.8	2,463 908	9,144 3,233	2,535 786	7,347 1,919
Alcohol Involvement N = 27,508	No Yes	16.2 30.4	14.7 23.6	15.5 24.3	14.2 19.1	2,954 306	11,165 830	2,891 305	8,591 466
Restraint Usage N = 27,007	Yes No	11.5 18.4	14.4 16.1	12.9 17.1	13.1 15.0	165 3,046	1,735 10,087	147 3,012	1,455 7,360
Road Surface Condition N = 28,322	Dry Other	17.9 17.4	15.5 16.1	16.0 18.0	14.2 16.8	2,611 759	9,470 2,900	2,594 722	7,173 2,093
Person Behind Driver N = 28,411	No Yes	17.6 19.5	15.7 14.5	16.2 19.1	14.5 14.4	3,090 292	11,427 978	3,006 320	8,511 787

TABLE 3-19 INJURY RATES FOR NORTH CAROLINA 1975 (Continued)

.

The information used in the variable selection to determine those variables selected for modeling of the North Carolina 1973-1975 data is given in Tables 3-20, 3-21 and 3-22. Ordering the variables according to the harmonic mean of the seven interaction terms resulted in the selection of variables for each year as follows:

1973	<u>1974</u>	1975
Vehicle Weight	Vehicle Weight	Vehicle Weight
Manufacturer	Manufacturer	Driver Sex
Estimated Vehicle Speed		Manufacturer

The completely cross-classified tables of the North Carolina driver-only 1973-1975 data samples prior to modeling are given in Appendix A.

INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE NORTH CAROLINA 1973

	Inter Saturat Prepost	Interaction Terms from Saturated Model Containing Prepost, Style and Variable			Interaction Terms from Saturated Model Containing Injury, Prepost, Style and Variable				
Variable	Var x Style	Var x Prepost	Var x Prepost x Style	Var x Injury	Var x Injury x Prepost	Var x Injury x Style	Var x Injury x Style x Prepost	Mean of the Interaction Terms	
	$LR \chi^2$	$LR \chi^2$	LR x ²	$LR \chi^2$	LR x ²	$LR \chi^2$	LR x ²		
Vehicle Weight	3217.64*	1428.69*	79.29*	56.59*	1.53	2.30	4.29	5.175	
Manufacturer	290.66*	778.38*	26.53*	13.03*	3.19	3.73	1.16	4,480	
Estimated Vehicle Speed	88.25*	20.85*	6.97*	926.30*	1.62	1.51	6.40*	4.270	
Driver Age	2933.48*	154.76*	126.03*	11.16*	1.95	1.79	1.22	3.508	
Adjusted Vehicle Speed	6.66*	14.57*	1.33	943.14*	1.03	2.69	8.40*	2.877	
City Size	9.14*	44.00*	2.46	20.85*	0.75	0.51	1.28	1.502	
Road Classification	44.68*	55.33*	1.67	100.58*	2.04	1.29	0.24	1.152	
Accident Type	2.40	30.86*	3.01	28.27*	0.65	0.80	0.37	1.110	
Restraint Usage	48.80*	622.91*	0.25	22.80*	0.54	0.32	0.43	0.616	
Light Condition	72.48*	7.88*	2.25	118.05*	2.61	1.23	0.05	0.322	
Road Surface Condition	7.35*	0.51	0.11	8.26*	1.32	0.33	0.11	0.290	
Investigating Agency	21.34*	8.01*	2.46	90.82*	0.88	0.93	0.03	0.194	
Weather	7.43*	4.16*	1.73	0.79	0.70	0.24	0.03	0.171	
Person Behind Driver	0.02	0.21	1.32	6.28*	1.57	0.04	0.57	0.085	
Driver Sex	49.09*	42.53*	8.00*	197.90*	1.92	1.90	0.01	0.070	
Number of Vehicles	7.56*	0.62	0.29	50.23*	0.18	0.01	0.15	0.060	
Alcohol Involvement	12.71*	76.34*	5.48*	103.84*	0.01	3.27	0.01	0.035	
Number of Occupants	15.35*	11.46*	0.81	24.94*	0.18	0.01	0.01	0.034	

^{*}p <0.05

Note: The degrees of freedom for all interaction terms for all variables are one except for: vehicle weight, manufacturer, estimated vehicle speed, driver age, adjusted vehicle speed and road classification. For these variables, the degrees of freedom are two for all interaction terms.

INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE NORTH CAROLINA 1974

	Inter Saturat Prepost	action Term ed Model Co , Style and	s from ntaining Variable	Inter Pr	action Terms Model Contai epost, Style	from Satur ning Injury and Variat	nated De	Harmonic	
Variable	Var x Style	Var x Prepost	Var x Prepost x Style	Var x Injury	Var x Injury x Prepost	Var x Injury x Style	Var x Injury x Style x Prepost	Harmonic Mean of the Interaction Terms	
	LR x ²	LR x ²	$LR \chi^2$	$LR \chi^2$	$LR \chi^2$	LR x ²	LR x ²		
Vehicle Weight	2897.22*	165.92*	72.51*	78.63*	5.66	2.75	3.89	8.487	
Manufacturer	252.41*	586.49*	77.65*	15.23*	3.65	2.13	0.83	3.445	
Adjusted Vehicle Speed	6.99*	4.79	7.47*	1034.68*	0.71	1.96	0.65	1.775	
Road Classification	31.07*	28.78*	3.42	92.43*	0.38	0.59	1.64	1.320	
Driver Age	1901.69*	77.36*	75.70*	12.39*	3.58	0.22	2.38	1.308	
Light Condition	42.03*	5.96*	1.68	108.22*	0.17	0.94	3.56	0.873	
Restraint Usage	7.96*	674.04*	3.38	18.01*	0.16	0.83	3.25	0.850	
Investigating Agency	14.70*	5.57*	2.86	114.66*	0.13	0.33	0.31	0.481	
Estimated Vehicle Speed	91.52*	4.65	0.27	944.89*	0.40	0.11	1.37	0.431	
Number of Vehicles	7.05*	1.23	2.27	48.05*	0.23	0.10	1.79	0.429	
City Size	5.14*	11.18*	1.25	70.52*	0.03	1.45	0.39	0.186	
Person Behind Driver	1.14	6.46*	0.38	10.65*	0.05	0.05	0.40	0.152	
Road Surface Condition	0.74	0.59	0.21	0.22	0.10	0.02	0.49	0.095	
Alcohol Involvement	12.00*	107.94*	1.09	125.15*	0.01	2.18	0.42	0.068	
Driver Sex	37.54*	84.63*	3.19	162.61*	0.01	1.77	0.11	0.064	
Number of Occupants	10.61*	8.67*	1.32	9.94*	0.01	0.65	0.06	0.059	
Accident Type	0.01	19.97*	0.40	30.97*	0.19	0.85	0.05	0.055	
Weather	0.99	0.01	0.97	0.14	1.50	1.38	0.03	0.049	

*p <0.05

Note: The degrees of freedom for all interaction terms for all variables are one except for: vehicle weight, manufacturer, adjusted vehicle speed, road classification and estimated vehicle speed. For these variables, the degrees of freedom are two for all interaction terms.

INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE NORTH CAROLINA 1975

	Inter Saturat Prepost	action Term ed Model Co , Style and	s from ntaining Variable	Inter Pr	ated Je	Hannonio		
Variable	Var x Style	Var x Prepost	Var x Prepost x Style	Var x Injury	Var x Injury x Prepost	Var x Injury x Style	Var x Injury x Style x Prepost	Harmonic Mean of the Interaction Terms
۱۹۰۹ - ۲۰۰۹ میلوند مارستان و با این از میلوند و بر این میلوند این و با این میلوند و با میلوند و با این میلوند و موال این میلوند و با میلوند	LR χ^2	LR x ²	$LR \chi^2$	LR χ^2	LR x ²	LR x ²	LR x ²	
Vehicle Weight	2703.51*	2045.25*	19.53*	59.41*	9.52*	3.12	1.89	6.839
Driver Sex	30.96*	68.30*	21.92*	252.47*	0.92	1.40	1.40	2.885
Manufacturer	256.11*	591.66*	42.52*	32.09*	8.73*	0.88	0.83	2.783
Driver Age	2495.82*	156.41*	55.57*	18.32*	2.84	0.42	2.48	2.177
Estimated Vehicle Speed	78.69*	4.72	11.79*	1080.69*	2.47	0.38	4.60	1.965
Adjusted Vehicle Speed	7.12*	4.70	6.52*	1156.18*	1.27	0.24	4.58	1.233
City Size	1.27	42.89*	5.22*	20.40*	2.08	1.04	0.23	1.024
Road Classification	25.24*	22.65*	6.78*	125.68*	1.45	1.44	0.16	0.890
Number of Occupants	1.14	21.26*	0.31	1.97	0.61	0.43	3.22	0.784
Number of Vehicles	8.61*	0.14	0.91	73.69*	0.41	0.76	3.50	0.564
Weather	1.56	0.32	0.13	5.18*	2.06	1.38	1.99	0.524
Investigating Agency	11.42*	11.21*	5.28*	147.78*	0.50	0.08	0.80	0.435
Accident Type	0.54	19.98*	0.09	23.48*	0.03	0.11	3.28	0.126
Light Condition	91.84*	9.43*	3.95*	75.40*	0.69	0.03	0.02	0.083
Alcohol Involvement	18.29*	82.52*	10.33*	92.08*	3.17	4.03*	0.01	0.070
Restraint Usage	9.74*	581.03*	3.96*	11.51*	2.75	0.01	0.43	0.068
Road Surface Condition	2.71	2.20	0.01	3.81	0.23	2.21	0.21	0.064
Person Behind Driver	4.17*	5.82*	0.19	0.01	2.77	0.41	0.01	0.034

^{*}p <0.05

Note: The degrees of freedom for all interaction terms for all variables are one except for: vehicle weight, manufacturer, driver age, estimated vehicle speed, adjusted vehicle speed and road classification. For these variables, the degrees of freedom are two for all interaction terms.

3.1.3 Analysis of Mass Accident Data

Following completion of the variable selection procedure, the analytical steps that remain are modeling, adjustment, computation of effectiveness and estimation of error. Each of these steps and the results are described in this subsection.

Modeling

The basic purpose of modeling is to attempt to control for and take into account confounding effects through smoothing the data and removing random variability. Separate log linear models were fit for each of the three injury dichotomies (KA/BCO, KAB/CO and KABC/O) for each state and year of mass accident data analyzed. Each model was fit to a table consisting of an injury dichotomy (Injury), model year related to Standard implementation (Prepost) and passenger car body style (Style) as well as those selected variables (usually 3 in number) discussed in Section 3.1.2.

A series of tables is presented that documents and summarizes the modeling process and the results obtained. Complete modeling information for Texas, New York and North Carolina is given in Appendix B. Models were fitted separately for the three years of Texas data, the single year of New York data and the three years of North Carolina data for each injury dichotomy (i.e., KA/BCO, KAB/CO and KABC/O). Specifically, the likelihood ratio (LR) chi-square values in Appendix B tables are derived from tests of marginal association of each effect (variable interaction term) in which the table is summed over all unspecified margins, after which the effect is tested to be zero. Chi-square values marked with an asterisk in the Appendix represent the actual effects specified in a given model. All other chi-square values denote specific effects included due to the hierarchical nature of the log-linear models.

The strategy used to fit models can be summarized as follows:

- 1. As many significant effects (in terms of their marginal association) as required are first specified in an attempt to derive a model with an optimal fit. Optimal fit refers to the situation in which the magnitude of the model's LR chisquare is roughly similar to its number of degrees of freedom.
- 2. Effects were either deleted or added to the model in a stepwise fashion until the deletion of any one effect would result in a significant worsening of the fit, whereas the addition of any single effect would not significantly improve the model's fit.

This approach represents a compromise between the two considerations of parsimony and goodness-of-fit.

For the convenience of the reader, the complete model fitting information given in Appendix B is summarized in this section in Tables 3-23 through 3-32. In these tables, only the marginal associations of directly specified model effects (those values with an asterisk in Appendix B) are included. Tables 3-23, 3-24 and 3-25 contain the results for each year of Texas data for the injury dichotomies KA/BCO, KAB/CO and KABC/O, respectively. Only those effects that are directly specified in at least one year are included in the table. A dash in the table indicates that the particular effect was not directly specified in the model for that year. The marginal association of directly specified model effects for all three injury dichotomies for the single year of New York data is given in Table 3-26. Finally, the results for North Carolina are given in Tables 3-27, 3-28 and 3-29 in a format analogous to the Texas model results.

In each of the above analyses, a model was fit to the entire drivers-only data set for a given state and year. Additionally, a separate data set was created for each year of Texas data in which only drivers in vehicles of model years from 1965 through 1971 were included. About two-thirds of the passenger cars are within this model year range. The reduced sample has the advantage of (1) including only those vehicles having model years reasonably close to the Standard implementation date, (2) eliminating very old cars, and (3) reducing the extent of confounding effects such as the market shift from 4-door to 2-door cars which took place over an extended period of years. Tables 3-30, 3-31 and 3-32 contain the directly specified model effects for each year of Texas 1965-1971 model year derived data for the injury dichotomies KA/BCO, KAB/CO and KABC/O. The corresponding full models are given in Appendix B.

SUMMARY OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR INJURY DICHOTOMY KA vs BCO TEXAS DRIVERS-ONLY SAMPLE

F#Faat	Texas 1972 T		Texa	s 1973		Texas	s 1974		
ETTECL	$LR \chi^2$	df	Prob.	LR χ²	df	Prob.	LR X ²	df	Prob.
Injury x Prepost x Style	-	-	-	0.81	1	0.369	0.21	۱	0.647
Injury x Prepost x City Size	_	-	-	- 26.62	2	0.000		-	-
Injury x Driver Age x City Size	16.67	4	0.002	-	-	-		-	-
Injury x City Size x Road Type	-	-	-	148.76	4	0.000	-	-	-
Injury x City Size x Accident Type	-	-	-	-	-	-	205.77	4	0.000
Injury x City Size x TAD	-	-	-		-	-	104.71	4	0.000
Injury x Road Type x Driver Age	-	-	-	21.35	4	0.000	-	-	-
Prepost x Style x Driver Age	-	-	-	743.34	2	0.000	*	-	-
Prepost x Style x City Size	-	-	-	16.05	2	0.000	5.32	2	0.070
Prepost x City Size x Road Type	-	-	-	27.54	4	0.000		-	-
Prepost x City Size x Driver Age	-	-	-	3.44	4	0.487	••	-	-
Prepost x City Size x Accident Type	-	-	-	-	-	-	59.92	4	0.000
Prepost x City Size x TAD	-	-	-	-	-	-	38.10	4	0.000
Prepost x Road Type x Driver Age	-	-	-	15.17	4	0.004	-	-	-
Style x Driver Age x City Size	61.38	4	0.000	-	-	-	-	-	-
Style x City Size x Accident Type	-	-	-	-	-	-	16.86	4	0.002
Accident Type x Driver Age x City Size	17.23	8	0.023	-	-	-	-	-	•
City Size x Accident Type x TAD	-	-	-	-	-	-	510.98	8	0.000
Injury x Style x City Size x Driver Age	-	-	-	12.33	4	0.015	-	-	-
Prepost x Style x Accident Type x Driver Age	11.07	4	0.026	-	-	-	-	-	-
Prepost x Style x Accident Type x TAD	-	-	-	-	-	-	10.60	4	0.032
Style x City Size x Road Type x Driver Age	-	-	-	18.15	8	0.020	-	-	-
Injury x Prepost x Style x Accident Type x City Size	11.59	4	0.021	-	-	-	-	-	-
SUMMARY OF MODEL	112.13	.08	0.152	115,24	106	0.2537	141.42	122	00.1103

SUMMARY OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR INJURY DICHOTOMY KAB vs CO TEXAS DRIVERS-ONLY SAMPLE

	Texa	s 1972		Texa	s 1973		Texa	s 1974	
Effect	LR χ^2	df	Prob.	LR X ²	df	Prob.	$LR \chi^2$	df	Prob.
Injury x Prepost x Style	0.68	1	0.408	-	-	-	14.58	1	0.000
Injury x Prepost x Accident Type	-	-	-	-	-	-	26.12	2	0.000
Injury x Prepost x Driver Age	13.50	2	0.001		-	-	4	-	-
Injury x Style x City Size	-	-	-	-	-	-	1.10	2	0.578
Injury x Accident Type x TAD	-	-	-	-	-	-	242.48	4	0.000
Injury x City Size x Road Type		-	-	178.00	4	0.000	-	-	-
Injury x City Size x Accident Type	*	-	-	-	-	-	353.53	4	0.000
Injury x City Size x TAD	~	-	-		-	-	54.50	4	0.000
Injury x Road Type x Driver Age		-	-	26.35	4	0.000	-	-	-
Prepost x Style x City Size	12.39	2	0.002	16.07	2	0.000	5.32	2	0.070
Prepost x City Size x.Road Type	-	-	-	27.52	4	0.000	-	-	-
Prepost x Road Type x Driver Age	-	-	-	15.17	4	0.004	-	-	-
Style x Driver Age x City Size	61.37	4	0.000	-	-	-	-	-	-
Style x City Size x Accident Type	-	-	-	-	-	-	16.86	4	0.002
City Size x Accident Type x TAD		-	-	-	-	-	510.98	8	0.000
Injury x Prepost x Accident Type x City Size	9.94	4	0.041	-	-	-	-	-	-
Injury x Prepost x Style x Driver Age	er	-	-	14.32	2	0.001	-	-	-
Injury x Prepost x City Size x Driver Age	-	-	-	10.34	4	0.035	-	-	-
Injury x Style x Accident Type x City Size	17.38	4	0.002	-	-	-	-	-	-
Inj. x Acc. Type x Driver Age x City Size	23.20	8	0.003	-	-	-	-	-	-
Prepost x Style x Accident Type x Driver Age	11.07	4	0.026	-	-	-	-	-	
Prepost x Style x Accident Type x TAD		-	-	-	-	-	10.60	4	0.032
Style x City Size x Road Type x Driver Age	-	-	-	18.15	8	0.020	-	-	-
SUMMARY OF MODEL	91.50	96	0.6108	118.89	104	0.1508	129.82	116	0.1794

SUMMARY OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR INJURY DICHOTOMY KABC vs O TEXAS DRIVERS-ONLY SAMPLE

Effort	Texa	s 1972		Texa	s 1973		Texas 1974			
	LR χ²	df	Prob.	LR χ^2	df	Prob.	LR X ²	df	Prob.	
Injury x Prepost x Style	0.46	1	0.496	0.26	1	0.608	13.40	1	0.000	
Injury x Prepost x Driver Age	19.15	2	0.000	-	-	-		-	-	
Prepost x Style x Driver Age	-	-	-	743.34	2	0.000	-	-	-	
Prepost x Style x City Size	12.39	2	0.002	16.07	2	0.000	5.32	2	0.070	
Prepost x City Size x Road Type	**	-	+	27.52	4	0.000	-	-	-	
Prepost x Road Type x Driver Age		-	-	15.17	4	0.004	-	-	-	
Accident Type x Driver Age x City Size	17.25	8	0.028	-	-	-	 	-	-	
Injury x Prepost x Accident Type x City Size	10.13	4	0.038	-	-	-		-	-	
Injury x Prepost x City Size x Driver Age	-	-	-	11.68	4	0.020		-	-	
Injury x Style x Accident Type x City Size	12.66	4	0.013	-	-	-	~	-	-	
Injury x Style x Driver Age x City Size	10.97	4	0.027	-	-	-		-	-	
Prepost x Style x Accident Type x Driver Age	11.05	4	0.026	•	-	-	-	-	-	
Prepost x Style x Accident Type x TAD	-	-	-	-	-	-	10.60	4	0.032	
Injury x Style x City Size x Road Type x Driver Age	-	-	-	17.13	8	0.029	-	-		
Injury x Prepost x City Size x Accident Type x TAD	-	-	-	-	-	-	17.95	8	0.022	
SUMMARY OF MODEL	93.47	102	0.7149	82.05	74	0.2440	95.46	80	0.1144	

SUMMARY OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR THE THREE INJURY DICHOTOMIES NEW YORK 1974 DRIVERS-ONLY SAMPLE

E & Cont	KA vs	BCO	КАВ	/s CO	KABC vs O		
LTTECL	LR χ^2	Prob.	LR χ²	Prob.	LR χ^2	Prob.	
Injury x Rd Cl	123.51	0.000	-	-	•	-	
Injury x Age	57.11	0.000	-	-	95.39	0.000	
Injury x Prepost x Style	6.64	0.010	9.99	0.002	5.92	0.015	
Injury x Prepost x Rd Cl	-	-	-	-	9.68	0.008	
Injury x Prepost x Mfg	7.67	0.022	15.12	0.001	10.31	0.006	
Injury x Style x Rd Cl	-		8.67	0.013	·	-	
Injury x Style x Age	-	-	10.40	0.006	-	-	
Injury x Rd Cl x Age	-	-	~		9.61	0.048	
Prepost x Rd Cl x Age	17.80	0.001	17.80	0.001	17.05	0.002	
Style x Rd Cl x Age	23.69	0.000	23.69	0.000	23.49	0.000	
Prepost x Style x Rd Cl x Mfg	13.00	0.011	13.00	0.011	13.33	0.010	
Prepost x Style x Age x Mfg	13.70	0.008	13.70	0.008	13.85	0.008	
SUMMARY OF MODEL	138.49	0.3321	133.98	0.3409	141.47	0.1637	

Note: The degrees of freedom for the entire model are: KA-132, KAB-128, KABC-126.

TABLE 3-27

SUMMARY OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR INJURY DICHOTOMY KA vs BCO NORTH CAROLINA DRIVERS-ONLY SAMPLE

Effort	North Ca	rolina	1973	North C	arolir	ia 1974	North Carolina 1975			
	$LR \chi^2$	df	Prob.	LR x ²	df	Prob.	LR x ²	df	Prob.	
Injury x Weight	-	-	-	44.87	2	0.000	17.47	2	0.000	
Injury x Sex	-	-	-	-	-	-	4.00	1	0.046	
Mfg x Est Speed	20.34	4	0.000	-	-	-	-	-	-	
Injury x Prepost x Style	5.79	1	0.016	1.93	1	0.165	1.75	1	0.187	
Injury x Weight x Est Speed	9.99	4	0.041		-	-	-	-	-	
Prepost x Style x Est Speed	6.00	2	0.050		-	-	-	-	-	
Prepost x Style x Sex	-	-	-	-	-	-	19.96	1	0.000	
Prepost x Weight x Sex	-	-	-	-	-	-	6.25	2	0.044	
Prepost x Sex x Mfg	-	-	-	-	-	-	31.07	2	0.000	
Prepost x Style x Weight x Mfg	75.99	4	0.000	88.20	4	0.000	78.61	4	0.000	
Style x Weight x Sex x Mfg	-	-	-	-	-	-	20.74	4	0.000	
SUMMARY OF MODEL	102.56	152	0.264	34,49	30	0.262	88.83	77	0.168	

SUMMARY OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR INJURY DICHOTOMY KAB vs CO NORTH CAROLINA DRIVERS-ONLY SAMPLE

Effect	North C	arolin	ia 1973 [.]	North Car	olina	1974	North Carolina 1975			
	$LR \chi^2$	df	Prob.	LR x ²	df	Prob.	$LR \chi^2$	df	Prob.	
Style x Est Speed	88 .6 5	2	0.000	-	-	-	-	-	-	
Mfg x Est Speed	20.32	4	0.000	-	-	-	-	-	-	
Injury x Prepost x Style	0.47	1	0.494	6.87	1	0.009	2.32	1	0.127	
Injury x Prepost x Weight	-	-	-	-	-	-	8.81	2	0.012	
Injury x Weight x Mfg	-	-	-	10.65	4	0.031	-	-	-	
Prepost x Style x Sex	-	-	-	-	-	-	19.96	1	0.000	
Prepost x Sex x Mfg	-	-	-	-	-	t	31.06	2	0.000	
Injury x Prepost x Weight x Est Spd	11.33	4	0.023	*	-	-	-	-	-	
Prepost x Style x Weight x Mfg	75.98	4	0.000	88.20	4	0.000	78.60	4	0.000	
Injury x Weight x Sex x Mfg	-	-	-	-	-	-	12.34	4	0.015	
Style x Weight x Sex x Mfg	-	-	-	-	-	-	20.74	4	0.000	
SUMMARY OF MODEL	161.69	142	0.124	29.60	24	0.198	67.07	63	0.400	

TABLE 3-29

SUMMARY OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR INJURY DICHOTOMY KABC vs O NORTH CAROLINA DRIVERS-ONLY SAMPLE

Effect	North (Caroli	na 1973	North Car	olina	1974	North Carolina 1975			
	$LR \chi^2$	df	Prob.	LR x ²	df	Prob.	LR x ²	df	Prob.	
Injury x Weight	70.55	2	0.000	109.44	2	0.000	75.72	2	0.000	
Injury x Est Speed	918.70	2	0.000	-	-	~	-	-	-	
Injury x Sex	-	-	-	-	-	-	249.97	1	0.000	
Weight x Est Speed	28.88	4	0.000	-	-	-	-	-	-	
Mfg x Est Speed	20.32	4	0.000	-	-	-	-	-	-	
Injury x Prepost x Style	2.01	1	0.157	6.97	1	0.008	0.06	1	0.811	
Injury x Prepost x Mfg	-	-	-		-	-	7.65	2	0.022	
Prepost x Style x Est Speed	6.00	2	0.050	-	-	-	-	-	-	
Prepost x Style x Sex	-	-	-	-	-	-	19.96	1	0.000	
Prepost x Sex x Mfg	-	-	-	-	-	-	31.06	2	0.000	
Prepost x Style x Weight x Mfg	75.98	4	0.000	88.20	4	0.000	78.60	· 4	0.000	
Style x Weight x Sex x Mfg	-	-	-	-	-	-	20.74	4	0.000	
SUMMARY OF MODEL	174.60	156	0.147	29.51	30	0.491	76.34	75	0.435	

SUMMARY OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR INJURY DICHOTOMY KA vs BCO MODEL YEARS 1965-1971 TEXAS DRIVERS-ONLY SAMPLE

	Texa	s 1972		Texa	s 1973		Texas	s 1974 df 	
Effect	LR χ²	df	Prob.	LR χ^2	df	Prob.	LR X ²	df	Prob.
Injury x Driver Age	3.59	2	0.166	-	-	-	_	-	-
Style x TAD	-	-	-				106.61	2	0.000
Injury x Prepost x Style	0.42	1	0.518	0.06	١	0.804	0.14	1	0.705
Injury x Prepost x City Size	-	-	-	17.93	2	0.000	-	-	-
Injury x Style x Accident Type	-	-	-	+	-	-	6.35	2	0.042
Injury x City Size x Road Type	*	-	-	84.48	4	0.000	-	-	-
Injury x City Size x Accident Type		-	-	-	-	-	123.71	4	0.000
Injury x City Size x TAD	-	-	-		-	-	69.86	4	0.000
Prepost x Style x Driver Age	280.18	2	0.000	132.49	2	0.000	-	-	-
Prepost x Style x City Size	7.23	2	0.267	12.57	2	0.002	6.90	2	0.032
Prepost x Accident Type x Driver Age	12.56	4	0.014	-	-	-	-	-	•
Prepost x Accident Type x City Size	17.13	4	0.002	-	-	-	13.13	4	0.011
Prepost x City Size x Road Type	-	-	-	13,10	4	0.011	-		-
Prepost x City Size x TAD	-	-	-	-	-	-	12.08	4	0.017
Style x Accident Type x Driver Age	20.51	4	0.000	-	-	-	-	-	-
Style x Driver Age x City Size	41.69	4	0,000	65.71	4	0.000	-	-	-
Style x City Size x Road Type	-	-	-	17.98	4	0.001	-	-	-
City Size x Road Type x Driver Age	-	-	-	41.74	8	0.000	-	-	-
City Size x Accident Type x TAD	-	-	-	-	-	-	286.51	8	0.000
Injury x Style x Accident Type x City Size	17.81	4	0.001	-	-	-	-	-	-
Injury x Prepost x Accident Type x TAD	-	-	-	-	-	-	10.94	4	0.027
SUMMARY OF MODEL	147.04	134	0.2083	148.72	144	0.3766	132.00	126	0.3393

SUMMARY OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR INJURY DICHOTOMY KAB vs CO MODEL YEARS 1965-1971 TEXAS DRIVERS-ONLY SAMPLE

5464	Texa	s 1972		Texas	1973		Texas 1974		
Effect	LR x ²	df	Prob.	LR χ^2	df	Prob.	LR χ^2	df	Prob.
Style x TAD	-	-	-	-	-	-	110.61	2	0.000
Injury x Prepost x Style	0.14	1	0.707	0.68	1	0.409	7.93	1	0.005
Injury x Prepost x City Size	15.99	2	0.000	19.80	2	0.000	12.41	2	0.002
Injury x Prepost x Driver Age	-	-	-	11.98	2	0.002	-	-	-
Injury x Style x Accident Type	-	~	-	-	-	-	9.15	2	0.010
Injury x Style x Driver Age	5.86	2	0.053	9.77	2	0.008	-	-	-
Injury x Accident Type x TAD			•	-		-	154.15	4	0.000
Injury x Driver Age x City Size	28.43	4	0.000	-	-	-	-	-	-
Injury x City Size x Road Type		-	-	116.13	2	0.000	-	-	-
Injury x City Size x Accident Type		-	-	-		-	195.01	4	0.000
Injury x City Size x TAD	-	-	-	-	-	-	41.52	4	0.000
Injury x Road Type x Driver Age		-	-	19.58	4	0.001	-	-	-
Prepost x Style x Accident Type	29.14	2	0.000	-		-	8.55	2	0.014
Prepost x Style x Driver Age	280.18	2	0.000	132.49	2	0.000	-	-	-
Prepost x Style x City Size	7.23	2	0.027	12.57	2	0.002	6.92	2	0.031
Prepost x Accident Type x Driver Age	12.56	4	0.014	~	-	-	-	-	-
Prepost x Accident Type x TAD	-	-	-	-	-	-	23.03	4	0.000
Prepost x City Size x Road Type	-	-	-	13.10	4	0.011	-	-	-
Prepost x City Size x Accident Type	17.13	4	0.002	-	-	-	13.12	4	0.011
Style x Accident Type x Driver Age	20.51	4	0.000		-	-	-	-	-
Style x Driver Age x City Size	41.69	4	0.000	65.71	4	0.000	-	-	-
Style x City Size x Road Type	-	-	-	17.98	4	0.001	-	-	-
City Size x Road Type x Driver Agé	+	-	-	41.74	8	0.000	-	-	-
City Size x Accident Type x TAD	-	-	-	-	-	-	286.51	8	0.000
Injury x Style x Accident Type x City Size	12.78	4	0.012	-	-	-	-	-	-
SUMMARY OF MODEL	130.56	126	0.3722	146.17	134	0.2228	155.25	136	0.1237

SUMMARY OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR INJURY DICHOTOMY KABC vs 0 MODEL YEARS 1965-1971 TEXAS DRIVERS-ONLY SAMPLE

T T Cont	Texa	s 1972		Texas 1973 Texas 1974		1974			
LTTECT	LR χ²	df	Prob.	LR χ^2	df	Prob.	LR χ^2	df	Prob.
Style x TAD	-	-	-	-	-	-	110.61	2	0.000
Injury x Prepost x Style	-	-	-	3.09	1	0.079	6.02	1	0.014
Injury x Prepost x City Size		•	-	13.06	2	0.002	-	-	-
Injury x Style x Accident Type	=	-	-	+		-	7.35	2	0.025
Injury x Style x Driver Age	9.51	2	0.009	-	-	-	-	-	
Injury x Accident Type x TAD		-	-	-	-	-	149.11	4	0.000
Injury x Driver Age x City Size	23.88	4	0.000	-	-	-	-	-	-
Injury x City Size x Accident Type	-	-	-	-	-	-	150.86	4	0.000
Injury x City Size x TAD	-	-	-	-	-	-	32.97	4	0.000
Prepost x Style x Accident Type	-	-	-	-	-	-	8.55	2	0.014
Prepost x Style x Driver Age	280.18	2	0.000	132.49	2	0.000	-	-	-
Prepost x Style x City Size	•	-	-	12.57	2	0.002	6.90	2	0.032
Prepost x Accident Type x Driver Age	12.56	4	0.014	-	-	-	-	-	-
Prepost x Accident Type x TAD	-	-	-	-	-	-	23.03	4	0.000
Prepost x City Size x Road Type	-	-	-	13.09	4	0.011	-	-	-
Prepost x City Size x Accident Type	-	-	-	-	-	-	, 13.12	4	0.011
Style x Accident Type x Driver Age	20.51	4	0.000	-	-	-	-		-
Style x Driver Age x City Size	41.69	4	0.000	-	-	-	-	-	-
City Size x Accident Type x TAD	•	-	-	-	-		286.51	8	0.000
Inj.x Prepost x Style x Acc.Type x City Size	10.81	4	0.029	-	-	-	-	-	-
Inj.x Style x City Size x Rd. Type x Dr.Age	•	[-	-	20.33	8	0.009	-	-	-
SUMMARY OF MODEL	119.69	108	0.2079	92.81	88	0.3422	148,45	138	0.2566

з¹,

Adjustment of Data

Prior to computing the actual effectiveness values, the smoothed data were adjusted so as to allow for the direct comparison of injury rates. Such adjustment is necessary in order to insure that the overall effectiveness estimate will not be affected by a potentially different distribution of 2-door and 4-door vehicles across all levels of the relevant pre-crash factors identified through the variable selection procedure (described in Section 3.1.2). The data were adjusted so that the following constraints were satisfied (notation is explained in Figure 3-2).

<u>Constraint 1</u>. The Pre-Post Standard mix of 2-door cars shall be the same for all pre-crash conditions:

$$\frac{n'.11\ell}{n'.12\ell} = \frac{n.11.}{n}$$

<u>Constraint 2</u>. The distribution of 2-door cars over all pre-crash conditions shall remain unchanged:

$$n'.1.\ell = n.1.\ell$$

<u>Constraint 3</u>. The Pre-Post Standard mix of 4-door cars shall be the same for all pre-crash conditions:

$$\frac{n'.21\ell}{n'.22\ell} = \frac{n.21.}{n.22}$$

<u>Constraint 4</u>. The distribution of 4-door cars over all pre-crash conditions shall remain unchanged:

$$n'_{.2.l} = n_{.2.l}$$

<u>Constraints 5-8</u>. For each Pre-Post/2-4 door combination within each pre-crash condition, the injury risk shall not be changed:

$$\frac{n'_{1jk\ell}}{n'_{.jk\ell}} = \frac{n_{1jk\ell}}{n_{.jk\ell}}$$

Figure 3-2. Summary of notation used in description of adjustment procedures.

As a first step in the adjustment procedure, the above constraints were satisfied by computing adjusted values (n') of the cell frequencies for the marginal sub-table representing the joint classification of the variables Pre-Post and Vehicle Body Style (2-door/4-door) within each level (ℓ) of the pre-crash conditions, as follows:

$$n'_{.11\ell} = \frac{\binom{n}{.11}\binom{n}{.1.\ell}}{\binom{n}{.1.\ell}}$$

$$n'_{.12\ell} = \frac{n}{.1.\ell} - n'_{.11\ell}$$

$$n'_{.21\ell} = \frac{\binom{n}{.21}\binom{n}{.2.\ell}}{\binom{n}{.2.\ell}}$$

 $n'.22\ell = n.2.\ell - n'.21\ell$

Next, in order to generate a complete table of adjusted values in which the variable Injury is explicitly represented, the adjusted marginal sub-totals computed in the previous step are decomposed into Injured/Uninjured categories by applying the original injury risk to the appropriate newly-adjusted marginal total, as follows:

3-47

$$n'_{111\ell} = \frac{n_{111\ell}}{n_{.11\ell}} (n'.11\ell)$$

$$n'_{211\ell} = \frac{n_{211\ell}}{n_{.11\ell}} (n'.11\ell)$$

$$n'_{211\ell} = \frac{n_{121\ell}}{n_{.21\ell}} (n'.21\ell)$$

$$n'_{221\ell} = \frac{n_{221\ell}}{n_{.21\ell}} (n'.21\ell)$$

$$n'_{112\ell} = \frac{n_{112\ell}}{n_{.12\ell}} (n'.12\ell)$$

$$n'_{212\ell} = \frac{n_{212\ell}}{n_{.12\ell}} (n'.12\ell)$$

$$n'_{122\ell} = \frac{n_{122\ell}}{n_{.22\ell}} (n'.22\ell)$$

$$n'_{222\ell} = \frac{n_{222\ell}}{n_{.22\ell}} (n'.22\ell)$$

After the cell frequencies were adjusted within each factor level, the data were aggregated over all factor levels, resulting in a single Injury x Prepost x Style table for each year of each state's data base. These latter tables of smoothed, adjusted data served as the basis for all subsequent effectiveness estimates.

As noted previously, proper adjustment of the data is necessary in order to allow for the direct comparison of injury rates. By following the procedure outlined in this section, such comparisons are not only possible, but the total number of drivers does not change, the effectiveness value within each factor level is not altered (nor is the corresponding odds ratio), but the various injury risks remain unchanged across all levels of pre-crash conditions. Table 3-33 contains the various pre-crash factors for each state and data year which served as the basis for the adjustment of the smoothed cell frequencies.

TABLE 3-33 VARIABLES USED IN ADJUSTMENT PROCEDURE

State	Year	Variables
Texas	1972	Accident Type Driver Age City Size
	1973	City Size Road Classification Driver Age
	1974	City Size Accident Type TAD
New York	1974	Road Classification Driver Age Manufacturer
North Carolina	1973	Vehicle Weight Manufacturer Estimated Vehicle Speed
	1974	Vehicle Weight Manufacturer
	1975	Vehicle Weight Driver Sex Manufacturer

.

Effectiveness and Error Estimation

Given the stochastic nature of the phenomenon under study, it is necessary to estimate the possible range of error for the results obtained. Using the notation depicted in Figure 3-3, the effectiveness of seat back locks in reducing driver injuries can be expressed as:

$$E = \left[1 - \left(\frac{p_{111}}{p_{121}} \times \frac{p_{122}}{p_{112}}\right)\right] \times 100$$

where $p_{ijk} = n_{ijk}/n_{ijk}$. Therefore, the problem at hand is one of deriving confidence limits for a double ratio of probabilities.

Figure 3-3. Basic contingency table for effectiveness computation and error estimation.

