STATISTICAL EVALUATION OF THE EFFECTIVENESS OF CHILD RESTRAINTS

Report No. 4 of 7

Jim C. Knoop Kayla Costenoble John T. Ball Gaylord M. Northrop

The Center for the Environment and Man, Inc. 275 Windsor Street Hartford, Connecticut 06120

Contract No. DOT HS-8-02014 Contract Amt. \$581,905

SEPTEMBER 1980 FINAL REPORT

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared For U.S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Washington, D.C. 20590 This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

. .

.

CONTRACT TECHNICAL MANAGER'S ADDENDUM

Prepared for the National Highway Traffic Safety Administration in support of a program to review existing regulations, as required by Executive Order 12044 and Department of Transportation Order 2100.5. Agency staff will perform and publish an official evaluation of Federal Motor Vehicle Safety Standard 213 based on the findings of this report as well as other information sources. The values of effectiveness and benefits found in this report may be different from those that will appear in the official Agency evaluation.

Technical Report Documentation Page

1. Report No.	2. Government Acce	ssion No.	3. Recipient's Catalog	No.			
DOT-HS-805-660							
4. Title and Subtitle	in a second de la companya de la com A companya de la comp		5. Report Date				
STATISTICAL	EVALUATION OF		Sept	ember 1980			
THE EFF	ECTIVENESS		6. Performing Organiza	tion Code			
OF CHILD	Restraints						
		an in the second s	8. Performing Organizat	ion Report No.			
"Author's" Jim C. Knoop	John T. B	all	4254-675	,			
Kayla Costenoble	Gaylord M	. Northrop	7207 070	б Хумбаруунун маналарын арагын арары артар (ул 1960), 4 то бай бай сарар ар			
9. Performing Organization Name and Addres	7. Performing Organization Name and Address						
THE LENTER FOR THE ENV	THE LENTER FOR THE ENVIRONMENT AND MAN, INC.						
275 Winds	or Street		DOT_HS_9	₀. !∩2∩1⊿			
Hartford, Conn	ecticut 06120)					
12 Same Access None and Address	2 Compared Address						
U.S. Department of Tra	nsportation		Time 1 De				
National Highway Traff	National Highway Traffic Safety Administration						
400 Seventh Street, S.I	Μ.		14. Sponsoring Agency (Zode			
Washington, D.C. 2059	D						
15. Supplementary Notes	nen en ante a constant de la constan	na ha general ta na seconda da Canto da Canana da C	Connections and the second Harry constitute in the connection of the constitute of the constitute of the const				
16 Abstract		۵٬۹۳ - ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲	n an				
This is the Final Report for the stat	istical evaluation of	the effectiveness of	child restraint systems,	which are			
conducted by Federal Motor Vehicle Sa conducted under this contract. The s	fety Standard (FMVSS) even Standards are:	213. It is one of se	even statistical evaluati	ions to be			
1. FMVSS 108: Side Marker Lamps	(only) 4.	FMVSS 213: Child Se	ating Systems				
2. FMVSS 202: Head Restraints 3. FMVSS 207: Seat Back Locks (5. 5.	FMVSS 214: Side Doo	r Beams	+			
J. THUS LOT. SERE BACK LOCKS (7.	FMVSS 301: Fuel Sys	tem Integrity	Let t Ton			
FMVSS 213 is a death-and-injury reduct	ion Standard which m	andates static tests,	labeling, and other requ	irements			
proposed revisions.	it meet. The Standar	d became effective Apr	11 1, 1971. Action is p	ending on			
The objective of the analysis is to de	termine the overall	effectiveness of child	restraints when used, r	ather than to			
evaluate FMVSS 213 in particular. Th	is required an analys	is of subsets of mass	accident data involving	4 year old and			
were based on 21,837 cases in New York	(1974, 1977), 6,738	cases in New Jersey (age in passenger cars. 1975) and 3,766 cases in	Idaho (1976-			
1978). Contingency table data were su	bjected to log-linea	r modeling and adjustm	ent to minimize potentia	l confounding			
belts, and unrestrained children.	mjuly faces betwee	i children using child	rescrutints, children us	ing seat-			
The results clearly show that accident	-involved children r	estrained by either ch	ild restraints or seatbe	lts sustain sig-			
nificantly fewer injuries than unrestr	ained children. In	the largest sample, Ne	w York, child restraint	usage results in			
In New York, the overall effectiveness	values for child re	straint use and seatbe	It use are about the sam	e for KABC injuries,			
although for KAB and KA injuries, seat	belt effectiveness v	alues are 1.5 to 2 tim	es higher than child res	traint effectiveness			
for child restraint use. Differences b	etween child restrai	nt and seatbelt effect	iveness values, however,	are statistically			
significant only for the New Jersey sa	mple.						
On a nationwide basis, if 100 percent	usage of child seats	were assumed, about 1 r. These figures most	2,000 injuries and 150 f likely underestimate th	atalities e potential			
reduction in both the frequency and se	everity of injuries t	p be gained from the p	roper use of FMVSS 213 c	hild			
restraints, since the computed effecti	veness values are ba	sed on child seats whi	ch may not have met FMVS	s 213			
17. Key Words		18. Distribution States	nent	na fanala da sa kafar kafar kafar sa ya sa			
FMVSS 213: Child Restraint	S	Document i	s available to t	he II S white			
Statistical Analysis. Seat	through +h	e National Techn	ical				
Mass Accident Data Analysis	Informatio	n Service. Sprin	efield.				
York, New Jersey, Idaho.	Virginia	22161					
Accidents Involving Childre	n 0-4 Years O	ld					
19. Socurity Classif. (of this report)	20. Security Class	sif. (of this page)	21. No. of Poges	22. Price			
linclassified	line	lacsified	166				
UNUTUD IT ICU		lussiileu					
Form DOT F 1700.7 (8-72)				the second second second second second			

1

METRIC CONVERSION FACTORS

	Assessingle Can	ersinas ta Matric	Messures		a	Appreximate Canve	rsions from Moto	is Measures	
	White Transis Court				Si Symbol	When You Know	Multiply by	To find	Symbol
iet	Whon Yes Know	Multiply by	To Find	Symbol	a		LENGTH		
		LENGTH			Å	millimators	8.84	anches inches	ie: ie:
		and the second design of the s			, 2 om	continuours.	8.4	in an in a state of the state o	
			1 - 1			maters	د.ر ۱۱	vants	, in the second s
	inches	*2.5	centimaters	CIN	. 🛪 📮	Autors		miles	imi -
	feet	30	contimutors	CIR.	i.a	Chanters a	•.•		
	yards	0.9	moters		•••				
	miles	1.8	ksianeters	3444			AREA		
		ARFA						Amore soches	ن ي2
					cm/	square contimptors	9.76	Annual voids	<u> </u>
			nauere centimeters	cm ²	_ # • *_	aquers motors	12	sound siles	
	equire inches	A 08	square motors	" 2	tun"	aquiers attometers	2, 9,	ACIES	
	Square 7001	6 R	square motors	" 2	hs	hectores (14,444 m	1 4 .4		
	ednere Anar	2.6	square kilometers	kun ²				-	
	Santa muss	6.4	hectares	ha			ALACE (mainht)		
		•					WY39 (median)		
	1	WASS (weight)			2			0486.95	92
						grante	9.7	pound's	*
	dunce 6	28	grama	9		kilograma	11	short tone	
	pound s	0.46	kilograms	kg	1	ionnes (1000 kgi	***		
	short tons	0.5	tonnes	1					
	(2000 ib)				¥		VOLUME		
		VOLUME							fi er
					mi	mililiter 1	0.03	time onecas	
	103500055	5	milliliters	mi	•	lisara	2.1	ports	2
	tablespoons	15	militions	mi 	- 1	Sisers.	1.06		
	fluid ounces	30	mililiters	1		liters.	1.23	cubic fact	1
	cupe	0.24	liters		— • • • • •	cubic maters	30	cubic yorks	
	pints	0.47	iiters		m ³	cubic maters	1.4		•
	quarts	0.96	Liters		_ •				
	galians	3.8	111045			TE	MOSEATHRE for	acti	
_	cubic feet	0.03	CUBIC MOTORS		_ •				
	cubic yards	9.76		-		Calavia	\$/5 (then	Fahranhail	*F
	TEN	PERATURE (exect)			♥ °C	Lansus Lamperature	adai 32)	temptrature	
			Colema	°c					**
	Fahrenheit	5/3 (enter	Lerneratura	•					81
	temperature	LUDU/BCIMB			**	•r 32		20 160 20	0
		24()				-40 0 14	<u>نىلىتىرىن</u>	فرف فرخ في في في في في في في في	
						And the state of t			ida

ч. 1

.

.

This is the Final Report of the statistical evaluation of the effectiveness of child restraint systems, which are regulated by Federal Motor Vehicle Safety Standard (FMVSS) 213.

FMVSS 213 is a death-and-injury-reduction Standard which, in its present form (September 1980), mandates static tests, labeling, and other requirements that must be met by manufacturers of child restraint devices. The Standard became effective 1 April 1971. Proposed revisions to the Standard, which will require dynamic testing of all child restraints and will include previously-exempt car beds, infant carriers and child harnesses, are expected to become effective 1 January 1981.

The objective of this analysis is to determine the overall effectiveness of child restraints when used rather than to evaluate FMVSS 213 in particular. Existing mass accident data from New York (1974 and 1977), Idaho (1976-1978) and New Jersey (1975) are statistically evaluated. These data do not provide information on the type or make of the child restraint, or whether the restraint is properly installed and correctly used.

To address the question of whether or not child restraint usage reduces the frequency or severity of child injuries, a comparison is made between the injury rates of children four years old and younger reported as using a child seating system, with those of children who are unrestrained, after controlling for relevant accident characteristics. By inference, any obtained differences in these rates are attributed to the effect of the restraining device. Essentially, unrestrained children are treated as a control group. Thus, effectiveness can be defined as follows:

$$E = \begin{bmatrix} Proportion of unrestrained & Proportion of restrained \\ children injured & children injured \\ Proportions of unrestrained \\ children injured \\ \end{bmatrix} x 100$$

Estimates of effectiveness are computed separately for both child restraint and seat belt usage, so that the percent reduction in injuries due to the former can be compared to any corresponding reduction in injury associated with the latter.

iii

Before effectiveness values are computed, however, the data are modeled by fitting a hierarchical, log-linear model to a contingency table composed of Injury, Restraint Usage and selected variables. The purpose of modeling is to smooth the data and to remove random variability due to small cell frequencies that occur when a large number of control variables are used. Modeling also reveals the strength of various interactions among the variables. For each year of New York data, separate models are fit for KA vs. BCO, KAB vs. CO and KABC vs. 0 injury dichotomies. For New Jersey, only the latter two models are fit, while in the case of Idaho, only one model for the KABC vs. 0 injury dichotomy is fit. This is due to the small sample sizes for the latter two states. The smoothed cell frequencies are then adjusted to allow for the direct comparison of injury rates. Adjustment is necessary in order to insure that the overall effectiveness estimates will not be affected by different distributions of children in child restraints, seat belts and unrestrained categories across different levels of the control variables.

Overall effectiveness values for children in child restraints, seatbelts and children restrained by either device for the smoothed, adjusted mass accident data in the three states are summarized in the following table. The effectiveness results for New York consist of a weighted average of the individual effectiveness values for 1974 and 1977 samples (10,745 and 11,092 cases). The effectiveness results for New Jersey and Idaho are based on sample sizes of 6,738 and 3,766 cases, respectively. Only statistically significant effectiveness findings are discussed.

In all instances, statistically significant findings show that accidentinvolved children restrained by either child restraints or seatbelts sustain significantly <u>fewer</u> injuries than unrestrained children. For example, the percent reduction in the number of injuries sustained by restrained children is:

- Killed and all injuries (K+A+B+C) = 30 to 37 %
- Killed and all but minor injuries (K+A+B) = 32 to 44 %
- Killed and severe injuries (K+A) = 41 %

When child restraint systems are considered separately, most of the findings are statistically significant. In New York, for example, child restraint usage results in a 28 percent reduction in K and A injuries and a 26 percent reduction in the overall incidence of K, A and B injuries, compared to a 30 percent reduction in K, A, B and C injuries considered collectively. In New Jersey, child restraint usage results in a 20 percent reduction in overall K, A, B and K, A, B and C injuries.

iv

SUMMARY OF OVERALL EFFECTIVENESS VALUES FOR CHILDREN 0-4 YEARS* OF AGE DERIVED FROM SMOOTHED, ADJUSTED MASS ACCIDENT DATA

Restraint	Injury Level	State	Year	Effectiveness (%)	Is Effectiveness Significantly Different From Zero?
Child	K+A	New York	1974 & 1977	27.5	Yes
Restraint	K+A+B	New York New Jersey	1974 & 1977 1975	25.9 19.2	Yes , Yes
	к+А+В+С	New York New Jersey Idaho	1974 & 1977 1975 1976-1978	30.1 19.8 12.7	Yes Yes No
Seatbelt	K+A	New York	1974 & 1977	53.5	Yes
	К+А+В	New York New Jersey	1974 & 1977 1975	35.8 60.5	Yes Yes
	К+А+В+С	New York New Jersey Idaho	1974 & 1977 1975 1976-1978	29.7 48.4 37.7	Yes Yes Yes
	K+A	New York	1974 & 1977	42.9	Yes
Child Restraints or	қ+А+в	New York New Jersey	1974 & 1977 1975	31.8 43.8	Yes Yes
Seatbelts	К+ А+В+С	New York New Jersey Idaho	1974 & 1977 1975 1976-1978	29.7 36.8 30.4	Yes Yes Yes

^{*}In New Jersey and Idaho, the age range of children is 1-4 years old.

While effectiveness values for seatbelt usage are generally one to two times higher than those for child restraint usage, one must be wary of attaching too much importance to this result, since the differences are not statistically significant, except in the case of New Jersey. Furthermore, the lack of detail characterizing state mass accident data bases with respect to the actual type of child restraint device used, and whether they are properly used or misused, cause the findings of this study to most likely <u>underestimate</u> the potential reduction of both the frequency and severity of injuries to be gained from the proper use of FMVSS 213 child restraints.

The actual and potential reduction in injuries and fatalities for children two years old and younger, for the entire nation, that result from the use of child restraints were estimated using the actual weighted New York effectiveness

۷

value of 30 percent derived using the KABC vs 0 injury dichotomy. Child restraint usage rates of 20 percent, 10 percent and 5 percent were assumed for less than 1 year old, 1 year old and 2 year old children, respectively. With these low usage rates, it is estimated that roughly 1400 injuries and 19 fatalities are prevented in children of this age, through the use of child seats. If 100 percent usage of child seats were assumed, about 12,000 injuries and 150 fatalities could be prevented in children two years of age and younger.

ACKNOWLEDGMENTS

The work performed by CEM in statistically evaluating the effectiveness of seven Federal Motor Vehicle Safety Standards is the product of an interdisciplinary team effort.

Dr. Gaylord Northrop is the Principal Investigator of this project, and participated in the development and implementation of the approach and the analyses of the results. Mr. Jim Knoop, Mr. John Ball and Ms. Kayla Costenoble are the principal authors of this report. Other members of the Study Team who contributed in various ways to the report include:

> Mr. Thomas Bzik Dr. Hans Joksch (Appendix E) Mr. Edward Sweeton Mr. Joseph Reidy Dr. Michael Sutherland

CEM is also grateful for assistance provided by Mr. Herb Pember (Idaho Transportation Department), Lt. Walter Moore (Office of Highway Safety, New Jersey), and Mr. Robert Knouse (Department of Motor Vehicles, New York) in the acquisition and processing of their state's mass accident data. Mrs. Carmela Miller, Ms. Marjorie Wallace, Mrs. Teresa Mayer and Mrs. Arlene Bene also provided invaluable clerical support in the preparation of this report.

This study has benefitted throughout from the detailed reviews and constructive comments of the NHTSA Contract Technical Manager, Dr. Charles Kahane. Any errors in analysis or interpretation of data and results are, of course, solely the responsibility of the authors of this report.

vii

TABLE OF CONTENTS

Section Title Page 1.0 INTRODUCTION 1-1 1.1 Background 1 - 11.2 Objective and Purpose 1 - 41.3 Scope 1 - 41.4 Approach 1-5 1.4.1 Background and Accident Data Populations 1-5 1.4.2 Analysis Approach 1 - 6Limitations of the Study 1.5 1-6 1.6 Outline of the Report 1-7 1.7 References for Section 1 1 - 8SUMMARY OF ANALYSIS 2.0 2-1 2.1 Measure of Effectiveness 2 - 12.2 Estimated Effects of Child Restraints 2-1 Evaluation of the Analysis 2.3 2-6 2.3.1 Overall Success of the Analysis 2-6 Limitations of the Analysis 2.3.2 2-6Credibility of the Analysis 2.3.3 2-6

3.0	ANALYSIS OF THE EFFECTIVENESS OF CHILD RESTRAINT SYSTEMS	3-1
3.1	Analysis Approach	3-1
3.2	Data Characteristics	3-5
3.3	Variable Selection	3-11
3.4	Analysis of Mass Accident Data	3-23
3.4.1	Modeling	3-23
3.4.2	Adjustment of Data	3-27
3.4.3	Effectiveness and Error Estimation	3-30
3.4.4	Extrapolation to the Nation	3-46

- APPENDIX A: SUMMARY OF BACKGROUND CHARACTERISTICS OF NEW YORK, IDAHO AND NEW JERSEY SAMPLES
- APPENDIX B: FULLY CROSS-CLASSIFIED CONTINGENCY TABLES DERIVED FROM STATE MASS ACCIDENT DATA BASES
- APPENDIX C: SUMMARY OF THE MARGINAL ASSOCIATION OF MODEL EFFECTS
- APPENDIX D: SUMMARY OF EFFECTIVENESS RESULTS FOR OBSERVED, UNADJUSTED STATE MASS ACCIDENT DATA
- APPENDIX E: CONFIDENCE LIMITS FOR EFFECTIVENESS ESTIMATES BASED UPON THE SIMPLE RATIO OF PROBABILITIES

ABBREVIATIONS USED

FMVSS Federal Motor Vehicle Safety Standard

CEM The Center for the Environment and Man, Inc.

HSRC Highway Safety Research Center

NHTSA National Highway Traffic Safety Administration

NASS National Accident Sampling System

KABCO "K" = Killed; "A", "B", "C" = Injury Levels; "O" = No Injury

NCSS National-Crash Severity Study

FARS Fatal Accident Reporting System

LR Likelihood Ratio

BMDP3F Biomedical Computer Program 3F

df Degrees of Freedom

1.0 INTRODUCTION

1.1 Background

This is the fourth in a series of reports of the statistical evaluation of the effectiveness of seven Federal Motor Vehicle Safety Standards (FMVSS). This work was conducted under Contract DOT-HS-8-02014 by The Center for the Environment and Man, Inc. (CEM) and its subcontractor, the Highway Safety Research Center (HSRC) of the University of North Carolina. The seven FMVSS which were statistically evaluated are:

- FMVSS 108: Side Marker Lamps (Only)
- FMVSS 202: Head Restraints
- FMVSS 207: Seat Back Locks (Only)
- FMVSS 213: Child Restraints
- FMVSS 214: Side Door Beams
- FMVSS 222: School Bus Seating and Crash Protection
- FMVSS 301: Fuel System Integrity

The Final Report on the effectiveness of child restraints is presented herein.

FMVSS 213 is a unique Standard. Its effectiveness depends on <u>voluntary</u> use of child restraints. Unlike the other Standards evaluated in this study, it applies to devices which are optional equipment. Unlike the reports on the six other FMVSS, this report evaluates child restraints in <u>general</u>, rather than the Standard (213) in particular.

FMVSS 213 became effective April 1, 1971; it established requirements for labeling, installing, adjusting and attaching child seating systems to vehicle seat belts. It also required manufacturers to produce child restraints which met a static test at a force level of 1,000 nounds--which translates to about 15 miles per hour in a traffic crash. In March 1974, the National Highway Traffic Safety Administration (NHTSA) proposed a revision which would expand the scope of the Standard to cover all forms of infant and child restraints(child seats, car beds, infant carriers and child harnesses); require dynamic crash simulation tests of the restraints rather than the present static tests; and specify the anthropomorphic test dummies to be used in the tests. In May 1978, NHTSA published a modified proposal for a revised child restraint system Standard "based on recent child restraint misuse studies and a desire to improve usage of child restraints while improving safety, and an evaluation of the comments concerning the 1974 proposal." [1]

1 - 1

NHTSA's amended regulations are scheduled to take effect on January 1, 1981. [2] The broadened Standard will include previously-exempt car beds, child harnesses and infant carriers. All child restraints must:

- Offer adequate protection in 30 mph crash tests into a fixed barrier by:
 - Restraining the test dummy.
 - Keeping the system's structural integrity.
- Be designed to be held in place by the vehicle's seat belts.
 - Special tether straps will be allowed (in addition to the seat belt), but a minimum level of protection must be met using the seat belt even when the tether is not fastened.

It became obvious that a strict evaluation of FMVSS 213 <u>as it existed during</u> <u>the period of the CEM study</u>, would offer little information on the overall effectiveness of child restraints in reducing injuries to young children involved in car crashes. The study became, therefore, a broader, more general evaluation of the effectiveness of child restraints when they are used.

There are two major problems with using police-reported state mass accident data to evaluate child restraint effectiveness. First, misuse of child restraints is a major concern, insofar as police-reported data do not identify whether a restraint was properly used, only that it was used. Second, state accident data do not discriminate among the many types of "child restraints." For example, data on children in "infant seats" and car beds may be mixed with data on children in approved, properly-secured child restraint devices. These two issues are discussed next.

Misuse of Child Restraints

One of the pertinent issues raised by NHTSA in its 1978 Standard revision publication was whether its amendments adequately addressed the misuse problem. During an international conference in Australia in 1977, the author of a survey on installing child restraints reported that:

- "Casual observation of child restraints in automobiles indicated that a significant proportion were incorrectly installed, and that a study was warranted to determine the extent of the problem.
- "The major potential faults considered were as follows: straps not connected; straps not tightened; and poorly located anchorage points. The study found that only about 19% of child motor vehicle occupants are correctly restrained in approved child restraints. It was concluded that efforts must be made among manufacturers, installers and consumers to insure that child restraints be properly installed." [3]

A recent study sponsored by the Insurance Institute for Highway Salety (IIHS) reported only 4.7 percent of 494 young children were restrained by either vehicle lap belts or child restraints. Only one-third of the devices in use during crashes were used properly. The study said incorrect usage of child restraint systems increased injury potential (e.g., failing to use the car lap belt to secure the restraint device and failing to use the restraint device's safety harness). Among the properly restrained children there was only one minor injury.[4] In an earlier IIHS study, 7 percent of 8,993 children under ten years of age were restrained--5 percent by seatbelt only and 2 percent by a child restraint device. An additional 5 percent of the children were in child restraints which were not properly secured in the vehicle and/or the children were not properly restrained within the device. According to this study, whatever crash protection child restraints provide is either "reduced or eliminated" if they are not used correctly.[5]

IIHS's most recent study provided a detailed analysis of 48 crashes involving 63 children under nine years of age, out of an original population of 348 crashes involving 494 children. It was found that:

"There is still the problem of proper use. One of the disconcerting things found in our study is that in those small number of cases in which a child restraint was present and in use, very few of those child restraints were being used correctly. People go to the trouble of buying them, then don't use them correctly, either because they are in a hurry or they just don't know that they are not anchoring them effectively." [6]

Inclusion of Restraints Failing to Meet FMVSS 213 in Data Base

CEM's initial survey of state accident reporting forms indicated that most states do not record the use or non-use of child restraints and, where data are taken, the reports lack detail. Among those states which do record child restraint usage, the coding forms do not differentiate between various types of child restraint systems; therefore, car beds, infant carriers, and child harnesses^{*}, none of which are currently covered by the requirements of FMVSS 213, are included in the data base. In addition, since few police officers are trained in assessing what is an appropriate, approved child restraint, it is probable that the data bases also include some restraints,

Type 3 seat belt assemblies, commonly referred to as child harnesses, are presently under FMVSS 209 (Seat Belt Assemblies). They are a combination of pelvic and upper torso restraints for persons weighing up to 50 pounds and capable of sitting upright by themselves---that is, children approximately 8 months to 6 years old. Car beds and infant carriers are not covered by any present Federal Motor Vehicle Safety Standard, but will be covered under the revised FMVSS 213.

such as the earlier hook-over car seats, which are now outlawed by the Standard. IIHS's 1975 report on child restraint use stated that, "Many of the devices that are used to transport children in vehicles provide no crash protection, e.g., 'car seats' that hook over regular automobile seats...and other seats and carriers designed in ways that ensure that they do not protect children in crashes." [5]

1.2 Objective and Purpose

This report is an analysis of child restraint systems in general, to determine whether or not their effectiveness (regardless of type or proper use) can be determined from statistical analyses of existing mass accident data.

This evaluation cannot be considered an evaluation of FMVSS 213 in particular, for reasons described in the preceding section. Rather, its purpose is to either assess the effectiveness of child restraints with respect to injury avoidance, or to demonstrate that existing mass accident data are not adequate for such purposes. Suggestions for a further evaluation program, developed earlier, are described in References 7 and 8.

1.3 Scope

- This study involves the statistical analysis of state mass accident data concerning deaths and injuries incurred in automobile accidents by children four years of age or less, including both those who are unrestrained, those in child restraint systems, and those restrained by seat belts.
- Analysis of detailed National Crash Severity Study (NCSS) data are not carried out, since about 50 children (of approximately 10,000 available cases) are coded as using child restraints.
- The mass accident data used are those from New York (1974 and 1977), Idaho (1976-1978) and New Jersey (1975).
 - Only one year of New Jersey data is used, since there is no child restaint usage information available for 1976, and there appear to be severe miscoding problems in 1977 with respect to child restraint usage.
- The analysis emphasizes comparison of child injury rates with respect to the use or non-use of child restraints. Given sample size limitations, an effort is made to refine the analyses by controlling for concomitant variables, such as position of the child in the car, direction of force from impact, accident severity, child's age, accident type, etc.

1.4 Approach

1.4.1 Background and Accident Data Populations

The statistical evaluation of the effectiveness of child restraints is based on the comparison of injury rates of children using a child restraint system with those of unrestrained children, after controlling for relevant accident characteristics. Specifically, simple displays of Injury Level by Child Restraint Usage are stratified for various combinations of conditioning variables, such as front or back seat occupancy, age of child, severity of accident, single or multivehicle accident, front, side or rear-impact accidents, etc. Hence, the question of overall effectiveness as well as the effectiveness of specific subpopulations can be addressed. Table 1-1 summarizes the <u>estimated</u> population sizes for the various data sources.