To estimate a confidence interval for R, where $R = \frac{p_{111}}{p_{121}} : \frac{p_{112}}{p_{122}} = \frac{p_{111} p_{122}}{p_{121} p_{112}}$,

it is assumed that both the p_{1jk} and n_{1jk} terms are binomially distributed random

variables. By defining
$$R = \frac{\pi_{111} \pi_{122}}{\pi_{121} \pi_{112}} \times \frac{(1 + \varepsilon_{111})(1 + \varepsilon_{122})}{(1 + \varepsilon_{121})(1 + \varepsilon_{112})}$$
 where the π_{ijk} 's are

the expected values of the p_{ijk} 's, one can study the $\frac{(1 + \epsilon_{111})(1 + \epsilon_{122})}{(1 + \epsilon_{121})(1 + \epsilon_{112})}$ term by expanding the fraction in power series in ϵ_{121} and ϵ_{112} . These series expressions hold only if $|\epsilon_{ijk}| < 1$. Hence, p_{1jk} should be restricted to the range $0...2\pi_{1jk}$, or n_{1jk} to the range $0...2n_{1jk}\pi_{1jk}$. Since $\sigma(n_{1jk}) =$

 $\sqrt{n_{jk}\pi_{ljk}(1-\pi_{ljk})}$, there is a $\pm 2\sigma$ range for $n_{jk}\pi_{ljk} = 4(1-\pi_{ljk})$. Since

n.jk π_{1jk} is always much larger than 4 in the analyses reported here, this restriction is never violated in this study.

Since in all cases the n.ij^plij terms are well over 100, a second order approximation to the first and second moments, using a normal distribution to estimate the "true" mean and variance of R, was employed in CEM's error estimation procedure. Furthermore, since the expected value of R <u>overestimates</u> the effectiveness 1 - R, the bias in R was corrected, however small it may have been. A more detailed description of the error estimation procedure used, along with its rationale, is summarized in Appendix D. The actual formulas used in the present study are outlined below, using the notation depicted in Figure 3-2:

Var (E) =
$$\left(\frac{p_{111} \ p_{122}}{p_{121} \ p_{112}}\right)^2 \left(\frac{1 - p_{111}}{n \cdot 11 \ p_{111}} + \frac{1 - p_{121}}{n \cdot 21 \ p_{121}} + \frac{1 - p_{112}}{n \cdot 12 \ p_{112}} + \frac{1 - p_{122}}{n \cdot 22 \ p_{122}}\right)$$

unbiased (E) = $[1 - (r'xy)] \cdot 100$,

where
$$\mathbf{r'} \approx \frac{p_{111}}{p_{121}} \frac{p_{122}}{p_{112}}$$
,
 $\mathbf{x} \approx 1 + \frac{1 - p_{121}}{n.21} \frac{(1 - p_{121})(1 - 2p_{121})}{(n.21} + \frac{(1 - p_{121})(1 - 6p_{121}(1 - p_{121}))}{(n.21})^2}{(n.21} + \frac{(1 - p_{121})(1 - 6p_{121}(1 - p_{121}))}{(n.21})}{(n.21} \int_{121}^{121} \frac{(1 - p_{112})(1 - 2p_{112})}{(n.21} + \frac{(1 - p_{112})(1 - 2p_{112})}{(n.12} + \frac{(1 - p_{112})(1 - 2p_{112})}{(n.12} + \frac{(1 - p_{112})(1 - 6p_{112}(1 - p_{112}))}{(n.12} + \frac{(1 - p_{112})(1 - 6p_{12}(1 - p_{12}))}{(n.12} + \frac{(1 - p_{112})(1 - 6p_{12}(1 - p_{12}))}{(n.12} + \frac{(1 - p_{12})(1 - 6p_{12}(1 - p$

In all cases, a 95 percent probability level ($\alpha = 0.05$) was used in constructing confidence intervals.

With the above discussion of the effectiveness computation and error estimation procedure in mind, we can now discuss the effectiveness results obtained. The results are presented in a series of computer-generated tables that provide the injury distributions for 2-door/4-door cars both Pre- and Post-Standard, the injury probabilities for these categories and the effectiveness with an associated standard deviation and confidence interval. These statistics are presented for the KA/BCO, KAB/CO and KABC/O injury dichotomies.^{*} All of the effectiveness results presented in this section are obtained from either observed, unadjusted contingency table data or from smoothed (modeled) adjusted contingency table data. Only a summary of effectiveness values computed for observed, unadjusted data is given in this section; more detail is provided in Appendix C.

The effectiveness results for smoothed, adjusted data for Texas are presented in Tables 3-34, 3-35 and 3-36. The results for New York are in Table 3-37, and those for North Carolina are shown in Tables 3-38, 3-39 and 3-40. Finally, the effectiveness results for the Texas 1965-1971 model year sample are in Tables 3-41, 3-42 and 3-43. While a number of qualifying comments and interpretations need to be made, the results do not support the hypothesis that the introduction of seat back locks in 2-door cars reduces the injury risk to drivers in these cars. That is, the results do not demonstrate that this aspect of the Standard has been effective in reducing injury.

The effectiveness results obtained are summarized in Table 3-44 and Table 3-45 for observed, unadjusted mass accident data and smoothed, adjusted data, respectively. On the average, the net impact of modeling and adjustment was to increase the value of effectiveness estimates by roughly two to three percent.

The effectiveness values computed for the smoothed, adjusted data are most often negative. In Texas, the largest sample, effectiveness ranged from 4.9 percent to -12.7 percent for KA/BCO; -1.3 percent to -10.3 percent for KAB/CO; and -0.7 percent to -8.3 percent for KABC/O. The effectiveness values computed from the New York 1974 sample were negative for all three injury dichotomies (-7.2 percent to -17.9 percent). In North Carolina, the effectiveness was negative in 1973 and 1974 for all three injury dichotomies and positive in 1975.

Definitions of injury levels are: K = killed; A = severely injured;

B = moderately injured; C = minor injuries; O = no injury.

SUMMARY OF FMVSB 207 EFFECTIVENESS STUDY USING 1972 TEXAS FXPECTED, ADJUSTED INTAL CASES = 159700

، ««اَ الله الله الله الله الله الله الله ال	INJUKY DI	STRIBUTION	8	<u></u>
INJURY I Categury I , pre	2 - DOOR I X I PUST I X	I I I PRE I	4 - DOUR X I PUST I	I I I ROW ROW X I TOTAL I PCT
K+A 1 977 B+C+O 1 30026 K+A+B 1 3001 C+O 1 28002	0.6 1145 0.	1 1149	0.7 698	0.4 3969 Z.5
	18.8 54504 34.	37655	23.6 33546	21.0 159731 97.5
	1.9 4065 2.	3509	2.2 2306	1.4 12883 8.1
	17.5 51583 32.	35295	22.1 31937	20.0 146817 91.9
K+A+B+C 4181	2.6 6025 3.	4866	3.0 3395	2.1 18467 11.6
0 26821	16.8 49628 31.	33938	21.3 30847	19.3 141234 88.4
K+A+B+C+0 51003	19.4 55649 34.	38804	24.3 34244	21.4 159700 100.0

	-	•	* *	-	er es	•	98		**	-	-	• •	- *	•		•	-	-	•	**	-	۰.	•	
	1					1	'					1	95	X	C	٥v	IF 1	06	NC	E	IN	Ť₿	£R'	¥ A
INJURY		EFF	ECT	IVE	ENE SS		S	ΤA	ND	Af	۲D	1.		•	•	•	94	**	•		•	9	٠	
CATEGURIES	 +-		۸ ۷ 	L.UE	: • • • • •		D 	EV = 1	I A	T 3 	.ON	1			= #'	01	•		1		• •	T () 	
			 4	.98	2			** **	ы. 6,	с. С.	9	•	* ** **	-	- 5	••)6					4,	.9	1
K+A+8	1		* 1	.33	5	1			з.	5()	1		•	•7	. (17		1			4,	. 4	2
K+A+B+C	i.		- 1	.50	3	1			2.	87	7	÷.			-6	. ê	9		1			3.	.1	4

			1110	Uni	F F	U O M	041	- 4 + 3	L F. O	() () N	GL N				
* * * * *	1	-	-	г <mark>-</mark> -	D	UR	-		~		4 " =	D	OUR		
INJURY	1					-	-	* (¥9	91 8 9	e) m		48 90 98	-	
CATEGORIES	 		PHE	***	1	PQ	91 		•	PRE	-	1	P091	 •••••	 TOTAL
"«=»»«=»»»». K+A	 	 3	.15				06	•••••		2.96) (), 40 40 40)		2.04	 	 2.49
K+A+8	i	9	-68		1	7.	30	i		9.04		ł.	6.74	i i	8.07
K+A+8 K+A+8+0	1	9	•68 .49		1	10.	30 яз			9.04 12.9/	 	Ŧ	9,91		8.0

SUMMARY OF FRVSS 207 EFFECTIVENESS STUDY USING 1973 TEXAS Expected, adjusted Total Cases = 161915

			_				INJ	URY	D1	91	RIBUTI	0118									
	- 1		-	2	•••••	00	JR	-	••••	ï		4	-	D	DUR		ī	* * *	•		• ••
INJURY CATEGURY	 .	PRE	-	ົາ	••••••••••••••••••••••••••••••••••••••	- · 	P0.91	••••	*	+	PRE		x	ī	PUST	i x	1	ROW TUTAL	1	R P	OW CT
		752		 			1299	****							 	1 0.4		******			
8+C+0	i	24297	11	ŝ.	Ő		64755	140	.0	i	30342	118	.7	i	38834	124.0	i	158228	i	97	.7
К+А+В С+О	1	2601	1	1.	6 9	1	4784	131	•0	1	2951	1 1	•8	1	2509	1 1.5	1	12851	1	7	,9 ,1
К+А+В+С	Ī	3560	ī	į.	2		7153	1 4	• 4	Ī	4034	1 2	.5	ī	3860	1 2.4	ļ	18607	-	11	• 5
U +	,	21485	1 ; •••• 1 1	5.	5 - + 1 5		38904 66054	1.50	1 - 4 1	} 	27247 	116 110	•0 •••	1 	53667 39528	(82+0 124.4) = = ا	145303		88	

		EFFECTIV	ENES	S VALUES	(PE	RCENT)		
INJURY Categonies		ECTIVENES Value	8 1	STANDARD DEVIATION	 -	95% CONFID From	ENCE	INTERVAL TO
K+A K+A+B K+A+B+C	 	-12,65 -3,48 -0,65	 	2,87 2,87	 	-25,04 -9,41 -5,35	 	=0,26 2,45 4,06

	INJU	RY PROBABIL	ITIFS	(PERCENT)		x
INJURY	1 2	- DOUR	 -	4 - 0	DUR I	
CATEGORIES	PHE				P031	TOTAL
K+A	1 3.00	1 1.97	ł	3.01 1	1.76	85.5
K+A+8 K+A+8+C	1 10.41	7.24 10.83	1	9,43 2,90	6.35 I 9.77 I	7.94 11,49

.

.

SUMMARY OF FHV95 207 EFFECTIVENESS STUDY USING 1974 TEXAS Expected, Adjusted Tutal Cases = 146451

alineite <u>n heite</u> ttettettettettettettettettettettettet	ikalin ilin disalar dir Alsalar yan van	INJ!	JHY DISTRIBUTIO)NS		
* * * * *		2 - DOUR	• • • • • • • •	4 - DOUR		
CATEGORY	L PRE I	X PUST	I X I PRE	I X I POST	I X I TOTAL	ROW I PCT
*********			***************************************	***************************************		
K+A 8+C+0	1 492 1	12.1 (65892	145.0 22413	1 0.4 1 618 115.3 (37512	125.6 1143594	1 98.0
K+A+B C+0	1 1762 1	1.2 5065	1 3.5 2114	1.4 2493 14.2 35634	1 1.7 1 11434 124.3 1135017	8.7
К+А+В+С 0	2404 15867	1.6 7651 10.8 59437	1 5.2 1 2962	1 2.0 1 3940 113.7 J 34189	1 2.7 1 16957	1 11.6 1 88.4
K+A+B+C+U	18269	12.5 67091	145.8 1 22961	115.7 38130	126.0 1146451	1 100,0

		۱ س	: • •	£¢	114	EN	ະວ 	3	<u>ү</u> д		.' E.	8 	۳.	с. -	(C)	: N	1)					_	_	_	-
		-				_	ŗ						- !	Ğ	157	κ -	cc	INF	, T (DEN	ICE	Ī	N T	ER	VĀ
TNJURY	1 6	**£{	:11	VE	NF 9	3	1	51	AV	10	A H	p –	ļ	•	*			• •			a ta	-	-	(17)	
CATEGORIES	 	۱ • • • • •	/ A L	.UE	* # *		 	06		[A'	11	() N 		~ .		F	RC	1 M			 		T 	0	e o e a
K+A		~	1	93	***	-		-	7	,	71	19 FF 1	م « ا	.	•••••	1	0	70	• •• •)	• • • 	n an 141 		4	.5	 7
K+A+B	1	- 1	0.	34			Ł		- 4	نه ا	8 9		1			• 1	7.	36	,	1			• 3	. 3	3
K+A+B+C	i		A	29			i.		1		22		i			٠Ĩ	3	86		i			, ī	. 6	3

		INJL	IRY PI	ROBABILI	TIE	8 (PERCH	'NT)			
TN.10#¥	ļ	2	- Di	DUR			- D	OUR	•••• • •	
CATEGURIES	, ****-	PHE		POST	1	PRE		PUST	 	TOTAL
K+A		2.69	• • • • • • 1	1.79	• • • •	2,39		1,62	 	1.95
К+А+В К+А+В+С	1	9.64 13.16	i I	7.55 11.40	1	15.9 12.90	1	6.54 10.33	1	7.81 11.58

,

3~55

SUNMARY OF FMV98 207 EFFECTIVENESS STUDY USING 1974 New York Expected, Aujusted Total cases = 62850

									INJ	I U R	Y	01	91	RIF	UT	10	N 9												
	-		•	-	5	•	00	+ UR	# · •	•	•	•	-	•	-		•	 4 -		DOR	•	-	• •	•		•	•		• •
INJURY CATEGURY		 PRI		1	- *		- +-	- P	081		,	× -	+	- F	RE		•	 X	1	PUS1	• • • •	- x		 	RC 101	IN I A L	1	۲ ۲ ۱ = = ۱	201
	•-••		53 63		0.	9 1		 2 72	056	·		5 • 3			41	1		0.7		693		1.	1	 	37	23			5.
K+A+B	: 	16	- 58	1.4 1	5.	-	<u>-</u> 1	- - 6	594		10	, 5	-	-	125	2	-	5.0	-	2401	· •	- 3,	- 8	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	119) 15	-	- 19	
3+0 	1	52	51	1	8.	4	1	28	371		49	5.2 -		-	134	3	-	6,9	-	12952		20.	6		509	29	+	81	t • '
(+A+D+C) 	 	25. 44)	22 25	1	4 • 7 •	0		11 24	106		38	, , , , , , , , , , , , , , , , , , ,	 	; ;; • • • •	192 170	0		5+1 5+9		429(1117)		6, 17,	7 7		434	105	 	51 61	l. 9,
(+A+B+C+0	1	69	23	11	1.	Ū,	1	34	973		5	i.6			559	9	1	8.9	1	15355	3 3	24.	4	1	626	150	1	10() .

		EFFECTIVE	NESS	VALUES (PERCENT)	
1 N.11167		• • • • • •		HTANDARN	1 95% CONFI	DENCE INTERVAL
CATEGORIES		VALUE	1 0	EVIATION	I FROM	
K+A	 	~17.93	 1		1 -32.57	1 =3.29
K+A+8 K+A+8+C	i	-12.10	i	4.42	1 -19,35	1 =4.86

•

			INJ	URY	PRU	BAB	11.1	LTIF	9 (PERC	ENT)				
		•	• •	5	บถบ	R	•	1		,	4 -	DOOF	2			-
INJUNY CATEGORIES	 		PRE			PUS	1	•		PRE	 		180		TUTA	L.
K+A			.13	* * * *		5.8	8	· 1	7	- -	 	 6			5,9	2.
K+A+B K+A+B+C	Ì	24 36	.09			8,8 1,3	6		22 34	•38 •23		15	5.64 1.56)) 	18.9 31.2	6

.

entre la companya

;

.

SUMMARY UF FMVSS 207 EFFECTIVENESS STUDY USING 1973 N., CAROLINA Expected;Aojusted fotal cases = 25898

		INJ	JNY DISTRIBUT	IONS		
* * * * *		8 - 000R		4 - DOUR		
INJUKY Category	 PNE	I X I PUST	I X I PKE	I X I PUST	' RU X TOT	W ROW
***********	*******				***********	
K+A 8+C+4	126 4377	1 0.5 253	1 1.0 1 12	5 0.5 141 2 14,8 7047	6 1 2.0 1 127.2 1 252	45 1 2.5 53 1 97.5
K+A+B C+0	473	1 1.8 1 876	13.41 36	5 1,4 523	1 2.0 1 22	37 8.6
K+A+B+C	1 /33	2.8 1520	1 5,9 1 62	5 1 2.4 1 962	1 3.7 1 38	40 14.8
0	1 3771	114.6 j 8743	133.6 1 332	4 112.8 1 6227	124.0 1 220	65 1 85.2
K+A+8+C+U	1 4503	117.4 10260	139.6 1 394	7 115.2 1 7188	127.8 1 258	98 100.0

		E	FFE	CTIVE	NES	88	V A	LU	E 9	(P)	ЕНС	EN	T)					
711.11129		FFFC	 	• • •	• • •	- •			 ษุก	 	95	× [c	ÌNF	IDE	NCE	IN	TER	VĀL
CATEGORILS		ν 	ALU	L, L, U,	, 	UE	VI	A T	IUN	- 		F	RI	JM • • •		1		10	***
K+A			4.3			***	23	-+ • 4	' 7	 	* # #	- 6	12	.87	w 49 m	 1	u = u u	5.8	- 9
K+A+B K+A+B+C	Ì		3.7	0 5	Í		8 6	.8 .7	1 8	İ	,	-1	8	14 98	•	1	1	0.7	4 7

	. 1	5	- U	OUR	+	4	- 0	DUR	1	
INJUKA					- 1				• 1	
CATEGONIES	E.	PHE	<u>)</u>	PU81	1	PRE	ł	PU91	1	TOTAL
		*******	****	********			****	*******		
K+A	1	2.80	f	2.47	1	3.17	1	1.96	1	2.49
K+A+8	i	10.49	i i	8.54	i	9.24	1	7.28	i	8.63
K+A+8+C	i	16.27	j	14.81	j	15.83	1	13.38	i	14.82

SUMMARY OF FMVS8 207 FFFECTIVENESS STUDY USING 1974 N. CANOLINA Expected.adjusted 101AL CASES = 26539

	-		-			* * *	a 😕			-		49 60 6 1	a		P (1) (4)	
	Ŧ			5 -	DI	DDR		1		4	- D	DUR		ł		1
INJURY	1		•	р и и	•			- +						1	RDW	R
CATEGURY	1	PKE	ł.	X	1	POST	I X	1	PRE	I X	1	PUST	I X	I	TOTAL	I P
*********	****			***	***	*******			******	****		• • • • • • • •	******	,	******	*****
K+A	1	95	1	0.4	(258	1 1.	01	56	10.	31	158	1 0.6	1	603	1 2
8+C+0	i	3607	11	3.6	1	10978	141.	4 1	3480	113.	11	7871	129.7	1	25936	1 97
	-		•		-						-					
K+A+8	1	368	1	1.4	I.	1002	1 3.	8	324	1 1.	2 1	547	1 2.1	I	2241	1 6
C+0	j.	3335	11	2.6	i	10533	138.	6	3249	112.	5 1	7481	128.2	ŧ.	5/1548	1 91
	-		•	• •	90						-			-		
K+A+H+C	1	612	1	2.3	I	1768	1 6.	7 1	573	1 2.	5 1	1073	1 4.0	1	4026	1 15
	-	700.	16	<u>،</u>	i.	OALB	116	7 i	200A		7 1	4204	126 2	i.	33810	1 8.4

		EFF	FCTIVE	ENE	BS VA	UES	(PE	RCENT)		
INJUNY Categories	 E	FFECTI VAL	VENES	3 	STANI DEVI	DARD ATION	 - -	95% CONF1 Frum	DENCE	INTERVAL TO
K+A K+A+8 K+A+8+C		~19. ~19. ~14.	04 93 59		20 10 7	90 64 35		~53,32 ~37,38 ~26,64	 	15,23 -2,48 -2,54

.

		'INJUF	RY P	RORAHILI	TIE	S (PERCE	ENT)			
INJURY		2	- U	00R		4	- D	008	• • } •	
CATEGURIES	i 	PkE	 	PU91	i 	PRE	1	P091		TOTAL
K+A	·	2.57	1	2,30		2.58		1,97	1 1	2.27
K+A+R K+A+B+C	ł	9.94 16.53	1	8,92 15,74	1	9.07 16.05	1	6.81 13.36	1	8.44 15.17

,

SUMMARY OF FRVSS 207 EFFECTIVENESS STORY USING 1975 N. CAROLINA Expected, Adjustud Total Cased # 20233

										1	NJ	ur	()	t	1	91	k 1	80	11	.01	v 9																		
	-			-	-		-	-	າມີເ		•			-	-		-	-		•••	•	4		Di				-	-	**	1		" 80	• •	ī		٣	#(** 1 w
CATEGURY	;		t 	1		%	-	1	 	U.	81	-		, 	سبب	i		f+k ₩#	£.	 	 	2		1	۱ • • •	, <u>1</u>	SŢ	1		X 	_i	1	01	A L	1			P(
 K+A H+C+0	1	 3e	 95 76	 	••• (· • •			1	<u>۔</u> م	 55 97		4		- 4j - 14		* *	• • 32	64	•	• •• 1	 U.	2		 q	1	 85 31	• • • 	 0 32	• • • •		 2	76	97		•••	 9	2.7	, 1 , 9
K+A+6 C+0		 د ب د	60 0.5		1		- 		•		- 05 52		4	۔ د د	6		•	۳ ج ۲0 از	91			1.	0			7	34	+	230	,6		2	24	13			- 9	8	5
K+A+U+C	1	ية آن بي الم رو	09 60	-	, in the second se		5	÷	*	9	34			6.	4		-	5	27		, - , ,		9 9	-	-	5	55		4	.8		•	44	25		• •	- 1	• 5	7
		۱ء د 3	n£ ## 64		۲ 11		6 •• * 9	1	ים ים 11	14 ••• 23	≤1 ++ 52	 - 			, 74 , 44 , 15	 		c / 3 d	96)) • • 1	¥; 	7		 9)2 	03 44 16	1 1	= / + = 3 2	•0 ••	 == 	2 7 - 2	30 99 82	33	 	 	 10	0,	,

	EFFECT	IVENESS	VALUES	(PENCE	NT)		
INJURY CATEGORIES	LEFFECTIVEN VALUE	IESS I ST	ANDARD VIATION	95x	CONFID FROM	ENCE IN	TERVAL
K+A K+A+B K+A+B+C	1 26,52 1 14,86 1 5,57		13.73 7.47 5.98		4,00 2,61 -4,23	4 ë	19.03 27.11 15.38

		INJ	URY P	RUBABIL	1 J T E	5 (PERCE	ENTO			
na pa sa pa pa	ļ	****	ຊີ້ມ	OUR DUR	_ !	4	• D	oun		·•••••••••••••••••••••••••••••••••••••
CAJEGONIES			• • • •	Pust	- 	PRE		PUST	, , 	TOTAL
K+A		 2,76		2.06	 	1,94	* 	2,01	· • • • • •	11,5
K+A+4		10.06	ł	0.20	!	4.89	!	7.96	ļ	8,55

.

.

SUNMARY OF FMVSS 207 EFFECTIVENESS STUDY USING 1972 TEXAS 65-71 Expected, adjusted 101AL CASES = 109146

ana katan dan manipi kana dan Katan dan dalam katan dari katan Katan dan Katan dan katan dan katan dari katan d	1NJ	UNY DISTRIBUTI	0N8	n an an an ann an an ann an ann an ann an a	
1NJURY	2 ~ DOOR	1	4 - DOUR	 ROW	 1 RNW
CATEGURY PRE	I X I PUST	I X I PRE	I X I PUST I	X I TOTAL	I PCT
K+A 534 B+C+O 17898	1 0 • 5 928 116 • 4 44226	0,9 458 40,5 16350	0,4 593 15,0 28159	0.5 2513 25,8 106633	2.3 97.7
K+A+B 1639 C+O 16795	1 1.5 1 3278 115.4 41877	3.0 1395 38.4 15411	1.3 1943 14.1 26806	1.8 8255 24.6 100889	1 7.6 1 92.4
K+A+B+C 2348 U 16085	2.2 4838 14.7 40315	4.4 1989 36.9 14819	1.8 2872 13.6 25874	2.6 12047 23.7 97093	1 11.0
K+A+6+C+0 18432	116.9 45154	141.4 1 16808	115.4 1 28752 1	26.3 1109146	1 100.0

****	EF	FECTIVEN	1165	VALUES (PER	CENT)		
INJIIRY Categunies	EFFECT	IVENESS Lue	 51 Df:	ANDAHD VIATION	9 	5% CONFID FROM	ENCE	INTERVAL TO
K+A K+A+B K+A+A+C	5 -0	•95 •38 •30	i i i	7.68 4.47 3.62		-6.64 -7.70 -5.63		18,54 6,94 6,23

		INJU	RY P	RUBABILI	TIE	S (PERCE	ENT)	na an a	andra ga kaina	
INJURY CATEGORIES	 	PRE	- 0 - 1	ถิมส์ Pust	 	PRE	- Di - Di	กมห์ คอรา	• •	TOTAL
K+A K+A+B K+A+B+C		2.90 8.89 12.74	 	2.06 7.26 10.71		2,72 8,30 11,83	1 	2,06 6,76 9,99	 	2.30 7.56 11.04

.

.

SUMMARY UF FMVSS 207 EFFECTIVENESS STUDY USING 1973 TEXAS 65-71 Expected, adjusted Tutal cases = 101848

					•			-		•			•			•		-	-		-			-	
•	1		2	-	Dad	JR				1				4 -	00	OR					1			1	
INJURY .	j -			-					•	+			-			-				-	÷.	R) W C		F
CATEGURY	i P	RE	1	X	ł.	PUS		X	;	1	PR	E	1	X	1	P	U 8 T	1		X	Ĵ.	10	TAL.	1	F
**********				***							***	-	10 and 10	-		• • •	***	••••	••••	**	• • •			* • •	
K+A	1	425	1 0	- 4	1	851		0.	8	1		04		0.4			527			.5	1	22	213	4	22
B+C+0	i 15	1456	115	.2	1.	1759	11	41.	0	i.	149	65	11	4.7	i	27	455	i	52	.0	i	99	535	i	97
	÷ *	4 4				4			-	÷.	-			" "+		-	+ u	-		-	-		-	-	
K+A+B	1 1	561	1 1	.5	1	3130		3.	1	1	13	23	1	1.3	1	1	826	1	1	.8	1	71	940	I.	7
C+0	1 14	310	114	.1	1 1	594BE	5	38,	8	j.	140	43	11	3,8	Ì	26	154	Í	55	1	Ì	94	001	Í.	92
					•					•		=	-			-	140 MA		,	-	-	•			
K+A+8+C	1 8	167	1 2	.1	1	4648	1	4.	6	1	18	46	+	1.8	1	5	819	1	S	.8	1	114	480	1	11
		743	117	5		17967	1 1	X 7 .		i	114	25	11	1.1	í.	25	150	4	34	7	1	dn'	267	1	A A

	u			 # #			-			
	1		1			I	95	X CONF	IDENCE	INTERVA
INJURY	1 E	FFECTIVENES	3 1	- 31	ANDAR	D				
CATEGORIES	1	VALIIE	 	0E	ITAIV	0N	j ,	FROM		TC
ж+А	 1	-5,32		-	9.25			-20.49	 	9.85
K+A+H	1	1.32	i		4.50			+6.06	1	0.71
K+A+B+C	í i –	4.67	i		3.55		1	-1.15	i	10.49

		INJU	RY P	RUBAB1L	1116	8 (PERC	ENT)			<u>،</u>
		2	- U	OOR		4	- D	OUR		
CATEGORIES		PRE		PUST	- , •	PRE		POST	· · ·	TOTAL
		2.68		10.5	 	2.63		1.88	 1	2.17
K+A+8 K+A+8+C	1	9,83 13,65	1	7.34 10.91	1	8.61 12.01	+	6.53 10.08	1	7.70 11.27

.

,

SUMMARY OF FRVSS 207 EFFECTIVENESS STUDY USING 1974 Texas 65-71 Expected, adjusted 10fal Cases = 85110

										I	NJI	U₩'	۷	t) 1	8 T	RII	a u 1	10) N S	ļ														
	-	***	*	-	-	Z		Ð	001	4	-	•	-	•	1	*	-		**	4		Ð	กมิส		-	•	•	-	-	*		ī		
INJUHY Categury	1	- P	÷ RE	•	ĩ	•	x "	Ĩ		- 0 4	9 T	-	-	x "	+	-	RE	•		٦,	-	ī	- P	 วงт	-	`,	τ	ł	ץ זי	70) 7 T (W A L	ł		RU PC
				-	-			* *	- 10 (- 10 (-			• •	~ -	** * *															н на с	***		***	1 al an 1
K + A	1		32	U	Ł	Û	• 4	1		6	56	ł	Q	, 8	1		21	4	1	v.	3	1		414	1	0.	5	Ł	1	167	74	1		2.
8+0+0	1	11	93	1	11	4	.0	H	3!	57)	06	14	42	• 0	1	1	9(9	11	4.	0	1	23	384	12	28,	1	1	83	54)	36	1	ç	8.
	-	-	•	P 2	-	-		**	٠	-	-	-	-	-	-	-	•	•	•	**	-	**	ка (• •	-	٠	•	٠	-			-	**	ca (
K+A+H	1	1	16	3		1	• 4	1	i	291	47		3	.5	H		110)5	1	1.	3	1	1 (549	1	1.	9		. (571	64	ł		7.
C+0	1	11	99	3	11	13	.0	ŧ	3	55	19	-E	39	• 4	1	1	108	16	11	3,	0	1	55	548	18	۰6	. 6		78	331	46	1		12.
	•	*	-	-	-		-	-		÷	-	٠	-		-	-		**	•	•		-	-		-			-	-	-	-		44	•
K+A+B+C	1	1	61	0	ŧ	1	.9	1	i	42	71	1	5	. 0	1		155	53	1	1.	8	ł	2	585	1	3.	.0	1	10	20	19	1	1	1.
0	l	10	64	3	11	L2	•5	ł	37	20	91	11	37	•7	1	1	64	15	1 -	5	5	1	15	715	i a	25,	5	Ì	75	50'	91	Ì	;	18.
K+A+8+C+0	ł	12	29	1	11	4	,4		30	63	62	14	42	•7	I	1	510	13	11	4.	3	ł	24	298	18	20.	5	1	8	51	10	1	10	0.

	,	EFFF	CTIVEN	IE S	9 V	ALLES	(PE	ERCE	NT)		
	* * * EFCS	ст ни		• • •	9 T A I	• • •	,	95x	ີເຫ	NFIDENCE	INTERVAL
CATEGURIES	, 	VALU			0 E V '	TATIO		****	FRO	 M 	TU
	• • • • • • • •	 5.0	 2			9.67	 	4 6 4 4 4 6	10.	84 I	20.89
K+A+B K+A+B+C	1 ·	•10.3 •7.1	3		1	5.51	i	-	19.	36 26	*1.30 0.04

		TNJU	RY P	RUHAHILI	71E	S (PERCE	NT)	ار بین کرد بر بین این کرد.	يندون بيريد اي ار	·
INJUNY CATEGORIES	 	PRE	- U - U 1	OUR PUST		PRE	- v - l	POST	 - - -	TOTAL
K+A K+A+H K+A+B+C	 	2,61 9,49 13,14	••••• 	1.80 7.83 11.75	 	2+33 9+06 12+73		1 = 70 6 = 79 10 = 64		1.97 7.95 11.77

SUMMARY OF PERCENT EFFECTIVENESS FOR OBSERVED UNADJUSTED MASS ACCIDENT DATA FOR FRONTAL CRASHES INVOLVING ONE OR TWO VEHICLES

Triuny				Standard	95 % Confid	ence Interval
Level	State	Year	Effectiveness	Deviation	From	Το
	Texas	1972	5.1	6.1	-4.9	15.1
		1973	-6.7	7.2	-18.5	5.1
		1974	-2.8	8.0	-16.0	10.3
	New York	1974	-27.4	9.7	43.2	-11.5
KA .	North Carolina	1973	-49.8	24.0	-89.8	-9.8
		1974	-29.2	22.2	-65.7	7.3
		1975	20.1	14.6	-3.8	43.9
	Texas	1972	4.4	7.8	-8.3	17.17
	Model Year Cars	1973	-2.5	9.0	-17.3	12.3
		1974	3.2	9.8	-12.9	19.3
	Texas	1972	-3.2	3.6	-9.1	2.6
		1973	-1.0	3.5	-6.8	4.8
		1974	-16.3	4.5	-23.6	-9.0
	New York	1974	-14.6	4.5	-22.0	-7.3
KAB	North Carolina	1973	-6.8	9.1	-21.6	8.1
		1974	-26.9	11.1	-45.0	-8.7
		1975	12.0	7.7	-0.7	24.7
	Texas	1972	-1.8	4.5	-9.2	5.5
	1965-1971 Model Year Cars	1973	3.4	4.4	-3.9	10.6
	noder rear cars	1974	-15.4	5.7	-24.8	-6.0
	Texas	1972	-2.3	2.9	-7.1	2.5
		1973	1.2	2.8	-3.4	5.9
		• 1974	-12.5	3.5	-18.2	-6.7
	New York	1974	-8,3	3.1	-13.4	-3,2
кавс	North Carolina	1973	-9.7	6.9	-21.0	1.5
		1974	-18.9	7.5	-31.2	-6.5
		1975	1.2	6.2	-9.1	11.4
	Texas	1972	-0.7	3.6	-6.7	5.2
	1965-1971 Model Yean Cane	1973	6.0	3.5	0.3	11.8
		1974	-10.7	4.5	-18.1	-3.4

SUMMARY OF PERCENT EFFECTIVENESS FOR SMOOTHED ADJUSTED MASS ACCIDENT DATA FOR FRONTAL CRASHES INVOLVING ONE OR TWO VEHICLES

Indumy				Standand	95 % Confid	ence Interval
Level	State	Year	Effectiveness	Deviation	From	To
	Texas	1972	4.9	6.1	-5.1	14.9
		1973	-12.7	7.6	-25.0	-0.3
	·	1974	1.9	7.7	· -10.7	14.6
	New York	1974	-17.9	8.9	-32.5	-3.3
KA	North Carolina	1973	-44.4	23.5	-82.9	-5.9
		1974	-19.0	20.9	-53.3	15.2
		1975	26.5	13.7	4.0	49.0
	Texas	1972	6.0	7.7	-6.6	18.5
	Model Year Cars	1973	-5.3	9.3	-20.5	9.9
		1974	5.0	9.7	-10.8	20.9
	Texas	1972	-1.3	3.5	-7.1	4.4
		1973	~3.5	3.6	-9.4	2.5
		1974	-10.3	4.3	-17.4	-3.3
	New York	1974	-12.1	4.4	-19.4	-4.9
кав	North Carolina	1973	-3.7	8.8	-18.1	10.7
		1974	-19.9	10.6	-37.4	-2.5
		1975	14.9	7.5	2.6	27.1
	Texas	1972	-0.4	4.5	-7.7	6.9
	1965-1971 Model Year Carr	1973	1.3	4.5	-6.1	8.7
	noder real cars	1974	-10.3	6.5	-19.4	-1.3
	Texas	1,972	-1.6	2.9	-6.3	3.1
		1973	-0.7	2.9	-5.4	4.1
		1974	-8.3	3.4	-13.9	-2.6
	New York	1974	-7.2	3.1	-12.2	-2.1
кавс	North Carolina	1973	-7.9	6.8	-19.0	3.3
		1974	-14.6	7.4	-25.6	-2.5
		1975	5.6	6.0	-4.2	15.4
	Texas	1972	0.3	3.6	-5.6	6.2
	1965-1971 Model Year Care	1973	4.7	3.6	-1.2	10.5
		1974	-7.1	4.4	-14.3	0.0

The results of the analyses are consistent with the null hypothesis that the introduction of seat back locks in 2-door passenger cars had no effect on the injury risk to drivers in these cars. That is, the results do not demonstrate that this aspect of the Standard has been effective in reducing injury. In conjunction with this basic conclusiosn, the following observations are made.

- A comparison of the effectiveness results obtained for the observed (raw) unadjusted data with the smoothed (modeled) adjusted data shows that usually a greater effectiveness is obtained with the smoothed adjusted data. In the observed data, the reduction in injury rates from Pre-Standard to Post-Standard cars is greater for 4-door cars than for 2-door cars. Thus, modeling and adjustment to remove confounding effects does increase effectiveness; however, in most cases, negative values remain, implying that not all confounding effects have been removed (presuming that the introduction of seat back locks does not, in fact, increase injury risk).
- The variability in results among years is greater in North Carolina with the small data base than in Texas with its much larger number of cases.
- The attempt to reduce or eliminate unexplained confounding effects by restricting the sample of cases to drivers occupying passenger cars with model years from 1965 to 1971 yielded results that are very similar when compared with the full Texas sample.

The failure to find positive effectiveness for injury reduction to drivers of 2-door cars precludes the carrying out of the final step in the analysis, which would have been to extrapolate the results based on Texas, North Carolina and New York analyses to nationwide estimates of the number of injuries avoided.

It is recognized that the above analyses may have been adversely affected by unidentified or unreported confounding effects. Certainly the possibility exists that other Standards being implemented during the late Sixties and early Seventies were differentially applied or had significantly greater effectiveness in 2-door or 4-door cars. Then, differences in the reduction of injury rates might be more directly related to these factors than the introduction of seat back locks. Additionally, the pronounced increase in preference for 2-door cars during the late Sixties and early Seventies may vary significantly among the buying and driving population. While driver age, driver sex, vehicle weight and manufacturer are all variables chosen for modeling and adjustment, it is by no means certain that all potential confounding effects can be accounted for. For example, the profile of driver characteristics for drivers of 2-door subcompact cars compared to drivers of 4-door full size cars may reflect socioeconomic and personality factors that are not adequately accounted for by the variables analyzed to remove confounding effects.