TABLE 1-1

ESIMATED NUMBER OF ACCIDENTS INVOLVING A CHILD (AGE 0-4)*AS VEHICLE OCCUPANT

	New York			New Je	ersey		Idaho		
Year	Children Children in in Accidents Restraints		Children in Accidents	Child ir Restra	iren 1 a ints	Children in Accidents	Children in Restraints		
	No.	No.	%	No	No.	%	No.	No.	¢∕ ∕⊘
1974	14,148	931	7			-		-	-
1975	-	-	-	7543	. 764	10	-	-	-
1976	-	-	-	-	-	-	1457	79	5
1977	14,215	108 1	8	7500	**25	0.3	1493	84	6
1978	-	-	-	-	-		1718	104	б

"In New Jersey and Idaho, the age range of children is 1-4 years.

** Low value is due to serious miscoding problem in New Jersey with respect to child restraint usage in 1977. Therefore, 1977 data could not be used.

1.4.2 Analysis Approach

The use of child restraints should reduce the frequency of injuries to children in car accidents. However, because we know that child restraints are frequently misused and that not all child "restraints" can meet the requirements of the Standard (revised), the results of our analysis reflect a combination of factors. In addition to analyzing the effectiveness of those devices reported by police as child restraints, we also analyze the effectiveness of reported seat belt use for comparison with child restraint effectiveness.

Our general approach is to perform a categorical data analysis, using mass accident data from New York, Idaho, and New Jersey. This involves selecting the critical variables, modeling the data and adjusting the modeled data in order to make unbiased comparisons, using injury as the dependent variable.

1.5 Limitations of the Study

The evaluation of child restraints is limited by the small size of the restraint users sample. The usage of child restraints is voluntary, and studies have shown that the usage rate of child restraints is 20 percent or less. Furthermore, relatively few young children are occupants of vehicles involved in accidents. For the most part, states do not record the use or non-use of child restraining devices (other than seat belts) in their police accident reports, so the analysis had to be limited to states that do record it. Hence, state mass accident data alone are not always sufficient to establish effectiveness with a suitable degree of statistical significance. National Crash Severity Study (NCSS) data, while providing more detail, include about 50 children in child restraints, thus offering no opportunity for analysis.

Another limitation involves the fact that state mass accident data do not differentiate between various <u>types</u> of child restraints, nor do they indicate the restraint's <u>appropriateness</u> with respect to a child's age and height, or whether the restraint is properly used. Thus, any observed effectiveness of child restraints in reducing injury that is derived from police-reported state accident data is probably an underestimate of the effectiveness of properly-used FMVSS 213 child restraints.

1-6

1.6 Outline of the Report

Section 2 of this report summarizes the analyses performed. It includes a discussion of the measure of effectiveness, the estimated effectiveness values and their confidence intervals, discussions of the overall success of the evaluation, the credibility of the analysis, and a comparison of results. Detailed analyses of the data are described in Section 3. Appendix A summarizes background characteristics of the New York, Idaho and New Jersey samples. Appendix B contains the fully cross-classified contingency tables derived from the state mass accident data bases. Appendix C summarizes the effects included in the various models fitted, along with their marginal associations. Appendix D contains a summary of effectiveness values derived from observed, unadjusted data. Appendix E outlines the method used for computing confidence limits for effectiveness estimates based on the ratio of injury probabilities.

1.7 References for Section 1

- 1. NHTSA Proposed Rules. "Child Restraint Systems: Seat Belt Assemblies and Anchorages," Federal Register, Vol. 43, No. 97, May 18, 1978, p. 21470.
- 2. NHTSA. "Action in Response to Petitions for Reconsideration and Petitions for Rulemaking," *Federal Register*, Vol. 45, No. 86, May 1, 1980, p. 29045.
- 3. K. L. King. "Queensland Survey on Installation of Child Restraints," (Abstract from Sixth International Conference of the International Association for Accident and Traffic Medicine), American Association of Automotive Medicine Quarterly 4, December 1978.
- 4. Melvin, John W., Richard L. Stalnaker and Dinesh Mohan. Protection of Child Occupants in Automobile Crashes, Ann Arbor, Michigan, Highway Safety Research Institute, 1978.
- 5. Williams, A. F. Observed Restraint Use of Children in Automobiles, Washington, D.C., Insurance Institute for Highway Safety, May 1975.
- 6. Melvin John W. "The Child Restraint Picture," Traffic Safety, Vol. 79, No. 7, July 1979.
- Costenoble, K. and G.M. Northrop. Final Design and Implementation Plan for Evaluating the Effectiveness of FMVSS 213: Child Seating Systems, DOT-HS-803 393, National Technical Information Service, Springfield, Virginia, 1977.
- Northrop, G.M., J.T. Ball, D. Bancroft and J.C. Reidy. Evaluation Methodologies for Nine Federal Motor Vehicle Safety Standards: FMVSS 105, 108, 122, 202, 207, 213, 220, 221, 222, DOT-HS-803 388, National Technical Information Service, Springfield, Virginia, 1978.

2.0 SUMMARY OF ANALYSIS

2.1 Measure of Effectiveness

The effectiveness measure used in the study is defined as follows.

$$E = \left[\begin{array}{c} Proportion of unrestrained Proportion of restrained children injured Note: Proportion of unrestrained children injured \\ \hline Proportion of unrestrained children injured \\ \hline \end{array} \right] x 100$$

Effectiveness values are computed separately for three restraint usage conditions-child restraints, seat belts, and usage of either device.

2.2 Estimated Effects of Child Restraints

The estimated effectiveness of child restraints can be potentially confounded by three factors: (1) the accuracy of police reporting on the use of a child restraint, (2) the potential variety of types of child restraints in use during the years analyzed (1974-1978), including infant carriers, car beds, etc.-some of which presumably do not meet the safety requirements of FMVSS 213, and (3) the frequent misuse of child restraints. The effects of the latter two factors might result in effectiveness values that are probably less than what would be obtained for children correctly restrained in child seats that meet the requirements of FMVSS 213.

The effectiveness values for child restraints, seat belts and both child restraints and seat belts derived from observed, unadjusted as well as from smoothed, adjusted mass accident data in New York, New Jersey and Idaho are summarized in Table 2-1. The effectiveness results for New York are for children of age ranges 0-4 years old and represent a weighted average of effectiveness values for 1974 and 1977 (10,745 cases and 11,092 cases). The effectiveness results for New Jersey and Idaho are for children in the age range 1-4 years old and are for the years 1975 and 1976-1978 (6,738 cases and 3,766 cases).

The term "smoothed, adjusted" refers to data which has been first modeled in order to remove random variation due to small contingency table cell frequencies for certain categories of control variables, and then standardized to allow for valid comparisons to be drawn between injury rates for various subpopulations. On the average, the net effect of smoothing and adjusting the data was to decrease effectiveness values by roughly 1 to 5 percentage points for New York samples, and to increase effectiveness values by 4 to 8 percentage points for the Idaho sample. In the case of the New Jersey sample, modeling and adjustment had no appreciable impact on effectiveness values.

2-1

TABLE 2-1

				0	bserved,	Unadjust	ed Dat	a
Restraint	Injury L ev el	State	Year	Effectiveness	Standard Deviation	95 % Confidence Interval		Is Effectiveness Significantly Different
				(Percent)		From	То	From Zero?
	K+A	New York	1974 & 1977 **	32.2	12.9	11.1	53.3	Yeş
Child Restraint	K+A+B	New York	1974 & 1977 **	26.6	4.8	18.8	34.4	Yes
		New Jersey	1975	18.0	10.1	1.4	34.6	Yes
	K+A+B+C	New York	1974 & 1977 **	31.9	3.5	26.2	37.6	Yes
		New Jersey	1975	19.8	5.5	10.8	28.8	Yes
		I da ho	1976- 1978	4.6	18.5	-25.8	34.9	No
	K+A	New York	1974 & 1977 **	54.6	8.6	40.5	68.7	Yes
	K+A+B	New York	1974 & 1977 **	37.6	3.7	31.6	43.6	Yes
Seat Belt		New Jersey	1975	60.5	5.9	51.0	70.2	Yeş
bert	К+А+В+С	New York	1974 & 1977 **	31.5	2.9	26.8	36.3	Yes
		New Jersey	1975	47.4	3.9	41.0	53.7	Yes
		Idaho	1976- 1978	41.3	9.8	25.2	57.4	Yes
	K+A	New York	1974 & 1977 **	45.5	7.6	33.1	57.9	Yes
Child	K+A+B	New York	1974 & 1977 **	33.1	3.0	28.1	38.0	Yes
Restraint	-	New Jersey	1975	43.3	5.6	34.1	52.5	Yes
Seat Belt	K+A+B+C	New York	1974 & 1977 **	31.4	2.3	27.6	35.1	Yes
	1	New Jersey	1975	36.2	3.3	30.7	41.6	Yes
		Idaho	1976- 1978	30.5	9.0	15.7	45.3	Yes

SUMMARY OF OVERALL EFFECTIVENESS VALUES FOR CHILDREN 0-4 YEARS OF AGE*

*In New Jersey and Idaho, the age range of children is 1-4 years old.

Weighted mean, using the inverse of the variance as a weighting factor.

TABLE	2-1 ((Continued)
-------	-------	-------------

					Smoothed,	Adjust	ed Data	
Restraint	Level	State	Year	Effectiveness	Standard Deviation	95 % Confidence Interval		1s Effectiveness Significantly Different
			L	(Percent)		From	То	From Zero?
	K+A	New York	1974 & 1977 **	27.5	13.3	5.6	49.4	Yes
Child Restraint	к+А+ В	New York	1974 & 1977 **	25.9	4.8	18.0	33.8	Yes
	·	New Jersey	1975	19.2	10.0	2.7	35.7	Yes
NGS CI WINC	К+А+В+С	New York	1974 & 1977 **	30.1	3.5	24.3	35.9	Yes
		New Jersey	1975	19.8	5.5	10.8	28.8	Yes
		Idaho	1976- 1978	12.7	17.8	-16.5	42.0	No
	K+A	New York	1974 & 1977 **	53.5	8.7	39.2	67.7	Yes
	K +A+ B	New York	1974 & 1977 **	35.8	3.7	29.7	42.0	Yes
Seat Belt		New Jersey	1975	60.5	5.9	50.9	70.1	Yes
	K+A+B+C	New York	1974 & 1977 **	29.7	2.9	24.9	34.4	Yes
		New Jersey	1975	48.4	3.8	42.1	54.6	Yes
		Idaho	1976- 1978	37.7	10.1	21.2	54.3	Yes
	K+A	New York	1974 & 1977 **	42.9	7.8	30.2	55.7	Yes
Child	K+A+ B	New York	1974 & 1977 **	31.8	3.1	26.8	36.8	Yes
Restraint or		New Jersey	1975	43.8	5.6	34.6	53.0	Yes
Seat Belt	K+A+B+C	New York	19 74 & 1977 **	29.7	2.3	25.8	33,5	Yes
		New Jersey	1975	36.8	3.3	31.4	42.2	Yes
		Idaho	1976- 1978	30.4	9.1	15.5	45.2	Yes

ļ

*In New Jersey and Idaho, the age range of children is 1-4 years old. **Weighted mean, using the inverse of the variance as a weighting factor.

In all instances, findings show that accident-involved children restrained by either child restraints or seat belts sustain significantly <u>fewer</u> injuries than unrestrained children. For example, the percent reduction in the number of injuries sustained by restrained children ranges from 30 to 37 percent for K, A, B and C injuries; 32 to 44 percent for K, A, and B injuries; and is 41 percent for K and A injuries.

When child restraint systems are considered separately, most of the findings are statistically significant. For example, in New York, child restraint usage results in a 28 percent reduction in K and A injuries and a 26 percent reduction in the overall incidence of K, A and B injuries, compared to a 30 percent reduction in K, A, B and C injuries, considered collectively. In New Jersey, child restraint usage results in a 20 percent reduction in overall K, A, B and K,A, B and C injuries.

While effectiveness values for seat belt usage are generally one to two times higher than those for child restraint usage, one must be wary of attaching too much importance to this result, since the differences are not statistically significant in most cases. The only exception to this involves the New Jersey 1975 sample, where seat belts are significantly more effective in reducing KAB and KABC injuries than child restraints (Table 2-2). Furthermore, the lack of detail characterizing state mass accident data bases with respect to the actual

TABLE 2-2

STATISTICAL	SIGNIFICANO	CE OF	DIFFERE	NCES	BETWEEN	SEAT	BELT	AND
CHILD	RESTRAINT	EFFECT	TIVENESS	VALU	JES DERIN	/ED_FF	ROM	
	SMOOTHED,	ADJUST	TED MASS	ACCI	DENT DAT	ΓA		

Injury Level	State	Year	Seat Belt Effectiveness		Child Restraint Effectiveness		Difference		Is Difference Statistically	
			(%)	(s.d)	(%)	(s.d)	(%)	(s.d)	Significant?	
K+A	New York	1974 & 1977	53.5	8.7	27.5	13.3	26.0	15.9	No	
K+A+B	New York	1974 & 1977 ^{**}	35.8	3.7	25.9	4.8	9.9	6.1	No	
	New Jersey	1975	60.5	5.9	19.2	10.0	41.3	11.6	Yes	
K+A+B+C	New York	1974 & 1977	29.7	2.9	30.1	3,5	-0.4	4.6	No	
	New Jersey	1975	48.4	3.8	19.8	5.5	28.6	6.7	Yes	
	Idaho	1976-1978	37.7	10,1	12.7	17.8	25.0	20 . 5	No	

Two-tailed test, $\alpha = 0.05$

"Weighted mean, using the inverse of the variance as a weighting factor.

type of child restraint device used, and whether they are properly used or misused, cause the findings of this study to most likely <u>underestimate</u> the potential reduction of both the frequency and severity of injuries to be gained from the proper use of FMVSS 213 child restraints.