3-65

3.2 Analysis of Rear Seat Occupant Fatalities

3.2.1 Background

The purpose of this analysis is to assess whether the requirement for seat back locks for folding front seat backs in 2-door passenger cars increases the number of fatalities among rear seat occupants in crashes which involve fire/explosion or immersion. It has been suggested that the difficulty of finding and/or operating a seat back lock release in a panic situation, such as post-crash fire or immersion, could lead to increased rear seat occupant fatalities.

3.2.2 Data

The data were derived from the Fatal Accident Reporting System (FARS) for 1975, 1976, 1977 and 1978. Table 3-46 shows that there were 3601 passengers in fire/explosion and immersion accidents in FARS, and that 89 percent of the passengers were in vehicles involving fire/explosion, while 11 percent of the passengers were in immersed vehicles. Also, the frequency of front seat and rear seat passengers was essentially identical in both types of accidents (86 percent and 14 percent, respectively).

TABLE 3-46

SEATING POSITION OF PASSENGERS IN FIRE/EXPLOSION AND IMMERSION ACCIDENTS (Source: FARS 1975, 1976, 1977, 1978)

_	Fire/Ex	plosion	Immer	sion	Tota	1
Passenger Location	Number	%	Number	0/ 10	Number	、 %
Front Seat	2741	85.7	347	85.9	3088	85.8
Rear Seat	456	14.3	57	14.1	513	14.2
Total Passengers	3197	100	404	100	3601	100
Percent		.8	13	1.2	1	00

The rear seat occupancy levels in these FARS cases are about 50 percent higher than those encountered in all accidents, based on North Carolina data for 1973, 1974, 1975, 1976 [3].

Table 3-47 shows the injury distributions for 513 rear seat passengers in fire/explosion and immersion FARS cases. The fatality rate for this biased set of data is 44 percent for both fire/explosion and immersion. In contrast, Table 3-48 indicates that the fatality rate for 3088 front seat passengers in fire/ explosion and immersion in FARS cases is much greater than for rear seat passengers: 50 percent higher in fire/explosion and 75 percent higher in immersion.

TABLE 3-47

INJURY DISTRIBUTIONS FOR REAR SEAT PASSENGERS IN FIRE/EXPLOSION AND IMMERSION ACCIDENTS (Source: FARS 1975, 1976, 1977, 1978)

Injury	Fire/Exp	losion	Immer	rsion	Tot	al
Status	Number	%	Number	a/ 10	Number	%
Not Injured	15	3.3	11	19.3	26	5.1
Killed	202	44.3	25	43.8	227	44.2
A B C	143 79 17	31.4 17.3 3.7	7 7 7	12.3 12.3 12.3	150 86 24	29.2 16.8 4.7
Total Occupants	456	100	57	100	513	100

TABLE 3-48

INJURY DISTRIBUTIONS FOR FRONT SEAT PASSENGERS IN FIRE/EXPLOSION AND IMMERSION ACCIDENTS

(Source: FARS 1975, 1976, 1977, 1978)

Injury	Fire/Exp	losion	Immer	rsion	Tota	a1
Status	Number	%	Number	%	Number	0/ /3
Not Injured	91	3.3	24	6.9	115	3.7
Killed	1825	66.6	268	77.5	2093	67.8
A B C Unknown	544 222 58 1	19.9 8.1 2.1	17 27 10 1	4.9 7.8 2.9	561 249 68 2	18.2 8.1 2.2
Total Occupants	2741	100	347	100	3088	100

3.2.3 Analysis of FARS Data

The analysis of a potential trapping effect for rear seat occupants in Post-Standard 2-door passenger cars was conducted for accidents involving post-crash fire or explosion and accidents involving immersion. The hypothesis tested in this particular analysis is that the presence of seat back locks increases the likelihood of rear seat occupants of Post-Standard 2-door cars being killed as a result of being trapped in a panic situation. Empirical measures of any potential trapping effect that might be attributed to the presence of seat back locks were obtained by contrasting the Pre- to Post-Standard ratios of occupant fatality rates for 2 and 4-door cars as follows.

Trapping
Effect
(T)--Fatality Rate for Occupants
of Post-Standard, 2-Door Cars
Fatality Rate for Occupants
of Pre-Standard, 2-Door CarsFatality Rate for Occupants
of Pre-Standard, 4-Door Cars
Fatality Rate for Occupants
of Post-Standard, 4-Door Cars-1x 100

where values of T are computed separately for front and rear seat occupants. Therefore, if the presence of seat back locks increases the possibility of rear seat occupants of 2-door cars being trapped, computed values of T for rear seat occupants will be positive, representing the precent <u>increase</u> in rear seat occupant fatality rates due, by inference, to trapping.

The distribution of fatalities among 3086 front seat occupants and 513 rear seat occupants in fire/explosion and immersion accidents is shown in Table 3-49 for 2-door and 4-door cars, Pre- and Post-Standard. The results of the trapping effect analysis are given in Table 3-50.

These results do not support the hypothesis that seat back locks may inincrease the possibility of rear seat occupants being trapped in panic situations. Contrary to expectations, a negative value of T (-19 percent) was computed for 533 rear seat occupants contrasted with a -4 percent value for front seat occupants. In other words, the data indicate that there is an estimated 19 percent <u>decrease</u> in the Pre- to Post-Standard ratios of rear seat occupant fatality rates corresponding to 2-door, Post-Standard vehicles. It can be speculated that the locked seat back may act as a restraint on the forward movement of rear seat passengers during a crash, and hence reduce the likelihood of serious or fatal injury. Such an effect is perhaps much more important than a possible trapping effect, and could be particularly important in more violent accidents involving fatalities and fire or explosion.

3-68

TABLE 3-49 FATALITY DISTRIBUTION IN FIRE/EXPLOSION AND IMMERSION ACCIDENTS

Injury Status		2-Do	or Cars		4-Door Cars				Total	
		Pre		Post		Pre		st		
	No.	%	No.	%	No.	%	No.	%	No.	%
Killed 5	176	61.5	1316	68.5	122	58.4	456	68.2	2070	67.1
Not Killed	110	38.5	606	31.5	87	41.6	213	31.8	1016	32.9
Total Occupants	286	100	1922	100	209	100	669	100	3086	100

Front Seat Occupants

Rear Seat Occupants

,

Injury Status		2-Doc	or Cars			4-Door Cars					
	Pre		Po	Post		Pre		st	iotal		
	No.	%	No.	%	No.	%	No.	%	No.	%	
Killed	20	51.3	150	45.3	10	37	47	40.5	227	44.2	
Not Killed	19	48.7	181	54.7	17	63	69	59.5	286	55.8	
Total Occupants	39	100	. 331	100	27	100	116	100	513	100	

TABLE 3-50									
DATA	USED	то	EVALUATE	TRAPPING	EFFECT				

Condition	Occupant Location	Percent Killed in 2-Door Pre (P ₁₁)	Percent Killed in 2-Door Post (^P 21)	Percent Killed in 4-Door Pre (P ₁₂)	Percent Killed in 4-Door Post (P ₂₂)	Trapping Effect $T = \left[\left\{ \frac{p_{12}}{p_{22}} \times \frac{p_{21}}{p_{11}} \right\} - 1 \right] \times 100$	Standard Deviation
Fire/ Explosion/	Rear Seat (N= 513)	51.3	45.3	37.0	40.5	- 19 Percent	27.3
Immersion	Front Seat (N=3086)	61.5	68.8	58.4	68.2	- 4 Percent	7.7

3.3 Analysis of NCSS Data on Seat Intrusion

3.3.1 Background

In an effort to obtain more information on seating system failure and associated injuries, available data from NCSS were examined. Unfortunately, the computerized information available is quite limited. Relevant information is contained in NCSS from 1 April 1978 onward regarding seat failure, although it is incomplete. A serious limitation to the data is that impact intrusion direction (forward or rearward) is <u>not</u> given when seat failure does <u>not</u> occur. It is given only for cases of seat failure. The variables of interest are:

- Pre/Post Standard
- 2-Door/4-Door Car
- Impact Intrusion Direction (Forward/Rearward)
- Seat Failure
 - No failure
 - Seat adjuster failure
 - Track failure
 - Seat back lock failure
 - Other failure
- AIS Injury Level

In the NCSS subsample studied here, the distribution of cases by seat failure is shown in Table 3-51. Less than four percent of the cases involved seat failure.

TABLE 3-51

Condition	Number of Cases	Percent		
No Seat Failure	31,114	96.0		
Seat Failure	1,226	3.8		
Unknown	52	0.2		
Total	32,392	100.0		

DISTRIBUTION OF NCSS CASES BY SEAT FAILURE

3.3.2 Data Analysis

An initial review of the NCSS data produced the following ovservations and conclusions.

• The seat failure variable indicates there are 2383 Pre-Standard cases with seat failure occurring in 2.4 percent of the cases, as compared to 24,459 Post-Standard cases with seat failure occurring in 3.7 percent of them. Of course, seat failures involving the seat back lock are possible only in Post-Standard cars.

- It is not possible to analyze seating system failure/no failure as a function of impact intrusion direction because this variable is <u>not</u> reported in the case of no seat failure.
- The seat failure information is categorized as follows:
 - a) Failure of seat adjuster.
 - b) Failure of seat track.
 - c) Failure of seat back locks.
 - d) Other failures.

Other failures generally refers to seat deformation resulting from passenger impact, inertial forces due to seat mass or deformation by intrusion of passenger compartment. Of the 961 cases of seat failure, 89 percent are in the "Other" category. Seat track failure and seat adjuster failure each account for 2-3 percent of the failure cases with seat back locks accounting for about 8 percent of the failure cases (i.e., 90 cases).

The distribution of AIS injury level by seat failure occurrence and nonoccurrence is given in Table 3-52. The differences are very marked. There is no injury in 77 percent of the no seat failure cases in contrast to only 26 percent of the seat failure cases. A fatal or critical injury occurs in 2.9 percent of the seat failure cases in contrast to only 0.5 percent of the no seat failure cases. The limited sample size (only 32 cases) of known AIS level with seat back lock failure precludes estimating the AIS distribution separately for seat back lock failure (oddly, AIS level was unknown in 58 seat back lock failure cases).

TABLE 3-52

INJURY LEVEL DISTRIBUTION FOR SEAT FAILURE AND NO FAILURE

	Seat F	ailure	No Seat	; Failure
AIS Level	Percent Percent (Unknowns All Excluded)		Percent All	Percent (Unknowns Excluded)
0 1 2 3 4 5 6 Unknown	17.7 27.5 10.4 8.8 2.7 1.4 0.7 30.8	(25.6) (39.8) (15.0) (12.8) (3.9) (2.0) (0.9) ()	56.5 12.0 2.8 1.1 0.3 0.3 0.1 26.9	$(77.3) \\ (16.4) \\ (3.9) \\ (1.5) \\ (0.4) \\ (0.3) \\ (0.2) \\ () \\ () \\ (16.4) \\ ($
Total %	100.0	(100.0)	100.0	(100.0)
Total Cases	1226 (847)		31,114	(22,742)

The distribution of AIS injuries is given in Table 3-53 for rearward-directed forces and forward-directed forces in seat failure cases only. A forward-directed force is due to a rear impact and a rearward-directed force is due to a frontal impact. The distributions are fairly similar and it would be speculative to attempt to draw inferences from the small differences, given the limited number of cases upon which the distributions are based.

TABLE 3-53

AIS Level	Forward-Directed Force (%)	Rearward-Directed Force (%)		
0	17.3	22.1		
ĩ	25.4	26.6		
.2	10.1	9.7		
3	8.9	7.4		
4	2.4	2.7		
5	1.5	1.4		
6	1.0	0.5		
Unknown	33.4	29.6		
Total %	100.0	100.0		
Total Cases	682	444		

INJURY LEVEL DISTRIBUTION BY INTRUSION FORCE DIRECTION FOR CASES OF SEAT FAILURE

The distribution of seat failure type by rearward-directed and forwarddirected forces is given in Table 3-54. Of greatest interest in the comparative distributions is the greater frequency of occurrence of seat back lock failure with a rearward-directed force (i.e., a force due to a frontal impact).

TABLE 3-54

FREQUENCY OF SEAT FAILURE BY INTRUSION FORCE DIRECTION

Seat Failure Type	Forward-Directed Force (%)	Rearward-Directed Force (%)
Seat Adjuster	2.8	2.0
Track	3.4	2.5
Lock	5.4	11.9
Other	85.2	77.3
Unknown	3.2	6.3
Total %	100.0	100.0
Total Cases	682	444

In summary, the NCSS data sample contains limited computerized information on seat failure and injury for cases after April 1, 1978. Seat failure occurred in 2.4 percent of 2,383 Pre-Standard cases as compared with 3.7 percent of 24,459 Post-Standard cases. Only 90 cases of seat back lock failure are available and the AIS level is unknown for 58 of these cases. Based on 847 cases of all types of seat failure and 22,742 cases without failure with known AIS, the probability of escaping any injury is three times greater when no seat failure occurs, and the probability of a fatal or critical injury is about five times greater with seat failure. Seat failure/no failure comparisons are restricted by the lack of information on impact intrusion direction (forward or rearward) for no failure cases.

3.4 References for Section 3

- 1. Motor Vehicle Manufacturers Association of the U.S., Inc. Automotive Facts and Figures, 1967-1973, MVMA, Detroit, Michigan.
- Engleman, L., J.W. Frane and R.I. Jennrich. BMDP-77 Biomedical Computer Programs P-Series, University of California Press, Berkeley, California, 1977.
- 3. Clark, V.J. Single Variable Tabulations for 1973-1976 North Carolina Accidents, Highway Safety Research Center, University of North Carolina, Chapel Hill, North Carolina, 1977.

APPENDIX A

.

.

, ·

FULLY CROSS CLASSIFIED TABLES OF OBSERVED STATE MASS ACCIDENT DATA

,

.

TABLE A-1

.

FULLY CROSS CLASSIFIED TABLE OF TEXAS 1972 RAW DATA FOR KA/BCO INJURY DICHOTOMY

	City	Size:	Less the	an 5,000	· · · · · · · · · · · · · · · · · · ·		City S	ize:	5,000-25	0,000	
UHVAGE U	AUCTYPE	STYLE S	PREPUST P	L INJUNY K+A	(I) 8+C+0	DRVAGE D	ACCTYPE A	STYLE	PREPUST	I INJURY I K+A	(1) B+C+D
12-54	UTHEN MV	2-010K	PRE Pust	1 74 1 129	1461 2610	15=24	OTHER MY	2=000H	PNE PUSI	I 69 I 65	5473 8995
		4=00uH	PKE PUBI	85	1484 923			4- рпик	frt fusi	1 45 I 16	5297 2880
	рико сан	5=btjnx	Ana i Brf	1 3 1 5	90 83		PAKU LAN	5-000K	PKE Pust	I 10 I 4 I	481 494
		4+V(IUk	PHE 1 Pusi	5 0	109 52			4=4044K	PKE PUST	I 4 I 5 I++++++++++++++++++++++++++++++++++	530 215
	DRAFCI	5+000H	PRE PUST	42 48	274 497		663667	5=000K	4KF Pust	I 48 I 56 I	596 872
		4=00uk	PKE PUST	32 19	239 118			4=000H ==========	PKE PU81	1 35 I 9 J	591 230
25=34	OTHER MY	5+DDAH	PHE 1 PUST 1	42	544 1355	£5≠34	UTHER HY	5+000k	PRE Pust	T 25 T 38	1927 4365
		4-100k	PHE DUST	43	643 750			4-0868	PHE PUST	1 I 36 I 15	2094 2010
	PHKU CAN	5-hank	PHE	= = = = = = = = = = = = = = = = = = =	29 85		PHKU CAN	5-000K	PHE Pust	5	135 173
		4=00UK	PKE PUS (U 0	37 21			4=V(10H	PKŁ PUBT	3	173 94
	OBJECI	5+000k	PRE 1 PU81	17 19	84 216		OR TECL.	5-000K	PHE 1 Pusi 1	1 13 1 24	189 358
		4=080H	PRE 1 PU8T 1	17 5	88 95			4=000H	PRE 1 POST 1	i 6	216 115
55 +	UTHEN NV	5-000K	PKE 1 PUST 1	69 83	754 1439	35 +	DTHER HV	2-DOUR	PRE 1 PUST 1	41 35	2476 4187
		4≠UAOR	PKE 1 PUST 1	137 176	1938 2663			4-00uk	PRE Pust	85 76	6038 7089
	PHKU CAN	4-NUNK	PRE I Pusi i	1	29 32		PHKD CAN	5+000k	PRE 1 PUST 1	9 8	193 194
		4+0NUR	PKE 1 PU81 1	4	99 58			4+000A	PHE PUST	15	578 294
	UNTEL	6+000H	PKE I PUST	23 19	112 169		QUIFCI	2-DOAK	PRE 1 PUST 1	21	175 259
		4#9098	PUSI I PRE	42 32	219 269			4-bouk	PRE 1 Pusi 1	45 15	414 359

A-1 ,

TABLE A-1 (Continued)

DRVAGE	ACCTYPE	STYLE	PREPUST	I INJURY	(1)
0	A	\$	P	I K+A	8+C+0
15-24	ПІНЕК КУ	5=0Unk	PRE Pust	I 118 I 139 T	5854 • 10647
		4+DQUR	PHF PUST	177 177 25	5038 2790
	PRKU CAN	5-000H	PHE Pust	I 11 I 13	451 505
		4-0008	PRE PUST	6 I 1	458 139
	OBJECT	5-0008	PRE POST	I 89 I 59	684 982
		4-0008	PRE PUST	98 I 05 I	596 213
25-34	OTHER MY	5+000B	PHE Pust	I 67 I 100 I	3179 7647
		4-0008	PRE PUST	I 64 I 19	2809 2833
	PRKU CAR	5-000H	PNE PUST	I 14 I 11	515 253
		4-0004	PRE Pust		242 83
	OBJECT	2-000R	PHE Pust	I 49 I 50	277 531
		4-0048	PRE Pust	1 48 1 21	256 150
35 +	OTHER MY	5+000k	PHF	1 79	3794
			PUST	1 78	6940
		4-0008	PRE Pust	1 129 1 88	6531 8513
	PHKU CAN	5 - 0008	PRE Pust	J 10 I 10	885 1955
		4+D8UR	PRE Pus I	I 24 I 24	280 494
	NRAFCI	S-DUAB	PHF PUST	I 43 I 49	240
				t	

THE FOTAL FREQUENCY IS 159693

TABLR A-2

All and and an

FULLY CROSS CLASSIFIED TABLE OF TEXAS 1972 RAW DATA FOR KAB/CO INJURY DICHOTOMY

	City S	ize:	Less tha	n 5,000			City S	ize:	5,000-250	000,000	
UKVAGE U	ACCIYPE	STYLE S	PREPUST 1 P 1	T INJURY T K+A+D	(1) C+0	DRVAGE D	ACCTYPE	STYLE	PREPOST P	I INJURY I K+A+B	(1) C+D
15-24	OTHER WA	5-000K	Рке Ри 8 1	198 355	1337 2384	15-24	OTHEN MY		PKÉ 1 PUS1	1 385 1 385	5216 8676
		4+006R	PRE Pust	211 88	1356 870			4=0004	PRE 1 Púst 1	L 259 L 113	5083 2783
	PRRU CAR	2-DUAK	PHE 1 Pust	12 9	81 79		PRKD CAR	5-004F	PHE 1 Pust 1	57 1 42	434 456
		4-00uA	рағ Р081	9	102 30			4+V0uk	PHE 1 Pust 1	57 16	482 204
	BBJEC	S-000H	РкF Р081	81 121	235 424		087661	2-0008	PHE 1 PUSI	152 195	492 733
		4+µОик	Pke Pusi	I 81 I 35 [190 102			4+VOUK	PRE 1 Pust 1	135 47	441 192
25=34	OTHER MY	5+000k	PKE Pust	85 175	501 1244	25=34	DIHEN MV	S=DONK	PRE 1 Pust 1	145	1809 4204
		4-DOUR	PRE Pust	101	585 695			4-00uk	PRE 1 Pust 1	139 87	1991 1938
	PNKU CAN	5×000K	PRE Pusj	6 1	25 25		PRKU CAR	2+000k	PKE 1 PUST 1	24	116 154
		4=DOUR	PKE PU81	6 1 5	31 16			4-0068	PRE 1 Post 1	17 9	159 86
	083401	5×000k	PRE PUST	32 51	69 184		ORYFCI	5=000H	PRE 1 Pust 1	58 80	144 302
		4-0008	PHE Pust	33 20	72 80		•	4=DOUR	Рне 1 Ровт 1	53 23	179 98
35° +	OTHEN MY	5-bunk	PRE Past	135 215	688 1307	15 +	OTHEN MY	5×000k	PRE I Pust I	167 207	2350 4015
		4-DODK	4 KE PU8 T	557 413	1718 2426			4 - 00uK	PKE 1 Pust 1	366 319	5757 6846
	PRKD CAR	2-000R	PRE Pust	1 7 - 9	23 24		PHKU CAR	З≁р(ійн	PKE 1 Pust 1	28 34	174
		4=000R	PKE PUS1	I 15 I 10	88 51			4#ÐÖÐK	PRE 1 Pust 1	58 22	535 274
	UNDECT	5-000H	PKE Pust	1 36 1 4c	99 146		UBJECT .	5=000k	PRE 1 PUSI 1	54 54 76	137 214
		4+00uk	PUS PUS	I 86 I 68	175			4-0604	PKE 1 Post 1	143 90	316 284

	City S	Size:	Over 250	0,000	
URVAGE D	ACC TYPE	STYLE	PREPOST P	I INJURY I K+A+B	(I) C+0
15-24	DIHER MV	8-DUJOB	Рне 1 Рият 1	399 514	5573 10272
· ·		4-0008	ркі Рият 1	L 263 L 87	4846 2728
	PHKD CAR	5-DUNK	PRE PUST	1 61 1 64	401 454
		4-0004	PRE PUST	56 12	410 129
	OBJECT	s-000k	PRE PUST	1 228 1 228 1 228	551 A13
		4-1)0UR	PHE PUST	190 59	452 174
25-34	DTHEN MY	2-000P	PHE PUST	209 319	3037 7428
		4-DOUR	PHE 1 Pust 1	182 193	2691 2759
	PHKD CAR	2-000R	PRE 1 PUST 1	30 1 35	196 229
		4-DOUR	PRF PUST	43 12	210 73
	OBJECT	5-0008	PRF Pust	1 109 1 137 1	217 444
		4-DOUR	PRE PUST	I 106 I 56	198 115
35 +	OTHER MY	S+DUAR	PRF PUST	1 294 I 314	3579 6704
		4+000R	FRF Pust	I 381 I 296	6281 8305
	PHKD CAR	5-0008	PRE PUST	Lenomenee L 47 L 42	25j 265
		4=0008	PRF POST	1 83 1 40	435 249
	ORTECT	2-000H	Pkt Pust	97 1 113	190 315
		գանինըն	PRF POST	1 166 I 99	374 281

THE TOTAL FREQUENCY 18 159693

TABLE A-3

FULLY CROSS CLASSIFIED TABLE OF TEXAS 1972 RAW DATA FOR KABC/O INJURY DICHOTOMY

	City S	Size:	Less tha	n 5,000			City Si	ze: 5	,000-250	,000	,
URVAGE D	AUCIYPE A	STYLE	Ркі Ро зі і Р і	INJURY (I K+A+B+C) ()	URVAGE D	ACCTYPE	STYLŁ S	PHEPO ST 1 P 1	INJURY (1 K+A+B+C) 0
15-84	OTHEN MY	5=0(Ink	PRE I PUST I	262 446	1273 2293	15+24	UTHER MY	54000K	PHE PUST	495 639	5047 8419
		4#000K	PRI I POST T	264 130	1303 828	2		4+DOUR	PHE Pust	400 180	4942 2716
	РНКО САН	4-000k	PRE I PUST I	17 11	76 77		PHKU CAR	s-nunk	PKE PUST	71 66	420 430
		4=µ0µK	PKL I Pust I	11 5	100 27			4+V0Uk	PKE Pus I	68 29	471 191
	OBJECI	5-ролк	PHE I PU81 I	94 143	222 402		übjec i	5=DU0H	PRE PUST	195 256	449 672
•		4-000R	Рке I Риві I Гартана	97 41	174 96			4-DDUR	PNE 1 PUB1 1	1 [[74 [64 [452
25 ≈34	NTHER MY	5-000H	PRE I PUST I	107 232	479 1187	25-54	ОТНЕВ МУ	S=DONK	PRE POST	356 331	1721 4077
		4+DOUR	PRE 1 Post 1	132 142	554 652			4=0008	PRE Pust	211 145	1919 1880
	PRKU CAR	5=DUNH	PHE 1 Pust 1	8	25 23		PRKU CAN	4-00uK	PKL 1 Pust	31	109 148
		4+00UK	PKE POST	7 5	30 16			4-00UK	Pre Pust	21 13	155 82
	ONTEL	S-nons	PRE 1 PUST 1	37 63	64 172		OBJECT	S=000k	PHE POST	70	285 285
	·	4+D008	PRE PUST	38 23	67 77			4+000H	PRE 1 POST	70 28	162 93
<u>55</u> +	OTHER MY	2+DOA8	PNE 1 P081	164 275	659 1247	\$5 +	UTHEN MY	5=000H	PKF 1 P081	254 360	3865 5563
		4=U110K	PKE Pust	437 1 516	1618 2323			4=UQUK	PRE Pust	585 535	55 3 8 6630
	PHKU CAN	5+DUNK	PKE PUS1	1 8 1 9	22 24		PHKU CAR	5-000R	PHE PUST	37 40	165 162
		4-00UK	PKE PUST	I 20 I 14	63 47			4-0008	PRE POST	74 37	519 259
	UNTFOL	5=000H	PRE PUST	I 46 I 54	69 134		OBJECT	5-000K	PRE 1 PUST	66 90	130 200
		4-0'0uk	PKE PUS)	I 102 I 93	159 208			4-00UR	PRE PD91	174 104	285 270

A--5

TABLE A-3 (Continued)

 DEVALLE	ACCIVEL	STVIL	PHEPOST T	TN.CIRV)
0.000	A	8 911FE	P 1	K+A+B+C	0
15724	OTHER WA	5-рірк	PHE 1 Pusi 1	605 844 -	5369 4942
		4-400k	rrt I Pust I	405 156	4706 2659
	РККО САК	5-hbak	FRF 1 PUST 1 I	81 85	381 435
		4=µ0¥H	PRE I PUSI I	71 16	395 125
	OBJECT	5-000K	PRF I PUST I I	264 \$00	509 741
		4-v0uk	рне 1 ривт 1 1	209 74	435 159
 £5#34	OTHER MY	2-DOAR	PHE 1 PU81 I	536 570	2910 7177
		4-00uR	PKE I Pust I	297 194	2576 2658
	рико сан	5+ 000M	PHE I PUBT I	44	184
		4-000R	PKE I PUST I	54 15	199 70
	UUJEC1	5-000K	Phe I Pu8t I 1	122 140	204 401
		4•µ∩⊔k	Рке I Рият I	121 65	183
 \$ 5 +	OTHER HV	5+DUNH	PHE I Pust I	445 559	3428 6459
		4-000R	PKE 1	603 511	6059 8090
	РККЦ САН	2-000R	PRE 1 PUST 1	55 52	243 255
		4-000K	PHE 1 PUST 1	101 53	417 236
	OR1FC1	5 - 00nk	РКЕ 1 Розт 1	115 150	172 278
		4#00UP	PRE 1	191	349

THE TOTAL FREQUENCY IS 159693

A--6

TABLE A-4 FULLY CROSS CLASSIFIED TABLE OF TEXAS 1973 RAW DATA FOR KA/BCO INJURY DICHOTOMY

×											ور وروا کار المان المارور
	Drive	er Age:	15-24				Dri	ver Ag	e: 25-34	4	
KDGLASS N	CITYSIZE C	STYLE	Ркериот Р	I INJUNY K+A	(I) 8+0+0	NDGLASS H	C I I V BI ZE	STYLE	PRFPOST 1 P 1	İNJURY K+A	(I) B+C+D
NEGHWAY	L1 50K	5-0004	PNF Post	r 59 I 165	607 2515	HIGHWAY	LI 50K	5=000H	Риі І Розі І		294 1060
		4-0006	PRE PDS1	65 47	687 727			4-DOUK	PRE 1 Pust 1	30 34	288 530
	50K-250N	2-000k	PRE Pust	36 75	1859 4809		20K#520K	5-00nk	PKE 1 Pu81 1	18 57	915 2291
		4-DOUR	PRF Pusi	50 14	1770 1534			4+0008	PRE 1 Pust 1	24 13	803 1058
	250K +	5=000K	рне Ризт	48 91	1808 5348	8	\$50K -+	5×000H	PRE 1 Post 1	30 71	1004 3897
		4+DOUK	PRE Pust	30 1 17	1572 1380			4+DDUR	PHE 1 PUST 1	21 19	963 1346
البالشاعية ومعاركين والبرواني	Tulling on the second second			[ومروا والمتكرز والمحرور البائداني				
CNTY RU	LT SOK	8=000R	PKE PUST	I 28 I 61	467 1137	UNIT HU	L1 50K	5#00NK	PRE 1 Pust 1	16 16 26	168 533
		4+DOuk	PHE PUST	29 17	477 380			4+00UR	PRE D POST 1	17	190 284
	5UK=250K	5+000H	PRE Pust	9 1 3	266 662		50K+250K	5*DUNK	PHE Pust	с Т 7	81 274
,		4+000H	PNE Pust	2	237 210			4-DONK	PKE Pust	5	87 101
	250K +	2+000K	PNE Pust	1	83 278		520K +	5-000K	PHE FUBT	5 I	44 200
		4+00UH	PRE PUST	[]] [69 63			4=DOUK	PRE Pust	I 0 I 0 I 0	55 57
C114 818.	LT SOK	5+000K	PHE Pust	н С В	269 514	U117 STI	H L1 50K	5+000K	PRE PUST	1 0 1 5	62 210
		4-00UK	PRE PU51	2	301 260			4+00uH	PKE PUST		73 117
•	50K+250K	S-nunk	PHE PUST	59 59 78	3349 7158		50K+250K	5+DB0H	PKE Pust	I 35 I 35	1043 3171
		4=00uH	PRE PUST	47 1 11	3388 2481			4+00UH	PRE P081	1 51 I 12	1173 1482
	250K +	5=000H	PNE PUST	100 154	3863 8857		520K +	5-000k	PRE P091	1 46 I 96	1892 6036
		4=00UK	PHE Pust	1 94 1 36	3364 2727			4=DOUR	PRE Pust	1 48 1 24	1774 2154

A--7

	Driver	Age:	35 and 0	llder	
NDCLASS H	CITY912E C	STYLE	PREPOST I P I	ÍNJUHY K+A	(I) 8+C+0
rilutinay	11 50K	40004	PRE 1 Pusi I	81 58	424 • 1119
		4+41114+	РИЕ I РИБІ I	111 176	1094 2077
	50K-250K	e-unuk	PKE I Pust I	22 36	836 2185
		4-µ0uk	PRE I PUSI I	53 49	2095 3653
	520K +	2=000к	PHE 1 Pu81 1 T	48 68	1101 3285
		4+DUUK	РКЕ 1 РИЯТ 1 чинининин 1	52 46	1832 3599
CNIX RD	LJ 50K	5=honx	PNE I PUBT I	14	204 531
ч. - С С С С С С С С		4=DOUR	PKE I Pusí I	40 54	452 814
	50K=250K	5=n0nk	PRE I Pust I	7	550 65 65
		4-DOUK	PRE I Pust I	3	192 389
	250X +	2+DDAH	PHE I PUBT I	1	47 175
		4=000K	PKE 1 PUST T	0 4	79 168
CTIY SIR	LT 50K	5+000K	PRE 1 P081 1	1	122 222
		4=DDDK	PHE J POST 1	3 5	301 405
	5UK#250K	5+DON8	PHE I PUST I	53 55	1329 2987
		4+00uk	PRE I Pust I	55 43	3127 4648
	250K +	5=00NK	PKE I PUST I	60 61	2180 5464
		4=DOUR	РКЕ 1 Ривт 1	97 66	3938 6159

THE TOTAL FREQUENCY IS 161908
.

FULLY CROSS CLASSIFIED TABLE OF TEXAS 1973 RAW DATA FOR KAB/CO INJURY DICHOTOMY

	Driv	er Age	: 15-24				Dri	ver Age	e: 25-34	ļ	
KILI 455 K	CITYSIZE C	5171L 5	Ркероат Р 1	[11,11)KY [15,154]	(1) C+0	RDCLASS R	CITYSIZE C	STYLE	PREPUST 1 P 1	INJURY K+A+B	(I) C+0
m1uhwAY	L1 50K	2+010k	FRE 1 FUST 1	134 391	6.51 1896	HIGHWAY	LI 50K	5+000K	РКЕ Ри 8 1	75 176	254 959
		4-616K	РКЕ 1 Ризт 1	155 416	619 658			4-00Uk	PRE 1 Pu81 1	67 86	251 478
	50K-250K	2-08uk	Рні 1 Ризі 1	167 342	1728 4550		50K#250K	2+D00k	PRE 1 Pust 1	76 164	659 2164
		4-VDux	Pint 1 Pust 1	158 77	1642 1471			4+00UH	РКЕ 1 Рибј 1	86 77	741 994
	570K +	5+000K	PNE 1 PUST 1	180 375	1676 5064		250K +	5+000k	PHE 1 PUST 1	98 248	936 3720
		4=µ0uk	рке 1 Pust 1	121 70	1483 - 1327			4+UDUH +	Рне 1 Ри зі 1	80 85	904 1280
UNTY RU	LT 50K	5+000k	PKE 1 P087 1	70 161	425 1037	ENTY RU	L1 50K	2=000R	PRE 1 PUBT 1	59 71	145 490
		4#DANK	PHE 1 Pust 1	76 47	430 350			4-VOUK	Рке 1 Ривт 1	45 38	164 260
	50K#250K	5=00nk	Рне 1 Ризт 1	32 56	243 619		50K+250K	5=DONK	рне 1 Ривт 1	4 22	79 259
		4-µ0uk	PRE 1 PUST 1	21	815 200			4+D()0K	PRE 1 POST 1	10 12	82 93
	520K +	5+0008	PHE 1 PUST 1	9 14	77 265		520K +	5=000K	PHE 1 PUST 1	4 1.5	37 193
	,	4-00vk	PHE 1 PUST 1	2 3	68 61	1		4+000R	PKE 1 POST 1	7	48 54
CILY STR	LT 50K	5-000K	PHE 1 PUST 1	23 36	254 486	C117 516	LT 50K	5=00nH	PRE 1 PUST 1	6 15	56 201
,		4-0004	PRE 1 Pust 1	18 12	285 251			4=DOUK	PRE 1 PU81 1	11	65 111
	50K#250K	5+DDDK	PRE 1 POST 1	284 469	3119 6767		50K+250K	4-DUR	РКЕ 1 Ривт 1	79	986 3040
		4=000R	PikE Pus)	247 114	3188 2378			4+DOAK	PKE 1 PU81 1	117 50	1087 1444
	250K +	4-000K	PHE 1 PUSI	571 585	3592 8428		570¥ +	2-DORK	PKE 1 PUST 1	172 537	1766 5795
		4-00UR	PRE Pust	29/	3161 2612			4≁DOUR	PKF PUS1	162 101	1660 2017

TABLE A-5 (Continued)

	Driver	Age:	35 and	01der	_
RDCLASS R	CTLASISF C	STYLE S	PREPUST	I INJURY I K+A+B	(I) C+0
HIGHWAY	L1 50K	5-000K	PRF Pust	101 I 105 I	361 . 1000
		4-00UR	PRE Pust	1 396 1 555 1	983 1884
	50K-250K	2-DOUP	PRE POST	I 92 I 150	766 2071
		4-DAAR	PRE Pust	1 185 1 185 1 185	1966 3475
	250K +	2-D()(IR	PKF PUST	I 134 I 234	1015 3119
		4-DOUR	PRF Pust	I I 181 I 182	1703 3463
				1	
CNIA BD	LT SOK	S-0008	PRE Pusy	1 36 1 77	182 485
		4-00UR	PHE Pusi	1 83 1 124	409 744
	50K+250K	2+UNUR	PRF PU81	1 55 1 50 1 50	9 79 205
		4-D00R	PHE Pust	1 1 16 1 30	179 368
	230K +	5-DOOK	PRE PUST	1 5 1 7	43 169
		4-000R	PRF POST	1 1 7 1 11	72 161
L				1	
CITA SIR	LT 50K	2-000R	PRE PUST	I 13 I 14	110 209
		4=000R	PRE PUBT	i 14 i 25	290 385
	50K+250K	2-000K	PHE PUS1	1 133 1 158	1218 2856
		4-DNUR	PRE Pust	1 207 1 225	2975 4466
	250K +	2-UNUR	PRE PUST	I 213 I 301	2027 5224
		4-рОвн	PKE PUST	1 1 328 1 301	3707 5926

THE IDTAL FREQUENCY 15 161908

A-10

TABLE A-6 FULLY CROSS CLASSIFIED TABLE OF TEXAS 1973 RAW DATA FOR KABC/O INJURY DICHOTOMY

.

.