The actual and potential reductions in injuries and fatalities for children two years old and younger, for the entire nation, that result from the use of child restraints, were estimated using the actual weighted New York effectiveness value of 30 percent derived using the KABC vs 0 injury dichotomy. Current (September 1980) child restraint usage rates of 20 percent, 10 percent and 5 percent were assumed for 0 year old, 1 year old and 2 year old children, respectively. With these low usage rates, it is estimated that roughly 1400 injuries and 19 fatalities are prevented in children of this age through the use of child seats. If 100 percent usage of child seats were assumed, about 12,000 injuries and 150 fatalities could be prevented in children 2 years of age and younger. The above estimate, however, reflects both the current degree of correct usage of child seats and the particular type of child seats in use, including those that do not meet the requirements of FMVSS 213.

2-5

2.3 Evaluation of the Analysis

2.3.1 Overall Success of the Analysis

The effectiveness results which were summarized in Table 2-1 and discussed in the previous section conclusively demonstrate the positive effectiveness of child restraints and seat belts in reducing injuries to children four years of age or younger. These results are obtained in spite of recognized problems in police reporting of child seat usage, inclusion in the data of child seats which do not meet FMVSS 213 requirements, and the possible misuse of child seats in general. The 30 percent effectiveness value that was used to estimate the potential injuries avoided through the use of child restraints is almost certainly a lower bound for the "true" effectiveness that would be obtained given the correct use of child restraints that satisfy FMVSS 213, and fully accurate police reporting.

2.3.2 Limitations of the Analysis

Three potential limitations to the study have already been mentioned. These are: (1) inadequate reporting of child restraint usage, (2) inclusion of child restraints in the data base that fail to meet FMVSS 213, and (3) misuse of child restraints. In addition, limitations that apply to the New Jersey and Idaho data bases are the absence of infants less than one year old and the relatively small sample sizes. Finally, the analysis was limited to data from the few states that code child restraint use.

2.3.3 Credibility of the Analysis

The results are credible. In the larger New York and New Jersey data bases, child restraints showed positive effectiveness values that were statistically significant for KABC vs. 0 in both states and for KAB vs CO in New York. Furthermore, there is much consistency among the results from the three states, especially when the sample sizes are considered. It is emphasized that the child restraint effectiveness values obtained reflect the actual variety of makes and types of child restraints, as well as the actual patterns of misuse which characterize the samples. Therefore, the findings of this study most likely underestimate the effectiveness of child restraints in reducing the frequency and severity of injuries that would be found given the proper use of child restraints satisfying FMVSS 213.

2-6

3.0 ANALYSIS OF THE EFFECTIVENESS OF CHILD RESTRAINT SYSTEMS

In this section, the effectiveness of child restraint systems in reducing injuries is empirically assessed, using police-reported state mass accident data. Since existing state accident data files do not contain sufficient information for an *in-depth* evaluation of child restraint effectiveness, ^{*} the analyses necessarily focus on the use or non-use of child seating systems in general, regardless of whether or not they meet the requirements of FMVSS 213.

What follows is a brief description of CEM's approach to the analysis of child restraint effectiveness; a description of all relevant data bases used, along with information on how they were derived; a detailed presentation of the analysis; and finally, a summary of results.

3.1 Analysis Approach

The purpose of this analysis is twofold: (1) to test the hypothesis that the use of child restraint systems reduces the incidence of injuries sustained by children occupying accident-involved vehicles; and (2) to assess the magnitude of the percent reduction in injuries which can be attributed to child restraint usage.

To address the question of whether or not child restraint usage reduces the frequency or severity of child injuries, a comparison is made between the injury rates of children reported as using a child seating system with those of children who are unrestrained, after controlling for relevant accident characteristics. By inference, any obtained differences in these rates are attributed to the effect of the restraining device. Essentially, unrestrained children are treated as a control group.

Figure 3-1 depicts the basic Injury by Restraint Usage table central to the analyses, which is stratified by a set of control variables selected according to the procedures outlined in Section 3.3. Cell entries consist of both observed counts (n_{iik}'s) and observed proportions (p_{ijk}'s).

^{*}For example, detailed and reliable information is not available at present on whether or not the child was in a restraint considered correct for his weight and size; whether the tether strap was fastened, if the restaint had one; whether the child restraint was anchored correctly by the vehicle's seat belt; or whether the child seating system was, in general, being misused. Furthermore, state accident coding forms do not at present differentiate among various types of child restraint systems.

Figure 3-1. Basic Injury by Restraint Usage table, stratified by k-levels of control variables.

In general, effectiveness can be defined as follows:

1

However, estimates of effectiveness are computed separately for both child restraint and seat belt usage, so that the percent reduction in injuries due to the former can be compared to any corresponding reduction in injury associated with the latter. Using the notation presented in Figure 3-1, *overall* measures of effectiveness for child restraint and seat belt usage by children less than five years of age can be formulated as follows:

3-2

$$E_{\text{(Child Restraints)}} = \left[1 - \frac{p_{13}}{p_{11}} \right] \times 100$$

$$E_{\text{(Seat Belts)}} = \left[1 - \frac{p_{12}}{p_{11}} \right] \times 100$$

In addition to computing point estimates of effectiveness, an estimate of variability is necessary to generate the corresponding ranges of effectiveness (confidence intervals). Furthermore, in order to demonstrate that the observed effectiveness is significantly different from zero, one must reject the null hypothesis that there is no difference between the injury rates of restrained and unrestrained children.

Prior to computing effectiveness values, however, the following preliminary treatment of the data must be carried out:

- Selection of a set of relevant control variables.
- Smoothing of the data to remove chance variation.
- Adjustment of the data to allow for direct comparison of injury rates.

Each of these procedures is described in detail later in this section. In general, the effectiveness of child restraints is carried out in the following steps.

- 1. <u>Select the full mass accident data base</u>. The data bases analyzed are New York 1974 and 1977, New Jersey 1975, and Idaho 1976, 1977 and 1978.
- Extract the partial data set to be used directly in evaluating child restraint effectiveness. The partial data set consists of occupants of passenger vehicles who were four years of age or younger.
- 3. Define a set of variables to be considered for modeling and adjustment purposes. In addition to Injury Level and Restraint Usage, all available variables that might represent possible confounding effects are considered for modeling and adjustment.
- 4. <u>Apply the variable selection procedure</u>. This procedure consists of ranking all potential variables according to the strength of their interactions with Injury and Restraint Usage, and choosing those variables with the highest overall degree of interaction.

5. Fit a hierarchical, log-linear model to the contingency <u>table composed of Injury, Restraint Usage and those</u> <u>variables selected in Step 4</u>. The purpose of modeling is to smooth the data and to remove random variability due to small cell frequencies that occur when a large number of control variables are used.

Modeling also reveals the strength of various interactions among the variables. For each year of New York data, separate models are fit for KA vs. BCO, KAB vs. CO and KABC vs. O injury dichotomies. For New Jersey, only the latter two models are fit, while in the case of Idaho, only one model for the KABC vs. O injury dichotomy is fit. This is a result of the smaller sample sizes for the latter two states.

- 6. Adjust the smoothed cell frequencies to allow for the direct comparison of injury rates. Adjustment is necessary in order to insure that the overall effectiveness estimates will not be affected by different distributions of children in child restraints, seat belts and unrestrained children across different levels of the control variables identified in Step 4.
- 7. <u>Compute effectiveness and confidence intervals</u>. The effectiveness of child restraints and seat belts is computed for each state-year of data, and an estimate made of the variances of these values. Appropriate confidence intervals are determined, and the hypothesis that differences in the injury rates of unrestrained and restrained children are significantly greater than zero is tested.
- 8. <u>Extrapolate the results</u>. A weighted mean of New York 1974 and 1977 values is used to extrapolate effectiveness to a nationwide basis.

3.2 Data Characteristics

The data characteristics for each state are presented separately in this subsection. The three generic tables that document each set are:

- Relation of partial data set to full data base.
- Univariate frequency distribution of relevant variables.
- Injury rates for child restraint use, seat belt use and unrestrained by relevant variables.

In each case the data characteristics are discussed for four data sets:

- New York 1974
- New York 1977
- New Jersey 1975
- Idaho 1976-1978 (pooled).

The size of the partial data sets used in the analysis of child restraints relative to the entire state mass accident data bases can be characterized by noting the fraction of accidents, vehicles, injuries and fatalities contained in the full data set as given in Table 3-1. All results are based on analyses of the partial data sets derived from the above listed police-reported mass accident data bases.^{*} CEM originally planned to also use NCSS data for 1976 and 1977. However, out of approximately 10,000 cases, about 50 children are coded as using child restraints, thus offering little opportunity for analysis.

As illustrated in Table 3-1, only a very small subset of each state's yearly accident data base was used for the analysis of the effectiveness of child restraints. Each partial data set was derived by selecting <u>only</u> those children between the ages of 0 and 4 (inclusive) who could be fully cross-classified (i.e., had no missing information) with respect to injury severity, seating position, age and restraint usage. The resulting data set was further refined by eliminating children occupying vehicles other than passenger cars, as well as those children occupying seating positions other than front center, front right, back left, back center or back right - i.e., excluded were occupants of the far back seat in a station wagon, the driver's seat, etc. This was done because the number of fatalities for these children was disproportionately higher than for rear seat occupants. Since there were too few far back seat occupants to treat separately, their inclusion might have biased the findings. However, only five percent of the data was lost by eliminating occupants of the far back seat.

^{*} With the exception of Connecticut and Tennessee, no other states record the use or non-use of child restraining devices in their police accident reports to date.

Children less than one year old could not be identified in either New Jersey or Idaho samples, since the particular code value used for infants was identical to that used for missing data.

TABLE 3-1

NUMBER OF ACCIDENTS, VEHICLES, INJURIES AND FATALITIES IN DATA BASES USED FOR THE ANALYSIS OF CHILD SEATING SYSTEMS

State [*]	Year	Variable	Full Data _{**} Base	Partial Data ₊ Base	Percent
New York	1974	Accidents Vehicles Injuries Fatalities	377,818 704,477 294,477 2,664	8,596 15,472 3,098 10	2.28 2.20 1.05 0.38
New York	1977	Accidents Vehicles Injuries Fatalities	355,683 662,175 281,119 , 2,471	8,873 15,971 3,054 12	2.49 2.41 1.09 0.49
New Jersey	1975	Accidents Vehicles Injuries Fatalities	219,526 409,207 103,537 1,079	5,548 9,762 2,083 16	2.53 2.39 2.01 1.48
Idaho	1976- 1978 (Pooled)	Accidents Vehicles Injuries Fatalities	68,011 117,786 38,440 944	2,959 5,542 654 29	4.35 4.70 1.70 3.07

For Idaho, the legal (dollar) reporting threshold was \$100 in 1976, and \$250 in both 1977 and 1978. For New Jersey, the legal reporting threshold was \$200 in 1975. For New York, it was **\$200 in both** 1974 and 1977.

** Reportable accidents only.

⁺Includes non-reportable accidents.

Basic characteristics of the samples derived from New York, New Jersey and Idaho police-reported accident data bases are contained in Appendix A, and are summarized only briefly in this section. Tables 3-2, 3-3 and 3-4 contain the univariate frequencies of certain "key" variables used in the analysis of child restraints for the New York 1974 (N=10,745), New York 1977 (N=11,092), New Jersey (N=6738) and Idaho (pooled N=3766) samples. From these tables, it can be seen that:

• Overall injury rates (K+A+B+C) are higher for children in New Jersey (31 percent) and New York (28 percent), as compared to Idaho (18 percent). The majority of children, however, sustained no injuries (between 69 and 82 percent).