•

	Drive	r Age:	15-24				Dri	ver Ag	e: 25-34	1	
NULLASS K	GITYSIZE C	514LE 5	Ркериот 1 Р ј	LNJUNY (1 K+A+b+C) ປ	HULLASS H	CITYSIZE C	STYLE	PREPOST P	I INJURY (I I K+A+8+C) ()
HLUHWAY	L1 50K	4-000k	риет 1 Риет 1	164 484	601 1803	HIGHWAY	L1 50K	5+0004	PHE Pust	1 92 255 1	2 <i>57</i> 910
		4+UBUK	PRE 1 Pusi 1	161 145	591 626			4=¥AU¥	PKE Pust	1 A1 1 113	237 451
	50K-250K	5-00nk	PHE 1 Pust 1	245 506	1650 4376		50K+250K	2=0008	PHE Pust	1 98 1 245	639 2083
		4+00uK	PHE 1 Pust 1	205 122	1595 1426			4=00668	PRF Pust	1 114 1 112	713 959
	570K +	5-000K	PRE I Pust I	250 561	1606 4878		250K +	4-000H	Рке Ривт	145 185	889 3583
		4-00UH	1 PKE 1 PUST 1	185	1427 1279			4#UDUH	PRE Pust	1 1 121 1 137	863 1228
CNIY RU	LT 50K	5=DOPK	PHE 1 Pust 1	84 211	411 987	CNIY HU	LT 50K	5+ролк	PRE 1 PUST 1	46 98	138 463
		4*0004	1 Pre 1 Pu8t 1	91 64	415 333			4=DOQH	PRE Pust	49 46	158 252
	5UK#250K	2=00Uk	PRE 1 PUST 1	37	238 597		50K#250K	5-000H	PRE 1 POST 1	29 7	76 252
,		4-00VK	PRE 1 Past 1	28 14	211 197			4=DOUR	PHE I Pust I	11 16	81 89
	250K +	S≈D0∩н	PHE 1 PUST 1	18 24	68 255		570K +	5-000K	PHE 1 PUST 1	11 24	35 182
		4#DOUR	PRE I Pust I	5 3	65 61			4=000H	PRE 1 PUST 1	9 9	46 48
CITA PLA	L1 50K	54000k	PRE	30	247	CITY SIN	LT 50K	5+DU0K	PRE	1	55
			PUST 1	57	465				PUST	21	195
		4=DOUK	PRE Pubt	24 18	279 245			4=0008	PKE 1 PUST 1	15	61 105
	20K+570K	5-000K	PHE 1 PUST 1	41.5 658	2995 6578		50K+250K	5-ролн	Рие 1 Рият 1	123 277	942 2926
		4-0008	PKE PUST	358 177	3077 2315			4=00UK	PHE I Pust I	158 100	1046 1394
	570K +	5×000K	PRE POST	547 900	3416 8111		250K +	5-000K	PRE 1 Pusi 1	245 551	1693 5581
		4-0008	PRE Pust	425 252	5033 2511			4-0008	PKE 1 PUST 1	234 117	1588 2001

TABLE A-6 (Continued)

	Driver	· Age:	35 and	01der	
ROCLASS R	C I TYSIZE C	STYLE	PREPOST 1 P 1	L INJURY (I) E K+A+8+C (0
HIGHWAY	LT 50K	5-000K	PRE Pust	I 124 I 260 ·	338 941
		4+0NUR	PRE 1 PUST	1 269 I 469	936 1784
	50K-250K	S+0008	PRE PD8T	113 1 226	745 1995
		4-000R	PRE 1 PUST 1	247 1 352	1901 3350
	250K +	5+00NK	PRE 1 PU81 1	I 175 I 370	974 2983
		4-000R	PRE 1 PUST 1	253 1 290 1	1631 3355
CNTY RU	L1 50K	S=000K	PRE 1 POST 1	45 104	173 458
		4+VOVR	PKE 1 P097 1	103 161	389 707
	50K-250K	S+0008	PRE 1 FUST 1	22 37	77 185
		4-00UR	PHF 1 PU87 1	19 1 40	176 358
	250K +	5-000k	PRE 1 PUSY 1	6 13	42 163
		4+000R	PKE 1 PU91 1	9 16 [70
CITA STR	LT SOK	2=000R	PRE 1 PUBT 1	18 20	105 203
		4-DOUR	PRF 1 PUST 1	23 40	281 370
	5UK-250K	5-00nk	PRE 1 PUST 1	173 280	1178 2734
		4-00uR	PHF 1 PU97 1	314 385	2868 4306
	250K +	5-01/UK	PRF I PUSI I	295 522	1945
		4-000k	PRE 1 Pust 1	466 518	3569 5709

THE TOTAL FREQUENCY IS 161908

.

A-12

FULLY CROSS CLASSIFIED TABLE OF TEXAS 1974 RAW DATA FOR KA/BCO INJURY DICHOTOMY

		TAD:	1-2					TAD:	3-4		
ACUTYPE A	CITYSIZE C	STYLE S	PHEPOST	I INJURY I K+A	(I) 8+C+D	ACUTYPE A	CITYSIZE C	STYLE	PREPIIST P	I INJURY I K+A	(I) 8+C+0
UTHEN MV	L1 50K	5-000k	FU81 FRE	I 1 I 4	757 2902	UTNER MV	/ LT 50K	5≈hunк	PKE PUST	1 15 1 44	\$60 2199
		4-0004	PNE Pusi	l J 4 I 2	1177 2306			4=0008	PRE Pusi	I 32 I 32	833 1539
	50K#250K	2-0008	FKF FUST	I 1 I 12	3997 14470		50K-250K	5-DDDR	РкЕ Рия1	I 39 I 63	1594 5710
		4+0808	PKE Pus 1	I 2	5708 9641			4×000K	Ркғ Розі	I I 4/ I 2ь	2005 3338
	520K +	5-00nk	PHE Pust	1 18 1 32	5302 22178		250K +	5-000K	PKE PUS I	I AU I 173	1998 8030
		4-000#	PRE Pust	I I 11 I 16	6171 11952			4=DOUR	PHE Pust	I I 74 I 71	2156 \$603
PRNU CAR	LT 50K	5-000K	PRE .	I O	50	PRKD CAN	L1 50K	5-000k	PRE	1 5	45
		4 - UNUK	РЦ8Т Рке +(181	I 1 I 1 I 0 I 0	96 59 91			4-00uk	PUST PRE PUST	1 5 1 1 2 1 4	127 53 66
	50K-250K	2-000R	PKE Pust	1 0 1 1	295 637		50K-250K	2+0(luk	PRE Pust	I 10 I 11	234 573
		4+DOAK	PHE Pust	I I 1 I 0	504 409			4+00UK	PHE Pus I	I I 4 I 6	339 400
	850K +	2=0008	PHE Pust	1 0 1 5	289 681		250K +	5*000H	PKE PUST	I 16 I 17	663 663
		4-DOAK	PRE PUSI	د 5 5 1 6 1 - 1	421 368			4-900X	PKE Pust	I I 17 I 16	508 888
UBJECT	L1 50N	5-DORK	PKE POST	-I 4 1 5	105 375	URJECT	LT 50K	5-00NK	PKE PUSI	I 7 I 23	102 468
		4-0008	PRE Post		127 227			4+DUAK	PKE Pus (I I 15 I 9	151 229
	20K-570K	5-000K	PHE PUSI	I	301 829		50K+250K	2-0104	PRE PUST	I i5 I 39	300 904
		4+DUUH	PHE Pusi		375 385			4+00ux	PKE Pust	I 24 I 27	353 391
	250K +	5+010K	PHE Pust	I 6 I 10	, 339) 915		250K +	5-000K	PRE POST	I 47 I 101	453 1203
		4+UDUR	PKE POS1	I G	351 5 387			4-000K	PKE Pust	1 I 50 I 42	432 481

TABLE A-7 (Continued)

		TAD	: 5-7			
ACCTYPE A	CITYSIZE C	STYLE S	PREPOST 1 P 1	I INJURY I K+A	(I) 8+0+0	
uthen HV	L1 50K	5-0004	Рин Ринт	Г 69 Г 215	124 , 532	
		4-000k	Рке Робј	90 1 144	142 369	
	50K-250K	5-0004	PRE Fusi	1 55 1 91	183 748	
		4+011uк	FRE PUST	1 56 I 38	855 815	
	250N +	5-000k	PKE PUS[45 1 85	173 682	
		4=VOuR	PKE Pust	1 1 38 1 34 1	163 248	
PRAD CAN	L1 50K	5-DOOK	PRE Pust	3 1 1 d	11 36	
		4-0068	PNE Pust	I I 6 I 3	10 16	
	50K+250N	5+00nk	PNE PD81	1 6 1 15	19 119	
		4+0110R	РкЕ Р иб [I Ö I Ö	46 65	
	250K +	2=4444	PKF PUSI	1 2 1 15	30 92	
		4+000K	PKE PUS1	1 5 1 5 1 5	38 35	
UBJECT	L1 50K	2=00UR	PKE PUST	I 16 I 65	35 156	
		4×DOuk	Рие Роз1	1 1 25 1 43	45 70	
	50K+250K	5=000#	PRE Pust	1 30 1 56	81 279	
		4-µ00H	Pre Pust	I 36 I 29	91 116	
	250K +	5#00NK	PRE Pust	I 49 I 82	93 300	
		4+D068	PKE Pust	1 27 1 27	77 92	

THE IDIAL FREQUENCY IS 146449

FULLY CROSS CLASSIFIED TABLE OF TEXAS 1974 RAW DATA FOR KAB/CO INJURY DICHOTOMY

		TAD:	1-2					TAD:	3-4		
ALLTYPE A	CITISIZE C	5141 L 5	PREPRIST 1 P 1	1NJURY 1 K+A+5	(1) C+N	ACLTYPE	C114812F C	STYLE	PREPOST	I INJUNY J K+A+B	(1) C+ŋ
UINEN NV	LT 50K	5=D()NK	FRE 1 Pust 1	1.5 \$6	745 2870	UTILK MV	LI 50K '	5-000k	няе Ровт	1 87 1 278	488 1965
		4 - 00uk	PNE I Pust 1	53 14	1162 2285			4-000k	PKF PUS I	1 150 1 179	715 1385
	20K+520M	2=00uk	PHE I PUSI I	46 155	1952 14347		201-520V	5-000K	PRE Pusi	I 21/ I 550	1416 5223
		4=000k	РКЕ 1 (РОБ) 1	68 68	5628 9575			4+60uk	PRF Pusi	I 297 I 266	1755 3098
	520K +	2-000R	нке 1 Розт 1	104 234	5216 21976		250K +	5-000K	РкЕ Ривт	I 316 I 842	1762 7361
		4+000k	PRE 1 PUST 1	113 88	6069 11880			4-006K	PHE Pust 	1 322 1 346	1908 3328
PRKD CAR	L1 50K	2-000k	PHE 1 PUST 1	ۆ د	47 94	PRKD GAR	L1 50K	5-00ux	PRE PUSI	I 11 I 15	37 119
		4+00UK	I Pre 1 Pust 1	0	59 87			4×DQUH	PRE Pust	I I 8 I 1¢	47 58
	50K#250K	5-000K	PHE 1 PUST 1	10 15	285 623		5UK-250K	5+000K	РжЕ Рџ8т	I 53 I 99	191 485
		4=00uH	PHE I PUST I	24 10	481 399			4+DOUR	PHE Pubt	1 I 74 I 56	274 350
	520K +	5=00hK	PHE PUST	18 [29	271 657		250K +	5-000k	PKE Pust	I 68 I 103	228 577
		4=DUUH	PHE 1 PU81 1	19 [19 [405 358			4+0068	PKE Pusi 	I 77 I 68 I	242 281
UNJECT	LT SOK	5-000k	PHE Pust	9 19	100 361	UBJECT	LT 50K	5×000K	PKE Pust	I 25 I 115	84 376
		4+00uH	PHF Pust	y 11	120 219			4=UNUK	PHE Pust	I 54 I 51	112 187
	50K-250K	5-0008	PRE 1 PUST	17 1 48	286 784		50K-250K	5-0004	PRE Pust	I 83 I 244	232 699
		4=DOUK	PRE Pust	1 50 1 50	349 367			4=µ(;uk	PK I Pust	1 123 I 123 I 115	259 303
	50K +	2-0004	PRE Pust	I 28 I 78	317 847		520K +	2-000K	PHE PUST	I 1/6 I 39/	324 907
		4-0008	PRE Pust	1 33 1 33	327 366			4-0008	PKE Pusi	187 1 187 1 171	301 158

TABLE A-8 (Continued)

		TAD:	5-7				_
ACLTYPE A	CITYSIZE C	STYLE S	PREPRST	l J	INJUHY K+A+B	(1) C+ŋ	
UTHEN MV	LT SOK	5-000R	PKE Pust	1 I	125 408	. 73 . 339	
		4-DUUR	PRE Fust	1 1 1	163 286	69 227	
	50K-250K	2-000R	PRE PUST	1 1 1	95 330	121 509	
· · ·		4-0048	PRE Pusy	I I	122 147	142 264	
	250K +	5+000R	PRE PUAT	I I I	105 315	111 452	
		4-0NUR	PRE PUST	1 1 -1-	96 108	125 174	
PRKD CAR	LT 50K	5~D008	PRE PUST	1	6 25	8 23	
		4~000R	PHF PUST	1 1 1	13	3 8	
	50K-250K	5-0008	PHE PUST	I I I	15 54	10 80	
		4-DOUR	PRE POST	1 1 - 1	32 30	22 43	
	250K +	5-000B	PRE Pust	1	12 53	20 54	
		4-000R	PKF PUST	1 1 -1	18 19	25 21	
URJEUT	LT 50K	5+DUAB	PRE Pust	I I	36 146	15 75	
		4-0008	PRE PUSI	I I I	52 AS	18 28	
	50K-250K	5-000k	PRE PUST	-] . I I T	68 198	43 137	
		4+010P	PHE PUS1	1 1 1	84 89	43 56	
	250K +	5-0006	PKF Pusi	t t	101 217	41 165	
		4-000R	PKF P081	ı I I	66 72	38 47	

THE THIAL FREALENCY IS 146449

A-16

FULLY CROSS CLASSIFIED TABLE OF TEXAS 1974 RAW DATA FOR KABC/O INJURY DICHOTOMY

		TAD:	1-2					TAD:	3-4		
ACLTYPE A	CITYSIZE C	3771.E 5	ркероат 1 р т	1NJNRY (1 K+A+B+C	0 11	ACCTYPE A	CITYSI7E C	STYLE S	РКЕРЛЯТ Р	T INJURY (I I K+A+B+C	() 0
UTHEN MV	L1 50K	5-000K	PKE T PUSI I	19 58	739 2848	UTHER NV	LT 50N .	5-0U08	PKE 1 Pust 1	119 446	456 1797
		4-UGUR	PRE I Pust I	35 50	1146 2258			4≠00u₩	PRE Pust 1	205 505	660 1261
	50K#250K	5+000K	Рке 1 Ризт 1	93 290	3905 14192		50K#250K	5-000k	PRE 1 PDSI 1		1291 4841
		-4⇒UQUR	PRE 1 Pust 1	162 186	5548 9457			4#######	PHE 1 PU51 1	459 519	1593 2845
	250K +	2-1000K	PRE I Post I	181 561	5139 21649		250K +	5+hunk	PKE 1 PUST 1	454 1507	1624 6696
		4+DOUK	PHE 1 PUST 1	216 254	5966 11714			4=VOUK	PKE] PUS[]	504 666	1721 3008
PRKD CAN	LT 50K	5-nank	PKE 1 PUST 1	3 6	47 91	PRKD CAR	LT 50K	s=Dank	PRE I Pust I	18 18	30 114
		4+0048	PRE I Post I	U 8	59 83			4-00UR	PHE I Pust I	11 17	44 53
	50K#250K	5-DOAK	PHE PUBT	15 31	280 607		50K-250K	44000K	PUSI	6.5 133	161 451
,		4+#8uk	PRE Pust	29 14	476 395	-		4=UOUK	РИЕ 1 Ривт 1	95 85	253 321
	250K +	5+hONK	PRE POST	22 40	267 646		520K +	5+000K	PHE I Pust I	81 145	215 532
		4-00uR	PKE Pust	25 20	399 354			4+DOUR	РКЕ I Рият I	87 88	515 292
UNJECT	LI 50K	S=000H	PRE POSI	1.5 3.4	96 346	UBJECT	LT 50K	5-000K	PRE I Pust I	30 147	79 344
		4+011uH	PHE Pust	22 15	107 215			440008	PRE 1 Pust 1	66 67	100 171
	50K-250K	5+D00k	PRE PUST	28 74	275 758		508+2508	5+000k	PHE 1 PUS1 1	109 516	206 627
		4+D808	PHE Pust	35 33	340 354			4+0008	PRE 1 Pust 1	146 144	236 274
	520N +	5-0008	PKE PUSI	1 39 1 11/	306 808		250K +	5-PUNK	PKE 1 PUSI 1	216 499	284 805
		4-6068	Рк† Ризт	1 41 1 40	\$13 352			4-0048	PHE PUST 1	214 229	274 300

.

		TAD:	5-7		
ACUTYPE A	CITYSI7E C	STYLE S	PREPOST 1	I INJURY (I) I K+A+B+C D	
UTHER MV	LT 50K	8-000B	PRE Pust	I 141 I 489 ⁻	57 258
		4-DAUH	PKE PUBT	1 177 I 338	55 175
	50K-25NK	5-DUO8	PHF Pust	I 122 I 449 I	94 390
		4-DOUR	PHE PUST	1 156 1 207	108 204
	520K +	S-000k	PRE PUST	T 131 I 439	85 328
		4-0NUR	PHE PUST	I 130 I 159 I	91 123
PRKD CAR	LT 50K	2-000R	PRE Post	1 6 I 31	8 17
		4-00UR	PRE Post	1 I 13 I 12	3 7
	50K-250K	5-00NB	PHE Pust	1 16 I 62	9 7 P
		4-0008	PRF POST	1 34 I 36	20 37
	250K +	5-00AK	PRE Pust	I 14 I 66	18 41
		4-000R	PRE Post	1 24 1 22	19 18
UBJECT	LT 50K	2-00UR	PRE PUST	I 40 I 161	11 60
		4=0008	PKE Pust	t I 58 I 94	12 19
	50K-250K	2=1) NUR	PRE POST	1 75 I 226	36 109
		4-DUOR	PRF PUST	I 94 I 94 I 101	34 44
	250K +	5-0404	PRE POST	I 113 I 274	29 108
		4-01UR	PRF P081	1 ¥ 74 I 85	30 54

THE TUTAL FREQUENCY IS 146449

FULLY CROSS CLASSIFIED TABLE OF NEW YORK 1974 RAW DATA FOR KA/BCO INJURY DICHOTOMY

MANUFAC	DRVAGE A	RDCLASS R	STYLE S	PREPOST P	I KAXBCO I Ka	(1) BCD
GH	15 - 24	HIGHWAY	S DOOR	PRE Pust	I 41 I 172	505 2544
			4 000R	PRE Pust	1 33 <u>)</u> 1 32	314 633
		RUAD	5 000H	PRF PD8T	1 .44 1 140 1	433 1762
	,		4 000R	PRE PDS1	1 29 1 21 1 21	260 411
		STREET	a DOOR	PKE Pust	1 28 1 97 1	424 1960
			4 DOUR	PRE PUST	I 17 I 21 I	294 598
	25 = 49	HIGHWAY	2 DOUR	PRE Pust	I 43 I 204	427 2869
			4 DOUR	PRE Post	1 37 1 61	327 1207
		RUAD	2 DOR	PHE Pust	I 33 I 95	261 1741
			4 DOUR	PRE Post	1 30 1 32	213 601
· · ·		STREET	5 DOUR	PRE PUST	1 40 I 129 I 129	531 3049
	,		4 DOUR	PRE PUST	I 30 I 50 I	533 1428
	50 + .	HIGHWAY	5 DUNK	PRE POST 1	I 25 I 63	193 1310
			4 DOUR	PRE 1 POST 1	1 1 11 50	182 1014
		RUAD	2 DOUR	PKE 1 PUST 1	11 1 46	1 15 793
			4 000R	PHE 1 POST 1	3 1 17	101 457
		STREET	S DUAR	PRE 1 POST 1	7 36	225 1252
			4 UDUR	PRE Pust	21 27	233 995

MANUFAC M	DRVAGE	RDCLASS R	STYLE 9	PREPOST 1	Î KAXBCO I Ka	(1) 800	
FURD	15 - 24	HIGHWAY	S DOOK	PHE 1 Pust	I 37 92	393 1423	
			4 DOUR	PHE PD87	1 I 13 I 24	170 350	
		RUAD	S DOOR	PRE Post	1 31 I 72	318 908	,
	,		4 DOuR	PRE Pust	r 9 r 13	121 207	
		STREET	5 000R	PRE Post	1 18 1 45	276 888	
			4 000R	PRE PUST	11 1 6	100 253	
	25 - 49	HIGHWAY	S DOUN	PHE 1 Post 1	23 110	257 1461	
	·		4 DOUR	PRE Pust 1	19 1 38	167 602	
		RUAD	5 DONK	PRE 1 POST 1	60 50	184 760	
			4 YOUR	PRE 1 Pust 1	55 I	94 325	
		STREET	5 000H	PHE POST	1 25 1 81	297 1233	
			4 DOUN	PHE Post	10 1 15 1	196 500	
	\$0 + '	HIGHWAY	2 DOOK	PRE PUST	I 7 I 36	111 615	
			4 000R	PKE POST	I 8 I 19	92 455	
		RUAD	5 DOUR	PRE PUST	1 50 2 1 2 2	70 330	
			4 DOUR	PRE Post	I 5 I 14	46 184	
		STREET	2 DOUR	PKE PUST	I 3 I 15	101 434	
			4 DOUR	PHE Post	1 2 1 8	89 356	

TABLE A-10 (Continued)

MANUFAC	URVAGE	RDCLASS	STYLE S	PREPOST P	I KAXOCO I Ka	(1) BCD
OTHER	15 - 24	HIGHWAY	2 000R	PRE Post	1 28 1 112	220 1363
			4 DOUR	PRE Post	17 1 24	241 368
		ROAD	2 DOUR	PRE POST	21 1 93	149 , 854 -
			4 DOUR	PRE Pust	1 15 1 17	162 235
		STREET	S DOUR	PRE POST	16 1 54	164 867
			4 DOUR	PRE POST	14 I 14 I 8	199 306
	25 + 49	HIGHWAY	5 DOOM	PRE POST	t 17 t 96	174 1324
			4 DOUR	PRE Post	1 1 25 1 38	242
		RUAD	2 DOOR	PRE POST	I 8 I 45	84 684
			4 DOUR	PRE POST	12 1 12 1 23	126 307
		STREET	S DOOK	PRE POST	I 14 I 65	192 1105
			4 DOUR	PRE Pust	14 1 32 1	289 812
	50 +	HIGHWAY	S DOOR	PRE PD81	t 8 t 30	78 581
	·		4 DOUR	PRE Post	I I 13 I 39	172
		RUAD	2 DOUR	PRE PUST	I I I 20	63 349
			4 000R	PHE Pust	1 T 6 T 16	62 270
		STREET	2 DOUR	PRE POST	1 9 I 27	98 458
<i></i>			4 DOUR	PRE Post	I 10 I 18	151 526

TABLE A-10 (Concluded)

FULLY CROSS CLASSIFIED TABLE OF NEW YORK 1974 RAW DATA FOR KAB/CO INJURY DICHOTOMY

MANUFAC H	DRVAGE A	RDCLASS R	STYLE S	PREPOST	L KABXCO Kab	(1) CO
GM	15 = 24	HIGHWAY	2 DOUR	PRE POST	140 541	406 2175
			4 DOUR	PRE Pust	102 107	245 558
		RUAD	2 DOUR	PRE Post	139 438	338 1464
			4 DOUR	PRE Post	77	212 345
		STREET	2 DOUR	PRE Post	I 88 I 333	364 1724
			4 DOUR	PRE PUST	i I 61 I 85	250 534
	25 - 49	HIGHWAY	2 DOUR	PHE Pust	111 580	359 2493
		,	4 000R	PRE Pust	1 93 1 200	271 1068
		RUAD	2 DOUR	PRE POST	I 89 I 306	205 1530
			4 DOOR	PRE POST	I 67 I 96	176 537
		STREET	2 000R	PHE POST	I 115 I 454	456 2724
			4 DOOR	PRF PUST	I 91 I 186 I	472 1292
	50 +	HIGHWAY	2 DOOR	PHE PUST	1 53 I 211	165 1162
			4 DOUR	PRE PUST	1 40 I 161	153 903
		RUAD	2 DOUR	PKE POST	I 37 I 131	109 708
			4 DOUR	PHE POST	1 1 24 1 65	80 409
		SIREET	5 000R	PRE PUST	I 36 I 164	196 1124
			4 DOUR	PRE Pust	1 51 I 96 I	203 924
-					-	

A--22

IABLE A-II (CONT	cinuea)	
------------------	---------	--

•	HANUFAC H	URVAGE	RUCLASS	STYLE S	PREPOST P	I KABXCO I Kab	(1) CO
	PORD	15 - 24	HIGHWAY	2 DOUR	PRE Post	125 1355 155	308 1193
				4 000R	PRE PD81	I 46 I 71	137 303
			ROAD	2 DOUR	PKE Pust	98 236	251 744
-				4 DOUR	PRE 1 Post 1	44	86 171
			STREET	S DOOR	PRE 1 PUBT 1	67 164	227 769
				4 00UR	PRE Pust	27	84 226
		25 = 49	HIGHWAY	2 DODR	PRE 1 POST 1	63 1 321	217 1250
				4 UOOR	PKE POST	46 101	140 539
			ROAD	5 000R	PRE 1 POST 1	64 180	140 640
				4 DOOR	PRE 1 POST 1	24 74	76 273
			STREET	2 DOOR	PRE 1 POST 1	62 243	260 1071
				4 DOUR	PRE 1 Pust 1	30 63	176 452
}	ine të nga përga në ditë të së fat	·····	ينعره فالتكفي المتعادية والأعلي				
		50 + .	HIGHWAY	5 DOD8	PRE 1 PUST 1	32 111	86 540
				4 DOUR	PRE 1 Post 1	55 58 	75 392
			RUAD	5 0008	PRE 1 Post 1	17 69	55 281
ŀ				4 DOUH	PRE 1 PUST 1	11 33	40 165
			STREET	a nons	PHE 1 POST 1	20 64	84 385
				4 DOUR	PRE 1 PUST 1	17 49	74
				****		, 10 M W M W M W M W M W M W W	• = \ , , , , , , , , , , , , , , , , , ,

MANUFAC H	DRVAGE A	RUCLASS R	STYLE S	PREPOST 1 P* 1	KABXCO Kab	(I) CO
OTHER	15 - 24	HIGHWAY	2 DOUR	PRE 1 Post	70 309	178 1166
			4 DOUR	PRE 1 POST 1	68 101	190 291
		RUAD	2 000R	PRE 1 POST 1	54 251	116 696
			4 DODR	PRE Pust	58	119 192
		STREET	2 DOUR	PRE PUST	34 181	146 740
			4 DOUR	PRE POST	53 [53	160 266
	29 = 49	HIGHWAY	2 DOUR	PRE	53	138
			4 DOOR	PRE	I 62 I 124	205
		RUAD	2 DOUR	PRE 1 POST	26	66 578
			4 DUOR	PRE POST	I I 31 I 61	107 269
		STREET	2 000R	PRE PUST	1 255 1 71 1 72	165 948
			4 DOUR	PRE Pust	1 1 50 1 95	253 749
	50 +	#	2 DAUB	995 25 25 25 25 25 25 25 25 25 25 25 25 25	[
		114 GHOMAT	2 0000	POST	I 126	485
			4 DOUR	PRE Post	128 128	146 513
		RUAD	5 D008	PRE Post	6 6 6	55 277
			4 DOOR	PRE 1 PUST	17	51 233
		STREET	5 DOD8	PRE	18	89 406
			4 DOUR	PRE POST	23 67	138 477
THE	TOTAL FR	EQUENCY 1	8 628/	43		ar a ve ar a gran a gran anna seamhada

TABLE A-11 (Concluded)

- · · e site - ·

FULLY CROSS CLASSIFIED TABLE OF NEW YORK 1974 RAW DATA FOR KABC/O INJURY DICHOTOMY

HANUFAC M	DRVAGE A	RUCLASS R	STYLE S	PREPOST	I КАВСХО I Кавс	(1) 0	
GM	15 + 24	HIGHWAY	2 DOUR	PRE POST	I 201 I 845	349 1887	
			4 DOUR	PRE PDST	I 142 I 164	210 505	
		RUAD	5 DOOK	PRE Pust	195 1 . 642	284 1264	
			4 DOUR	PRE Pust	I 106 I 142	183 292	
		STREET	5 000K	PNE Pust	138 1 600	316 1462	
		4	4 DOUR	PRE POST	1 110 I 156 I 156	202 464	
 	25 - 49	HIGHWAY	2 DOUR	PRE	179	296	
			4 DOOR	PRE	1 787 1 1 125 1 369	240 905	
		RUAD	2 DOOR	PRE POST	1 ****** 1 121 1 556	176 1290	
	· ,		4 DDUR	PHE Post	I 97 I 189	148 445	
		STREET	2 DOUR	PHE POST	194 1 907	379 2287	
			4 DOOK	PRE POST	163 1 163 1 376	402 1113	
· · · · · · · · · · · · · · · · · · ·	50 +	HIGHWAY	2 DOUR	PRE POST	75 75 379	143 1006	
	,		4 DOUR	PRE Post	I 56 I 282	137 787	
	,	RUAD	5 DOOR	PKE POST	1 56 1 234	91 612	
			4 DOUR	PRE POST	i 33 I 117	71 362	
		STREET	2 DOR	PRE PUST	I 66 I 317	166 979	
			4 DOUR	PRE POST	1 I 77 I 216	179 809	
				· ··· ••			

.

.

MANUFAC M	DRVAGE A	HUCLASS R	STYLE	PREPOST 1 P 1	KABCXO Kabc	(1) U	
FORD	15 - 24	HIGHWAY	S DOAK	PHE 1 Pust 1	184 517	250 1005	
			4 DOUR	PRE 1 POST I	65 103	118 274	
		HUAD	2 DOUR	PHE 1 P081 1	141 363	211 622	
			4 DODR	PHE 1 PUST I	64 76	67 146	
		STREET	5 000K	PRE 1 POST 1	94 272	202 662	
			4 DOUR	PRE 1 PUST 1	l 41 68	70 191	,
	25 - 49	HIGHWAY	2 DDAM	PRE I Pust I	92 531	188 1049	
			4 UOUR	PKE 1 Pust 1	75	113 459	
		RUAD	2 DOOR	PRE 1 Pust 1	92 276	113 547	
			4 DOUR	PKE 1 PUST I	41 111	60 236	
		STREET	2 DOOR	PRE 1 Post 1	103 408	219 910	
			4 DOUR	PRE 1 POST I	64 131	144 386	
	50 +	HIGHWAY	S DOOR	PHE I Pust I	48 178	71 474	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	·		4 000R	PRE I POST I	36 138	64 339	
		RUAD	5 000K	PRE I Pust I	26 115	46 236	
			4 000R	PRE I POST I	20 54	31 146	
		STREET	2 DOUR	PRE I POST I	36 121	68 329	
			4 DOUR	PRE I Post I	27 97	66 965	
		We also and the state of the st	March Strategy and Topo Westman with				

TABLE A-12 (Continued)

M	ANUFAC	DRVAGE	HUCLASS	STYLE S	PREPOST P	I КАНСХО Канс	(1) ₀
<u>0</u> ,	THER	15 - 24	HIGHWAY	2 DOU	R PRE Post	I 99 I 479	149 997
				4 000	R PRE PDST	I 99 I 143	160 249
			ROAD	2 000	R PHE POST	I 76 I 371	94 582
				4 000	H PRE Post	I 72 I 89	105 164
			STREET	5 DOU	R PRE POST	I 57 I 292	125 631
				4 DOU	R PRE Post	1 73 1 79 1 79	141 236
		25 - 49	HIGHWAY	5 000	R PRE POST	I 84 I 482	107 945
		ч.		4 DOU	R PRE Post	101 1 225	167 481
			ROAD	2 000	R PRE POST	I 39 I 254	53 480
				4 DOD	R PRE POST	1 53 I 95	89 235
			STREET	5 000	R PRE PUST	I 58 I 394	149 777
				4 000	R PRE POST	1 83 1 209 1	222 639
		50 +	HIGHWAY	S 000	R PRE 7 POST	I 38 I 210	48 404
				4 DOU	R PRE PUST	I 51 I 194	134 448
			RUAD	5 000	R PRE PUST	I 21 I 140	45 231
				4 000	R PRE Post	1 93 1 55	46 194
			STREET	2 000	R PRE POST	I 27 I 151	80 336
				4 000	R PRE Pust	1 47 1 127	113 418
	THE	TOTAL FRI	EQUENCY I	S 6	3137		

TABLE A-12 (Concluded)

A-27

FULLY CROSS CLASSIFIED TABLE OF NORTH CAROLINA 1973 RAW DATA FOR KA/BCO INJURY DICHOTOMY

VEHSPEEU X	HANUFAC M	WEIGHT	STYLE	PREPOST P	I INJURY I KA	(I) 800
1+5AN6H	6M	L1 3000	5 DOUR	PRE 1 Pust	5 I	142 168
			4 DOUR	PRE Pust	4	93 89
		3K#3599	S DOOK	PRE POST	9 12	625 1567
		×	4 000R	PHE Pust	5 5 5	620 604
		3600 +	5 DOOK	PKE Pust	1 1 6	163 1050
			4 0008	PRE Pust	1 8 1 7	423 1747
	FORD	LT 3000	S DOOK	PRE PUST	I 7 I 8	559 763
			4 DOOK	PRE 1 Pust 1	1 1 4 1 5	231
		3K=3549	2 DOR	PRE POST	I 7	396 433
			4 DOUR	PRE Pust	I 4 I 0	287 264
		3600 +	5 NONK	PRE Pust	I 2 I 1	151 299
			4 DODR	PRE Pust	I I 2 I 3	233 515
	UTHER .	LT 3000	5 DONK	PRE Pust	I O I S	54 384
			4 DOUR	PRE Pust	I I Ü I I	67 128
		3K#3599	5 DOAK	PRE PUST	I I I 2	112 386
			4 DOUR	PRE Pust	1 1 3 1 2	169 179
		3600 +	2 DOUR	PRE PUST	I 0 I 2	42 122
			4 000R	PNE POST	I O I I	88 384
					· · · · · · · · · · · · · · · · · · ·	

A--28

TABLE A-13 (Continued)

.

VEHSPEEU X	MANUFAC M	WEIGHT. W	STYLE S	PREPOST	I INJURY I KA	(1) 8ç0
30-49MPH	GM	LT 3000	5 DOUR	PRE 1 POST 1	1 3 5	103 120
			4 DOOR	PRE POST	5 5	66 46
		3K=3599	S DUNK	PRE PUST	51 21	467 1099
			4 DOUR	PRE Fost	11 10	372 368
J		3600 +	2 DOUR	PRE PUST	[18	111 698
			4 DOUR	PRE PUST	l [12 [33 [241 . 960
	FURD	LT 3000	2 DONK	PRE Post	18 16	389 590
			4 DOUR	PRE Post	5 [3	146
		3K~3599	S DOUR	PRE Post	13	339 337
			4 DOUR	PRE Pust	6 1 - 4	195 147
		3600 +	S NOOK	PRE 1 POST	[4 [7	90 199
			4 DOQR	PRE POST .	[[6] 3	153 324
anta da anta da da anta anta anta da anta ant	OTHEN	LT 3000	5 DOUR	PRE POST	1 10	35 258
			4 DOOR	PRE Pust		21 59
		3K=3599	2 DOOR	PRE PUST	[2 [5	103 290
			4 DOUR	PKE Post	1 3 1 5	89 115
		3600 +	5 DUDK	PRE PUST	2	32 102
			4 UØUR	PRE PUST	[] [6	44 212

TABLE A-13	(Concluded)
------------	-------------

VEHSPEED MANUFAC	WEIGHT. W	STYLE	PREPOST 1 P 1	INJURY Ka	(I) BCD	
50 MPH + GM	LT 3000	S DUOR	PRE I Pust I	Ĩ 4	22 25	
		4 UOUR	PRE I Pust I	4	16 9	
	3K-3599	2 DOUR	PKE I PUST I	14 44	136 349	
		4 DOUR	PRE I Pust I	5 9	81 103	
	3600 +	2 000R	PRE I Pust I	1 13	30 211	
		4 DOUR	PRE I POST I	9 12 *********	45 316	
FOND	LT 3000	2 DOOR	PRE I Pust I	15 15	111 135	****
		4 DOUR	PRE I Pust I	5	55	
	3K=3599	2 DOUR	PRE I Pust I	8 6	90 105	
		4 DOUR	PRE I Pust I	6 1	47 39	
	-3600 +	S DOOR	PRE I PUST I	2 7	29 78	
		4 000R	PHE I PUST I	6 6	37 113	
UTHER	LT 3000	2 000R	PRE I Pust I	0 1 3	8 84	
		4 DOUR	PRE I Post I	5 0	6 14	
	3K=3599	S DOOR	PRE 1 Pust 1	3 18	31 115	
		4 DOUR	PRE I PUST I	3 3	19 30	
	3600 +	5 DUN8	PRE I POST I		8 40	
		4 000R	PRE I Post I	4 8	6 86	

•

VEHSPEED X	MANUFAC	WEIGHT W	STYLE S	PREPOST 1 P 1	E INJUHY E Kab	(I) CU	
1=29MPH	GM	LT 3000	2 DOUR	PRE 1 Pust 1	L 5 L 8	139 161	
			4 DOUR	PRE 1 Post 1	I 8 I 4	89 86	
		3K = 3599	2 DOUR	PRE 1 PUST	[595 1523	
		ı.	4 DOUR	PRE 1 Post 1	1 30 1 28	599 582	
		3600 +	S NONS	PRE 1 PUST	[7 1 29	157 1027	
			4 DOUR	PRE 1 PDST 1	[[21 [47	410 1707	
an talah mengenakan kerdalah kerdenak dengan kerdan dengan kerdan dengan kerdan dengan kerdan dengan kerdan den	FOND	LT 3000	2 DOUR	PRE 1 Pust 1	I 36 I 34	530 737	inter a vier anna Carata
			4 DOUR	PRE Post	I 15 I 6	220 	
		3K#3599	S DOOR	PRE Post	16 16 28	382 412	
			4 DOUR	PRE Pust	I I 19 I 5	272 259	
		3600 +	5 DOR	PRE Pust	1 4 1 9	149 291	
			4 DOUR	PRE POST	1 20 1 20 1 8	227 498	
	OTHER,	LT 3000	5 000R	PRE Pust	25 I 1 2 2	52 365	an an an an an an an an an an an an an a
			4 DOUR	PRE Pust	I I 5 I 7	55 125	
		3K#3599	2 DOOR	PRE Pus r	I 3 I 12	110 376	
			4 DOUR	PRE Pust	1 8 T 5	164 176	
		3600 +	5 DOAK	PRE PUST	1 3 1 8	39 116	
			4 DOUR	PRE PD8T	I 3 I 20 I 20	85 365	

FULLY CROSS CLASSIFIED TABLE OF NORTH CAROLINA 1973 RAW DATA FOR KAB/CO INJURY DICHOTOMY

A-31

•

VEHSPEED MAN	UFAC WEIGHT M W	STYLE S	PREPOST 1 P 1	I INJURY I KAB	(I) CO	
30-49MPH GH	LT 3000	S DOOR	PHE Pust	I 14 I 25	92 100	
		4 DOUR	PRE PUST	51 I 6 I	59 43	
	3K = 3599	2 DOUR	PRE POST	I 63 I 110	416 1010	
		4 DOUR	PRE PUST	I 56 I 30	327 348	
	3600 +	S DOOK	PRE PUST	I 14 I 62	98 654	
		4 DOUR	PRE Pust	i 26 I 93 I	227 900	
FOK	D LT 3000	5 DOOK	PRE Pust	I 70 I 70	337 536	1e- <u></u>
		4 DOUR	PRE Post	I 16 I 16	129	
	3K=3999	2 DOOR	PHE PUST	I 47 I 34	305 311	
		4 DOOR	PHE Pust	21 I I I I I I I I I I I I I I I I I I I	178 139	
	3600 +	2 U0UR	PRE	1 9 Î 16	85 190	
		4 0008	PKE PUST	I 19 I 30 I	140 297	
OTH	ER. LT 3000	2 DOOR	PRE POST	I 8 I 32	28 236	
		4 DOUR	PRE Pust	1 4 1 4 1 9	24 53	
	3K=3599	S DODK	PRE PUST	1 14 1 26		
		4 DOUR	PRE PUST	1 13 I 14	79 106	
	3600 +	S 0008	PRE PUST	I 4 I 13 Y	30 92	
		4 DOUR	PKF POST	i 5 I 27 I	40 191	

TABLE A-14 (Continued)

TABLE A-14 (Concluded)

VEHSPEED MANUFAC X M	WEIGHT W	STYLE S	PREPOST P	I INJURY I KAB	(I) CU
50 MPH + GM	LT 3000	S DOOR	PRE 1 Pust 1	[5 [9	18 20
		4 DOUR	PRF 1 P091 1	T 7 T 1	13
	3K=3599	2 DOUR	PRE 1 POST 1	1 38 1 93	112 300
		4 DOUR	PHE I POST I	I 10 I 26	76 86
	3600 +	S DOOR	PRE 1 PUST 1	3 1 38	28 186
		4 0008	PRE J Post J	[15 [50	39 278
FOND	LT 3000	2 DOUR	PRE 1 Pust 1	L 34 L 40	92 110
		4 DOUR	PRE 1 POST 1	L 9 L 9	19 15
	3K=3599	2 000R	PRE 1 POST 1	19 15	79 96
	,	4 000R	PRE 1 POST 1	. 9 . 5 	44 35
	3600 +	2 DOOR	PRE 1 POST 1	10 10 16	21 69
		4 DOUR	PRE ,) POST 1	12 15	31 104
OTHER.	LT 3000	5 DUUR	PRE 1 PUST 1	1 30	7 67
		4 DOUR	PRE D PUST D	1 1 1 1 5	5
-	3K#3599	S DDOR	PRE 1 Pust 1	L 6 L 35	28 98
		4 DOUR	PKE) PUST 1	1 7 1 4	15 29
	3600 +	2 DOUR	PHE 1 PUST 1		8 39
		4 VOUR	PRE 1 Pust 1	r 5 t 16	5 78

VĮ	HSPEED X	HANIIFAC M	WEIGHT W	81	S	PREPOST 1 P 1	INJURY Kabc	(I)	
1	#29MPH	GM	LT 3000	5	DOUR	PNE 1 POST 1	l 13 l 15	131 154	
				4	DOUR	PRE 1 PUST 1	12	85 81	
1			3K=3999	5	DOUR	PRE 1 POST 1	07 123	564 1456	
				4	DOUR	PRE S POST 1	61 66 66	568 544	
			3600 +	5	DOUR	PRE 1 POST 1	I 10 I 69	154 987	
				4	DOUR	PHE POST 1	42 1 107	389 1647	
		FOND	LT 3000	5	DOOB	PRE 1 POST 1	L 61 C 77	505 694	
				4	0008	PRE POST	1 1 12	203 93	
			3K = 3599	5	DOUR	PRE 1 PUSY 1	I 33 I 46	365 394	
				4	DOUR	PRE PUST	I 39 I 15	252 249	
			3600 +	5	DOUR	PRE 1 POST 1	t 9 t 27 t	144 273	
				4	000R	PRE PUST	I 21 I 42 I 42	214 476	
	gir y tri, en gölddið í Akhristoning skor	UTHER .	LT 3000	5	DOUR	PRE Post	1 6 1 42	48 345	
				4	DOOR	PRE PUST	I 8 I 13	59 116	
			3K=3599	2	DOUR	PRE PUST	I 11 I 31	102 357	
				4		PRE PUST	I 23 I 20 I	149 161	
			3600 +	5	DOOK	PHE POST	4 1 4 12 12	38 112	
				. 4	DOUR	PRE	I 9 I 42	79 343	

FULLY CROSS CLASSIFIED TABLE OF NORTH CAROLINA 1973 RAW DATA FOR KABC/O INJURY DICHOTOMY

VEHSPEED X	MANUFAC	WEIGHT W	STYLE S	PREPOST 1 P 1	INJURY Kabc	(1)
30-49MPH	GM	LT 3000	2 DOOR	PRE I Post I	20 33	86 92
			4 DOUR	PRE I Post 1	17 15	54 36
		3K=3599	2 DOUR	PRE 1 Pust 1	106 198	373 922
			4 000R	PRE I Post I	80 68	303 310
н. Т		3600 +	S DOUR	PRE I POST I	26 124	86 592
			4 DOUR	PRE I Pust I	53 159	200 834
	FOND	LT 3000	2 DOUR	PKE 1 PUST 1	102 127	305 479
			4 DOUN	PRE J Pust j	95 23	112 53
		3K#3599	2 DOUR	PRE I Post 1	76 56	276 289
			4 DOUR	PRE 1 Pust 1	34 26	167 125
		3600 +	5 DOOR	PRE 1 PUST 1	14 35	80 171
			4 DOUR	PRE 1 Pust. 1	30 57	129 270
	UTHER	LT 3000	2 DOOR	PKE 1 Pust 1	9 51	27 217
			4 DOUR	PRE 1 Post 1	7	21 47
		3K=3599	5 DOOK	PRE	25	80 248
			4 VOUR	PRE PUST	19	73 95
		3600 +	5 DOOR	PRE PUST	5 1 18	29 87
			4 000R	PRE PUST	10 1 40 1	35 178

TABLE A-15 (Continued)

VEHSPEED MANL	JFAC WEIGHT M W	STYLE S	PREPOST I P I	INJURY Kabc	(1)
50 MPH + GM	LT 3000	5 000K	PRE I Pust I	6 10	17 19
		4 DOUR	PRE I Pust I	8 1	51 8
	3K = 3599	2 DOOR	PRE I Pust I	42 126	108 267
		4 DOUR	PRE I PUST I	21 41	65 71
	3600 +	2 DOUR	PRE I PUST I	51 51	26 173
		4 00UR	рке I Ривт I Ривт I	19 71	35 257
FOR) LT 3000	2 DOUR	PRE I POST I	46 54	80 96
		4 DOUR	PRE I Pust I	11 10	17 14
	3K=3599	5 DOUR	PRE I PUST I	25	73 85
		4 DOUR	PRE I Pust I	15	38 31
	3600 +	2 DOOR	PRE I Pust I	11 25	20 60
		4 DOUR	PRE I Pust I Pust I	14 24	29 95
ÛTHE	EN' LT 3000	2 DOUR	PRE I Post I	2 37	6 60
		4 DOOR	PRE I Post I	5	4
	3k=1599	5 0008	PHE I Pust I	**************************************	27 88
		4 DOUR	PRE I Pust I	9 4	13 29
·	3600 +	5 DUNK	PHE I POST I	13	8 37
		4 DOUR	PKE I Pust I	6 27	4 67

TABLE A-15 (Concluded)

ţ,

FULLY CROSS CLASSIFIED TABLE OF NORTH CAROLINA 1974 RAW DATA FOR KA/BCO INJURY DICHOTOMY

'n

	MANUFAC M	WEIGHT W	STYLE S	РНЕРОЗТ I Р I	INJURY Ka	(1) . BCU	
	GM	LT 3000	S DUON	PRE I Post I	5 13	205 285	
			4 DOOR	PRE I POST I	9 5	190 161	
		3K-3599	5 DOOK	PRE I Post I	25 58	985 3087	
			4 000R	PRE I POST 1	31 25	996 1069	
		3600 +	2 000R	PRE I POST I	7 47	2615 2615	
			4 0008	PRE I Post I	9 41	706 3445	
Latur di Winne de Bland favi	FORD	LT 3000	5 DOON	PRE I POST I	34 49	898 1630	Ning, sylvaria
			4 DUOR	PRE I Post I	19 11	328 209	
		3K=3599	5 оаан	PRE I Post I	18 19	654 740	
			4 000R	PRE I Post I	13 15	465 446	
		3600 +	5 0004	PRE I Post I	4 18	253 756	
			4 DUDN	PRE I Post I	10 25	502 9051	
nya nya Arif Mandala La ayaa na	DTHER	LT 3000	5 000K	PRE I POST I	1 27	81 740	arteria, a 10-14 inglatationer
			4 DOOR	PRE I Post I	3	92 184	
		3K#3599	S DOOK	PRE I POST I	3	201 847	
			4 DUOH	PRE I POST I	4	245 377	
		3600 +	5 DOOK	PRE I Post I	3	282 285	
			4 DUDN	PRE I Post I	4 15	145 779	

٦

FULLY CROSS CLASSIFIED TABLE OF NORTH CAROLINA 1974 RAW DATA FOR KAB/CO INJURY DICHOTOMY

Ľ

an Million (a Special or a Cold Control of Control of Control of Control of Control of Control of Control of Co	MANUFAC M	WEIGHT W	9 T Y L C 9	PREPUSY 1 P 1	INJURY Kab	(I) CU	-
	GM	LT 3000	5 DOOM	PRE I POST I	20 40	190 258	illi i veni della de vine i dedevin
			4 DUOR	PRE 1 Post 1	29 29	170 146	
		3K=3599	5 DOOR	PRE I POST I	105 267	905 2878	
			4 DUOR	PRE I POST I	110 93	917 1001	
		3600 +	5 DOON	PRE I POST I	20 171	240 2491	
			4 DOOR	PRE I POST I	57 181	658 3305	
derreddiade bernerod giren' febr wet - dan	FURD	LT 3000	2 DUAR	PRL I POST I	113 181	819 1498	inegar, المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع
			4 DOOR	PRE I Post I	47 25	300 195	
		3K=3599	5 DOOR	PRE I I TBO9	70 59	602 700	
			4 000R	PRE I POST I	33 35	445 426	
		3600 +	5 DOOK	PRE I POST I	05 89	237 711	
			4 DUOR	PRE I POST I	35 75	277 1159	
nia di Jugiya: Jana (4 di segla di San di San di San di San di San di San di San di San di San di San di San d	OTHER	LT 3000	5 DUOK	PRE I POST I	5 97	77 670	tuaret fulkije unterfordige des
			4 DOON	PRE I Post I	9 16	86 171	
		3K=3599	2 DUOR	t teoquest	21 83	183 781	
			4 DOOR	PRE I POST I	53 53 52	227 359	
		5600 +	S DOOR	j 389 I 7809	10 27	ແສະສະດະລະດີເວັດ 65 ຊີຄົງ	
			4 DUUR	PRE I POST I	8 54	141 740	

FULLY CROSS CLASSIFIED TABLE OF NORTH CAROLINA 1974 RAW DATA FOR KABC/O INJURY DICHOTOMY

\$

	MANUFAC M	WEIGHT W	STYLE S	PREPUST P	I INJURY I KABC	(1)	
nel and an an an an an an an an an an an an an	GH	LT 3000	S DOOK	PRE Post	I 33 I 62	177 236	ife the and an array of the second second second second second second second second second second second second
			4 DUAR	PRE Post	1 42 1 28 1 28	197 138	
		3K#3599	5 DOUK	PRE Post	I 169 I 474	841 2671	
			4 000R	PRE POST	I 193 I 153	834 941	
		3600 +	5 DUDH	PRE Post	I 38 I 341 I	525 525	
			4 DUBR	PRE P081	I 99 I 407 I	616 3079	
	FORD	LT 3000	5 DOOH	PRE Post	I 166 I 320	766 1359	······
			4 DUOR	PRE Post	1 1 80 1 43	267 177	
		3K#3599	8 0008	PRE POST	1 111 1 104 1	561 655	
			4 DUOR	PRE POST	I 68 I 65	410 396	
		3600 +	2 DUON	PRE Post	I 47 I 106	210 668	
1			4 DUON	PRE Post	I 46 I 152 I	266 1082	
	OTHER	LT 3000	5 DUDK	PRE Post	I 16 I 158	66 609	, 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199
			4 DUON .	PRE Post	1 I 15 I 34	80 153	
		3K-3599	5 DUON	PRE POST	I 36 I 140	168 724	
			4 0008	PRE Post	I 42 I 60	207 328	
		3600 +	S DODK	PRE Post	I 15 I 46 I	60 242	
			4 DUDH	PRE Post	I 19 I 105	130 689	
	THE	TOTAL FR	EQUENCY I	8 2653	9		

FULLY CROSS CLASSIFIED TABLE OF NORTH CAROLINA 1975 RAM DATA FOR KA/BCO INJURY DICHOTOMY

MANUFAC	DRVSEX	WEIGHT W	STYLE S	PREPOST 1 P I	INJURY Ka	(I) 8C0
GM	MALE	LT 3000	2 DOUR	PRF 1 Pust 1	2 5	163 182
			4 DOUR	PRE 1 POST 1	5	100 80
		3K=3599	5 DOOK	PRE I PUST I	23	608 1977
			4 DOUR	PRE 1 Pust 1	12	533 706
		3600 +	5 NUOK	PRE 1 PUST I	 ? 31	141 2020
			4 DOUR	PHE 1 POST 1	1 5 1 39	392 2353
an Ballanda, marki ang pang Bala	FEMALE	LT 3000	5 DOOK	PRE 1 PUST 1	L 1 L 7	44 88
			4 DOUR	PRE 1 Pust 1	1 1 1 1 4	79 91
		3X×3599	5 DDOK	PRE PUST	I	209 1159
			4 0069	PRE PUST	1 I 5 I 13	319 584
		3600 +	5 DDAH	РКЕ Р08т	t 0 f 18 f	62 1194
			4 DOUR	PHF PUST	2 1 25 1 25	189 1553

HANUFAC	DRVSEX X	WEIGHT W	STYLE S	PREPOST 1 P	I INJURY I KA	(1) 800
FURD	MALE	L1 3000	2 DOUR	PRE I Post I	13 24	586 1000
			4 DOOR	PRE I Pust 1	7 1	202 144
		3K-3599	2 00UR	PRE 1 PUST 1	14 10	432 510
			4 DOUR	PRE 1 PUST 1	8 5	312 298
		3600 +	2 000R	PRE I POST I	5	127 595
			4 UOUR	PRE I POST I	4 22	190 877
	FEMALE	LT 3000	2 DOOR	PRE I Pust I	96 6	290 795
			4 DOOR	PRE 1 Pust 1	6 8	136 145
		3K=3599	2 DOUR	PRE 1 PUST 1	9 11	185 326
			4 DOUR	PRE 1 Pust 1	5	171 192
		3600 +	5 DOPK	PRE I Post I	3 10	56 357
			4 DOUR	PRE I Pust I	2 16	95 503
			, 10 au 10 an 10 an 10 an 10		, ⁴	14 ann 491 495 491 ann 495 495 48

MANUFAC M	DRVSEX X	WEIGHT W	STYLE S	PREPOST P	I INJURY I KA	(I) 8C0
OTHER ,	MALE	LT 3000	5 0004	PRE I Pust I	0 12	61 434
			4 00UR	PRE I Pust I	10	54 118
		3K#3599	5 DODB	PKE I PUST I	14	133 569
			4 DOUR	PRE I Pust I	5	134 249
		3600 +	я ралк	PRE I Pusy I	5	43 186
			4 DODH	т 3349 т 1819 Ганманисти	0 12 ********	94 571
nente sunsit (stange til den so	FEMALE	L.7 3000	S DOUR	PRE I Pust I	1	33 326
			4 DOAK	PRE I Pust I	दे उ	41 82
		3K=3599	5 0004	PKE I PUST I	риционала 3 6	72 265
			4 DOUH	РКЕ I Ривт I	17	117 174
		3600 +	5 DOOR	PHE I PUST I	2 1	27 117
			4 DODR	PRE I Post i	5 5	68 316
THE	TOTAL FI	REQUENCY I	5 282	36		

TABLE A-19 (Concluded)

X

FULLY CROSS CLASSIFIED TABLE OF NORTH CAROLINA 1975 RAW DATA FOR KAB/CO INJURY DICHOTOMY

MAN	VUFAC DRVSE	X WEIGHT	STYLE	PREPOST I P I	L INJURY KAB	(I) CU	
GM	MALE	LT 3000	5 DOOK	PRE I PUST I	21	144 161	<u></u>
			4 DOUR	PRF I Pust I	1 1 13 1 9	92 73	
		3K=3599	2 DOOR	PRE I POST I	71 130	560 1882	
			4 DOUR	PRE I Pust I	46 [51	499 669	
I		3600 +	2 DOUR	PRE I P087 I	18 19 19	130 1932	
			4 DOOR	I PRE I Post I	: / 32 / 144	365 2244	
	FEMAL	E LT 3000	5 000k	PRE I PUST I	8	37 78	
			4 DOUR	PRE I Pust I	7 L 11	73 84	
		3K-3549	5 000B	PRE I POST I	26 110	187 1074	
			4 DOUR	I PRE I Pust I	28 1 55	296 542	
		3600 +	2 DDUR	PRE I PUST I	3	59 1137	
			4 DOUR	PRE I Pust I	19 121	175 1457	

2

TABLE A-20 (Continued)

a and a subscription of the second sectors and

<u>چ</u>۔

MANUFAC M	DRVSEX	WEIGHT W	ST'	YLE S	РКЕРОЗҮ I Р I	INJUHY KAB	(1) CO
FURD	MALE	LT 3000	2	DOOR	PRE 1 PUST 1	59 92	540 932
			4	DONK	PRE 1 Pust 1	17 7	<u>192</u> 138
		3K=3599	2	DOUR	PRF 1 PUST 1	40 38	406 482
			4	DOUR	PRE 1 PUST 1	27 25	293 278
		3600 +	5	DOUR	(#8#8#8#8#8# 1 986 1 7809		122 567
			4	DOUR	r PRE 1 POST 1	21 65	173 834
internet, and it this are to be	FENALE	LT 3000	2	DUUR	PRE 1 PUST 1	35 107	261 714
			4	ODOR	1 PRE 1 PU81 1	19 30	123 123
		3K=3599	2	DOUR	PRE I PUST 1	85 85 85	86988888884 165 309
			4	DOUR	РКЕ 1 Рият 1	15 18	161 179
		3600 +	2	0008	PU91	8 8 48	• 51 319
			4	DOOR	1 Phe 1 Post 1	10 54	87 465
			(J) 68 (B)		លេចសេសសេស (ស្រុសសេស)	, an wa go da da ka ka ka ka ka	សមោ ^ស ដេសសាដ
MANUFAC N	DRVSEX X	WEIGHT W	STYLE S	PREPOST I P I	INJURY Kab	(1) CO	
--------------	-------------	-------------	------------	----------------------	---------------	--------------	
OTHER	HALE	LT 3000	2 000R	PRE I Pust I	4 40	57 406	
			4 DOUR	PRE I Pust I	9 12	46 106	
		3K=3599	2 DOOR	PRE I PUST I	10 42	125 541	
			4 DOUR	PKE I Pust I	7 17	129 238	
		3600 +	S DOOR	PRE I Pust I	4 20	4 1 1 7 1	
			4 DOUR	PRE I PUST I	9 36	85 547	
	FEMALE	LT 3000	8 0008	PRE I PUST I	3 49	31 286	
			4 DOUR	I PRE I Pust I	7 9	36 76	
		3K~3599	S DOOR	PRE 1 PUST I	12 29	63 242	
			4 0008	PRE I Pust I	10 26	108 155	
		3600 +	2 DOR	PRE I Pust I	6 4	23 114	
			4 UDUR	PRE I Pust 1	s 15	66 297	
THE	TOTAL FI	REQUENCY J	18 545	36			

TABLE A-21

FULLY CROSS CLASSIFIED TABLE FOR NORTH CAROLINA 1975 RAW DATA FOR KABC/O INJURY DICHOTOMY

MANUFAC	DRV8EX X	WEIGHT	STYLE S	PREPOST 1 P I	INJUNY Kabc	(1) 0
GM	MALE	LT 3000	5 DOOK	PRE I PUST I	27 36	138 151
			4 000R	PRE I POST I	15	90 70
		3K#3599	S DOOR	PRE I POST I	201 223	528 1789
			4 DOUR	PRE I PUST I	77 86	468 634
		3600 +	5 DOAK	PRE I PUST I		126 1815
			4 000R	I PRE I PUST I	58 249	988 9815 199
Lindow water international and the constant of the off	FEMALE	LT 3000	5 NONK	PRE I PUST I	15 27	30 68
			4 DOUR	PRE I Pust 1	61 55	64 73
		36=3599	5 DUOR	PRE I PUST I	51 220	162 964
			4 DOUR	PRE I Post t	66 121	258 476
		3600 +	5 0008	PRE I Pust I		54 1006
			4 DOUR	PRE I Pust I	85 257	166 1321
			کست دیدو دوکار وی معمد دید کتا میر	. ಈ 60 CF 40 EF 	.) 부 별 나 의 수 추 수 두 i	સ્કુફ્રાઇલ છે. જે જે છે જે છે.

MANUFAC M	DRV8EX X	WEIGHT W	STY	LE S	PREPOST 1 P 1	INJUNY Kabc	(1)
FURD	MALE	1.7 3000	2 (DOUR	PRE I POST I	96 154	503 870
			4 (рорн	PRF 1 PUST 1	30 16	179 129
		3K-3599	2 (лоцк	PRE I POST I	58 70	388 450
			4 1	RUCIO	PRE 1 POST 1	44 38	276 265
		3600 +	2 (DOOR	PRE 1 Post 1	20 77	112 523
			4 (900R	PRE 1 PD97 1	31 124	163 775
	FEMALE	LT 3000	2	DOUR	PHE 1 PUST 1	63 211	233 610
			4 (DOOR	PRE 1 POST 1	34 48	108 105
		3K = 3999	2	DOUR	PRE 1 PUST 1	54	140 276
			4 4	DOUR	PRE 1 PUST 1	1 38 1 43	138 154
		3600 +	2	DOUR	PRE PUST	14 14	49 281
			4	DITIOR	PRE Pust	16 102	81 417

MANUFAC M	DRVBEX X	WEIGHT	97YLE 9	РНЕРОЗТ 1 р I	INJUHY Kabc	(1) 0
OTHER	MALE	LT 3000	2 000R	PRE I PUST J	10 10 10 10 10	1852 1852 1852
			4 DOUR	r Pre s Post s	[[13 [19	4 Z 9 S
		3K=3599	2 DOUR	PRE 1 PUST 1	1 14 1 77	• • • • • • • • • • • • • • • • • • •
			4 DOUR	1 Pre 1 Pust 1	l I 16 I 33	120
		3600 +	5 DOOK	PRE PUST !	[шылаанынни [6 [29	каларанара 39 167
			4 000R	PRE 1 Pust 1	[I 14 I 66	80 517
autoritikua attiikistäänä	FFMAI F	LT 3000	2 0008	рдк амаата а амаата а а а	(@#&&@##&### [</td><td></td></tr><tr><td></td><td></td><td></td><td></td><td>POST J</td><td>i 83</td><td>252</td></tr><tr><td></td><td></td><td></td><td>4 DOUR</td><td>PRE 1 P091 1</td><td>[11 [17</td><td>38 68</td></tr><tr><td></td><td></td><td>3K=3599</td><td>9 DUNK</td><td>PRE 1 Pust 1</td><td>[əəəəəəəəəə [21 [50</td><td>*======== 5(22!</td></tr><tr><td></td><td></td><td></td><td>4 UOUR</td><td>1 Pre 1 Pust 1</td><td>1 20 1 33</td><td>98 140</td></tr><tr><td></td><td></td><td>3600 +</td><td>5 DOOK</td><td>PRE 1 POST</td><td>[################ 1 10 1 15</td><td>1° 10: 10:</td></tr><tr><td></td><td></td><td></td><td>4 DOUR</td><td>PRE Post</td><td>I I 12 I 49</td><td>50 261</td></tr><tr><td>7 11</td><td>E TOTAL F</td><td>REQUENCY 1</td><td>18 245</td><td>36</td><td>ana ta /td><td></td></tr></tbody></table>	

TABLE A-21 (Concluded)

APPENDIX B

COMPLETE MARGINAL ASSOCIATIONS OF MODEL EFFECTS FOR STATE MASS ACCIDENT DATA

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF MODEL EFFECTS FOR INJURY DICHOTOMY KA vs BCO TEXAS DRIVERS-ONLY SAMPLE

	Texa	s 1972		Texa	s 1973		Texas 1974		
Effect	LR x ²	df	Prob.	LR x ²	df	Prob.	LR X ²	df	Prob.
Injury x Prepost	184.75	1	0.000	151.73	1	0.000	138.18	2	0.000
Injury x Style	1.15	1	0.283	0.73	1	0.394	0.92	2	0.337
Injury x Accident Type	1,871.17	2	0.000	-	-	-	1,474.52	2	0.000
Injury x Driver Age	15.19	2	0.000	4.85	2	0.089	-	-	-
Injury x City Size	1,189.18	2	0.000	1,296.82	2	0.000	844.14	2	0.000
Injury x Road Type	-	-	-	491.11	2	0.000	-	-	-
Injury x TAD	-	-	-		-	-	7,235.74	2	0.000
Prepost x Style	4,860.68	1	0.000	4,878.59	1	0.000	4,569.23	1	0.000
Prepost x Accident Type	992.45	2	0.000	-	-	-	663.02	2	0.000
Prepost x Driver Age	730.43	2	0.000	588.60	2	0.000	-	-	-
Prepost x City Size	139.09	2	0.000	136.50	2	0.000	135.27	2	0.000
Prepost x Road Type	-	-	-	307.74	2	0.000	-	-	-
Prepost x TAD	-	-	-	-	-	-	30.86	2	0.000
Style x Accident Type	126.33	2	0.000	_	-	-	118.53	2	0.000
Style x Driver Age	11,095.57	2	0.000	11,179.07	2	0.000	-	-	-
Style x City Size	570.90	2	0.000	604.32	2	0.000	558.01	2	0.000
Style x Road Type	-	-	-	0.79	2	0.673	-	-	-
Style x TAD	-	-	-	-	-	-	121.12	2	0.000
Accident Type x Driver Age	643.54	4	0.000	-	-	-	-	-	-
Accident Type x City Size	832.77	4	0.000	984.43	4	0.000	-	-	-
Accident Type x TAD	-	-	-	-	-	-	6,231.50	4	0.000
Driver Age x City Size	823.72	4	0.000	-	-	-	-	-	-
City Size x Road Type	-	-	-	24,816.45	4	0.000	-	-	-
City Size x Accident Type	-	-	-	-	-	-	734.40	4	0.000
City Size x TAD	-	-	-	-	-	-	3,325.20	4	0.000
Road Type x Driver Age	-	-	-	177.23	4	0.000	-	-	-
Injury x Prepost x Style	0.78	1	0.377	0.81*	1	0.369	0.21*	1	0.647
Injury x Prepost x Accident Type	2.32	2	0.313	-	-	-	-	~	-
Injury x Prepost x City Size	25.76	2	0.000	26.62*	2	0.000	-	-	-
Injury x Style x Accident Type	4.96	2	0.084	-	-	-	-	-	-
Injury x Style x City Size	1.79	2	0.408	3.31	2	0.191	-	-	-
Injury x Style x Driver Age	~	-	-	3.71	2	0.156	-	-	-
Injury x Accident Type x City Size	270.45	4	0.000	-	-	-	-	-	-
Injury x Accident Type x TAD	-	-	-	-	-	-	167.86*	4	0.000
Injury x Driver Age x City Size	16.67*	• 4	0.002	12.68	4	0,013	-	-	-
Injury x City Size x Road Type	5	-	-	148.76*	4	0.000	-	-	-

TABLE B-1 (C	ontinued)
--------------	-----------

an 1977 - 1988 - 1978 a un manager des Bandes a Saide Main, Falaman, Falaman, Falaman, Falaman, Falaman, Falam Marine Marine	Texa	s 1972	ddon ei freisidd fri - Lifei -	Texas	\$ 1973	പോഷി പ്രപ്	Texa		
LTTECT	LR x ²	df	Prob.	$1.8 \chi^2$	df	Prob.	LR X ²	d۴	Prob.
Injury x City Size x Accident Type	-7	-	~				205.77*	4	0.000
Injury x City Size x TAD			-	4199 99, 291 - 41 AL 2 POLO 1 2214	-	-	104./1*	4	0.000
Injury x Road Type x Driver Age		-		21.35*	4	0.000			
Prepost x Style x Accident Type	65.34	2	0.000				14.33	2	0.001
Prepost x Style x Driver Age	1043.16	2	0.000	743.34*	2	0.000	ni 		-
Prepost x Style x City Size	12.39	2	0.002	16.05*	2	0.000	5.32*	2	0.070
Prepost x Style x TAD		-	-	r			4.69	2	0.096
Prepost x Accident Type x Driver Age	29.49	4	0.000		**			,	
Prepost x Accident Type x City Size	36.17	4	0.000	ar Brishnan - T- Laure - 2011 Siljer Ve	en en en en en en en en en en en en en e				,e
Prepost x Accident Type x TAD		-		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19			41.90	4	0.000
Prepost x City Size x Road Type	nan an		u.	27.54*	A	0,000	te		~
Prepost x City Size x Driver Age		-		3.44*	1	0.487			
Prepost x City Size x Accident Type					-	**	57.92*	4	0.000
Prepost x City Size x TAD		-	=	1997 - 1997 -		······································	38.10*	4	0.000
Prepost x Road Type x Driver Age				15.17*	4	0.004	*	•	-
Style x Accident Type x Driver Age	27.14	4	0.000				-		**************************************
Style x Accident Type x City Size	13.31	4.	0.010	na na paparéti aya bahanaya b	-1		n stantiner strans un		~
Style x Accident Type x TAD		- F elizense - Conzella - La	le le	n galani an la na managana na ma			4.05	4	0,400
Style x Driver Age x City Size	61.38*	4	0.000	89.16	4	0.000			-
Style x City Size x Road Type		-		18.95	4	0.001	un an	~	~
Style x City Size x Accident Lype	4	-	-	~	-		16.86*	4	0.002
Style x Road Type x Driver Age	-		-	59.57	4	0.000		-	
Accident Type x Driver Age x City Size	17.23*	8	0.028	-3				-	
City Size x Road Type x Driver Age				84.74	3	0.000	4		-
City Size x Accident Type x TAD				for a second second second second second second second second second second second second second second second		-	510.98*	8	0.000
Injury x Prepost x Style x Accident Type	0.56	2	0.754			-	en en en en en en en en en en en en en e		-
Injury x Prepost x Style x City Size	4.60	2	0.100	Na Na			-	-	-
Injury x Prepost x Acc Type x City Size	9.48	4	0.050		-	-		-	-
Injury x Style x Acc Type x City Size	17.05	4	0,002	_	-	-	-	-	-
Injury x Style x City Size x Driver Age	~			12.33*	4	0.015			_
Prepost x Style x Acc Type x Driver Age	11.07*	4	0.026	-		-			
Prepost x Style x Acc Type x City Size	6,88	4	0.142	-	-	17	-		
Prepost x Style x Acc Type x TAD	~	-		_		-	10.60*	4	0.032
Style x City Size x Road Type x Driver Age		<u> </u>		18,15*	8	0.020	10 10	G.	-
Inj x Prepost x Style x Acc Type x City Size	17.50	1	0.021	an Tara da Talanta da Angeleta		14 14	ne Bekarnistiki - sidan - sili	** i/w7#128katki/1 25i	ر. ۲۰ باریکی میکنونی می
SUMMARY OF MODEL	112.35	98	0.152	115.24	106	0.2537	141.42	122	0.1103

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF MODEL EFFECTS FOR INJURY DICHOTOMY KAB vs CO TEXAS DRIVERS-ONLY SAMPLE

FFF	Texa	s 1972		Texas 1973			Texas 1974		
LTTECT	LR X ²	df	Prob.	LR χ^2	df	Prob.	LR χ^2	df	Prob.
Injury x Prepost	370.72	1	0.000	378.46	1	0.000	347.04	1	0.000
Injury x Style	2.19	1	0.139	8.16	1	0.004	8.30	1	0.004
Injury x Accident Type	4,630.34	2	0.000	-	-	-	4,992.58	2	0.000
Injury x Driver Age	2.16	2	0.339	3.58	2	0.167	-	-	-
Injury x City Size	1,459.82	2	0.000	1,370.29	2	0.000	1,017.14	2	0.000
Injury x Road Type	-	-	-	564.33	2	0.000	-	-	- [
Injury x TAD	-	-	-	-	-	-	19,452.24	2	0.000
Prepost x Style	4,860.68	1	0.000	4,878.59	1	0.000	4,569.23	1	0.000
Prepost x Accident Type	992.45	2	0.000	-	-	-	663.02	2	0.000
Prepost x Driver Age	730.43	2	0.000	588.60	2	0.000	-	-	-
Prepost x City Size	139.09	2	0.000	136.50	2	0.000	135.27	2	0.000
Prepost x Road Type	-	-	-	307.74	2	0.000		-	-
Prepost x TAD	-	-	-	-	-	-	30.86	2	0.000
Style x Accident Type	126.33	2	0.000	-	-	-	118.53	2	0.000
Style x Driver Age	11,095.57	2	0.000	11,179.07	2	0.000	-	-	-
Style x City Size	570.90	2	0.000	604.32	2	0.000	558.01	2	0.000
Style x Road Type	-	-	-	0.78	2	0.676	~	-	-
Style x TAD	-	-	-	-	-	-	121.12	2	0.000
Accident Type x Driver Age	643.54	4	0.000	-	-	-	-	-	-
Accident Type x City Size	832.77	4	0.000	-	-	-	-	-	-
Accident Type x TAD	-	-	-	-	-	-	6,231.50	4	0.000
Driver Age x City Size	823.66	4	0.000	984.43	4	0.000	-	-	-
City Size x Road Type	-	-	-	24,316.45	4	0.000	-	-	-
City Size x Accident Type	-	-	-	-	-	-	734.40	4	0.000
City Size x TAD	-	-	-	-	-	-	3,326.20	4	0.000
Road Type x Driver Age	-	-	-	177.20	4	0.000	-	-	-
Accident Type x TAD	-	-	-	-	-	-	6,231.50	2	0.000

TABLE	B-2	(Continued)
-------	-----	-------------

na Ulan Antian Antian and Antian and Antian and Antian Antian Antian and Antian and Antian Antian Antian and An	Texa	s 1972	ويتحقق كالمراقعة تستعني المراجع	Texas	s 1973	12.50	Texas 1974		
Effect	$LR \chi^2$	df	Prob.	LR X ²	df	Prob.	$LR \chi^2$	df	Prob.
Injury x Prepost x Style	0.68*	1	0.408	0.04	۱	0.839	14.58*	1	0.000
Injury x Prepost x Accident Type	6.99	2	0.030			-	26.12*	2	0.000
Injury x Prepost x Driver Age	13.50*	2	0.001	21.55	?	0.000			~
Injury x Prepost x City Size	39.86	2	0.000	37.95	2	0.000			
Injury x Prepost x Road Type				10.95	2	0.004	2	-	
Injury x Style x Accident Type	12.90	2	0.002	1		-	handiga ya aming ang din sa tang din sa tang din yang din sa tang din sa tang din sa tang din sa tang din sa ta Kan		
Injury x Style x City Size	8.17	2	0.017		-	-	1.10*	2	0.578
Injury x Style x Driver Age				14.41	2	0.001		~	-
Injury x Accident Type x Driver Age	12.04	4	0.017	-		-		-	-
Injury x Accident Type x City Size	504.00	4	0.000	and a state of the second second second second second second second second second second second second second s		-			~
Injury x Accident Type x TAD	-	-	-	-		-	242.48*	4	0.000
Injury x Driver Age x City Size	31.68	4	0.000	16.07	4	0.003	1997 - 1999 -		~
Injury x City Size x Road Type	-+	-	-	i 178.00*	4	0.000	na na stantina ang sa sa sa sa sa sa sa sa sa sa sa sa sa		-
lnjury x City Size x Accident Type		1 -	-	for a state of the second second second second second second second second second second second second second s Notes		-	353.03*	4	0.000
Injury x City Size x TAD			-				54.50*	4	0.000
Injury x Road Type x Driver Age		-		26.35*	4	0.000	and a state to be a second to be a second to be a second to be a second to be a second to be a second to be a s	-	
Prepost x Style x Accident Type	65.34	2	0.000	-	-	-	14.33	2	0.001
Prepost x Style x Driver Age	1,043.15	2	0.000	743.34	2	0.000			-
Prepost x Style x City Size	12.39*	2	0.002	16.07*	2	0.000	5,32*	2	0.070
Prepost x Style x TAD		-	-		-	-	4.69	5	0.096
Prepost x Accident Type x Driver Age	29.49	4	0.000	-	-	-	-	-	-
Prepost x Accident Type x City Size	36.17	4	0.000	-	-	-	~	-	-
Prepost x Accident Type x TAD	-	-	-		-	-	41.90	4	0.000
Prepost x City Size x Road Type	-	-	-	27.52*	4	0.000	5- 5-	-	-
Prepost x City Size x Driver Age		-	-	3.48	4	0.482	an and the second second second second second second second second second second second second second second s	-	-
Prepost x Road Type x Driver Age	-	-	-	15.17*	4	0.004		-	-
Prepost x City Size x Accident Type	ب ب	-	-		-		57.92	4	0.000
Prepost x City Size x TAD	-	-	-			-	38.10	4	0.000

TABLE B-2 (Concluded)

55	Texa	Texas 1972		Texa	s 1973		Texas 1974			
LTTECL	LR χ²	df	Prob.	LR x ²	df	Prob.	LR X ²	df	Prob.	
Style x Accident Type x Driver Age	27.14	4	0.000	-	-	-	, 	-	-	
Style x Accident Type x City Size	13.31	4	0.001	-	-	-	**	-	-	
Style x Accident Type x TAD	-	-	-	-	-	-	4.05	4	0.400	
Style x City Size x Road Type	-	-	-	18.95	4	0.001		-	-	
Style x City Size x Driver Age		-	-	89.16	4	0.000	*	-	-	
Style x City Size x Accident Type		-	-	-	-	-	16.86*	4	0.002	
Style x Road Type x Driver Age	-	-	-	59.55	4	0.000		-	-	
Accident Type x Driver Age x City Size	17.20	8	0.028	-	-	-		-	-	
City Size x Road Type x Driver Age		-	-	84.74	8	0.000	-	-	-	
City Size x Accident Type x TAD	-	-	-	-	-	-	510.98*	8	0.000	
Injury x Prepost x Accident Type x City Size	9.94*	4	0.041	-	-	-	-	-	-	
Injury x Prepost x Style x Driver Age	-	-	-	14.32*	2	0.001	-	-	-	
Injury x Prepost x City Size x Driver Age	-	-	-	10.34*	4	0.035	-	-	-	
Injury x Style x Accident Type x City Size	17.38*	4	0.002	-	-	-	-	-	-	
Inj. x Acc.Type x Driver Age x City Size	23.20*	8	0.003	-	-	-	-	-	-	
Prepost x Style x Accident Type x Dr. Age	11.07*	4	0.026	-	-	-	-	-	-	
Prepost x Style x Accident Type x TAD		-	-	-	-	-	10.60*	4	0.032	
Style x City Size x Road Type x Driver Age		-	-	18.15*	8	0.020	40	-	-	
SUMMARY OF MODEL	91.50	96	0.6108	118.89	104	0.1508	129.82	116	0.1794	

*Effect is specified directly in the model.