TABLE 3-2

FREQUENCY DISTRIBUTIONS OF KEY VARIABLES FROM NEW YORK 1974 AND 1977 SAMPLES

		197	4	٦	977
Vartable	Category	Absolute Frequency	% of Known	Absolute Frequency	% of Known
Child's Injury Level	None C B A K Injured (Extent Unknown)	7647 1117 1635 293 10 43	71.2 10.4 15.2 2.7 0.1 0.4	8038 1191 1612 239 12 	72.5 10.7 14.5 2.2 0.1
Restraint Usage	None Seatbelt Child Seat	8542 1411 792	79.5 13.1 7.4	8768 1327 979	79.2 12.0 8.8
Sex of Child	Male Female Missing	5558 5128 59	52.0 48.0	5677 5383 32	51.3 48.7
Age of Child	Less than Two Years Two Years Three Years Four Years	2695 2537 2798 2715	25.1 23.6 26.0 25.3	3262 2663 2623 2544	29.4 24.0 23.6 22.9
Child's Seating Position	Front Center Front Right Back Left Back Center Back Right	2730 2565 1808 1666 1976	25.4 23.9 16.8 15.5 18.4	2817 2741 1785 1802 1947	25.4 24.7 16.1 16.2 17.6
Sex of Driver	Male Female	4955 5790	46.1 53.9	5200 5892	46.9 53.1
Age of Driver	16-25 26-30 30 or Older Missing	2824 3345 4471 105	26.5 31.4 42.0	2786 3526 4712 68	25.3 32.0 42.7
Number of Vehicles in Accident	One Two Three or More	1442 8067 1236	13.4 75.1 11.5	1473 8168 1451	13.3 73.6 13.1
Road Classification	State Highway County Road Town Road City Street Limited Access Missing	3780 1 394 1 368 3009 749 445	36.7 13.5. 13.3 29.2 7.3 	4302 1428 1417 2700 851 394	40.2 13.4 13.2 25.2 8.0
Road Surface Condition	Dry Wet Muddy Snow/Ice Slush Other Missing	7098 2557 8 863 146 27 26	66.2 23.9 0.1 8.1 1.4 0.3	6781 2589 14 1505 148 24 31	61.3 23.4 0.1 13.6 1.3 0.2

TABLE 3-2 (Continued)

	Category	1974		1977	
Variable		Absolute Frequency	% of Known	Absolute Frequency	% of Known
Weather Condition	Clear Cloudy Rain Snow Sleet/Hail Fog/Smog/Smoke Missing	7416 1675 239 612 665 85 53	69.4 15.7 2.2 5.7 6.2 0.8	7218 1933 272 667 880 83 39	65.3 17.5 2.5 6.0 8.0 0.8
Vehicle Weight	LT 3000 lbs 3000 - 3599 lbs 3600-4399 lbs 4400 lbs or More Missing	2701 2553 3531 939 1012	27.8 26.2 36.3 9.6 	Not	Available [*]
Towaway	No Yes	7423 3322	69.1 30.9	Not	Available
Extent of Vehicle Damage	None Light Moderate Severe Demolished Missing	498 3036 5629 1291 94 197	4.7 28.8 53.4 12.2 0.9 	Not	Available
Initial Point of Impact	Front Right Side Left Side Rear Missing	3308 2713 2737 1547 440	32.1 26.3 26.6 15.0	Not	Available
Total Number of Cases		10,745		11,092	

*This information was not coded in New York for 1977.

TABLE 3-3

FREQUENCY DISTRIBUTIONS OF KEY VARIABLES FROM NEW JERSEY 1975 SAMPLE

Variable	Category	Absolute Frequency	% of Known
Child's Injury Level	None Type C Type B Type A Killed	4652 1342 707 52 3	69.0 19.6 10.5 0.8 0.0
Restraint Usage	None Seatbelt Child Restraint	5174 931 633	76.8 13.8 9.4
Sex of Child	Male Female Missing	3470 3232 36	51.8 48.2
Age of Child	One Year Two Years Three Years Four Years	1737 1566 1711 1724	25.8 23.2 25.4 25.6
Child's Seating Position	Front Center Front Right Back Left Back Center Back Right	1788 1815 1380 883 872	26.5 26.9 20.5 13.1 12.9
Sex of Driver	Male Female Missing	2663 4066 9	39.1 60.4
Age of Driver	15-25 26-30 31-54 55 or Older Missing	1937 2079 2469 233 20	28.8 30.9 36.8 3.5
Number of Vehicles in Accident	One Two or More	791 5947	11.7 88.3
Severity of Accident	No Injury other than Child's Injury or Fatality	3236 3502	48.0 52.0
City Size	LT 5,000 5,000- 24,999 25,000-49,999 50,000-99,999 100,000 or More	637 3019 1667 814 601	9.5 44.8 24.7 12.1 8.9
Road Classification	State Highway County Road City Street Interstate	2223 2583 1737 195	33.0 38.3 25.8 2.9
Weather	Clear/Cloudy Rain Snow Fog Other Missing	4907 1553 193 25 48 12	73.0 23.1 2.9 0.4 0.7
Road Surface Condition	Dry Wet Snow/Ice Other Missing	4580 1840 280 19 19	68.2 27.4 4.1 4.1
Traffic Density	Light Medium Heavy Missing	2432 3155 1126 25	36.2 47.0 16.8
Total Number of Cases		6738	ar 44
FREQUENCY DISTRIBUTIONS OF KEY VARIABLES FROM IDAHO 1976/1977/1978 SAMPLE

ŝ

Variable	Category	Absolute Frequency	% of Known
Child's Injury Level	None Type C Type B Type A Killed	3105 213 368 73 7	82.4 5.7 9.8 1.9 0.2
Restraint Usage	None Seatbelt Child Restraint	3289 332 145	87.3 8.8 3.9
Sex of Child	Male Female Missing	1890 1865 11	50.3 49.7
Age of Child	One Year Two Years Three Years Four Years	1111 1009 851 795	29.5 26.8 22.6 21.1
Child's Seating Position	Front Center Front Right Back Left Back Center Back Right	1021 1265 487 536 457	27.1 33.6 12.6 14.2 12.1
Sex of Driver	Male Female Missing	1299 2386 81	35.3 64.7
Age of Driver	16-25 26-30 31-54 55 or Older Missing	1443 1183 937 131 72	39.1 32.0 25.4 3.5
Number of Vehicles in Accident	One Two	478 3288	12.7 87.3
Severity of Accident	No Injury other than Child's Injury or Fatality	2427 1339	64.4 35.6
Rural/Urban	Rural Urban	1452 2314	38.6 61.4
Initial Point of Impact	Front Side Rear Missing	1425 1661 495 185	39.8 46.4 13.8
Was Vehicle Totalled?	No Yes Missing	2593 458 715	85.0 15.0
Extent of Vehicle Damage	\$250 or Less \$251-\$500 \$501-\$1000 \$1001 or More Missing	1235 1179 702 456 194	34.6 33.0 19.7 12.7
Total Number	of Cases	3766	

- The percentage of children suffering either sorious or intal injuries (K+A) in New York and Idaho is 2.5 to 3 times greater than in New Jersey (2.5 and 2.1 vs 0.84 percent, respectively), although the overall incidence of serious and fatal injuries is quite small in all states.
- In New Jersey, 76.8 percent of children in accidents were unrestrained, compared to 87.3 percent in Idaho and 79.3 percent in New York. However, the rate of child restraint usage in New Jersey and New York is more than twice that found in Idaho (9.4 and 8.2 percent vs. 3.8 percent), while the seat belt usage rate for children in New Jersey and New York is approximately 1.5 times greater than in Idaho (13.8 and 12.5 percent vs. 8.8 percent).
- Children (1-4 years old) in accidents in each sample are essentially uniformly distributed by age, although in New York 1977, the inclusion of infants in the one-year-old category increases the frequency of one year old children who are involved in accidents. The greater number of one year old children in Idaho might possibly reflect the inclusion of infants in the sample due to police reporting errors with respect to their age.
- In Idaho, 60.7 percent of children ride in the front seat, with slightly more than half of these occupying the front center seat. In New Jersey, only 53.5 percent of the children ride in the front seat, with equal frequency of front right and front center seat occupancy. In New York, about 50 percent of the children occupy front seats, with little difference in frequency of front right and front center occupancy.
- In each state, male children are involved in accidents slightly more frequently than female children.
- The ratio of single-vehicle accidents to multivehicle accidents is roughly the same in each state.

In addition to the foregoing sample characteristics, Appendix A contains a summary of selected *bivariate* relationships between key variables in New York, New Jersey and Idaho samples.

3.3 Variable Selection

The variable selection procedure is designed to select from a large group of potential variables a limited number that will be used to fit models to and adjust the data. The procedure, which is fairly straightforward, is listed below:

- For each potential variable, a three variable saturated loglinear model containing Injury, Restraint Usage and Variable is fit.
- 2. Three likelihood ratio (LR) chi-square (χ^2) statistics are computed for the <u>differences</u> between the saturated model and three separate sub-models, the first of which differs from the saturated model only by the exclusion of the Variable x Injury interaction term,

3-11

the second differing only by the exclusion of the Variable x Restraint Usage interaction term, and the third differing only by the exclusion of the Variable x Injury x Restraint Usage interaction term.

- 3. The harmonic mean of the three $\text{LR}\chi^2$ statistics is computed.
- 4. The variables are ordered according to the magnitude of the harmonic mean, and the highest ranked variables are selected for modeling and adjustment.

In addition to Injury and Restraint Usage, no more than five variables can be accommodated by the computer program which is used to fit hierarchical loglinear models to the data(BMDP: Biomedical Computer Program-P3F). Furthermore, to avoid problems of acute data sparsity in the contingency table to be modeled, the determination of the number of variables to be selected <u>must</u> take into account both the size of the sample from which the table is constructed <u>and</u> the number of categories characterizing each variable selected.

With regard to the latter, it should be emphasized that the choice of cutting points used to categorize a variable was not completely arbitrary. Whenever appropriate (and possible), several different "versions" of a given variable - each with different cutting points, and in many cases, with a different number of categories - were input into the variable selection procedure. Only one "version" of a variable, that with the highest harmonic mean of $LR\chi^2$'s, was used in subsequent analyses.

Figure 3-2 illustrates a typical example of the effort involved in determining the "optimal" cutting points of the variable city size in the New Jersey 1975 sample. (The 25,000 cutting point is chosen.)

Figure 3-2. Example of determination of "optimal" cutting points of categorical variables.

Tables 3-2, 3-3 and 3-4 contain the variables which were candidates for selection in the New York, New Jersey and Idaho samples. Injury rates (KABC percentages), along with the number of child occupants in each restraint category, are presented separately for each variable category in Tables 3-5 through 3-8 for New York 1974, New York 1977, New Jersey and Idaho.

It was noted previously that the overall injury rates for New York, New Jersey and Idaho are 28 percent, 31 percent and 18 percent respectively. The figures can be kept in mind in the brief discussions below. In the New York 1974 sample, injury rates range from a high of 47.0 percent for unrestrained children in severely damaged vehicles to a low of 10.0 percent for children in child restraints in cars experiencing no damage or only light damage. As might be anticipated, rates are higher for towaway accidents, severely damaged vehicles, vehicles weighing less than 3000 lbs., children in front seats. vehicles experiencing frontal impacts and roads classified as limited access and city streets. The injury rates for the New York 1977 sample are generally similar. Considering the question of restraint usage, the overall injury rates are 19.8 percent for children using child restraints, 22.3 percent for children using seat belts and 30.7 percent for unrestrained children in New York 1974. The corresponding values for New York 1977 are 21.1 percent, 18.6 percent and 29.6 percent, respectively.

In New Jersey, injury rates range from a high of 48.0 percent for unrestrained children in accidents involving injury or fatality to a low of 8.3 percent for children in seat belts in accidents in which there was no injury other than the child (if the child had an injury). Injury rates are higher for unrestrained child front seat occupants, Interstate highways, vehicles with young drivers (16-25 years old) and accidents with injuries or fatalities. Overall, the injury rates are 27.0 percent for children in child restraints, 17.7 percent for children using seat belts and 33.8 percent for unrestrained children.

In Idaho, injury rates range from 47.4 percent for children in child restraints in"totalled"vehicles (only 31 children in this category) to 0.0 percent for children in seat belts in vehicles suffering a rear impact (43 children in this category). Injury rates are higher for totalled vehicles, single vehicle accidents, accidents involving an injury or fatality and accidents in which the vehicle damage was greater than \$500. Overall, the injury rates are 15.9 percent for children in child restraints, 10.5 percent for children using seat belts and 18.3 percent for unrestrained children.