+

.

.

.

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF MODEL EFFECTS FOR INJURY DICHOTOMY KABC vs O TEXAS DRIVERS-ONLY SAMPLE

[filest	Texa	Texas 1972		Texa	s 1973		Texa	s 1974	1997年9月15日(1998年9月)) 1997年9月15日(1998年9月)
LITEGU	LR X ²	df	Prob.	LR χ^2	df	Prob.	LR x ²	df	Prob.
Injury x Prepost	320.73	I	0.000	284.91	T	0.000	230.17	1	0.000
Injury x Style	8.73	1	0.003	14.71	I	0.000	7.52	1	0.006
lnjury x Accident Type	4,522.61	2	0.000	~			4,831.43	2	0.000
Injury x Driver Age	6.62	2	0.037	0.27	2	0.872	-	-	-
Injury x City Size	1,286.50	2	0.000	1,184.21	2	0.000	944.74	2	0.000
Injury x Road Type	~	-	-	445.13	2	0.000	-	-	-
Injury x TAD	-	-	-		~	-	24,149.57	2	0.000
Prepost x Style	4,860.68	1	0.000	4,878.59	1	0.000	4,569,23	1	0.000
Prepost x Accident Type	992.45	2	0.000	-	-	-	663.02	2	0.000
Prepost x Driver Age	730.43	2	0.000	588.60	2	0.000	~	~	-
Prepost x City Size	139.09	2	0.000	136.50	2	0.000	135.27	2	0.000
Prepost x Road Type	-	-		307.74	2	0.000		~	
Prepost x TAD	-	-	-	~	-		30.86	2	0.000
Style x Accident Type	126.33	2	0.000	~	5		118.53	2	0.000
Style x Driver Age	11,095.57	2	0.000	11,179.07	2	0.000		~	-
Style x City Size	570.90	2	0.000	604.32	2.	0.000	558,01	2	0.000
Style x Road Type	-	-		0.78	2	0.676	-	~	-
Style x TAD	-	-	-		-	~	121.12	2	0.000
Accident Type x Driver Age	643.54	4	0.000	-	-	n.		a.	-
Accident Type x City Size	832.77	4	0.000	984.43	4	0.000	-	-	
Accident Type x TAD	-	-	-	-	+1		6,231.50	4	0.000
Driver Age x City Size	823.69	4	0.000		-			~	-
City Size x Road Type	-	-	-	24,816.45	4	0.000	-		-
City Size x Accident Type		-	-		6.	-	734.40	4	0.000
City Size x TAD			-			-	3,326.20	4	0.000

TABLE B-3 (Continued)

	Texas 1972		Texa	\$ 1973		Texas 1974			
Effect	LR X ²	df	Prob.	LR χ²	df	Prob.	LR χ²	df	Prob.
Injury x Prepost x Style	0.46*	1	0.496	0.26*	1	0.608	13.40*	1	0.000
Injury x Prepost x Accident Type	11.45	2	0.003	-		-	18.10	2	0.000
Injury x Prepost x Driver Age	19.15*	2	0.000	11.57	2	0.003	-	-	-
Injury x Prepost x City Size	25.97	2	0.000	32.54	2	0.000	13.05	2	0.002
Injury x Prepost x Road Type	-	-	-	8.53	2	0.014	-	-	-
Injury x Prepost x TAD	-	-	-	-	-	-	4.07	2	0.131
Injury x Style x Accident Type	10.82	2	0.004	~	-	-		-	· -
Injury x Style x Driver Age	15.30	2	0.000	17.17	2	0.000		-	-
Injury x Style x City Size	17.01	2	0.000	1.95	2	0.378		-	-
lnjury x Style x Road Type	-	-	-	2.23	2	0.327	-	-	-
Injury x Accident Type x City Size	378.95	4	0.000	······································	-	-	205.82	4	0.000
Injury x Driver Age x City Size	28.15	4	0.000	18.23	4	0.001	-	-	-
Injury x City Size x Road Type	-	-	-	184.11	4	0.000	-	-	-
Injury x City Size x TAD	-	-	-	-	-	-	39.63	4	0.000
Injury x Road Type x Driver Age	-	-	-	16.54	4	0.002	-	-	-
Prepost x Style x Accident Type	65.34	2	0.000	-	-	-	14.33	2	0.001
Prepost x Style x Driver Age	1,043.17	2	0.000	743.34*	2	0.000	-		-
Prepost x Style x City Size	12.39*	2	0.002	16.07*	2	0.000	5.32*	2	0.070
Prepost x Style x Road Type	-	-	-	0.42	2	0.812	-	-	-
Prepost x Style x TAD	· -	-	-	-	-	-	4.69	2	0.096
Prepost x Accident Type x Driver Age	29.49	4	0.000	-	-	-	-	-	-
Prepost x Accident Type x City Size	36.17	4	0.000	-	-	-	-	-	-
Prepost x Accident Type x TAD		-		-	-	-	41.90	4	0.000
Prepost x City Size x Road Type	-	-	-	27.52*	4	0.000	-	-	-
Prepost x City Size x Driver Age	-	-	-	3.48	4	0.480	-	-	-
Prepost x City Size x Accident Type	-	~	-	-	-	-	57.92	4	0.000
Prepost x City Size x TAD	-	-	-	-	-	-	38.10	4	0.000
Prepost x Road Type x Driver Age	-	-	-	15.17*	4	0.004	-	-	-
Style x Accident Type x Driver Age	27.14	4	0.000	-	-	-	-	-	-
Style x Accident Type x City Size	13.31	4	0.010	-	-	-	-	-	-
Style x Accident Type x TAD	-	-	-	-	-	-	4.05	4	0.400

 * Effect is specified directly in the model.

...

Effect		s 1972		Texas	3 1973		Texas	s 1974	
LTTECL	LR χ ²	df	Prob.	$1.11 \chi^2$	df	Prob.	$LR \chi^2$	df	Prob.
Style x City Size x Road Type	n ministration interesting of	-		18.94	4	0.001	ст. 1994 ст. 1994 ст. 1994 ст. 1994 ст. 1994 ст. 1994 ст. 1994 ст. 1994 ст. 1994 ст. 1994 ст. 1994 ст. 1994 ст. 1994 ст. 1994		
Style x City Size x Driver Age	61;38	4	0.000	89.25	4	0.000	na - The and also "Also divide young the	1	· · · · · · · · · · · · · · · · · · ·
Ştyle x Road Type x Driver Age		-	5	59.55	4	0.000	ni	han an an an Anna An Anna An An Anna An An An An An An An An An An An An An	-
Accident Type x Driver Age x City Size	17.25*	8	0.028	84.74	8	0.000	-	-	-
City Size x Road Type x Driver Age	~		-		e7	u	**		2.8
City Size x Accident Type x TAD			-	·····			510.98	8	0.000
Injury x Prepost x Accident Type x City Size	10.13*	4	0.038	-		-	6.91	4	0.141
Injury x Prepost x City Size x Driver Age		~	-	11.68*	4	0.020	-		
Injury x Prepost x City Size x TAD		-	~		••	-	6.31	4	0.177
Injury x Prepost x Accident Type x TAD		-	-	-	ng	-	2.00	4	0.736
Injury x Style x Accident Type x City Size	12.66*	4	0.013	·			n daama aa maaya yaa yaada dagaa ah kaasaa daa		
Injury x Style x Driver Age x City Size	10.97*	4	0.027	2.45	4	0.654			
Injury x Style x City Size x Road Type	***	-	~	5.87	4	0.209		-	
Injury x Style x Road Type x Driver Age	د. در ایمون که موج میری میرون در مر	-	-	0.62	4	0.960		-	-
Injury x City Size x Road Type x Driver Age	***		-	11.77	8	0.162		-	- 1
Injury x City Size x Accident Type x TAD		-	-			-	10.05	8	0.262
Prepost x Style x Accident Type x Driver Age	11.05*	4	0.026					-	-
Prepost x Style x Accident Type x TAD	مان بوان المان br>المان		-		-		10.60*	4	0.032
Prepost x City Size x Accident Type x TAD	δα το δια το πολογιστικό μαζα ματαγό ματαγό ματαγό ματαγό ματαγό ματαγό ματαγό ματαγό ματαγό ματαγό ματαγό ματα Να		-		"e		7.20	8	0.515
Style x City Size x Road Type x Driver Age			-	18.15	8	0.020	47	~	-
Inj x Style x City Size x Rd Type x Dr Age	······································		-	17.13*	8	0.029		~	
Inj x Prepost x City Size x Acc Type x TAD		-	~	6		-	17.95*	8	0.022
SUMMARY OF MODEL	93.47	102	0.7149	82.05	74	0.2440	95.46	80	0.1144

 $^{\ast}\text{Effect}$ is specified directly in the model.

B--8

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF MODEL EFFECTS FOR THE THREE INJURY DICHOTOMIES NEW YORK 1974 DRIVERS-ONLY SAMPLE

	KA vs BCO			КАВ	vs C	0	KABC vs O			
LTTECT	$LR \chi^2$	df	Prob.	LR x ²	df	Prob.	LR x ²	df	Prob.	
Injury x Prepost	95.59	1	0.000	209.79	1	0.000	137.46	1	0.000	
Injury x Style	23.85	.1	0.000	47.95	1	0.000	55.32	٦	0.000	
Injury x Rd C1	123.51*	2	0.000	274.18	2	0.000	159.54	2	0.000	
Injury x Age	57.11*	2	0.000	162.51	2	0.000	95.39*	2	0.000	
Injury x Mfg	17.26	2	0.000	70.39	2	0.000	57.36	2	0.000	
Prepost x Style	879.34	1	0.000	879.34	1	0.000	885.18	1	0.000	
Prepost x Rd Cl	56.98	2	0.000	56.98	2	0.000	58.18	2	0.000	
Prepost x Age	260.75	2	0.000	260.75	2	0.000	265.65	2	0.000	
Prepost x Weight	49.69	2	0.000	49.69	2	0.000	50.80	2	0.000	
Style x Rd Cl	195.16	2	0.000	195.16	2	0.000	198.05	2	0.000	
Style x Age	1579,48	2	0.000	1579.84	2	0.000	1582.21	2	0.000	
Style x Mfg •	333.28	2	0.000	333.28	2	0.000	333.61	2	0.000	
Rd Cl x Age	635.39	4	0.000	635.39	4	0.000	638.11	4	0.000	
Rd Cl x Mfg	144.86	4	0.000	144.86	4	0.000	144.14	4	0.000	
Age x Mfg	113.69	4	0.000	113.69	4	0.000	115.88	4	0.000	
Injury x Prepost x Style	6.64*	1	0.010	9.99*	1	0.002	5.92*	1.	0.015	
Injury x Prepost x Rd Cl	-	-	-	-	~	-	9.68*	2	0.008	
Injury x Prepost x Mfg	7.67*	2	0.022	15.12*	2	0.001	10.31*	2	0.006	
Injury x Style x Rd Cl	-	-	-	8.67*	2	0.013	-	-	-	
Injury x Style x Age	-	-	-	10.40*	2	0.006	-	-	-	
Injury x Rd Cl x Age	-	-	-	-	-	-	9.61*	4	0.048	
Prepost x Style x Rd Cl	2.45	2	0.029	2.45	2	0.294	2.42	2	0.298	
Prepost x Style x Age	114.30	2	0.000	114.30	2	0.000	113.75	2	0.000	
Prepost x Style x Mfg	111.25	2	0.000	111.25	2	0.000	112.87	2	0.000	
Prepost x Rd Cl x Age	17.80*	4	0.001	17.80*	4	0.001	17.05*	4	0.002	
Prepost x Rd Cl x Mfg	9.26	4	0.055	9.26	4	0.055	9.14	4	0.058	
Prepost x Age x Mfg	12.29	4	0.015	12.29	4	0.015	12.87	4	0.012	
Style x Rd Cl x Age	23.69*	4	0.000	23.69*	4	0.000	23.49*	4	0.000	
Style x Rd Cl x Mfg	15.19	4	0.004	15.19	4	0.004	15.35	4	0.004	
Style x Age x Mfg	9.65	4	0.047	9.65	4	0.047	10.22	4	0.037	
Prepost x Style x Rd Cl x Mfg	13.00*	4	0.011	13.00*	4	0.011	13.33*	4	0.010	
Prepost x Style x Age x Mfg	13.70*	4	0.008	13.70*	4	0.008	13.85*	4	0.008	
SUMMARY OF MODEL	138.49	132	0.3321	133.98	128	0.3409	141.47	126	0.1637	

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF MODEL EFFECTS FOR THE INJURY DICHOTOMY KA vs BCO NORTH CAROLINA DRIVERS-ONLY SAMPLE

T <i>\$</i> faat	North C	arolir	na 1973	North Car	rolina	1974	North Carolina 1975			
Elitect	$LR \chi^2$	df	Prob.	$LR \chi^2$	df	Prob.	$LR \chi^2$	df	Prob.	
Injury x Prepost	11.54	1	0.001	10.34	1	0.001	6.07	1	0.018	
Injury x Style	0.98	1	0.322	1.04	1	0. 3 07	1.71	1	0.192	
Injury x Weight	17.34	2	0.000	44.87*	2	0.000	17.46*	2	0.000	
Injury x Est Speed	476.51	2	0.000	-	-	2	-		-	
Injury x Sex	-	-	-		-	-	4.00*	1	0.046	
Prepost x Style	71.20	1	0.000	117.65	1	0.000	93.19	١	0.000	
Prepost x Weight	1020.65	2	0.000	1272.48	2	0.000	1646.50	2	0.000	
Prepost x Mfg	711.23	2	0.000	535.10	2	0.000	566.95	2	0.000	
Prepost x Est Speed	21.13	2	0.000	n.	-	-	~		-	
Prepost x Sex	-	-	-	a	-		66.08	1	0.000	
Style x Weight	2757.12	2	0.000	2493.78	2	0,000	2304.72	2	0.000	
Style x Mfg	217.36	2	0.000	186.11	2	0.000	185.00	2	0.000	
Style x Est Speed	88.64	2	0.000		-	-		*	÷	
Style x Sex	-	-	-			-	28.93	1	0.000	
Weight x Mfg	3684.54	4	0.000	4000.89	4	0.000	4405.18	4	0.000	
Weight x Est Speed	28.88	4	0.000	-		e4	-	~		
Weight x Sex		-	<i>in</i>	42	-	**	27.74	2	0.000	
Mfg x Est Speed	20.34*	4	0.000	-	-	-	-	-	-	
Sex x Mfg	~	-			-	-	1.73	2	0.421	
Injury x Prepost x Style	5.79*	1	0.016	1.93*	1	0.165	1.75*	1	0.187	
Injury x Weight x Est Speed	9.99*	4	0.041	-	-	-	-	-	-	
Prepost x Style x Weight	82.32	2	0.000	72.51	2	0.000	19.51	2	0.000	
Prepost x Style x Mfg	25.94	2	0.000	81.27	2	0.000	46.57	2	0.000	
Prepost x Style x Est Speed	6.00*	2	0.050			-	-			
Prepost x Weight x Mfg	201.70	4	0.000	214.94	4	0.000	290.84	4	0.000	
Style x Weight x Mfg	123.11	4	0.000	266.54	4	0.000	275.29	4	0.000	
Prepost x Style x Sex	-	-	-	n a an an an an an an an an an an an an	-	-	19.96*	1	0.000	
Prepost x Weight x Sex	-	-	-	17 17	-		6.75*	2	0.044	
Prepost x Sex x Mfg		~	-		-	ni	31.07*	2	0.000	
Style x Weight x Sex	-	-		~			20.16	2	0.000	
Style x Sex x Mfg	-	-	-		-		17.03	2	0.000	
Weight x Sex x Mfg	-	-		an an an an an an an an an an an an an a	-	-	10.06	4	0.039	
Prepost x Style x Weight x Mfg	75.99*	4	0.000	88,20*	4	0.000	78.61*	4	0.000	
Style x Weight x Sex x Mfg	-	-	-	#*	-	~	20.74*	4	0.000	
SUMMARY OF MODEL	162.56	152	0.264	34,49	30	0.262	88.83	77	0.168	

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF MODEL EFFECTS FOR THE INJURY DICHOTOMY KAB vs CO NORTH CAROLINA DRIVERS-ONLY SAMPLE

Effect	North Ca	rolir	a 1973	North Ca	arolina	1974	North C	arolir	ia 1975
	LR x ²	df	Prob.	LR x ²	df	Prob.	$LR \chi^2$	df	Prob.
Injury x Prepost	30.98	1	0.000	32.57	1	0.000	25.71	1	0.000
Injury x Style	11.27	1	0.001	22.17	1	0.000	4.17	1	0.043
Injury x Weight	69.27	2	0.000	119.35	2	0.000	79.53]	0.000
Injury x Mfg	-	-	-	18.36	2	0.000	26.00	2	0.000
Injury x Est Speed	898.49	2	0.000	-	-	-	-	-	-
Injury x Sex	-	-	-	-	-	-	45.97	1	0.000
Prepost x Style	71.18	1	0.000	117.65	1	0.000	93.19	1	0.000
Prepost x Weight	1020.65	2	0.000	1272.48	2	0.000	1646.52	2	0.000
Prepost x Mfg	711.25	2	0.000	535.10	2	0.000	566.97	2	0.000
Prepost x Est Speed	21.13	2	0.000	-	-	-	-	-	-
Prepost x Sex	-	-	-	-	-	-	66.08	1	0.000
Style x Weight	2757.17	2	0.000	2493.78	2	0,000	2304.74	2	0.000
Style x Mfg	217.37	2	0.000	186.11	2	0.000	185.02	2	0.000
Style x Est Speed	88.65*	2	0.000	-	-	-	-	-	-
Style x Sex	-	-	-	-	-	-	28.92	1	0.000
Weight x Mfg	3684.57	4	0.000	4000.89	4	0.000	4405.21	4	0.000
Weight x Est Speed	28.88	4	0.000	-	-	-	-	-	-
Weight x Sex	-	-	-	-	-	-	27.73	2	0.000
Mfg x Est Speed	20.32*	4	0.000	-	-	-	-	-	-
Sex x Mfg	-	-	-	-	-	-	1.73	2	0.421
Injury x Prepost x Style	0.47	1	0.494	6.87*	1	0.009	2.32*	1	0.127
Injury x Prepost x Weight	1.05	2	0.591	-	-	-	8.81*	2	0.012
Injury x Prepost x Est Speed	1.72	2	0.423	-	-	-	-	-	-
Injury x Weight x Est Speed	2.69	4	0.611	-	-	-	-	-	-
Injury x Weight x Mfg	-	-	-	10.65*	4	0.031	13.58	4	0.009
Injury x Weight x Sex	-	-	-	-	-	-	2.51	2	0.285
Injury x Sex x Mfg	-	-	-	-	-	-	7.93	2	0.019
Prepost x Style x Weight	82.30	2	0.000	72.51	2	0.000	19.50	Ż	0.000
Prepost x Style x Mfg	25.94	2	0.000	81.27	2	0.000	46.58	2	0.000
Prepost x Weight x Mfg	201.71	4	0.000	214.94	4	0.000	290.85	4	0.000
Prepost x Weight x Est Speed	4.73	4	0.316	-	-	-	-	-	-
Prepost x Style x Sex	-	-	-	-	-	-	19.96*	1	0.000
Prepost x Sex x Mfg	-	-	-	-	-	-	31.06*	2	0.000

[ffact	North Ca	rolina	a 1973	North Ca	rolina	1974	North Carolina 1975			
	$LR \chi^2$	df	Prob.	$LR \chi^2$	df	Prob.	LR χ^2	df	Prob.	
Style x Weight x Mfg	123.11	4	0.000	266.64	4	0.000	275.27	4	0.000	
Style x Weight x Sex	-	-	-	-	-	-	20.16	2	0.000	
Style x Sex x Mfg		-	-	*	-	~	17.05	2	0.000	
Weight x Sex x Mfg	-	-	-		-	-	10.06	4	0.039	
Injury x Prepost X Wt x Est Speed	11.33*	4	0.023	a	-	-				
Prepost x Style x Weight x Mfg	75.98*	4	0.000	88.20*	4	0.000	78.60*	4	0.000	
Injury x Weight x Sex x Mfg	-		-		-	-	12.34*	4	0.015	
Style x Weight x Sex x Mfg	-	-	-	-	-	-	20.74*	4	0.000	
SUMMARY OF MODEL	161.69	142	0.124	29.60	24	0.198	ь7.07	63	0.400	

TABLE B-6 (Continued)

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF MODEL EFFECTS FOR THE INJURY DICHOTOMY KABC vs O NORTH CAROLINA DRIVERS-ONLY SAMPLE

Effort	North Carolina 1973			North Car	rolina	1974	North Ca	1975	
LITECT	$LR \chi^2$	df	Prob.	LR x ²	df	Prob.	LR x ²	df	Prob.
Injury x Prepost	24.17	1	0.000	24.29	1	0.000	14.97	1	0.001
Injury x Style	5.11	1	0.024	14.94	1	0.000	6.08	1	0.014
Injury x Weight	70.55*	2	0.000	109.44*	2	0.000	75.72*	2	0.000
Injury x Est Speed	918.70*	2	0.000	-	-	-	-	-	-
Injury x Sex	-	- 1	-	-	-	-	244.97*	1	0.000
Injury x Mfg	-	-	-	-	-	-	38.36	2	0.000
Prepost x Style	71.18	1	0.000	117.65	1	0.000	93.19	1	0.000
Prepost x Weight	1020.65	2	0.000	1272.48	2	0.000	1646.52	2	0.000
Prepost x Mfg	711.25	2	0.000	535.10	2	0.000	566.97	2	0.000
Prepost x Est Speed	21.13	2	0.000	-	-	-	-	-	-
Prepost x Sex	-	-	-	-	-	-	66.08	1	0.000
Style x Weight	2757.17	2	0.000	2493.78	2	0.000	2304.74	2	0.000
Style x Mfg	217.34	2	0.000	186.11	2	0.000	185.02	2	0.000
Style x Est Speed	88.65	2	0.000	-	-	-	-	-	-
Style x Sex	-	-	-	~	-	-	28.92	1	0.000
Weight x Mfg	3684.57	4	0.000	~	-	-	4405.21	4	0.000
Weight x Est Speed	28.88*	4	0.000	4000.89	4	0.000	-	-	-
Weight x Sex	-	-	-	-	-	-	27.73	2	0.000
Mfg x Est Speed	20.32*	4	0.000	-	-	-	-	-	-
Sex x Mfg	-	1	-	-	-	-	1.74	-	0.421
Injury x Prepost x Style	2.01*	1	0.157	6.96 *	1	0.008	0.06	1	0.811
Injury x Prepost x Mfg	-	-	-	-	-	-	7.65*	2	0.022
Prepost x Style X Weight	82.30	2	0.000	72.51	2	0.000	19.50	2	0.000
Prepost x Style x Mfg	25.94	2	0.000	81.27	2	0.000	46.58	2	0.000
Prepost x Style x Est Speed	6.00*	2	0.050	-	-	-	-	-	-
Prepost x Weight x Mfg	201.71	4	0.000	214.94	4	0.000	290.85	4	0.000
Prepost x Style x Sex	-	-	-	-	-	+	19.96*	1	0.000
Prepost x Sex x Mfg	- 1	-	-	-	-	-	31.06*	2	0.000
Style x Weight x Mfg	123.11	4	0.000	266.64	4	0.000	275.27	4	0.000
Style x Weight X Sex	-	-	-	-	-	-	20.16	2	0.000
Style x Sex x Mfg	-	-	-	-	-	-	17.05	2	0.000
Weight x Sex x Mfg	-	-	-	-	-	-	10.06	4	0.039
Prepost x Style x Weight x Mfg	75.98*	4	0.000	88.20*	4	0.000	78.60*	4	0.000
Style x Weight x Sex x Mfg	-	•	-	-	-	-	20.74*	4	0.000
SUMMARY OF MODEL	174.60	156	0.147	29.51	30	0.491	76.34	75	0.435

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF MODEL EFFECTS FOR THE INJURY DICHOTOMY KA vs BCO MODEL YEARS 1965-1971 TEXAS DRIVERS-ONLY SAMPLE

in dan menduka mendu lakutan penera dari daka menangkar dar dara penera har setu dari dari bertekan dari bertak Terletar	Texas 1972		Texas	1973	a na an an an an an an an an an an an an	Texas	1974	а, ²⁷ , 4, 7, 7	
Lffect	LR χ²	df	Prob.	$LR\chi^2$	đf	Prob.	LR 2 ²	d۶	Prob
Injury x Prepost	71.47	1	0.000	39.63	1	0.000	49.29	``````````````````````````````````````	0.000
Injury x Style	0.0	1	1.000	0.20	1	0.652	0.86	1	0.353
Injury x Accident Type	1,198.00	2	0.000	-	1.0000 1.000 Automatica 1.00		835.89	2	0.000
Injury x Driver Age	3.59*	2	0.166	-4	-	-			
Injury x City Size	862.73	2	0.000	901.15	2	0.000	464.02	2	0.000
Injury x Road Type	1		-	331.06	2	0.000			
Injury x TAD	and the second second second second second second second second second second second second second second second		-	7.			4,161.54	2	0.000
Prepost x Style	755.43	1	0.000	803.77	1	0.000	681.56	1	0.000
Prepost x Accident Type	276.04	2	0.000	71			93.64	2	0 000
Prepost x Driver Age	398.59	2.	0.000	305.59	2	0.000			
Prepost x City Size	34.56	2	0.000	14.36	2	0.001	23.50	2	0.000
Prepost x Road Type	-			78.68	2	0.000		· · · · · · · · · · · · · · · · · · ·	
Prepost x TAD	÷		-	-	~		2.80	2	0.247
Style x Accident Type	107.44	2	0.000		-		118.40	2	0.000
Style x Driver Age	9,740.99	2	0.000	7,477.56	2	0.000	-,	~	-
Style x City Size	395.12	2	0.000	322.24	2.	0.000	235.44	2	0.000
Style x Road Type		-	-	5.10	2	0.047	-		
Style x TAD		~	******		-		110.61*	2	0.000
Accident Type x Driver Age	463.41	4	0.000	~		-		-	
Accident Type x City Size	628.48	4	0.000				· · · · · · · · · · · · · · · · · · ·		
Accident Type x TAD	-		ia.	-	-	-	4,003.20	4	0.000
City Size x Road Type	-	-	-	15,475.01	4	0.000	-	-	
City Size x Driver Age	539.23	4	0.000	644.73	4	0.000			
City Size x Accident Type	-				-	~	427.76	4	0.000
City Size x TAD		-	~ ~ ~ ~		-		1,793.45	4	0.000
Road Type x Driver Age	-	-	-	95.31	4	0.000	-		-

TABLE	R-8	(Continued)
-------	-----	-------------

	Texa	s 1972		Texa	s 1973	T	Texa	s 1974	
LTTECT	LR χ²	df	Prob.	LR χ²	df	Prob.	LR x ²	df	Prob.
Injury x Prepost x Style	0.42*	1	0.518	0.06*	1	0.804	0.14*	1	0.705
Injury x Prepost x City Size	-	-	-	17.93*	2	0.000	-		-
Injury x Prepost x Accident Type	-	-	-	-	-	-	2.78	2	0.250
Injury x Prepost x TAD	-	-	-	-	-	-	7.59	2	0.022
Injury x Style x Accident Type	1.36	2	0.507	-	-	-	6.35*	2	0.042
Injury x Style x City Size	7.09	2	0.029	-	-	-	-	~-	-
Injury x Accident Type x City Size	179.82	4	0.000	-	-	-	-	-	-
Injury x Accident Type x TAD	-	-	-	-		-	108.32	4	0.000
Injury x City Size x Road Type	-	-	-	84.48*	4	0.000	-	-	-
Injury x City Size x Accident Type	-	-	-		-	-	123.71*	4	0.000
Injury x City Size x TAD	-	-	-	-	-	-	69.86*	4	0.000
Prepost x Style x Accident Type	29.14	2	0.000	-	-		8.55*	2	0.014
Prepost x Style x Driver Age	280.18*	2	0.000	132.49	2	0.000	-	-	-
Prepost x Style x City Size	7.23*	2	0.267	12.57*	2	0.002	6.90*	2	0.032
Prepost x Accident Type x Driver Age	12.56*	4	0.014	-	-	-	-	-	-
Prepost x Accident Type x TAD	-	-	-	-	-	-	23.03	4	0.000
Prepost x City Size x Road Type	-	-	-	13.10*	4	0.011	~	-	-
Prepost x City Size x Accident Type	17.13*	4	0.002	-	-		13.13*	4	0.011
Prepost x City Size x TAD	-	-	-	-	-	-	12.08*	4	0.017
Style x Accident Type x Driver Age	20.51*	4	0.000		-	-	-	-	-
Style x Accident Type x City Size	9.54	4	0.049	-	-	-	-	-	-
Style x Driver Age x City Size	41.69*	4	0.000	65.71*	4	0.000	-	-	-
Style x City Size x Road Type	-	-	-	17.98*	4	0.001	-	-	-
City Size x Road Type x Driver Age	-	-	-	41.74*	8	0.000	-	-	-
City Size x Accident Type x TAD	-	-	-	-	-	-	286.51*	8	0.000
Injury x Style x Accident Type x City Size	17.81*	4	0.001	-	-	-		-	-
Injury x Prepost x Accident Type x TAD	-	-	-	-	-	-	10.94*	4	0.027
SUMMARY OF MODEL	147.04	134	0.2083	148.72	144	0.3766	132.00	126	0.3393

*Effect is specified directly in the model.

...

...

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF MODEL EFFECTS FOR THE INJURY DOCHOTOMY KAB vs CO MODEL YEARS 1965-1971 TEXAS DRIVERS-ONLY SAMPLE

₩₩ ₩₩£₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Texa	s 1972	un an an an Arthread an Arthr	Texa	; 1973	فيستانك ستبديد ورحمي	Texa	s 1974	ىلىن بىلىنى بىلىنى بىلىكى بىلى بىلىنى بىلى بىلىنى بىلى بىلى بىلى
Effect	LR X ²	df	Prob.	$LR \chi^2$	df	Prob.	LR X ²	df	Prob.
Injury x Prepost	118.91	1	0.000	128,23	1	0.000	113.21	1	0.000
Injury x Style	5.65	1	0.017	20.46	1	0.000	12.90	1	0.000
Injury x Accident Type	2,993.90	2	0.000		-	-	3,159.08	2	0.000
Injury x Driver Age	1.55	2	0.461	1.05	2	0.591	-	1	1
Injury x City Size	1,054.67	2	0.000	878.27	2	0.000	505.63	2	0.000
Injury x Road Type	-	-	-	375.81	2	0.000		-	-
Injury x TAD		~	-	-	-	-	681.56	1	0.000
Prepost x Style	755.43	1	0.000	-		44	93.64	2	0.000
Prepost x Accident Type	276,04	2	0.000	305.59	2	0.000		-	-
Prepost x Driver Age	398.59	2	0.000	14.86	2	0.001	22.50	2	0.000
Prepost x City Size	34,56	2	0.000	14.86	2	0.001	-	-	-
Prepost x Road Type		-	-	76.68	2	0.000	-	-	
Prepost x TAD	-	-		~		-	2.80	2	0.247
Style x Accident Type	107.44	2	0.000	-	-		-	-	-
Style x Driver Age	9,740.99	2	0.000	7,477.56	2	0.000	-		-
Style x City Size	395.11	5	0.000	322.24	2	0.000	235.44	2	0.000
Style x Road Type		-		6.10	2	0.048	-	-	
Style x TAD	-	-	-	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	-	~	110.61*	2	0.000
Accident Type x Driver Age	463.41	4	0.000	-			-	-	-
Accident Type x City Size	628.48	4	0.000		-	-	-	-	
Accident Type x TAD		-	-	-		-	4,003.20	4	0.000
Driver Age x City Size	539.23	4	0.000	644.73	4	0,000	-	-	
City Size x Road Type	-	-	-	15,475.01	4	0.000		-	-
City Size x Accident Type	-	-	-	-	-	-	427.76	4	0.000
City Size x TAD	~	-	-	-	-	-	1,793.39	4	0.000
Road Type x Driver Age		-		95.30	4	0.000	-		
Injury x Prepost x Style	0.14*	1	0.707	0.68*	1	0.409	7.93*	1	0.005
Injury x Prepost x City Size	15.99*	2	0.000	19.80*	2.	0.000	12,41*	2	0.002
Injury x Prepost x Driver Age	-	-	-	11.98*	2	0.002	······································	-	-

*Effect is specified directly in the model.

1

TABLE B-9 (Continued)

	Texa	s 1972		Texa	s 1973		Texa	s 1974	
Effect	LR χ^2	df	Prob.	LR χ²	df	Prob.	LR X ²	df	Prob.
Injury x Style x Accident Type	9.27	2	0.010	-	-	-	9.15*	2	0.010
Injury x Style x Driver Age	5.86*	2	0.053	9.77*	2	0.008	~	-	-
Injury x Style x City Size	10.02	2	0.007		-	-	-	-	-
Injury x Accident Type x City Size	368.70	4	0.000	-	-	-	~	-	-
Injury x Accident Type x TAD		-	-	_	-	-	154.15*	4	0.000
Injury x Driver Age x City Size	28.43*	4	0.000		-	-		-	-
Injury x City Size x Road Type	-	-	-	116.13*	2	0.000		-	-
Injury x City Size x Accident Type	-	-	-	-	-	-	195.01*	4	0.000
Injury x City Size x TAD	-	-	-	-	-	-	41.52*	4	0.000
Injury x Road Type x Driver Age		-	-	19.58*	4	0.001	-	-	-
Prepost x Style x Accident Type	29.14*	2	0.000	-	-	-	8.55*	2	0.014
Prepost x Style x Driver Age	280.18*	2	0.000	132.49*	2	0.000		-	-
Prepost x Style x City Size	7.23*	2	0.027	12.57*	2	0.002	6.92*	2	0.031
Prepost x Accident Type x Driver Age	12.56*	4	0.014	-	-	-	-	-	-
Prepost x Accident Type x City Size	17.13*	4	0.002	-	-	-	-	-	-
Prepost x Accident Type x TAD	-	-		-	-	-	23.03*	4	0.000
Prepost x City Size x Road Type	-	-		13.10*	4	0.011	-	-	-
Prepost x City Size x Accident Type	-	-	1 -	-	-	-	13,12*	4	0.011
Style x Accident Type x Driver Age	20.51*	4	0.000	-	-	-	-	-	-
Style x Accident Type x City Size	9.54	4	0.049	-	-	-1	-	-	-
Style x Driver Age x City Size	41.69*	4	0.000	65.71*	Δ	າ. າດຖ	-	-	-
Style x City Size x Road Type	-	-	-	17.98*	4	0.001	-	-	-
City Size x Road Type x Driver Age	-	-	-	41.74*	8	0.000	-	-	-
City Size x Accident Type x TAD	-	-	-	-	-	-	286.51*	8	0.000
Injury x Style x Accident Type x City Size	12.78*	4	0.012	-	-	-	-	-	-
SUMMARY OF MODEL	130.56	126	0.3722	146.17	134	0.2228	155.25	136	0.1237

 * Effect is specified directly in the model.

•

.