3-13

		Injury	Rate (Per	rcent)	NL	mber of Chi	1d Occupants	
Variable	Category	Child Restraints	Seatbelts	Unrestrained	Child Restraints	Seatbelts	Unrestrained	Total
Road Classifi- cation (N = 10,300)	State Highway County/Town Road City Street Limited Access	19.1 19.5 26.3 17.0	18.2 18.0 33.0 30.4	28.1 29.2 37.0 30.3	335 226 152 47	506 383 339 125	2939 2153 2518 577	3780 2762 3009 749
Age of Child (N = 10,745)	One Year Two Years Three Years Four Years	19.0 22.7 18.8 18.9	18.6 17.9 26.1 26.4	27.4 32.0 29.5 33.5	485 185 85 37	371 324 364 352	1837 2028 2349 2326	2695 2537 2798 2715
Vehicle Weight (N = 9,733)	LT 3000 1bs 3000-3599 1bs 3600 1bs or More	24.3 20.0 16.6	28.3 17.7 21.5	34.6 29.7 27.9	222 205 314	396 294 591	2092 2054 3565	2710 2553 4470
Extent of Vehicle Damage (N = 10,548)	None/Light Moderate Severe	10.0 19.1 45.3	14.6 22.9 39.1	22.2 32.1 47.0	260 414 106	460 767 161	2814 4448 1118	3534 5629 1385
Initial Point of Impact (N = 10,305)	Front Side Rear	23.4 19.9 11.7	27.2 19.8 20.0	35.5 29.2 23.5	214 412 128	390 739 240	2704 4299 1179	3308 5450 1547
Towaway (N = 10,745)	Yes No	33.7 13.7	33.6 18.0	42.4 25.4	243 549	3 93 1018	2686 5856	3322 7423
Number of Vehicles in Accident (N = 10,745)	One Two Th ree or More	27,8 18.4 21.2	24.1 21.9 23.3	34.3 30.3 29.5	97 610 85	166 1056 189	1179 6401 962	1442 8067 1236
Sex of Driver (N = 10,745)	Male Female	16.4 21.6	23.5 21.4	31.7 29.9	269 523	613 798	4073 4469	495 5 579 0
Age of Driver (N = 10,640)	16-25 26-30 31 or Older	22.5 19.0 17.7	24.8 20.0 22.7	32.4 29.9 30.2	222 315 243	318 491 596	2284 2539 3632	2824 3345 4471
Child's Seating Position (N = 10,745)	Front Seat Back Seat	22.2 17.7	24.8 19.9	35.4 26.1	374 418	689 722	4232 4310	5295 5450
Sex of Child (N = 10,686)	Male Female	18.7 21.1	22.6 22.4	30.6 31.1	407 383	707 693	4444 4052	5558 5120
Weather (N = 10,742)	Clear/Cloudy Other	19.7 20.2	22.5 21.9	30.5 31.6	588 203	1059 347	6605 1922	8252 2472
Road Surface Condition (N = 10,719)	Dry Other	19.7 20.1	22.7 21.5	30.7 30.9	527 264	935 474	5636 2883	7098 3621

TABLE 3-5INJURY RATES FOR NEW YORK 1974 SAMPLE

3-14

•

INJURY RATES FOR NEW YORK 1977 SAMPLE

		Injury	Rate (Per	rcent)	Ne	mber of Ch	11d Occupants	1
Variable	Category	Child • Restraints	Seatbelts	Unrestrained	Child Restraints	Seatbelts	Unrestrained	Total
Road Classifi- cation (N = 10,698)	State Highway County/Town Road City Street Limited Access	18.8 23.9 20.9 22.5	14.3 16.4 28.8 23.4	26.2 31.4 34.6 29.1	383 306 187 71	510 384 267 124	3409 2155 2246 656	4302 2845 2700 851
Vehicle Weight (N = 10,080)	LT 3000 lbs 3000-3599 lbs 3000 lbs or More	20.6 19.8 21.7	23.0 17.5 15.9	34.3 30.0 26.4	291 248 378	326 309 579	2026 1976 3947	2643 2533 4904
Age of Driver (N = 11,024)	16-25 26-30 31 or Older	26.2 22.0 16.9	22.3 17.6 17.8	31.9 29.1 28.3	244 386 344	247 467 602	2295 2673 3766	2786 3526 4712
Age of Child (N = 11,092)	One Year Two Years Three Years Four Years	20.2 23.3 25.8 17.5	16.8 16.9 20.8 21.0	28.2 30.9 29.1 30.2	667 210 62 40	434 314 303 276	2161 2139 2258 2228	3262 2663 2623 2544
Number of Vehicles in Accident (N = 11,092)	One Two Three or More	23.0 21.7 16.4	21.0 18.1 19.1	34.0 28.8 29.4	113 738 128	167 951 209	1193 6479 1114	1473 8168 1451
Child's Seat- ing Position (N = 11,092)	Front Seat Back Seat	24.4 18.6	20.8 16.5	34.0 25.0	430 549	638 689	4490 4296	5558 5534
Road Surface Condition (N = 11,061)	Dry Other	22.7 19.1	18.8 18.2	29.9 29.1	578 397	818 506	5385 3377	6781 4280
Sex of Child (N = 11,061)	Male Female	20.8 21.1	19.2 18.2	30.1 29.2	523 451	657 664	4497 4268	5677 5383
Sex of Driver (N = 11,092)	Male Female	18.6 22.4	19.8 17.7	29.4 29.8	317 662	576 751	4307 4479	5200 5892
Weather (N = 11,071)	Clear/Cloudy Other	21.6 19.9	18.4 19.0	29.6 29.5	712 266	988 336	6593 2176	8293 2778

		Injury	Rate (Per	cent)	Nu	mber of Chi	1d Occupants	
Vartable	Category	Child • Restraints	Seatbelts	Unrestrained	Child Restraints	Seatbelts	Unrestrained	Total
Child's Seat Position (N ≈ 6,738)	Front Seat Back Seat	26.7 27.4	20.1 14.4	40.4 26.4	326 307	536 395	2,741 2,433	3,603 3,135
Road Classification (N - 6,738)	State Highway County Road City Street Interstate	26.7 29.9 22.4 35.0	20.7 13.4 19.5 27.6	30.5 33.9 37.2 39.7	221 231 161 20	328 374 200 29	1,674 1,978 1,376 146	2,223 2,583 1,737 195
City Size (N = 6,738)	LT 25,000 25,000 or More	26.4 28.0	13.0 23.3	30.4 37.8	383 250	507 424	2,766 2,408	3,656 3,082
Age of Driver (N = 6,714)	16 - 25 26 - 30 31 or older	27.7 27.8 25.7	21.6 14.9 17.8	37.3 34.6 30.3	166 237 230	222 328 381	1,549 1,514 2,091	1,937 2,079 2,702
Age of Child (N = 6,738)	One Year Two Years Three Years Four Years	28.0 28.5 17.0 21.4	16.4 17.9 20.2 16.6	35.9 34.2 31.5 34.2	400 158 47 28	238 240 218 235	1,099 1,168 1,446 1,461	1,737 1,566 1,711 1,724
Severity of Accident (N - 6,738)	No Injury other than Child's Injury or Fatality	10.7 40.1	8.3 31.6	17.5 48.0	281 352	555 376	2,400 2,774	3 ,23 6 3,502
Traffic Density (N = 6,713)	Light Medium/Heavy	26.7 27.2	19.3 17.0	36.9 31.8	210 423	296 631	1,926 3,227	2,432 4,281
Sex of Child (N = 6,702)	Male Female	27.1 26.8	15.5 20.4	32.4 35.4	321 302	517 412	2,632 2,518	3,470 3,232
Sex of Driver (N = 6,729)	Male Female	27.4 26.7	20.5 15.9	35.6 32.5	164 468	375 555	2,124 3,043	2,663 4,066
Number of Ve- hicles in Accident (N = 6,738)	One Two	24.1 27.5	19.0 17.6	39.0 33.1	83 550	105 826	603 4,571	791 5,947
Weather (N = 6,726)	Clear/Cloudy Other	27.4 25.9	18.5 16.0	34.2 32.6	470 162	642 287	3,795 1,370	4,907 1,819
Road Surface Condition (N = 6,719)	Dry Ot her	27.7 25.1	18.6 16.2	34.6 32.0	441 191	587 340	3,552 1,608	4,580 2,139

TABLE 3-7INJURY RATES FOR NEW JERSEY 1975 SAMPLE

TABLE 3-8INJURY RATES FOR IDAHO 1976/1977/1978 SAMPLE

		Injury	/ Rate (Pe	umber of Ch	1d Occupants			
Varlable	Category	Child • Restraints	Seatbelts	Unrestrained	Child Restraints	Seatbelts	Unrestrained	Total
Age of Driver (N = 3,694)	16-25 26-30 31 or older	19.0 8.8 25.9	10.1 11.5 10.0	21.8 17.2 15.3	58 57 27	109 122 100	1,276 1,004 941	1,443 1,183 1,068
Age of Child (N = 3,766)	One Year Two Years Three Years Four Years	15.8 22.6 7.7 0.0	12.9 8.6 8.2 11.1	18.3 16.2 19.9 19.3	95 31 13 6	124 93 61 54	892 885 777 735	1,111 1,009 851 795
Extent of Vehicle Damage (N = 3,572)	\$500 or Less \$501 or More	7.1 32.1	4.0 25.8	11.3 31.5	84 53	226 97	2,104 1,008	2,414 1,158
Initial Point of Impact (N = 3,581)	Front Side Rear	24.1 13.6 4.3	11.6 10.7 0.0	23.2 16.6 7.0	58 59 23	121 159 43	1,246 1,443 429	1,425 1,661 495
Severity of Accident (N = 3,766)	No Injury Other than Child's Injury or Fatality	3.4 35.1	4.3 25.3	8.6 35.6	88 57	2 <u>3</u> 3 99	2,106 1,183	2,427 1,339
Rural/Urban (N = 3,766)	Rural Urban	14.9 16.3	16.3 7.2	20.1 17.2	47 98	123 209	1,282 2,007	1,452 2,314
Sex of Child (N = 3,755)	Male Female	17.2 13.8	11.1 9.4	17.0 19.7	87 58	171 160	1,632 1,647	1,890 1,865
Number of Vehicles in Accident (N = 3,766)	One Two	15.8 15.9	26.5 8.7	31.8 16.3	19 126	34 298	425 2,864	478 3,288
Sex of Driver (N = 3,685)	Male Female	20.0 15.3	8.5 11.3	16.6 19.2	30 111	106 221	1,163 2,054	1,299 2,386
Was Vehicle Totalled? (N = 3,051)	No Yes	10.6 47.4	7.6 41.9	13.2 44.4	94 19	238 31	2,261 408	2,593 458
Child's Seat Position (N = 3,766)	Front Back	20.5 10.4	11.9 8.5	21.6 13.3	78 67	202 130	2,006 1,283	2,280 1,481

The information used in the variable selection procedure to determine those variables selected for modeling and adjustment purposes in the New York 1974, New York 1977, New Jersey and Idaho samples is given in Tables 3-9, 3-10, 3-11 and 3-12. In each table, the variables analyzed are listed in descending order of the magnitude of the harmonic mean of the $LR\chi^2$'s of the partial association of the following three interaction terms: Variable x Injury, Variable x Restraint Usage, and Variable x Injury x Restraint Usage. For the convenience of the reader, the variables selected in each sample are listed below in the same order as they appear in the tables.

New York 1974

Road Classification Age of Child Vehicle Weight Extent of Vehicle Damage

New Jersey 1975

Child's Seat Position Road Classification City Size Age of Driver

New York 1977

Road Classification Vehicle Weight Age of Driver

Idaho (1976-1978)

Age of Driver Age of Child Extent of Vehicle Damage

Thus, the most frequently used variables for modeling and adjustment are Road Classification, Age of Driver, Age of Child, Vehicle Weight and Extent of Vehicle Damage.

.

INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE NEW YORK 1974 SAMPLE

	Intera Cor	action Ter Itaining I	ms from the : njury, Restra	3-Variable S aint Usage a	aturated Modendon Modendo	2]	Harmonic
Variable	Variable :	(İnjury	Variable x	Restraint Usage	Variable x x Restrain	Mean of Interaction Terms	
	LR x ²	df	LR X ² df		LR X ²	df	
Road Classification	81.67	3	54.98	6	12.02*	6	26.40
Age of Child	25.17	3	636.38	6	10.78*	6	22.38
Vehicle Weight	39.72	2	18.62	4	4.86*	4	10.54
Extent of Vehicle Damage	317.69	2	4.90*	4	10.46	4	9.91
Initial Point of Impact	75.05	2	15.48	4	4.06*	4	9.25
Towaway	318.80	1	3.41*	2	4.38*	2	5.72
Number of Vehicles in Accident	10.51	2	9.00*	4	2.61*	4	5.09
Sex of Driver	2.47*	1	58.50	2	4.85*	2	4.78
Age of Driver	7.14	2	63.50	4	1.79*	4	4.20
Child's Seat Position	92.72	1	0.45*	2	1.90*	2	1.09
Sex of Child	0.41*	٦	1.78*	2	0.62*	2	0.65
Weather	0.59*	1	6.58	2	0.28*	2	0.55
Road Surface Condition	0.01*	1	0.08*	2	0.29*	2	0.26

*p >0.05

...

Note: The variables above the heavy line were selected for modeling.

INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE NEW YORK 1977 SAMPLE

	Intera Cor	Harmonic						
Variable	Variable >	< Injury	Variable x	Variable x Restraint Usage		Injury Usage	Mean of Interaction Terms	
	LR X ²	df	LR X ² df		LR X ² df			
Road Classification	62.31	3	49.86	6	14.31	6	28.31	
Vehicle Weight	42.13	2	30.76	4	5.86*	4	13.22	
Age of Driver	15.23	2	67.64	4	4.41*	4	9.77	
Age of Child	5.61*	3	881.09	6	4.62*	6	7.58	
Number of Vehicles in Accident	13.43	2	11.36	4	2.52*	4	5.36	
Child's Seat Position	94.86	1	14.83	2	1.29*	2	3.52	
Road Surface Condition	1.45*	1	1.80*	2	1.07*	2	1.38	
Sex of Child	0.72*	1	3.51*	2	0.37*	2	0.69	
Sex of Driver	0.18*	1	107.63	2	2.73*	2	0.51	
Weather	0.05*	1	2.61*	2	0.38*	2	0.13	

*p >0.05

<u>Note</u>: The variables above the heavy line were selected for modeling.

INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE NEW JERSEY 1975 SAMPLE

	Inter Con	Harmonic					
Variable	Variable x Injury		Variable x	Restraint Usage	Variable x x Restrain	Mean of Interaction Terms	
	LR x ²	df	LR x ²	df	LR X ²	df	
Child's Seat Position	105.30	1	15.12	2	13.20	2	19.82
Road Classification	13.86	3	10.86*	6	16.59	6	13.36
City Size	42.15	1	10.02	2	6.57	2	10.88
Age of Driver	19.84	2	30.77	4	4.67*	4	10.10
Age of Child	4.91*	3	604. 66	6	5.69*	6	7.87
Severity of Accident	712.68	1	27.68	2	1.69*	2	4.77
Traffic Density	12.98	7	10.06	2	1.67*	2	3.87
Sex of Child	6.86	1	4.98*	2	2.03*	2	3.58
Sex of Driver	7.30	3	55.87	2	1.28*	2	3.20
Number of Vehicles in Accident	6.01	1	1.39*	2	2.47*	2	2.32
Weather	1.81*	1	7.26	2	0.28*	2	0.70
Road Surface Condition	4.43	1	10.01	2	0.08*	2	0.23

*P > 0.05

Note: The variables above the heavy line were selected for modeling.