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF MODEL EFFECTS FOR THE INJURY DICHOTOMY KABC vs CO MODEL YEARS 1965-1971 TEXAS DRIVERS-ONLY SAMPLE

anna Alli Che Mengani antala per mana anna anna anna anna anna anna ann	Texa	s 1972	indefinite in the Logic Addi	Texas	: 1973	238	Texa	s 1974	
LTTECL	$LR \chi^2$	df	Prob.	LR x ²	df	Prob.	LR x ²	df	Prob.
Injury x Prepost	115.34	1	0.000	96.50	1	0.000	67.96	1	0.000
Injury x Style	11.29	1	0.001	19.54	1	0.000	11.18	1	0.001
Injury x Accident Type	2,932.70	2	0.000	-	-		2,981.45	2	0.000
Injury x Driver Age	4.70	2	0.095	1.15	2	0.563		-	
Injury x City Size	944.24	2	0.000	726.86	2	0.000	476.94	2	0.000
Injury x Road Type	-	~	-	284.22	2	0.000		-	~
Injury x TAD	**	-	-	a	-	5	13,987.60	2	0.000
Prepost x Style	755.43	1	0.000	803.77	1	0.000	681.56	1	0.000
Prepost x Accident Type	276.04	2	0.000	-	~	-	93.64	2	0.000
Prepost x Driver Age	398.59	2	0.000	305.59	2	0.000	-		
Prepost x City Size	34,56	2	0.000	14.86	2.	0.001	23.50	2	0.000
Prepost x Road Type	4	-	-	78.68	2	0.000	-	-	
Prepost x TAD	-	~	~		ч	-	2.80	2	0.247
Style x Accident Type	107.44	2	0.000	~	-	-	118.40	2	0.000
Style x Driver Age	9,740.99	2	0.000	7,477.56	2	0.000	-	-	-
Style x City Size	395.11	2	0.000	322.24	2	0.000	235.44	2	0.000
Style x Road Type	74		4	5.10	2	0.047	-	-	-
Style x TAD	-	-	-	~	-	-	110.61*	5	0.000
Accident Type x Driver Age	463.46	4	0.000	-	-	-	7	-	
Accident Type x City Size	ō28.48	4	0.000	-	_	-	-	-	
Accident Type x TAD	-	-		-		-	4,003.20	4	0.000
Driver Age x City Size	539.23	4	0.000	644.73	Ą	0,000	*		-
City Size x Road Type	_	-	~	15,475.01	4	0.000			-
City Size x Accident Type		•			~		427.76	4	0.000
City Size x TAD	~	,	~		-	-	1,793.39	4	0.000
Road Type x Driver Age	-	-	~	95.31	4	0.000	-9		
Injury x Prepost x Style	0.02	1	0.890	3.09*	1	0.079	6.02*	1	0.014
Injury x Prepost x Accident Type	1.93	2	0.380	-		-	-		
Injury x Prepost x City Size	10.81	2	0.004	13.06*	2	0.002			
Injury x Style x Accident Type	5,96	2.	0.051	-1	~	-	7.35*	2	0.025
Injury x Style x Driver Age	9.51*	2	0.009	10.71	2	0.005		-	-
Injury x Style x City Size	19.18	2.	0.000	1.30	2	0.521			
Injury x Style x Road Type			-	3.45	2.	0.178		-	-
Injury x Accident Type x City Size	277.63	4	0.000	~		-	مراسطة في المراسطين المراسطين المراسطين المراسطين المراسطين المراسطين المراسطين المراسطين المراسطين المراسطين ا مراسطين المراسطين الم	n-1	- 1
Injury x Accident Type x TAD	-4	-	-	-	-		149.11*	4	0.000

TABLE B-10	(Continued)
------------	-------------

	Texas	1972		Texas	1973		Texas	1974	
Effect -	LR X ²	df	Prob.	LR χ^2	df	Prob.	LR χ^2	df	Prob.
Injury x Driver Age x City Size	23.88*	4	0.000	- 1		-	-	-	-
Injury x City Size x Road Type	-	-	-	122.15	4	0.000	-	-	-
Injury x City Size x Driver Age			-	12.61	4	0.013	-	-	-
Injury x City Size x Accident Type		-	-	-	-	-	150.86*	4	0.000
Injury x City Size x TAD	-	-	-	-		-	32,97*	4	0.000
Injury x Road Type x Driver Age	-	- 1	-	11.51	4	0.021	-	-	-
Prèpost x Style x Accident Type	29.14	2	0.000	-	-	-	8.55*	2	0.014
Prepost x Style x Driver Age	280.18*	2	0.000	132.49*	2	0.000	-	-	-
Prepost x Style x City Size	7.23	2	0.027	12.57*	2	0.002	6.90*	2	0.032
Prepost x Accident Type x Driver Age	12.56*	4	0.014	-	-	-	-	-	-
Prepost x Accident Type x City Size	17.13	4	0.002	-	-	-	-	-	-
Prepost x Accident Type x TAD	-	-	-	-	-	-	23.03*	4	0.000
Prepost x City Size x Road Type	 _	-	-	13.09*	4	0.011	-	-	-
Prepost x City Size x Accident Type	+	-	-	-	-	-	13.12*	4	0.011
Style x Accident Type x Driver Age	20.51*	4	0.000	-		-	-	-	-
Style x Accident Type x City Size	9.54	4	0.049	-	-	-	-	-	-
Style x Driver Age x City Size	41.69*	4	0.000	65.71	4	0.000		-	-
Style x City Size x Road Type		-	-	17.98	4	0.001	_	-	-
Style x Road Type x Driver Age		-	-	17.67	4	0.001	-	-	-
City Size x Road Type x Driver Age	_	-	-	41.74	8	0.000	-	-	-
City Size x Accident Type x TAD		-	-	-	-	-	286.51*	3	0.000
Injury x Prepost x Style x Accident Type	0.41	2	0.814	-	-	-	-	~	-
Injury x Prepost x Style x City Size	1.85	2	0.397	-	-	-	-	-	-
Injury x Prepost x Acc. Type x City Size	4.36	4	0.359	-	-	-	-	-	-
Injury x Style x Accident Type x City Size	8.09	4	0.088	-	-	-	-	-	-
Injury x Style x City Size x Road Type	-	-	-	3.01	4	0.556	-	-	-
Injury x Style x City Size x Driver Age		-	-	2.80	4	0.591	-	-	-
Injury x Style x Road Type x Driver Age	-	-	-	3.15	4	0.533	-	-	-
Injury x City Size x Road Type x Driver Age	-	-	-	10.15	8	0.255	-	-	-
Prepost x Style x Accident Type x City Size	2.77	4	0.597	-	-	-	-	-	-
Style x City Size x Road Type x Driver Age	-	-	-	12.57	8	0.128	-	-	-
Inj. x Prepost x Style x Acc.Type x City Size	10.81*	4	0.029	-	-	-	-	-	-
Inj. x Style x City Size x Rd. Type x Dr.Age	-	-	-	. 20.33*	8	0.009	-	-	-
SUMMARY OF MODEL	119.69	108	0.2079	92.81	88	0.3422	148.45	138	0.2566

*Effect is specified directly in the model.

.

APPENDIX C

,

SUMMARY OF EFFECTIVENESS RESULTS

FOR OBSERVED UNADJUSTED

STATE MASS ACCIDENT DATA

SUMMARY UF FMVSS 207 EFFECTIVENESS STUDY USING 1972 TEXAS Ubserved, Nut Adjusfed Total cases # 159693

.

							11.4					100		0111													
INJURY CATEGURY		 Рке	-	2 - 2 - 7	- - -	о Р Р	- 	-	,		 	 Рн	• • • •		4		1 0 0	UR Pu	- 81	-	-,	-	- 	- я то	DW TA	 L	ЯС РС
K+A B+C+U	; ; ;	996 30005	 1 1	 U.6 8.8	 	 1 54	131		0,			11 376	165	 1 1 i	0.	· • 7 • 6			 A7 54	 2	0.	, 4 , 0	 1	3	97 71	 9 4	 2.97.
(+A+B =+0		3076 27925		1.9 7.5		- 3 51	985 663	· ·	32,	5.4	• 	352 352	i96 207	-	22.	3		350	20	• a	1.	4		- 12 46	87 81	7 1	 8. 91.
к+а+ы+с 0		4256 26745	 1	2+1 6+1	1	- 5 49	926 720		3. 31.	7	- 	49 336	975 168	1	3,	.1 .2	1	33 309	05 36	 1	3,	, 1 , 4	- 1	1B 41	42	 4 9 1	 11. 88,

		EFFECTIVEN	IE I	55	¥ A	LU	E 9	(P	ERCE	N	1)		
				••••		•	- 5 n	• !	95x	.	CONF	IDENCE	INTERVAL
CATEGORIES	1	VALUE	i	ÐF	VI	AT	TON	1		FI	ROM		To To
				****	***			** **	* * * *	-		******	
K+Λ	1	5.11	1		6	.0	8			-	4.87	1	15.09
K+A+8	- İ	-3,25	I.		-3	<u>"</u> 5	8	Ì		- 1	9.11	t t	2.64
K+A+H+C	i	-2.29	i		2	. 9	0	j			1.05		2.47

	_	INJU	RY PI	RUAAHILI	TIF	S (PERCE	ENT)			
ENJURY	1	5	- 01	DUR	 - 	4	- Di	DUR		
CATEGORIES		PKE	 	PU81	i 	PRE) • • • • •	POST	i 	TUTAL
к+д К+д К+д	• • • • • 	3.21	• • • • •	2.03		3.00	• • • • • • { 1	2.01	!	2.49
K+A+8+C	1	13.13	 	10.65	1	12.72	i	9.65	i	11.54

.

,

C-1

 \mathbf{i}

SUMMARY OF EMVSS 207 EFFECTIVENESS STUDY USING 1973 TEXAS Observed, not adjusted Total Cases = 161908

										.,		··· • •		~ 1	_ ``																
49 14 14 14																-			Ξ.	998 99 1.2.31	4 9	-	**	(a)	10 ⁰		***	2.3	هه	-	ч р
	ł			4	-19	D1	ЭŲМ					1					4		DI	IUK					1				1		
TNJUKA	1	و مراجع الجم	• •	• •	*	-	**	-				+	-	4 4	**	••	-	494	•		ર જા	-	61	٠	ł		RU	W			HD
CATEGURY	1	ычке	1	I	X	1	P	មេនា	۲ I		X	ł	ч	ĸe		1	X		1	PL	18T	1	1	X	1	T	01	AL.	-		РC
*********					**	*****				به می د به بی د		~ ~ ~		**	en 20 ef 20			ی مو ا					е на н 11 ма			* #*	هم مع سر جه	** Ca \ ** La 4			
+ 4	ŧ	13	+	0	.5	1	1	511		¢		T		89	9	I.	Ο.	ь	I	1	23	L	0	• 4	I		36	67	+		2,
+6+0	1	2451	2	115	• 0	ł	66	1/4	5	41	1.0	1	30	38	1	11	۴,	8	1	386	103	11	24	• 0	1	15	82	41	1	9	7.
* * * *	404	* ** *	• 1		÷		82	-	• •	. 4	н (н	-	**	ų.	#	19	•4	•	÷.	њ .	• **	kak	٠	٣	+	-	w	*:	49	÷	#
+A+15	1	238	1	1		ł	L	1/90) (2	5.0	1	ĉ	90	2	1	1.	8	ŧ.	- 54	555	1	1	. 6	1	1	58	29	1		7.
+0	i.	2246	4	113	. 4	i.	61	266	5	31		1	-58	17	d	11	7.	5	1	361	171	11	22	. 6	4	14	90	19	1	9	Ξ.
		44 44 I						-			۰. نو ه	-	-		æ	нн 1	÷		÷.		n ș†	94	r.	 84		-					
+A+8+C	1	555.	5	2	• ť	1	1	166	. 1	4	.4	ŧ	2	91	3	1	2.	5	1	34	11	1	5	4	ł	1	85	83	E	t	ι.
	÷.	2151	5	113	• 5	ł	58	1991		34	• 4	Ì	27	30	7	11	6.	ġ	ŧ	\$56	515	1	55	.0	ł.	14	33	55	Ì.	8	8,
******		go na 60 (a) (u = a		-	* 69 4		* ** 0	-		# =	***	•	49 ((en ter	a . 16		i eb e	* ** ** *	9 1 1 4	***	• •• •			-	-	90 ay 1			-

ngi istifuqt Aletts (its ins jägs) i me tild i tashi gi	60034985-996-905-996-99	EFFFLTIVEN	LSS VALLES	(PERCENT)	an fan 1992 fan de fan Staat wat de fan de fan de fan de fan de fan de fan de fan de fan de fan de fan de fan In de fan de fan de fan de fan de fan de fan de fan de fan de fan de fan de fan de fan de fan de fan de fan de f						
وي من وي من يو من وي		pe en pa tet ça pet		# # # # # # # # 1 95% CUNF18	e e e e e e e Ence interval						
INJURY	1 2776	LTIVENESS	I STANDARD		्यान्यतः कारान्यतः स्वाप्तः स्वाप्तः स्वाप्तः स्वाप्तः स्वाप्तः स्वाप्तः						
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		⋎⋪⋤⋓⋸ ⋼⋼⋼⋼⋼⋼⋴⋴⋴⋴⋴⋴		,	មកម្មតាមក្រុម មែកក្រុម ស្រុក ស្រុក r>ស្រុក ស្រុក			••6•69	1 7 ₈ 17	+18,45	
K+A+13 K+&+13+17	1	-1.05	1 3,53 1 2.80	-6.82	4 477						
	l Nicesticalitestics	1924	y s, g ti 6. Ministrational disconnection	entre source and the source and the source and the source and the source and the source and the source and the							

			TNJ	ŨН Â	PRU	D A	n 1 (-11	15	3	1251	UE	413									
y an an an an	eig ier	ер ец	6° 🗣	u ș		64	M 1	* *	*	-	HQ 9	te et	44	¢ 1			a a	, N		ψ¢.	47	ų,
	1			2 *	របប	R			1			4 .	• 0	001	4			1				
INJURY	1	* *			en 14	2	-	**	1	4	લ છ	ه دي	о ни	**	-	-)#	1				
GATEGORIE	5 1		PRE	1		۴u	51		ł		Рн	-	1	- 1	PU (5 T		4		τu	T A	1
و اس می هه دی هو چو ده وه د	N van we het der i		~ ~ ~ ~	10 to 10 E	မျမားမာ	er, 10	8.4 13 9 8	* ** *	# 4			a sa 14 G	- 40 M		-	• ب •	al 69 6 4		w w ⊨	-	0 9 34	
		****	, ₁ , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		-			مە يەر ب	6 40	44) 19F (est ter yas t	⊐ivetusi∢	с на П и	бар (ф.), 1	() w 1	19 an 1	~ ~ ~	ان عن ا	94 (ji C	2 MA 64	-	6 6 P L
K + A	1	c	: . 9 5	- 1		1,	98		1		6.8	1	1		1(83		1		e		16
K + A + U	+	10	. 51	- 1		1.	52		1		9,21	3	1	1	6.1	16		1		- 7	• 9	5
K+A+8+C	1	14	.11	1	1	0.	85		1	1	2.71)	1		9.1	89		8		11	. 4	a

SHMMARY UF FMV99 207 EFFECTIVENESS STUDY USING 1974 TEXAS Ubserved, Nut Aujusted Tutal Cases = 146449

.

										1	N J I	UR	Y	0 I	81	R 1 6	IU1	. t (INS	3																
* * * * *	•	-		• •	i	2	-	D C	101	ŧ -	-	-	-		-	••	•	•		4	•	00	108	•		-	-	•	-	•	•	-	1		•	•
INJURY CATEGURY		4 4	KE	, , , 		X	-	•	F	· []	5 T			x 	+ 		RE			 			- p	08	•••••		_ X		1	ז 11 קיקייי	201]†/	₩ 41. ₩ ₩ •			R0 PC	W T
K+A		•••	515				 4		1	1	85	!		.8			58	4		0.	4	•		59	3	1	0.		1		281	77	!		5.	0
8+6+0 		17	/52 847			: • • •	1 - 3	•	65 ~	191 	04 		45	• U 	1	22 • •	26 26		11	5. 	3	1 ~	57	55 	6 - · 7	1 1 5 i	5.	6 - 6	1 - 	42 	55) 	72	1	- 4 	-8. 	0 = 8
C+0	i	16	42		1 1		ŝ	1	68	10	05	i	42	4	1	50	69	8	i 1 	4.	1	i	35	75 ~	2	15	4	4	1	31	19	78	i -	9 -	5	2
K+A+B+C 0	1	2 15	503		1	1 +) +	7 8	1	59	5	54 35	1	5 4 Q	.7	1	19	112	3	1	2,	15	1	34	79 33	2 7	15	3.	6 4	1	11	59: 74:	72	1	1 8	1.	6 4
K+A+B+L+0	1	18	27() (11	2.	5	1	67	10	89		45		1	22	96	1	11	15,	7	1	38	15	9	15	6.	0	11	4	54	49	1	10	0,	0

INJURY EFFECTIVENESS STANDARD		-		+			* **			
INJURY EFFECTIVENESS STANDARD CATEGORIES VALUE UEVIATION FROM TO K+A -2.84 8.00 -15.96 10.28		1		1			1	95% CONFID	ENCE	INTERVA
CATEGNHIES VALUE UEVIATION FROM TO K+A -2.84 8.00 -15.96 10.28	INJURY	I EF	FECTIVENES	5 1	STAN	JARD	+ -			
K+A -2.84 8.00 -15.96 10.28	CATEGUNIES	i	VALUE	İ	UEVI	ATION	Ì	FROM	1	70
	************		**********	• • •	*****					******
	R T A	1	₩C+04	1				~13 ,90	1	10.00
	K+A+B+C	1	-12.47	1	3.	-51	+	-18.23	1	-6.70

		INJU	RY P	RUBADILI	TIE	S (PERCE	NT)			
	1	2		DUR	1	4	- U	DUR	1	
INJURY CATEGORIES	 	РКЕ		PUSI		PRE		PUST	• • • • • • • •	TOTAL
	••••• }	58,5		1.77		2,54	• • • • }	1,56	 	1.96
K+A+A K+A+B+C	1	10.11	+	7.43	1	9.86 13.60	ł	6.23 9.95	1	7+83 11+59

SUMMARY OF FMVSS 207 EFFECTIVENESS STUDY USING 1974 NEW YORK Observed, Nut Adjusted 10tal cases = 62016

										I	NJI	JR	۲	D)	18	TH (IPI	UT:	[0]	N 8																	
מע כט זייי שא או	**	w	-	-	87	-	•			•	~	-	6	• •	a .	••	• •		• •	1	•	62	e a 10	-		**	-	-		•	-	F-/	ę.	њя	60	64	,
	1					2		00	10 F	4						۱					4	-	00	106	5					ş				1			
INJURY		5	Cont .	144	**	•	**	-	æ	-	-	•	•	• •	su -	+ •	p	#9 U	• •	F#		69	40	**	-	\$ 0		64	4			80	М			RI	()
CATEGURY	I	P	ĸĔ		ł	,	Ľ	ŧ	ţ	۷V	31	1		*		L	PI	RE		1	X		t	F	'U9	T	Ł	2	t	ł	11	Ĩ	AL	I		P	C
************		****			-			,							69 53 69 84			***				- - 	-	,					 	. 69 a	. مود د د مود د	» =	ia e ia	କାର କାର	د ده د	е- us м на т	90 40
<+A	1		56	0	1	ΰ,	.9	1	i	05	55	Í	3		3	1		42(9	I.	٥.	7	1		65	8	1	1.	.0	1		36	93	1		5	
3+0+0	Ì.	6	36	3	11	0,	. 1	1	37	29	17	Í	52	2.,4	4	Ì	, G	170	5	Ì	8.	2	÷.	14	166	7	15	3.	3	1	5	93	23	1	(94	
بې بې دې دې س	**	60		49	-	44	*	-	48	49	4	- 41						<u>,</u>		940	-	84	97	•	-	-		-		ŢĀ		40	6.1	ę.	ius.	÷.	
K+A+B	1	1	67	8	1	2.	. 7	Ł		65	87	1	10		5	1	1	271	7	1	2.	0	1	ē	37	7	1	3.	. 6	T	1	19	19			19	
2+0	i	g	24	5	i	8	3	i.	21	83	85	i	49		2	i	0	319	•	i	6.	ġ	i	12	297	5	15	ō,	6	i.	5	09	24	i		91	
ு. பல்லை தொறு	÷	-		-		se .		-				w					ie u	,		Ab		6 -1		ца) 1	-			 		Ū.	620					5	-
(+A+8+C	ŧ	5	54	ú	1	4.	.0	I.	1	10	15	1	17		5	(1	94	3	1	3.	1	1	L	155	7	1	б.	. 7	1	1	9 Y	31	3		51	
0	i	4	41	8	i	7	0	i	21	41	12	i	36	3.	2	i	3	68	3	i	5.	8	i	11	119	ġ.	iı	7	7	i.	4	34	06	i	(58	Ĩ
19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -			- 144 - 144	-	-		L sea a				• • • • •		-		ap 14		بو ب	49 44 G					-					-			5× 904 (ы ₆₂		63 65	e an I	10 AU	-
K+A+6+C+0	4	6	92	ξ.	11	1.	. n	1	47	49	72	1	5.9	<u>ن</u> . ا	γ.	1	, 6, 6	591	4	1	A .	a	1	1 4	. 12	R C	12	а.	. 4	1	6.	28	16	1		ΰĥ.	

init all filling the second statements of the second second second second second second second second second s	EFFFCTIVE	ESS VALUES	(PERCENT)	in and a subscription of the
است وی نظ محم یس بور وی	,	ана на на на 	1 95% CONFIDENCE	INTERVAL
TNJUHY	EFFECTIVENESS	I STANDAHD		64 68 50 94 89
GAILGURILS www.www.www.www.www.www.www.www.www.ww	1 VALUE 	I URVIATION	I FRUM I ⇔высысастана на такана на на на на на на на на на на на на	TU
K+A		1 9,67	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	~11.51
K+A+B	-14.62	4.50	1 00.55- 1	-7.25
K+A+B+C	~8.31	1 3.10	~13.39	-3.53

		TNJU	BÅ Þ	RUBAHILI	1 I F	S (PERCE	ENT)			
110.11112			- () - 1	0UR 			, _ ~ () 			τα 64, 600 6γ, ζω
CATEGORIES		FRE		PUST		PRF		POST	 ا	TUTAL
		442488 8209	 		 		- es en en 			มแรงตดตลเลตร เริ่าชี8
K+A+8 K+A+8+r	Ì	24,24	1	18.84	ł	22.82	1	15.48	l	18.97

C~4

SUMMARY OF FMVSS 207 EFFECTIVENESS STUDY USING 1973 N. CAROLINA DBSERVED, NUT ADJUSTED TOTAL CASES = 25901

		INJ	UNY DISTRIBUTI	ONS		
	1	5 - DOOR		4 # DOUR		
INJURY CATEGORY	PHE	I X I PUST	I X I PRE	I X I PUST	+ X	ROW ROW Total PCT
*********	******	*************	****	*****		****************
K+A 8+C+0	1 125	0.5 255 16,9 10007	1.0 126 38.6 3824	0.5 139 14.8 7047	1 2.5 1	645 2.5 25256 97.5
K+A+8 C+0	1 475	1.8 871 15.6 9391	3.4 372 36.3 3578	1 1.4 1 512 113.8 1 6674	1 2.0 1	2230 8.6 23671 91.4
К+А+В+С 0	1 745	1 2.9 1508 114.5 8754	1 5.8 1 641 133.8 1 3309	1 2.5 1 946 112.8 1 6240	1 3.7 1	3840 14.8 22061 85.2
K+A+B+C+U	1 4503	117.4 10262	139.6 1 3950	115.3 7186	127.7 1	25901 100.0

		Ł	FF	F. C	TIVI	ENI	e s	S	۷	A L	ιk	S	(F	PE	RC	E١	1)								
		-	•				•	•	• •	*	•	-	-	-	99	x -	c	. 01	۰	1D	EN	CE.	ĪN		ER	- • A V
INJURY	I EF	FEC	11	٧Ē	NES	5	Ł	91	' A I	ND	Ał	10		-	-		•				-	æ		•		in.
CATEGORIES		۷		UE		** ** *	i 	D F	: V :	I A	11) • **			R	40	1		† 			T	0	• •
				•••	** 48 49 1	98 HZ 1		10 m		• •			•••	• ee				* *								**
K+A+H		-4	7 • ·	79							51	5					,,, ,,		50		1			A	• 1	5 1
K+A+B+C	1		9	71			i		(6	86	5	í				20		ň		i			1	ŝ	4

,

.

		• • • • ·	- u	nup	• •	• • • • •	- n	n		-
INJURY CATEGORIES		PRE		PUS)	•	PRE		P091	. ; ;	TUTAL
K+A		2,78		2.48	• - - ł	3,19	 I	1.93	·	2,49
K+A+B	į	10.55	1	8.49	1	9.42	1	7.12	1	8.61

C-5

SUMMARY OF ENVSS 207 EFFELLIVENESS STUDY USING 1974 N. CANDLINA Observed, NUT Aujusted 10tal Cases # 26539

										ΙN	J II	K Y	Ð	19	I K	114	111	UNS	5															
	\$ 10	*14	**	-	**	÷	4	٠	•	÷	-	-	~	•••	•	•	- 4		٣	-	**	-	**	***		44	Ψ ·	-	84		-	-	12	*
						2	-	υí)uK						1				4	-	DL	ាកម	(1			- F			
ENJURY	÷	-		÷	-	•		-		•••	-	-	•	F	÷ ·			-		**	\$ 7	-	-	~	47	-		Ļ	R) W			кí	j) j
CATEGURY	i	۲	ĸĿ		L	X		¥.	P	us	1	1	*		1	1'+	(£	1	;	¥.	1	۲ 	°u8	31	1	%	ia	\$ 	10	TAL	1	ور ان	۱۹ 	2) - +
	~ ~ ~ ~	, 100 100 1		•• ••		4 e		- 100 P		**	• •					* * *					ра нар и			-			199 - 201 - 1	eo 60		el 47 14		447 apro 1	سو	
+ A	1		1 O	υ	1	0.	4	1		25	4	i	1.	u	ł.	1	02	1	0	, 4	1		1 5	51	1	0.	6	1		607	1		2	ų.
+6+0	i	5	ь (),	2	i i	5.	6	i	10	98	2	14	1.	4	1	34	164	1	3	.1	1	1	87	19	15	9.	1	1	25	932	1		97.	¢ Ì
. De av av ou						س	•		144				-			• •			w	-	Pa	*0	644		44		94 -	÷+	ليبا	ne na	1.2	نتر	۴	
+ 4 + 11	1		58	4		1	4	ł		98	d	1	5.	1	1		150		1	. 5	1		58	58	1	2.	0	I.	5	250	1		в	
+0	ł	5	511		i1	21	5	i	10	24	8	13	d .	6	i	3.	221	i	ιź.	. 1	i	1	5	sè	i a	8.	3	i	24	289	i		91	ŀ
														- a -		¥ .		-		-		φ.			-		н ;		62			64		
******	1			1	1	ہ نے	4	4	1	15	1		n.	6			.04	1	٤	. 4	1	1		47	L.	Ś.,	9	L	4	033			15	
181010	1		17	•		1	- -	1	á	4.4	å.		4	ž	1	26	161	- 1	1	5	1	, e	a,	4.8	12	6.	÷.	i.	22	504	1		Ru	
	I	21			11	1.0	u 	1	7	40		1 3			•	7 کا محمد				8 K.					16						8 100 - 100 -	9.0	5 - 4 9 53 1	a . 8
	тын 48	· ••• ••• •	10			7								2					2				. A -	7.A	13	10	2		54				00	-
K+A+0+0+0	1	- 5	10.	Ľ.	11	٤.	4	1	11	53	6	14	с.	3	1	- 11	571	1	الآتا	<u>, 5</u>		- 6	10	30	13	10.	3	1	56	539	1	1	00.	4

		Ľ.	r r r. (33	V AL) (ren		N	; 		-				
* * * * *	1		•••••		ļ		-		,	្រីទ	15 x	ີເ	0 N F	101	ENC	E	INI	IE R	V A
INJUNY CATEGUNIES	1	LFFEC	1 I V I A L. 111	EN ESS E	1	ST DE	4 N I. V I P	TIC)) N	1	•	FH	0 M		ï	•	• ۲	0	C.90
***********		*******	***									***	****	****	***	, we can			1
K + A	ł	- 2	9.1	9	I.		22,	24		1	y *	65	• Þ	i	1		1		8
K+A+8	i	*2	6.8	8	1		11.	07		i i	4ij	45	.0	5	ł		* (3.7	3
K+A+8+C	i	~ i	8 8	6	L		7.	52		i -	ę.	31	.19	}	1		•		5

				IN.	JUI	ł۲	٢	нu	87	18	ĭ٦	1	11	Ŀ 9	1	P	ER	CF	N1	1)													
~ ~ ~ ~ ~	•			•		•		*	٠	۳	٠	•	9	*	بد	٣			4		•	48	٩	•	¢P	N	₩	**	jer	•	9	198	¥
	1				2		Ð	00	R				1					4	w	DI	Πu	R				1	1						
INJURY	i	-	~	-		-				•	-	얘	i	19		,	-	*	-	-	ę,		ped (9	ž		i			'			
CATEGONIES	i		ł	N	2		I		۲۱	9 L	ł		i			P	RE		i	I		٩I	08	1		I	•		Ť	n.	í A	Į,	
************			- 144 -					**		***	-		-	64 49 69 49	**	99 199			999 99 1920 19	1. 1994 - 1994	жа фа сн фа		9 	- 49 1 - 49 1	9 9 9 9	, 944 4 9 59 5	9 % 9 %	64 4.2 50 A	्य २२	(G) (G) (G) (G) (G) (G) (G) (G) (G) (G)	er pur	i≃an varee	••
K + A	Ŧ		¢	. 1	0		1		5	• 2	b		I		2		86			ļ		1	, č	38			1			3	5.	9	
K+A+B	1	1	0	. 1	1		Ł		8	. 7	9		1		y		80			ł		6		58			1			8	. 4	8	
K+A+0+C	i	1	1	. 0	4		I.	1	5	5	8		1		16		91			I I	1	3)4			1		1	5	. 2	ů	

SUMMARY OF FHVSS 207 EFFECTIVENESS STUDY USING 1975 N. CAROLINA Observed, Nut Adjusted Total Cases = 28236

•

,

	ł			2 -	рt	IUR			1		4 ••	D	NOR			I		I
INJURY CATEGOR	Y)	 PKF	}			PUST	• •• • •		+ 	PRF	i X	1	POST	1	 	 	ROŴ Total	۱
K+A	 !	97	1	0.3	• • • !	254		0.9	· [71	1 0.3	1	180	!	0.6		509	,
		36/6	- + 1 	1.0		12100	/ 1/ / //	42.9	-	3220	111.4	-	4036	13	2.0 	-	27634	-
K+#+B C+0		3002 3002		1.5	1	11547	' '	40.2	1	2999	110.6		8505	13	0,1	1	25853	1
K+A+B+C 0	1	5169 600		2.1		1923	• •• • •	6.8 36.9	1	539 2758	1 1.9		1335	- 	4.7	1	4397 23839	1