INTERACTION TERMS EVALUATED IN VARIABLE SELECTION PROCEDURE IDAHO 1976/1977/1978 SAMPLE

	Intera Con	Harmonic					
Variable	Variable x Injury		Variable x	Restraint Usage	Variable x x Restrain	Mean of Interaction Terms	
	LR x ²	df	LR x ²	df	LR x ²	df	
Age of Driver	15.24	2	14.36	4	6.13*	4	10.06
Age of Child	3.76*	3	117.25	6	6.21*	6	6.89
Extent of Vehicle Damage	219.24	1	2.76*	2	5.16*	2	5.35
Initial Point of Impact	77;94	2	2.26*	4	4.30*	4	4.36
Severity of Accident	407 .6 8	1	2.68*	2	2.88*	2	4.15
Rura1/Urban	6.71	1	2.67*	2	4.32*	2	3.97
Sex of Child	2.92*	1	5.91*	2	1.76*	2	2.78
Number of Vehicles in Accident	56.92	1	1.01*	2	2.96*	2	2.23
Sex of Driver	3.51*	1	15.78	2	0.98*	2	2.19
Was Vehicle Totalled?	221.44	1	1.27*	2	1.65*	2	2.15
Child's Seat Position	40.93	1	2.90*	2	0.48*	2	1.22

*p > 0.05

Note: The variables above the heavy line were selected for modeling.

3.4 Analysis of Mass Accident Data

Following completion of the variable selection procedure, the analytical steps that remain are modeling, adjustment of data, computation of effectiveness values, error estimation, and extrapolation of results to the nation. Each of these steps, along with the results, is described in the following subsections.

3.4.1 Modeling

The basic purpose of modeling as it is applied to the evaluation of child restraint effectiveness is twofold:

- 1. To "smooth" the data--i.e., remove random variation due to small cell counts.
- 2. To compensate for the uneven distribution of data across cells, especially the sparsity of data which characterizes the "injured" categories for certain subpopulations.

CEM used the log-linear modeling routine (BMDP3F) of the Biomedical Computer Program's P-Series to generate smoothed or "fitted" cell frequencies. The BMDP3F program, which is based on an iterative proportional fitting (IPF) algorithm, was chosen for the number of dimensions in contingency tables (up to seven) which it can handle, as well as for its model screening capability.

The fitting of log-linear models to the data involves several steps. First, fully cross-classified contingency tables--i.e., containing no missing data for any of the variables--were constructed, using Injury Level, Restraint Usage and all variables selected by the procedure discussed in Section 3.3. Depending upon the size of a given sample, tables were generated using several different injury dichotomies, as follows.

- For New York 1974 and 1977 samples, three tables were constructed for each sample, for KA vs. BCO, KAB vs CO and KABC vs O injury dichotomies.
- For the New Jersey 1975 sample, two tables were generated, for KAB vs. CO and KABC vs. O injury dichotomies.
- For the Idaho 1976-1978 sample, only one table was constructed, for the KABC vs. 0 injury dichotomy.

Appendix B contains complete listings of each of the above nine contingency tables.

Next, a description of the relationships among variables (or "effects") was obtained, consisting of a test of the significance of the main

effects and of the various interactions between these effects.^{*} This provided a basis for ordering the interaction terms by their importance (significance). Using this information, a model was fit according to the following iterative procedure.

- As many significant effects as required were first specified in an attempt to derive a model with an optimal fit. Optimal fit refers to the situation in which the magnitude of the model's LR chi-square is roughly similar to its number of degrees of freedom.
- 2. Effects were either deleted or added to the model in a stepwise fashion until the deletion of any one effect would result in a significant worsening of the fit, whereas the addition of any single effect would not significantly improve the model's fit.

This approach represents a compromise of sorts between the two considerations of parsimony and goodness-of-fit. In all cases, residuals were examined to detect possible systematic patterns in the error terms, which might necessitate the respecification of the model.

Tables 3-13 to 3-16 summarize the models fit to data for the various samples and injury dichotomies used. The likelihood ratio (LR) chi-square values were derived from tests of marginal association for each effect, in which the cell counts for the complete contingency table were summed over all unspecified margins, after which the effect (interaction term) was tested to be zero, using a LR Chi-square statistic.

Since the log-linear models fitted are hierarchical models, the specification of a given effect forces all lower-order effects which are subsets of the effect into the model. For example, if an "Injury x Restraint Usage x Child Age" effect is specified, the following additional terms are hierarchically included:

- Injury x Restraint Usage
- Injury x Child Age
- Restraint Usage x Child Age
- Injury
- Restraint Usage
- Child Age

^{*}The terminology used here (main effects, interaction terms, etc.) is analogous to that used in an Analysis of Variance model. A major difference involves the fact that in the log-linear modeling approach, it is the *logarithm* of the expected cell frequency which is an additive function of both main effects and interaction terms.

SUMMARY OF	TESTS	OF MARGINAL	ASSOCIATION OF DIRECTLY SPECIFIED	
	MODEL	EFFECTS FOR	NEW YORK 1974 SAMPLE	

,	KA	vs. BCC	0	K/	AB vs. CC		KA	BC vs.	0
Effect	LR _X 2	df	Prob.	LR _X 2	df	Prob.	LR _X 2	df	Prob.
Injury x Rd. Class				22.22	3	0.0001			
Injury x Child Age				12.69	3	0,0054	38.12	3	0.0000
Injury x Weight				37.95	2	0.0000	39.16	2	0.0000
Injury x Damagw	65.49	2	0.0000						
Restraint x Rd.Class		6		49.75	6	0.0000	47.70	6	0.0000
Restraint x Child Age	570.39	6	0.0000	570.39	6	0.0000	574.69	6	0.0000
Restraint x Weight	13.55	4	0.0089	13.55	4	0.0089	14.49	4	0.0059
Rd. Class x Child Age							9.76	9	0.3701
Child Age x Weight	21.64	6	0.0014	21.64	6	0.0014	22.54	6	0.0015
Injury x Restraint x Rd. Class	17.25	6	0.0084						
Injury x Restraint x Damage				13.85	4	0.0078	10.51	4	0.0327
Injury x Rd.Class x Damage							15.49	6	0.0168
Rd.Class x Weight x Damage	21.21	12	0.0474	21.21	12	0.0474	22.65	12	0.0309
Summary of Model	641.42	787	1.000	780.99	780	0.4833	734.55	765	0.7799

TABLE 3-14

.

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR NEW YORK 1977 SAMPLE

	ĸ	A vs. BC	0	KAB vs. CO			KABC vs. O		
ETTECL	LR _X 2	df	Prob.	LR _X 2	df	Prob.	LR _X 2	df	Prob.
Injury x Restraint	15.76	2	0.0004						
Injury x Weight	6.83	2	0.0329				33.78	2	0.0000
Injury x Dr.Age	9.85	2	0.0073	19.04	2	0,0001	16.23	2	0.0003
Restraint x Rd.Class	39.43	6	0.0000						
Restraint x Weight	28.15	4	0.0000				28.15	4	0.0000
Restraint x Dr.Age	65.56	4	0.0000	65.56	4	0.0000	65.56	4	0.0000
Injury x Restraint x Rd. Class							14.44	6	0.0251
Rd. Class x Weight x Dr.Age	23.51	12	0.0237	23,51	12	0.0237	23.51	12	0.0237
Injury x Restraint x Rd. Class x Weight				20.32	12	0.0613			
Summary of Model	151.73	157	0.6039	129.51	114	0.1519	149.46	148	0.4509

3-25

₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		I	njury Dic	:hotomy		
F 56	КАВ	vs. C	0	ĸ	CAB vs.	0
Errect	LR _X 2	df	Prob.	LR _X 2	df	Prob.
Injury'x Dr. Age	~~			22.43	2	0.0000
Injury x Restraint x Seat Pos.	11.14	2	0.0038			
Injury x Restraint x Rd. Class	15.90	4	0.0032	16.23	4	0.0027
Injury x Seat Pos. x Rd. Class				12.72	2	0.0017
Seat Pos. x Rd. Class x Dr.Age				12.97	4	0.0114
Injury x Restraint x Seat Pos. x City Size		***		6.17	2	0.0457
Restraint x Seat Pos. x City Size x Dr.Age	13.04	4	0.0111	13.04	4	0.0111
Restraint x Rd.Class x City Size x Dr.Age	21.27	8	0.0065	21.27	8	0.0065
Injury x Seat Pos. x Rd. Class x City Size x Dr.Age	12.01	4	0.0172			
Summary of Model	99.95	88 of 215	0.1808	121.36	116 of 215	0.3482

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR NEW JERSEY 1975 SAMPLE

TABLE 3-16

SUMMARY OF TESTS OF MARGINAL ASSOCIATION OF DIRECTLY SPECIFIED MODEL EFFECTS FOR IDAHO 1976/1977/1978 SAMPLE

		KABC VS	5 0
Effect	LR _X 2	df	Prob.
Injury x Restraint	12.63	2	0.0018
Injury x Dr.Age	13.80	2	0.0010
Injury x Damage	219.76	6	0.000
Restraints x Child Age	111.15	6	0.000
Dr.Age x Child Age	123.37	6	0.000
Restraint x Dr.Age x Damage	14.82	4	0.0051
Summary of Model	110.13	1.04	0.3468

Therefore, Tables 3-13 to 3-16 contain the LR χ^2 values and significance levels of the directly specified effects only. A complete enumeration of both specified and hierarchically included model effects can be found in Appendix C. Chi-square values marked with an asterisk in the Appendix represent effects which were specified. All other chi-square values denote those effects which were included due to the hierarchical nature of the log-linear models.

3.4.2 Adjustment of Data

Prior to computing the actual effectiveness values, the smoothed (or "fitted") data were adjusted so as to allow for the direct comparison of injury rates. Such adjustment is necessary in order to insure that the overall effectiveness estimate will not be affected by a potentially different distribution of unrestrained children, children in child restraints and children restrained by seat belts across all levels of the control variables identified by the variable selection procedure (described in Section 3.3).

Each smoothed cell count (n_{i+k}) was adjusted to yield a corresponding smoothed, adjusted cell count (n' ik) as follows (notation is presented in Figure 3-3).

$$n'_{ijk} = n_{ijk} \left(\frac{n_{..k} \times n_{.j.}}{n_{...} \times n_{.jk}} \right)$$

Figure 3-3. Summary of notation used to describe the data adjustment procedure. 3-27

By adjusting cell counts in this manner, the total sample size remains the same--i.e., $n'_{\dots} = n_{\dots}$. Additional relations between adjusted and unadjusted cell counts are as follows.

(1) $n'_{i..} = n_{i..}$ (2) $n'_{.j.} = n_{.j.}$ (3) $n'_{..k} = n_{..k}$ (4) $n'_{i.k} = n_{i.k}$ (5) $n'_{ij.} = n_{ij.}$

In other words, the <u>total</u> number of children in each injury category does not change, nor does the <u>total</u> number in each restraint usage category or in each level of every control variable change.

It should be noted, however, that within each <u>combination</u> of Restraint Usage (j) and Level of Control Variables (k), the adjusted count will <u>not</u> equal the unadjusted count:

$$\mathbf{n'}.\mathbf{jk} = \mathbf{n}.\mathbf{jk} \left[\frac{(\mathbf{n}.\mathbf{j}.)(\mathbf{n}..\mathbf{k})}{\mathbf{n}} \right]$$

However, under these conditions, the injury risk does remain unchanged:

$$\frac{n'_{1jk}}{n'_{.jk}} = \frac{n_{1jk}}{n_{.jk}}$$

After all cell counts were adjusted, the data were aggregated over all levels of all control variables, resulting in a simple Injury x Restraint Usage table for each injury dichotomy that was used for each sample. These tables served as the basis for all subsequent effectiveness computations and error estimations.

By way of summary, Table 3-17 contains the variables which, in conjunction with Injury and Restraint Usage, were used in adjusting the smoothed cell counts.

CONTROL VARIABLES USED IN DATA ADJUSTMENT PROCEDURE

State	Year	Variables	Categories
		Road Classification	State Highway County/Town Road City Street Limited Access Highway
÷	1974	Age of Child	One Year Two Years Three Years Four Years
		Vehicle Weight	LT 3,000 lbs 3,000 - 3,599 lbs 3,600 lbs or more
New York		Extent of Vehicle Damage	None/Light Moderate Severe
		Road Classification	State Highway County/Town Road City Street Limited Access Highway
	1977	Vehicle Weight	LT 3,000 1bs 3,000 - 3,599 1bs 3,600 1bs or more
		Age of Driver	16 to 25 26 to 30 31 or older
	ann an Shine	Child's Seat Position	Front Seat Back Seat
New Jersey	1975	Road Classification	State Highway County Road City Street Interstate
		City Size	LT 25,000 25,000 or more
		Age of Driver	16 to 25 26 to 30 31 or older
Idaho	1 976-197 8	Age of Driver	16 to 25 26 to 30 31 or older
		Age of Child	One Year Two Years Three Years Four Years
		Extent of Vehicle Damage	\$500 or less \$501 or more

.