		5. r	rrui	TAFM	E C	10 V	Αι,	ψga		- E R	LE							
44 mg 44 pa mg	1	• • •	an ta		!	••••	•	* •	•		5x	co	NFI	DENCE	ĪN	TER	VAL	-
INJURY	11	EFFECT	IVEN	E 8 8	ŧ.	STA	ND	AND		•	• •	• •	-		۰,	• •	•	*
CATEGORIES	 	4 V 	LUE		1	DEV	1 A	110	N.		F	RU	11 ••••••••	 		†0 ≠==	***	
			~~~			• • • •		***		 1					<b></b>			-
		20	.0.3		1	*	21	یں ہے۔ محمد					01			207		
长十五十廿	1	12	+01				1.	72				•0•	65	1	5	4.6	0	
K+A+H+C	1	1	.16		I.		6.	25	ļ			.9.	09	1	1	1.4	5	

		INJU	RY H	RUBARILI	TIF	9 (PERCI	FNT)			
INJUNY CATEGONIES		PRE	- U - I	OUR Pust	• 1	PRE		POST	-	TOTAL
K+A K+A+B K+A+B+C	••     	2,88 10,89 17,81	••••••••••••••••••••••••••••••••••••••	2.00 8.15 15.57	     	2.15 9.04 16.35	"     	1,95 7,71 14,49		2.13 8.44 15.57

#### SUMMARY OF FMVSS 207 EFFECTIVENESS STUDY USING 1972 TEXAS 65-71 Observed, Not Aujusted Tutal Cases # 109145

							1	NJ1	١ĸ١	1-1)	181	[ Hi 1	LHUTI	UN	3														
	89	-	<b>\$</b> 1		-	<b>*</b>	•	•	٣			• •		• •	-	۲	*	<b>MA</b> pa 1	69 69	*	681	**	MC)	-ee/	60	ç.a	φu	٣	4
	1			4	**	<b>U</b> n	ин				1				4	**	μ	IUR				1							
TNJIIHA	1	****	-	ца (Р)	Ψ	**	•• •	• •	٠	64	- 1	• •	н <del>ш</del> +	بند ه	÷	7	-	-		-	ų.	1	H	۱U	A.			Rt	) W
CATEGUNY	1	Pist		)	4	1	PL	181	1	X			Рис	ا 	×		1	108	11	ر • • • •	i Filstaar	1	)[ 	۱۲ <i>۱</i>	A [	1	2 <b>1</b> 1	99	21
*********										a og ni	-			-		<del>س</del> مع	-		يو اسه (د	ې يوه دي	មានផ			4 69 6	* •> •	2 6) V			40 M.S
{*A	+	54	14	1 0	.5	1	•	123	1	0.	d I		468	3 1	0,	4	1	587	5 1	Q .	5	1	ĉ	:5)	17	1		2,	s
3+6+0	i.	1708	14	110	. 4	1	440	: 54	14	40.	5 (		16340	)	15,	0	1	5816	5 1	25,	6	11	106	161	28	۱	9	17,	a 7
	•	ы на 14	-		æ	10		•	-	-	<b>10</b> 6	• •			•	يت.					m)		٠	¢	÷	*9	ы	40	5
(+A+8	ł	101	11	1 1	. 5	1	30	44	1	3.	0 1	ł	1442	: 1	1.	3	ł	190	4 6	1.	1	1	F	121	15	1		7.	e t
.+0	i	167	λĒ.	115	3	i	414	114	1	58	4		15368	, i	14.	1	i	26851	5 i	24,	6	11	10(	187	10	1	9	15,	. 4
	ale	-	<b>A</b> 23			÷		• •	60	•			अन्धः व	, w	-4	-	<b>4</b> 2			90	<b>5</b> .	₽	49	*,)	1	<b>\$</b>	ţ	*	
(+A+8+C	1	231	17	ιż		1	48	101	1	4.	4 1		2021	11	1.	9	1	585	9 1	2.	6	Ł	16	207	46	ł	1	11.	. C
)	i	1600	10	114	•7	i	40	154	i.	37.	0 1	) :	478	i	13.	5	Í	2591	8 1	23,	1	1	97	00	99	i	8	19,	, C
	i se u	184:	~~~ 5.5	116		1	451	157		41.	4 (	,	16808	3	15.	4	1	2874	, i	26.	: :	11	104	• • 1 /	a ia i 45	1	10	20,	

													£	F	h (	÷ (	T	Ľ	٧Ŀ	N	٤	55	i	۷	Á١	(	ŧŁ.	8	(	P	٤I	¢¢	i k	Ņ	T	)												
54			-	-	-	,		ę.a	•				•	a		-	H	,	H	**		ę:	-		7	*		÷	e	•	w	¢	•	w		1	85	м	ł.	54	4	ę		444	-	44	•	٠
									ı.												t									1		95	1 %		сı	٩G	ŧF	10	Ŀ	N (	;Ł	1	Ň	Ŧŧ	:R	۷A	L	
		1	ЧJ	u.	ł۲				i.	Ł	٢	ł E	C	ľ	1	٧Ŀ	N.	£ (	95	3	Î.	4	i۲	A	N	) A	N	D		i	ş.	44		<b>4</b> /*	,					-	**	2		ęw,	نبو	ų	•	
L	A	t	L 6	.0	ł I	Ł	з		i.	-			v	Å	ĒΙ	JŁ					i	Ĺ	E	v	1	A T	1	ù	N	i				FI	ы	J۲	1			ł.				1(	J			
		<u>.</u>				445	ŝ	a 197				<b>,</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		40						• ••		ka 4		-				-	-		-	<b>.</b>	ه ا					<b>13 (</b> )	- 64	14 s	. 40	<b>1</b> 65 533			a ya	<b>a</b> 9		
	-						ه مه				-			-										-					<b>, 1</b>					-			• ===		. 45	** *						-	i sul	,
	к	*	A						ı.					4	. 1	u é					i.				7	. 7	8			4				ysi	н	. 4	54			1			1	7	. 1	7		
	ĸ	4	Δ4	я					i.					1		8 6					i				4	ູ່ເ	ιõ			1				**	ĝ.	į	4			i.			-	ŝ	5	4		
	ĸ	÷.			• ſ				2					â			,				i				4		ū			1					4		. a			i.				Ę,	د.	ų.		

			1	N.	JUI	4 Y	۲	κŲ	BA	81	LI	11	19	ļ	14	R	ն Ի.	NI	)												
w w w w a w	* 1	<b>مر ا</b> م	4		* •	w 1	4	Ð	*	10	4	•	80	ter e	69	**	**		•		w	٠	#	ц			-		-	44	
	1				Ľ	÷	υ	QU.	H			1					4	<b>8</b> 1	01	)UI	R				1						
INJUNY		-	54	-		-16	4	٠	-	-	- 4	• •	10	- 4		а	ș#I	<b>44</b>	*	415	*		(H	wit.	I						
CATEGURIES	1		ł	, H i	r.		I		ΡU	S (		1			۲ł	ł٢		1		1	۴ι	18	1		١			٧U	n,	A1.	
*******	~ ** w	***	64 A	• -		-	يو تو	~ ~	**	** **	-	****	***	. Get 14	• - •	u kap	w w	60 T.	ه ملكر و	-	<b>e</b> st (1	-	cə 40	69 <b>6</b>	4 (L# )	× #1.	ы н.	فقة مده	. 64	we	-cu
ا دې چې وې وې ده وي ده وي وې وې وې وې			40.			• • •	-	62 <b>4</b> 5		<b>6</b> 1 44	-	** **	20 20	₩ 4	-	63	مه الله	<b></b>	-	el un	<b>NO 1</b> 7		<del>ني</del> هو	94 4	4 50 <b>(</b>		<b>1</b> 0 10	အ မျာ	54 A	a, eo 4	ŧ.)
K + A	1		с.	, 9	3		Ł		5.*	04				٤		18		1			з,	,0,	2		1			2		31	
长中五十时	1		9	1	2		ŧ		7.	1 8	i	1		ċ		58		i i			6.	6	4		1			7		55	
K+A+8+C	1	1	0	. 4	5		1	1	٥.	64		- 1		10	(	60		1			9.	.8	4		4			1 1		nu	

#### SUMMARY UF FMVSS 207 EFFECTIVENESS STUDY USING 1973 TEXAS 65-71 Observed, Nut Adjusted Total Cases = 101844

					INJI	INA DISL	HIBUTI	UNS			
INJURY				- D(	00R	• • • • • •		4 - DOUR		1 ROW	 ROW
CATEGURY		PRE	1 %		PUST	%	PRE	X   PUST	1 %	I TOTAL I	PC1
K+A 8+C+0	1	421 15459	/ 0. /15,	4 1	860 41756	1 0,8 1	394 14975	0.4   535  14.7   27444	1 0.5	2210     99634	2.2 97.8
К+А+Ъ С+О	+	1552 1452a	1 1.	5   1	3132 39484	3.1    38.8	1299 14070	1.3   1842  13.8   26137	1 1.8	1 7825   1 94019	7.7 92.3
K+A+B+C U	"   	2160 13720	1 2. 113.	1   5	4656 37960	4.6    37.3	1825 13544	1.6   2842  13,3   25137	1 2.8	11483     90361	11.3 88.7
K+A+8+C+Q	1	14880	115.	6	42616	141.8 1	15369	115.1   27979	127.5	1101844	100.0

		τ.	- r L	CITAC	115.4	53	V A L	ULO	tre	RUD	, N	• •						
14 mil ad 15, au de	<b></b>			• •	<u> </u>	**	-	win des	-	95)		cāi	vF I	DEN	IC E	IN	TER	VA
INJURY	1	EFFFC	TIV	ENESS	1	ST	AND	ARD	1.		-	-	-	* *		-		
CATEGORIES		۷ 	ALU 	£ *****	•	UE	v I A	710N			F1	801 	****	ا • • • •			10	
 K+A	 1	*****	2,4	8		*	 	03		• • • •	• 1	7.	29	 	• •• •• •		2.3	4
K+A+B	1		3.3	5	1		4.	42	1		-	3.	90	1		1	0.6	1
K+A+8+C	1		6.0	3	1		.3.	51	1		i	0.1	85	1		1	1.7	8

	~ -		1110					ы. 				<b>`_</b>		
	1	-		2 -	00	มค					- C	900R	Ĩ.	
INJURY				* *	-	<b>.</b>		-	•	1 99 ga ga		• • • • • •	- !	
CATEBURIES	)		PRE		I	PU	31	1		PRE	ł	PUST	ł	TUTAL
		***			* •• ••						99 45 69 F		*****	
K+A		<del>۔ ۔ ۔</del> در	- 65		1	2.	02			2.56		1.91		2.17
K+A+H	i	4	.77		i	7.	15			8.45	i	6.58		7.68
******			140			10	91			4 1 4 7	÷	10 16	- 1	11 28

#### SUMMARY UF FOUSS 207 EFFELTIVENESS STEDY OSTNO 1974 TEXAS 65971 Observed, nut adjusted 1014L Cases = 85112

<b>up per en</b> en up	4		*	-	-	44	WG	**	94 14 <u>9</u>	-	*	-	-	-	•	*	<b>19</b>			•	<b>400</b> \$21	<b>8</b> 7	*0	••	• •		63 MP	•	44	-	•n2 (
	1				2	<b>M</b>	(I)	üΗ					1					4 -	• [	0	UR -				1				l		
<b>ENJURY</b>	1	<del>ч</del> н	• ~•	•	<b>P</b> *	-	•••	~			-	-	•	**	-	-		60 e		•	4 W	•2	•	۴.	- 1		RUV	Į			K ()
CATEGURY	1	e e e e	f.	1	×.		1	ρ. 	បទវ	Ì		X	1	۶ مست	'RE	<b>#</b> 14	1	×.			Pus	31	1	۲ 	1	- 40	101/	11., 1 (., w	<b>ا</b> سیسہ		PC
) ga: 44° 461 way to to to say to	* •• •		. <b>9</b> -1	a 44 61	- 14	-	<b>.</b>		***			- 400 444	** **	-	-			-			210 feb 500 50	ية <b>عن</b> د	- <b>5</b> 2 - 44	10 m	40 ta 54			- <b>c</b> a to	а сы н	u us 44	କ୍ଳ ଅଦ୍ୟ ଜ
(+A	1	2	152	1	U,	4	1		653		U	) <b>*</b> fi			29	0	1	0.	5		4(	)9	ł	0 B	5		167	5	0		g a
1+6+4	1	114	134	11	4.	0	1	35	111	. 1	42	: • U	١	11	90	ă.	11	4.1	0 1		6 298	39	14	8.	1 1		834	57	Ì	9	8.
*****	-	<b>8</b> 49	-	*	•	-14	φ	49	-	•	- 14	u u g	80	-	44	•9	94	**	* *	P	₩ \$	<b>\$</b>	<b>9</b> 73	<b>\$</b> 1	-	,	14 HP	57	Ч <b>7</b> 8	<b>6</b> 4	€a -
+A+15	1	11	80	4	۱.	4	1	Ş	831	1	3	1.5	1	1	15	3	1	1.	4 1		161	12	1	1.	9 1		67	16	1		8.
;+0	1	111	11	11	5.	Û	1	33	534	1	39	.4	1	11	04	Ű	11	3.(	0 1		5591	16	12	6.	7 1		7833	56	ł	9	2
		ي ن		-	٠	•	۳	<b>4</b> 27	ан аў			-		••	-	¢9	æ		M 4	•	44 Ga	ψ1	44	-	<del>1</del> 0 10		45 <b>6</b> 0	L3	5	**	<b>49</b>
+A+6+C	1	10	11	1	1,	4	ŧ	4	253	i 1	5		1	1	60	4	1	1.	9		254	40	1	5.	0 1		1001	28	1	1	10
) 		106	65	11	2.	5	!	35	111	. 1	31	•7	1	10	:58	9	11	2.4	4		2175	14	51	5.	6   		7508	34	<b> </b>	8	8
+A+6+C+0	1	lde	51	4.1	4.	a	1	36	364		42		ł	10	19	5	11	4.	3 1		2429	8	12	8.	5 1		851	2	í	10	Ó.

				ł	٢F	۲ł	: C	T J	( V I	: N	£ 5	5	۷	AL	,UI	F 9	1	(۲	ŧ١	₹C	E١	17	)										
	*	all .	-				a	pi t	4	**	<b>9</b> 4		RF .	φ.	-	•			ø	49		a	-	ę.,	•	69	٠	-	40		, ,	est.	<b>6</b> 4
	1										I.							ļ		95	X	С	Ú	NF	Å f	)k	N	ΞE	11	N T	'El	٩V	AL
INJUKA	1	Ł	٢ŀ	٤L	٦T	11	儿	NŁ	: 8 :	5	1	5	ΪA	NU	A	ND		ł		<b>9</b> 4		•	u#	*	•	a)	<b>69</b>	кø	<b>6</b> 2	ø	•		÷
CALEGUNTES	İ			۱	/ A	ι.	16				Ì	01	: ¥	I A	1	I DI	N -	Ì	-		۴	- K	0	4	-	** 65	1	-	107 AP (	1	0		ω.
		يب جو	40 m					<b>4</b> 93 4			-		• •	-		~ ~	- •	P 🛖	-	19 er	-up /r	-	-		4	ar Ar	φ.	***	-	يو هو	- 140 1		60 A
K+A	1				3	` ه	9				1			9,	8	3		1			<del>1</del> 1	10		93			1			19	•	51	
K + A + D	1			u إ	5	.4	12				1			5.	7	2		1			es é	24	•	B O			ł			* 6	(	04	
K+A+11+C	1			۲ ا	0		t u				۱.			4.	4.	8		1			<b>m</b> (	18		05			1		,	n T		36	

ç	alitic constraints (in the	INJUR	Y P	RUBAHIL	1111	9 (	PERC	ENT)	a da se de la companya de la companya de la companya de la companya de la companya de la companya de la company	n in the part of the second	<b>Charlestin</b> ister, der ^f eiteren der	نو <b>م</b> نانة:
****	<b>46 66 6</b>	a na an ta	-			-	49 <b>6</b> 4	64 FA	CH 63 54	NU NA 43	ور برو برو ا	
	1	2	• DI	0 <b>0</b> 8	1		4	1 @ U	ICUR	1		
LNJURY	1 =		10 W	an an an an	• [	** *	ويه ده ا	) <b>8</b> 4 63	ା ହୋଇଥିବା ସେ	е		
CALEGURIES	1	PHE	1.	PUST	l		PHE	t	POST	ł	i li tal	
				97 40 40 90 90 <b>90</b> 99	99 10 <b>2</b> 9 40		. eo 12 64 66	- 48 64 64 66		କ ଶ୍ୱ କ କ କ କ	自然の(ない)()()()()()()()()()()()()()()()()()()	₩ QI
**************					<b></b>	-	, 64 40 MP LL		دي بي جه جو _{ما} د	****		<b>د</b> ه ده
K + A	i i	2.04	1	1,80	- E	è	86.58	1	1,68	1	1.97	
* + A + H	1	4.61	1	7.74	1	4	.46	1	6,65	1	1.96	
K+A+13+C	1 1	13.51	1	11.70	- F	13	1.16	1	10,45	ł	11.78	
والمرود ويردون والانتقاف المستركب والمتقاف المرود	-	when the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		والمتحرية والمتجرب التروي والمتح		بر موجد وال	ANTI-MET.comb	-		والمنافرين والمتحدث	in the state of the second second second	4. 2:

-

APPENDIX D

CONFIDENCE LIMITS FOR A

DOUBLE RATIO OF PROBABILITIES
### 1. Objective

To estimate a confidence interval for

$$R = \frac{p_1}{p_2} : \frac{p_3}{p_4} = \frac{p_1 p_4}{p_2 p_3},$$
 (1)

where  $p_i = x_i/n_i$ , and the  $x_i$  are binomially distributed random variables. 2. Approach

We write

$$R = \frac{\pi_1 \pi_4}{\pi_2 \pi_3} \frac{(1+\epsilon_1)(1+\epsilon_4)}{(1+\epsilon_2)(1+\epsilon_3)},$$
(2)

where the  $\pi_i$  are the expected values of the  $p_i$ .

Then we study

$$r = \frac{(1+\epsilon_1)(1+\epsilon_4)}{(1+\epsilon_2)(1+\epsilon_3)}$$
(3)

by expanding the fraction in power series in  $\varepsilon_2$  and  $\varepsilon_3$ . These series expressions hold only if  $|\varepsilon| < 1$ ; that requires p to be restricted to the range  $0...2\pi$ , or x to the range  $0...2\pi\pi$ . Since  $\sigma(x) = \sqrt{n\pi(1-\pi)}$ , this is a  $\pm 2\sigma$  range for  $n\pi = 4(1-\pi)$ . Since  $n\pi = m$  is usually much larger than 4, the restriction is violated only by a minimal fraction of all cases. We calculate the first four moments of r to various degrees of approximation and compare them. Finally, we will explore by numerical examples how large the data base from which r is estimated has to be in order to use the simple approximation.

## 3. Some Basic Formulas

·· ,

The  $\varepsilon$  are implicitly defined as:

$$\varepsilon = \frac{p - \pi}{\pi} \,. \tag{4}$$

Since p = x/n

$$\varepsilon = \frac{Y - n\pi}{n \pi} . \tag{5}$$

Therefore, for the central moments the relation

$$\mu_{i}(\varepsilon) = \frac{\mu_{i}(\mathbf{x})}{(n\pi)^{i}}$$
(6)

holds. Since x was assumed to be binomially distributed,

$$\mu_{1}(\mathbf{x}) = 0$$

$$\mu_{2}(\mathbf{x}) = n\pi(1-\pi)$$

$$\mu_{3}(\mathbf{x}) = n\pi(1-\pi)(1-2\pi)$$

$$\mu_{4}(\mathbf{x}) = 3n^{2}\pi^{2}(1-\pi)^{2} + n\pi(1-\pi)(1-6\pi(1-\pi)),$$
(7)

therefore

$$\mu_{1}(\varepsilon) = 0$$

$$\mu_{2}(\varepsilon) = \frac{1-\pi}{n \pi}$$

$$\mu_{3}(\varepsilon) = \frac{(1-\pi)(1-2\pi)}{(n\pi)^{2}}$$

$$\mu_{4}(\varepsilon) = \frac{3(1-\pi)^{2}}{(n\pi)^{2}} + \frac{(1-\pi)(1-6\pi(1-\pi))}{(n\pi)^{3}}$$
(8)

...

Introducing the number of "successes" (or injuries in our context)  $m = n\pi$ , and assuming  $\pi$  to be negligibly small relative to 1, one obtains the approximation

$$\mu_{2}(\varepsilon) \approx \frac{1}{m}$$

$$\mu_{3}(\varepsilon) \approx \frac{1}{m^{2}}$$

$$\mu_{4}(\varepsilon) \approx \frac{3}{m^{2}} + \frac{1}{m^{3}}$$
(9)

Later we will use t = 1/m to simplify the writing of the formulas. To calculate powers of r, we need

$$(1+\varepsilon)^{2} = 1 + 2\varepsilon + \varepsilon^{2}$$

$$(1+\varepsilon)^{3} = 1 + 3\varepsilon + 3\varepsilon^{2} + \varepsilon^{3}$$

$$(10)$$

$$(1+\varepsilon)^{4} = 1 + 4\varepsilon + 6\varepsilon^{2} + 4\varepsilon^{3} + \varepsilon^{4}$$

~

and

,

· · ·

$$\frac{1}{1+\epsilon} = 1-\epsilon +\epsilon^{2} -\epsilon^{3} +\epsilon^{4} \dots$$

$$\left(\frac{1}{1+\epsilon}\right)^{2} = 1-2\epsilon+3\epsilon^{2} -4\epsilon^{3} + 5\epsilon^{4} \dots$$

$$\left(\frac{1}{1+\epsilon}\right)^{3} = 1 - 3\epsilon + 6\epsilon^{2} - 10\epsilon^{3} + 15\epsilon^{4} \dots$$

$$\left(\frac{1}{1+\epsilon}\right)^{4} = 1 - 4\epsilon + 10\epsilon^{2} - 20\epsilon^{3} + 35\epsilon^{4} \dots$$
(11)

Taking expectations, one obtains

$$E(1+\epsilon) = 1$$

$$E(1+\epsilon)^{2} = 1 + \mu_{2}$$

$$E(1+\epsilon)^{3} = 1 + 3\mu_{2} + \mu_{3}$$

$$E(1+\epsilon)^{4} = 1 + 6\mu_{2} + 4\mu_{3} + \mu_{4}$$
(12)

and

$$E\left(\frac{1}{1+\epsilon}\right) = 1 + \mu_{2} - \mu_{3} + \mu_{4} \cdots$$

$$E\left(\frac{1}{1+\epsilon}\right)^{2} = 1 + 3\mu_{2} - 4\mu_{3} + 5\mu_{4}\cdots$$

$$E\left(\frac{1}{1+\epsilon}\right)^{3} = 1 + 6\mu_{2} - 10\mu_{3} + 15\mu_{4}\cdots$$

$$E\left(\frac{1}{1+\epsilon}\right)^{4} = 1 + 10\mu_{2} - 20\mu_{3} + 35\mu_{4}\cdots$$
(13)

If we substitute the approximations (9) and use t = 1/m, we obtain

$$E(1+\epsilon)^{2} \approx a_{2} = 1+t$$

$$E(1+\epsilon)^{3} \approx a_{3} = 1 + 3t + t^{2}$$

$$E(1+\epsilon)^{4} \approx a_{4} = 1 + 6t + 7t^{2} + t^{3}$$
(14)

and

$$E\left(\frac{1}{1+\epsilon}\right) \approx b_{1} = 1 + t + 2t^{2} + t^{3}$$

$$E\left(\frac{1}{1+\epsilon}\right)^{2} \approx b_{2} = 1 + 3t + 11t^{2} + 5t^{3}$$

$$E\left(\frac{1}{1+\epsilon}\right)^{3} \approx b_{3} = 1 + 6t + 35t^{2} + 15t^{3}$$

$$E\left(\frac{1}{1+\epsilon}\right)^{4} \approx b_{4} = 1 + 10t + 85t^{2} + 35t^{3}$$
(15)

We will later also need  $b_1^2$ ,  $b_1^3$ , and  $b_1^4$  and  $a_2^2$ . The approximations up to  $t^3$  are:

$$a_{2}^{2} = 1 + 2t + t^{2}$$

$$b_{1}^{2} = 1 + 2t + 5t^{2} + 6t^{3}$$

$$b_{1}^{3} = 1 + 3t + 9t^{2} + 16t^{3}$$

$$b_{1}^{4} = 1 + 4t + 14t^{2} + 32t^{3}$$
(16)

We also will use that for independent random variables x and y

$$E(xy) = E(x)E(y)$$
(17)

holds.

Finally, we will use the following relations between the central moments  $\mu_j$  and non-central moments  $\mu_i$  :

$$\mu_{2} = \mu_{2}' - (\mu_{1}')^{2}$$

$$\mu_{3} = \mu_{3}' - 3\mu_{1}'\mu_{2}' + 2(\mu_{1}')^{3}$$

$$\mu_{4} = \mu_{4}' - 4\mu_{1}'\mu_{3}' + 6(\mu_{1}')^{2}\mu_{2}' - 3(\mu_{1}')^{4}$$

$$(18)$$

### 4. The First Moment

### 4.1 Approximation Using Linear Terms Only

If one expands r, considering only the linear terms, one obtains

$$\mathbf{r} = 1 + \varepsilon_1 + \varepsilon_2 - \varepsilon_2 - \varepsilon_3 \tag{19}$$

and therefore

$$E(\mathbf{r}) = 1. \tag{20}$$

4.2 Approximation Using Terms up to the Second Order

An expansion up to second order terms is

$$\mathbf{r} = (1+\varepsilon_1)(1+\varepsilon_4)(1-\varepsilon_2+\varepsilon_2^2)(1-\varepsilon_3+\varepsilon_3^2)$$

$$= 1 + \varepsilon_1+\varepsilon_4-\varepsilon_2-\varepsilon_3+\varepsilon_1\varepsilon_4-\varepsilon_1\varepsilon_2-\varepsilon_1\varepsilon_3-\varepsilon_4\varepsilon_2-\varepsilon_4\varepsilon_3+\varepsilon_2\varepsilon_3+\varepsilon_2^2+\varepsilon_3^2.$$
(21)

Because independence between the  $\varepsilon_{i}$  was assumed, this gives

$$E(r) = 1 + \mu_2 (\epsilon_2) + \mu_2 (\epsilon_3).$$
 (22)

This shows that the expected value of R is greater than  $(p_1/p_2)/(p_3/p_4)$ ; therefore using this as an estimator for R overestimates the effectiveness 1-R. To assess the magnitude of this bias, we use the approximation (9) and obtain:

$$E(r) \approx 1 + \frac{1}{m_2} + \frac{1}{m_3}$$
 (23)

For the situation where each of the four p's is calculated from 20 injuries,

 $E(r) \approx 1.1$ ,

for the situation where each is based on 100 injuries,

 $E(r) \approx 1.02$ .

These biases may appear small. However, if e.g., R = 0.95, was estimated, in the first case the true expected value would be R' = 1.04, and instead of an effectiveness 1-0.95 = 0.05, 1-1.04 = -0.04 should be used in the first case: this means that the expected effect is approximately the opposite of what one would expect from the biased estimate. In the second case R' = 0.97 is the unbiased expected value and the effectiveness should be 0.03 instead of 0.05, a reduction by 40%!

## 4.3 Approximation Using Terms up to the Third Order

Using equation (17), we obtain

$$E(\mathbf{r}) = E(1+\varepsilon_1)E(1+\varepsilon_4)E(\frac{1}{1+\varepsilon_2}) E(\frac{1}{1+\varepsilon_3}), \qquad (24)$$

and from (12) and (15)

$$E(r) = (1+t_2+2t_2^2+t_2^3)(1+t_3+2t_3^2+t_3^3)$$
(25)  
=  $1+t_2+t_3+2t_2^2+t_2t_3+2t_3^2+t_2^3+2t_2^2t_3+2t_2t_3^2+t_3^3$ ,

retaining only terms up to the third order. To make estimates of the order of magnitude of the higher order terms, we assume  $t_2 = t_3 = T$  and obtain

$$E(\mathbf{r}) = 1+2T + 5T^{2}+6T^{3}$$

$$= 1 + 2T(1+\frac{5}{2}T + 3T^{2})$$
(26)

For the first case discussed in 4.2, m = 20, T = 0.05, one obtains E(r) = 1.11, compared with 1.1 in Section 4.3. Whether this difference is important depends on how large R is. For the second case, m = 100, T = 0.01, the effect is to increase E(r) from 1.02 to 1.0205, which is negligible.

# 5. The Second Moment

5.1 Approximation Using Linear Terms Only

Using (12), (13) and (17), we obtain

$$E(r^{2}) = (1+\mu_{2}(\varepsilon_{1}))(1+\mu_{2}(\varepsilon_{4}))(1+3\mu_{2}(\varepsilon_{2}))(1+3\mu_{2}(\varepsilon_{3}))$$

$$= 1 + \mu_{2}(\varepsilon_{1}) + \mu_{2}(\varepsilon_{4}) + 3\mu_{2}(\varepsilon_{2}) + 3\mu_{2}(\varepsilon_{3}),$$
(27)

when only first order terms in the  $\mu_2$  are retained. In order to calculate  $\mu_2(r)$ , we use (18) which requires  $(\mu_1'(r))^2$ .

$$\mu_{1}'(\mathbf{r}) = (1 + \mu_{2}(\varepsilon_{2})) (1 + \mu_{2}(\varepsilon_{3})) \text{ and}$$
(28)

$$(\mu_1'(\mathbf{r}))^2 = 1 + 2\mu_2(\varepsilon_2) + 2\mu_2(\varepsilon_3),$$
 (29)

retaining only the first order terms in the  $\mu_2$ . Combining (27) and (29) according to (18) gives

$$\mu_{2}(\mathbf{r}) = \mu_{2}(\varepsilon_{1}) + \mu_{2}(\varepsilon_{2}) + \mu_{2}(\varepsilon_{3}) + \mu_{2}(\varepsilon_{4}); \qquad (30)$$

the variance of the double ratio is the sum of the variances of the four factors.

#### 5.2 Approximation Using Terms up to the Third Order

For this approximation we immediately use the approximations (15) and (16). First we have

$$\begin{split} \mu_{2}'(\mathbf{r}) &= \mathbb{E}(\mathbf{r}^{2}) = \mathbb{E}(1+\epsilon_{1})^{2} \mathbb{E}(1+\epsilon_{4})^{2} \mathbb{E}(\frac{1}{1+\epsilon_{2}})^{2} \mathbb{E}(\frac{1}{1+\epsilon_{3}})^{2} \\ &= (1+t_{1})(1+t_{4})(1+3t_{2}+1)t_{2}^{2}+5t_{2}^{3})(1+3t_{3}+1)t_{3}^{2}+5t_{3}^{3}) \\ &= (1+t_{1}+t_{4}+t_{1}t_{4})(1+3t_{2}+3t_{3}+1)t_{2}^{2}+9t_{2}t_{3}+1)t_{3}^{2}+5t_{2}^{3}+33t_{2}^{2}t_{3}+33t_{2}t_{3}^{2}+5t_{3}^{2}) \\ &= 1+3t_{2}+3t_{3}+1)t_{2}^{2}+9t_{2}t_{3}+1)t_{3}^{2}+5t_{2}^{3}+33t_{2}^{2}t_{3}^{2}+5t_{3}^{2} \\ &= 1+3t_{2}+3t_{3}+1)t_{2}^{2}+9t_{2}t_{3}+1)t_{3}^{2}+5t_{2}^{3}+33t_{2}^{2}t_{3}^{2}+5t_{3}^{2} \end{split}$$
(31)  
$$&= (1+t_{1}+t_{4})(1+3t_{2}+3t_{3}+1)t_{2}^{2}+9t_{2}t_{3}^{2}+1)t_{3}^{2}+5t_{2}^{3}+33t_{2}^{2}t_{3}^{2}+5t_{3}^{2} \end{cases}$$
(31)

if one retains only terms up to the third order. Since

$$\mu_{1}' = b_{1}(\varepsilon_{2})b_{1}(\varepsilon_{3})$$
(32)

(16) gives

$$(\mu_{1}')^{2} = (1+2t_{2}+5t_{2}^{2}+6t_{2}^{3})(1+2t_{3}+5t_{3}^{2}+6t_{3}^{3})$$

$$= 1 + 2t_{2}+2t_{3}+5t_{2}^{2}+4t_{2}t_{3}+5t_{3}^{2}+6t_{2}^{3}+10t_{2}^{2}t_{3}^{2}+10t_{2}t_{3}^{2}+6t_{3}^{3}$$
(33)

retaining only terms up to the third order. Combining (31) and (33) according to (18) gives

$$\mu_{2} = t_{1} + t_{2} + t_{3} + t_{4}$$

$$+6t_{2}^{2} + 5t_{2}t_{3} + 6t_{3}^{2} - t_{2}^{3} + 23t_{3}^{2}t_{3} + 23t_{2}t_{3}^{2} - t_{3}^{3}$$

$$+(t_{1} + t_{4})(3t_{2} + 3t_{3} + 11t_{2}^{2} + 9t_{2}t_{3} + 11t_{3}^{2})$$

$$+t_{1}t_{4}(1 + 3t_{2} + 3t_{3}).$$
(34)

The linear terms correspond to the sum of the four  $\mu_2(\varepsilon_i)$ . The higher order terms are impracticably complicated to be used. Therefore, we use again the special case where all  $t_i = T$  and obtain:

$$\mu_{2}(\mathbf{r}) = 4\mathbf{T} + 30\mathbf{T}^{2} + 112\mathbf{T}^{3}$$

$$= 4\mathbf{T} (1 + \frac{1.5}{2}\mathbf{T}^{m} + 23\mathbf{T}^{2})$$

$$= 4\mathbf{T}\mathbf{f}$$
(35)

Since 4T corresponds to the linear terms of  $\mu_2(r)$ , f is the factor by which it has to be increased. For m = 20,one has f = 1.43, and for m = 100, one has f = 1.08, for m = 500, f = 1.015. Thus, for m = 20, the higher terms are not negligible; for 100 they will usually be so, whereas for 500 they are practically always negligible. 6. The Third Moment

(18) gives for the third moment

$$\mu_{3} = \mu_{3}' - 3(\mu_{1}'\mu_{2}') + 2(\mu_{1}')^{3}$$
(36)

Using directly (14), (15) and (16) and substituting one T for the  ${\rm t_i},$  we obtain

$$\mu_{3}'(\mathbf{r}) = (1+3T+T^{2})^{2}(1+6T+35T^{2}+15T^{3})^{2}$$
  
= (1+6T+11T^{2}+6T^{3})(1+12T+106T^{2}+450T^{3})  
= 1 + 18T+189T^{2}+1224T^{3} (37)

omitting all terms of higher than third order. Combining

$$\mu_{2}'(r) = (1+T)^{2}(1+3T+11T^{2}+5T^{3})^{2}$$

$$= 1 + 8T + 44T^{2} + 144T^{3}$$
(38)

~

with (26) gives

$$\mu_{1}'(r)\mu_{2}'(r) = (1+2T+5T^{2}+6T^{3})(1+8T+44T^{2}+144T^{3})$$

$$= 1 + 10T + 65T^{2} + 278T^{3}$$
(39)

up to terms of the third order.

Finally, we need

$$(\mu_1')^3 = [1+2T+5T^2+6T^3]^3$$
 (40)

according to (26). This gives

$$(\mu_1')^3 = 1 + 6T + 27T^2 + 86T^3$$
 (41)

again omitting terms of higher than third order. Combining (37), (39) and (41) according to (36) gives

$$\mu_3 = 48T^2 + 562 T^3.$$
 (42)

Since  $\mu_3$  is not easily interpretable, we will use it only for the Gram-Charlier series expension to be performed later.

7. The Fourth Moment

$$\mu_{4} = \mu_{4}' - 4(\mu_{1}'\mu_{3}') + (6(\mu_{1}')^{2}\mu_{2}') - 3(\mu_{1}')^{4}.$$
(43)

$$\mu_{4}' = E(r^{4}) = E(1+\epsilon_{1})^{4}E(1+\epsilon_{4})^{4}E(\frac{1}{1+\epsilon_{2}})^{4}E(\frac{1}{1+\epsilon_{3}})^{4}.$$
(44)

Using (14) and (15) this becomes:

$$\mu_{4}' = (1+6T+7T^{2}+T^{3})^{2} (1+10T+85T^{2}+35T^{3})^{2}$$
  
= (1+12T+50T^{2}+86T^{3}) (1+20T+270T^{2}+1770T^{3}) (45)  
= 1 + 32T + 560T^{2} + 6096T^{3}

if omitting terms of higher than third order. Combining (26) and (37) gives

$$\mu_{1}'(\mathbf{r})\mu_{3}'(\mathbf{r}) = (1+2T+5T^{2}+6T^{3})(1+18T+189T^{2}+1224T^{3})$$

$$= 1 + 20T + 230T^{2} + 1698T^{3}$$
(46)

Combining the simplified versions of (31) and (33) gives

$$(\mu_{1}'(\mathbf{r}))^{2}\mu_{2}'(\mathbf{r}) = (1+4T+14T^{2}+32T^{3})(1+8T+44T^{2}+144T^{3})$$
  
= 1 + 12T + 90T² + 464T³. (47)

Finally, by squaring (33) we obtain

$$(\mu_{1}')^{4} = (1 + 4T + 14T^{2} + 32T^{3})^{2}$$

$$= 1 + 8T + 44T^{2} + 176T^{3}.$$
(48)

Combining (45), (46), (47) and (48) according to (43), we obtain

$$\mu_{4} = 1 + 32T + 560T^{2} + 6096T^{3}$$

$$-4 (1+20T+230T^{2}+1698T^{3})$$

$$+6 (1+12T+90T^{2}+464T^{3})$$

$$-3 (1+8T+44T^{2}+176T^{3})$$

$$= 48T^{2} + 1560T^{3}.$$
(49)

Since  $\mu_2 = 4T+...$ , the excess or curtosis  $\mu^4/\mu_2^2$  approaches 3 for small values of T; this is the value for the normal distribution.

# 8. Gram-Charlier Series Expansion

## 8.1 Basic Formulas

A probability density function f(x) can be expanded into a series

$$f(x) = \phi(x) \left(1 + \frac{\mu_3^*}{6}H_3(x) + \frac{\mu_4^*-3}{24}H_4(x) + \ldots\right),$$
 (50)

where it is assumed that x is transformed to have mean zero and variance 1;  $\mu_3^*$  and  $\mu_4^*$  are the correspondingly transformed third and fourth moments.  $H_4(x)$  are the Hermite polynomials

$$H_{2}(x) = x^{2}-1$$

$$H_{3}(x) = x^{3}-3x$$

$$H_{4}(x) = x^{4}-6x^{2}+3$$
(51)

 $\phi(\mathbf{x})$  is the normal probability density.

The cumulative probability function can be expressed as

$$F(\mathbf{x}) = \phi(\mathbf{x}) - \phi(\mathbf{x}) \left( \frac{\mu_3}{6} H_2(\mathbf{x}) + \frac{\mu_4^{*-3}}{24} H_3(F) + \dots \right)$$
(52)

where  $\Phi(\mathbf{x})$  is the cumulative normal probability distribution.

In standard texts I found no remainder terms indicating how accurately a finite series using only a few terms of the infinite series approximates the true distribution.

### 8.2 Numerical Examples

### 8.2.1 m = 20

If we assume that all four  $p_i$  are estimated from 20 injury cases, and that the injury probability is small, we obtain:

First two moments (using linear terms only):

$$\mu_{1} = 1$$
(53)  
$$\mu_{2} = \frac{4}{20} = 0.2$$

First two moments (using terms up to the third order):

$$\mu_{1}' = 1 + \frac{2}{20} + \frac{5}{20^{2}} + \frac{6}{20^{3}} = 1.113$$

$$\mu_{2} = \frac{4}{20} + \frac{30}{20^{2}} + \frac{112}{20^{3}} = 0.289$$
(54)

First four moments (using terms up to the third order):

$$\mu_{1}' = 1.113$$

$$\mu_{2} = 0.289$$

$$\mu_{3} = 0.190$$

$$\mu_{3}^{*} = \mu_{3}/\mu_{2}^{*} = 1.223$$

$$\mu_{4} = 0.315$$

$$\mu_{4}^{*} = \mu_{4}/\mu_{2}^{2} = 3.772$$
(55)

Figure 1 shows the two tails of the cumulative distribution of r. The approximation of the first four moments was calculated from the Gram-Charlier series. It is presumably the closest approximation to the "true" distribution of r. The lower and upper 5th percentiles are at r = 0.37 and r = 2.26The approximation of the first two moments using terms up to the third order is based upon a normal distribution with the "true" mean and variance; the lower and upper 5th percentiles are 0.26 and 2.00

The approximation of the first two moments using linear terms only is based upon a normal distribution with mean 1 and variance =  $\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 + \varepsilon_4^2$ . It has the lower and upper fifth percentiles 0.22 and 1.74.

Both of the latter two approximations are unsatisfactory since the effectiveness is 1-R; using one of them may result in accepting an effect as significant which is with a fairly high probability due to chance. r = 2.04 would be considered significant at the 99% level, whereas it is only 92.5% significant with the "true" distribution.

#### 8.2.2 m = 100

The corresponding results are:

First two moments (using linear terms only):

$$\mu_{1}' = 1$$

$$\mu_{2}^{2} = \frac{4}{100} = 0.04$$
(56)

First two moments (using terms up to the third order):

$$\mu_{1}' = 1 + \frac{2}{100} + \frac{5}{100^{2}} + \frac{6}{100^{3}} = 1.021$$

$$\mu_{2} = \frac{4}{100} + \frac{30}{100^{2}} + \frac{112}{100^{3}} = 0.0431$$
(57)





First four moments (using terms up to the third order):

$$\mu_{1}^{*} = 1.021.$$

$$\mu_{2} = 0.0431.$$

$$\mu_{3} = 0.00536 \quad \mu_{3}^{*} = \mu_{3}/\mu_{2}^{*} = 0.599$$

$$\mu_{4} = 0.00636 \quad = \mu_{4}^{*} = \mu_{4}/\mu_{2}^{2} = 3.424$$
(58)

Figure 2 shows the tails of the corresponding distribution. Here, at the left tail, the differences between the three distributions are negligible. At the right tail, the difference between the approximations of the first four and the first two moments (using terms up to the third order) is negligible; the difference between them and the approximation of the first two moments using linear terms only may just be important in some cases.

### 8.3 Approximate Estimation of Confidence Limits

To calculate the entire distribution or part of it to determine for which x',  $F(x') = 1-\alpha$  holds is relatively time-consuming. An approximation may be sufficient. We write

$$F(x) = F(x_{o}) + F'(x_{o}) (x - x_{o})$$
(59)

We now chose  $x_0$  so that  $\phi(x_0) = 1-\alpha$ ,  $x_0$  is the derived confidence limit for the normal distribution. We define x' as the confidence limit for the studied distribution:  $F(x') = 1-\alpha$ . Then we have

$$x' - x_{o} = \frac{1 - \alpha - F(x_{o})}{F'(x_{o})}.$$
 (60)

(52) gives

$$F(x_{o}) = \phi(x_{o}) - \phi(x_{o}) \left(\frac{\mu_{3}}{6} H_{2}(x_{o}) + \frac{\mu_{4}^{*-3}}{24} H_{2}(x_{o})\right)$$
  
=  $1 - \alpha - \phi(x_{o}) \left(\frac{\mu_{3}}{6} H_{2}(x_{o}) + \frac{\mu_{4-3}}{24} H_{3}(x_{o})\right)$  (61)



Figure 2. Two tails of the cumulative distribution of r(m=100).

Since F'(x) = f(x), we can combine (60), (61) and (50) and obtain

$$\mathbf{x'-x}_{0} = \frac{\frac{\mu_{3}}{6} H_{2}(\mathbf{x}_{0}) + \frac{\mu_{4}^{*}-3}{24} H_{3}(\mathbf{x}_{0})}{\frac{\mu_{3}}{1 + \frac{\mu_{3}}{6}} H_{3}(\mathbf{x}_{0}) + \frac{\mu_{4}^{*}-3}{24} H_{4}(\mathbf{x}_{0})}$$
(62)

If we use  $\alpha = 0.05$  as an example,  $x_0 = 1.64$ , and we have  $H_2(x_0) = 1.690$ ,

$$H_3(x_0) = -0.509, H_4(x_0) = -5.904.$$
 Therefore,

$$\mathbf{x}' - 1.64 = \frac{0.282\mu_3^* - 0.021(\mu_4^* - 3)}{1 - 0.085\mu_3^* - 0.246(\mu_4^* - 3).}$$
(63)

Thus, one can calculate the approximate upper 95% confidence limit for any distribution, where the  $\mu_3^*$  (skewness) and  $\mu_4^*$  (excess, curtosis) are given.

# 9. Conclusions and Recommendations

The numerical examples suggest that for m > 100 one can use the normal approximation, preferably corrected for the bias in  $\overline{r}$ ; but for m > 400 or 500, this is definitely not necessary.

For m = 20 the normal approximation, even if corrected for bias and with an inflated  $\varepsilon$ , is definitely inadequate. Somewhere between 20 and 100 is an m where it becomes sufficient to correct r and inflate  $\varepsilon$ . The approximations were derived for "small" values of the  $\pi_i$ . That means that the p_i have highly skewed distributions. For larger  $\pi_i$  the distributions are less skewed; for  $\pi_i \approx 0.5$  they are symmetric. Therefore, one can expect that the normal approximations will be sufficient for smaller values of m than suggested above, if the  $\pi_i$  are not small. For small values of m one should proceed as follows:

- 1) Calculate  $\mu_{i}(\epsilon_{j})$ 2) Calculate  $E(\frac{1}{1+\epsilon_{j}})$
- 3) Calculate E(r^k)
- 4) Calculate  $\mu_k(\mathbf{r})$
- 5) Calculate  $\mu_3^*(\vec{r})$  and  $\mu_4^*(r)$
- 6) Apply equation (62) for the desired  $\alpha$

Elaboration

1) Calculate  $\mu_i(\epsilon_j)$ i = order of moment, j index of  $p_j$  in  $\frac{p_1}{p_2} : \frac{p_3}{p_4}$ 

Formulae (8) do this

- 2) Calculate E  $(\frac{1}{1+\epsilon_j})^k$ ; E  $(1+\epsilon_j)$ . Assume that only the second order approximation will be used: k = 1, 2.
- $E\left(\frac{1}{1+\epsilon_{j}}\right) = 1 + \mu_{2}(\epsilon_{j}) \mu_{3}(\epsilon_{j}) + \mu_{4}(\epsilon_{j})$   $E\left(\frac{1}{1+\epsilon_{j}}\right)^{2} = 1 + 3\mu_{2}(\epsilon_{j}) 4\mu_{3}(\epsilon_{j}) + 5\mu_{4}(\epsilon_{j})$   $E\left(1+\epsilon_{j}\right) = 1$   $E\left(1+\epsilon_{j}\right)^{2} = 1 + \mu_{2}(\epsilon_{j})$ 3) Calculate  $E(r^{k}) = E(1+\epsilon_{1})^{k} E(1+\epsilon_{4})^{k} E\left(\frac{1}{1+\epsilon_{2}}\right)^{k} E\left(\frac{1}{1+\epsilon_{3}}\right)^{k}$
- 4) Calculate  $\mu_2(r)$ . Use formula (18).

Calculate  $\mu_{k}$  (**R**) =  $(\frac{\pi_{1}}{\pi_{2}}:\frac{\pi_{3}}{\pi_{4}})^{k} \mu_{k}(\mathbf{r})$ 

Calculate 
$$\mu'_{k}$$
 (R) =  $(\frac{\pi_{1}}{\pi_{2}}:\frac{\pi_{3}}{\pi_{4}})$   $\mu'_{k}$  (r)

- 5) Omit for this level approximation.
- 6) For  $m_j > 100$ , use a normal distribution with  $\mu_1^{\prime}(R)$  and  $\mu_2^{\prime}(R)$