3.4.3 Effectiveness and Error Estimation

Estimation of Effectiveness Values

As noted previously, the overall effectiveness of child restraints in reducing injuries can be expressed as:

^E (Child Restraints) =
$$100 \times \left(1 - \frac{P_{13}}{P_{11}}\right)$$

using the notation depicted in Figure 3-4. Cell entries in Figure 3-4 consist of smoothed, adjusted counts $(n_{ijk}'s)$ as well as the corresponding proportions $(p_{ijk}'s)$.

However, given the stochastic nature of the phenomenon under study, this equation can be written to explicitly include an error term (ϵ) as

E' (Child Restraints) = 100 x
$$\left[1 - \left(\frac{\pi_{13}}{\pi_{11}}, \frac{(1 + \varepsilon_{13})}{(1 + \varepsilon_{11})}\right)\right]$$

where the π_{1i} are the expected values of the p_{1i} .

Furthermore, it is assumed that for each $p_{1j} = n_{1j} \cdot n_{j}$, the n_{1j} . are binomially distributed random variables. The term

$$r = \frac{(1+\pi_{13})}{(1+\pi_{11})}$$

can be approximated by expanding the fraction in a power series in ε_{11} . From Appendix E, it can be seen that when expanding r (retaining terms only up to the third order), the expected value of r can be written as

$$r' = 1 + \frac{1 - \pi_{11.}}{\pi_{.1.}(\pi_{11.})} - \frac{(1 - \pi_{11.})(1 - 2\pi_{11.})}{(\pi_{.1.}(\pi_{11.}))^2} + \frac{3(1 - \pi_{11.})^2}{(\pi_{.1.}(\pi_{11.}))^2} + \frac{(1 - \pi_{11.})(1 - 6\pi_{11.}(1 - \pi_{.1.}))}{(\pi_{.1.}(\pi_{.11.}))^3}$$

If R is defined as $p_{13}./p_{11}$, then the *expected* value of R

$$\mathbf{R'} = \mathbf{r'} \left(\frac{\pi_{13.}}{\pi_{11.}} \right)$$

is greater than $p_{13}./p_{11}$. Therefore, to use R as an estimator for R' overestimates the "true" effectiveness value 1-R'. Unbiased values for child restraint effectiveness (\hat{E}) can be computationally derived by the following equation.

$$\hat{E} \text{ (Child Restraints)} = 100 \times \left[1 - \left(\frac{p_{13}}{p_{11}}, \hat{r} \right) \right] ,$$

$$\hat{r} = 1 + \frac{1 - p_{11}}{n \cdot 1} - \frac{(1 - p_{11}) (1 - 2p_{11})}{(n \cdot 1)^{2}} + \frac{3(1 - p_{11})^{2}}{(n \cdot 1)^{2}} + \frac{(1 - p_{11}) (1 - 6p_{11})^{2}}{(n \cdot 1)^{3}} + \frac{(1 - p_{11}) (1 - 6p_{11})}{(n \cdot 1)^{3}}$$

 $(n_{1}, (p_{11}))^2$

where

The above can easily be adapted to seat belt effectiveness by replacing the terms ε_{13} , π_{13} . and p_{13} . in the numerator with ε_{12} , π_{12} . and p_{12} , respectively.

Variance of Effectiveness Values

The method for estimating the variance of effectiveness values is discussed at length in Appendix E. However, a brief summary will be presented here, along with the equations used in computing σ_E^2 for either child restraints or seat belts.

Using the same notation as before, the variance of effectiveness values for child restraint usage can be expressed as

$$\sigma_{\hat{E}}^{2} = R^{2} (\mu_{2}(\hat{r})), \text{ where}$$

 $R^{2} = \left(\frac{p_{13.}}{p_{11.}}\right)^{2}, \text{ and}$

$$\mu_{2}(\hat{\mathbf{r}}) = \mu_{2}'(\hat{\mathbf{r}}) - (\mu_{1}'(\hat{\mathbf{r}}))^{2}.$$

The value of μ_2^+ (r) can be derived by

$$\mu'_{2}(\mathbf{r}) = \left[1 + \frac{1 - p_{13.}}{n_{.3.}(p_{13.})}\right]_{x} \left[1 + 3\left(\frac{1 - p_{11.}}{n_{.1.}(p_{11.})}\right) - 4\left(\frac{(1 - p_{11.})(1 - 2p_{11.})}{(n_{.1.}(p_{11.}))^{2}}\right)\right]$$

+ 5
$$\left(\frac{3(1-p_{11.})^2}{(n_{.1.}(p_{11.}))^2} + \frac{(1-p_{11.})(1-6p_{11.}(1-p_{11.}))}{(n_{.1.}(p_{11.}))^3}\right)\right)$$

while the value of $(\mu_1(\hat{\mathbf{r}}))^2$ can be obtained by squaring the value of $\hat{\mathbf{r}}$, which was computed previously in the process of estimating $\hat{\mathbf{E}}$.

Again, the above can be easily adapted to compute estimates of the variances of seat belt effectiveness values by replacing the p_{13} and $n_{.3}$ terms in the preceeding equation by p_{12} and $n_{.2}$, respectively.

Interval Estimation and Hypothesis Testing

As noted previously, estimates of unbiased child restraint effectiveness values and their variances were obtained by expanding the error term $r = \frac{(1+\epsilon_{13.})}{(1+\epsilon_{11.})}$ in a power series in $\epsilon_{11.}$, retaining terms up to the third order only. Hence, the "true" distribution of r was approximated by using a normal distribution with the "true" mean and variance. Having derived σ_{2}^{2} , 95 percent E

> Lower Limit = $\hat{E} - 1.64\sigma_{\hat{E}}$ Upper Limit = $\hat{E} + 1.64\sigma_{\hat{E}}$

In all cases, the values of \hat{E} and $\sigma_{\hat{E}}$ were expressed in the form of percentages.

Separate tests of the hypothesis that the obtained level of effectiveness is significantly greater than zero were carried out as a matter of course, since interval estimation and hypothesis testing are generally not equivalent. However, in this study we are dealing with a special case, in which the values of $\hat{\mathbf{E}}$, by virtue of the way in which they were approximated, are based upon a normal distribution with a "known" σ . As a result, the results of hypothesis testing can generally be inferred from the results of the interval estimation.

In any event, the results of the separate hypothesis testing are based upon a standard test for the difference of two proportions --i.e., between the proportion of unrestrained and restrained children who are injured. The test statistic used is:

$$Z = \frac{p_1 - p_2}{\sqrt{\hat{p}_q (1/n_1 + 1/n_2)}}$$

where p_1 and p_2 represent the injury rates of unrestrained and restrained children, respectively. Also, $\hat{p} = \frac{p_1 n_1 + p_2 n_2}{n_1 + n_2}$, while $\hat{q} = 1 - \hat{p}$.

Results

Major findings, including the actual values for the effectiveness of restraint usage by children four years of age or younger are presented in this subsection. Tables 3-18 to 3-21 contain the following information for each sample and for each injury dichotomy used.

- Injury distributions presented separately for unrestrained children, for children restrained by child restraints, by seat belts, and by either device, as well as for all children.
- Separate injury rates for the above restraint usage categories, as well as for all children.
- Effectiveness values, standard deviations and 95 percent confidence intervals presented separately for children in child restraints, seat belts and either device.

Tables 3-18 and 3-19 summarize this information for New York 1974 and 1977 samples, respectively, for all three injury dichotomies. Table 3-20 contains the findings for the New Jersey 1975 sample, for KAB vs. CO and KABC vs. O injury dichotomies. Finally, Table 3-21 presents the results for the Idaho 1976-1978 sample, in which only a KABC vs. O injury dichotomy was used.

For the convenience of the reader, this information is also presented in Tables 3-22 to 3-24, and is organized somewhat differently in order to facilitate comparisons--i.e., Tables 3-22, 3-23 and 3-24 summarize all findings pertaining to child restraints, seat belts and both devices, respectively. Table 3-22 shows that accident-involved children restrained by either child restraints or seat belts sustain significantly <u>fewer</u> injuries than unrestrained children. For example, the percent reduction in the number of injuries sustained by restrained children ranges from 30 to 37 percent for K, A, B and C injuries; from 32 to 44 percent for K, A, and B injuries; and is 41 percent for K and A injuries.

When child restraint systems are considered separately (Table 3-22), fewer findings are statistically significant. However, in New York, child restraint usage results in a 28 percent reduction in K and A injuries and a 26 percent reduction in the overall incidence of K, A and B injuries, compared to a 30 percent reduction in K, A, B and C injuries, considered collectively. In New Jersey, child restraint usage results in a 20 percent reduction in overall K,A, B and K, A, B and C injuries. Effectiveness values for KA in New York 1974 and KABC in Idaho 1976-1978 are not significantly different from zero.

While effectiveness values for seat belt usage (Table 3-23) are generally one to two times higher than those for child restraint usage, one must be wary of attaching too much importance to this result, since the differences are statistically significant only in the case of the New Jersey 1975 sample. Table 3-25

3-34

SUMMARY OF CHILD RESTRAINT EFFECTIVENESS STUDY USING NEW YORK 1974 DATA (SMOOTHED, ADJUSTED)

Total Cases = 9104

1	•					-		1	N =	J	U R	Y	-	D	I	s 1	r #	1	B	U •	۲.,	, I , , ,	0	N	s -	-		* *		-	-		-
		UNREST CHIL	RA) DRE	NED) 	- C)		- 		₩ KA	+ - INT	- HI - H	. 51	нај 	DEA	T85	сн) Ец1	r 100	#t	N 	E		HER	- D	- E v	- 1 C I	•	1	ALL	CH	(IL)	DRE	N
INJURY Categories		N	••••	,	• •		• •		-		× *	-		••••					•	- 			N		 			• • 1	N		- · ·		2
К+А . I Б+С+U I		227 6979		2, 76,	5		6	2078	 	•••	0,2	••• 		11	21 79	• - • 	• •• • _ 1	0.	2	• • • 1			41 857		••••	20	, 5 , 4		26 883	58 56		2 97	•9 •1
K+A+B I C+0 I		1379 5828	- - -	15.	1	Ī	1	06 91	-1		1.2	1	-	1	58	[1.	74	1		1	264		1	2	9	1	164 746	13	- I - I - I	16 82	.C .0
K+A+B+C * 1 U 1		2208 5032	1	24.	1		15	55 46	1	-	1.7 6,0	1	-	i i	285	-	- 1	3.	1		- '	14	440 466		1	4. 16.	8	 	264 649	18		29 71	.c .c
R+A+B+C+U 1		7206	1	74,	ê	40 6 0 4	6	96			7.7			12	00		1	3.	2	1	**	11	898		1	20	.8		910)4	1	100	.0

	INJERY	RATES (PERCENT)	
INJURY UNRESTRAINED Categories Children	I I CHILU HESTHAINT	RESTRAINED CHILDRE	N LITHER DEVICE I	ALL CHILDREN
K+A 3,15	1 2,87	1 1.75	1 2.16 1	2,94
K+A+B 19,13	1 15.21	1 13,17	1 13.92 1	18.05
K+A+0+C 1 30,50	1 22.11	1 23.65	1 90.65 1	29.95

.

	ļ			SLIMMARY UF		EFFECTIVEN	5	S VALUES	(PERC	ENT)
INJUNY Categories	 	RESTRAINT USAGE	; ; ;	EFFECTIVENESS	1	STANDARD DEVIATION	1	95% CONF From		TO
K+A	• • • • 	CHILD RESTRAINT BEATBELT EITHEN DEVICE	• • • • 	8,64 44,20 31,12		21.12 12.68 11.66	• • •	-26.00 23.40 12.01	• • • • • • • • • • • • • • • • • • •	43.28 65.00 50.24
K+A+B		CHILD RESTRAINT SEATBELT EITHER DEVICE		20,47 31,15 27,23	 	7.37 5.38 4.52		8,38 22,33 19,81		32,57 39,96 34,64
K+A+B+C	1	CHILD RESTRAINT SEATBELT EITMEN DEVICE		27.47 22,42 24,28	- 	5.30 4.25 3.44		18.78 15.46 18.64	1	36.17 29.39 29.92

Row totals for the K+A+B+C vs O injury categories do not equal the row totals for K+A+B+C+O, due to the inclusion of 43 cases classified as "injured - extent unknown."

SUMMARY OF CHILD RESTRAINT EFFECTIVENESS STUDY USING NEW YORK 1977 DATA (SMOOTHED, ADJUSTED)

Total Cases = 9686

)	• • •		-		1 N	JUR	Y	D I	S T	RIH	U T I O	N S			* = = *
		ESTRA	INED		P m m	••		RE	STRAINE	D CH	ILDHEN			•		
INJURY Categuries	C = = = N		(EN X	1 • •	LHILD N	ME 51		• •	814 • • • • • N	1884 1	י 			 	LL UH + - N	ILDREN I X
***********	******				 	****		***	********							
0+C+U	74	43	76,5		87	1 !	9.0		1160	_i_	12.0 1	2031	1 21.		9474	197.8
K+A+B C+0	13 62	95 I 35 I	14,4 64,4	1	11	3	1,2	1	128 1043	I I	1.3 10.8	241 1814	2. 18,	5 I 7 I	1636 8049	16+9 83+1
N+A+U+C 0	22 53	66 64	23,4	• •	17	8 1	1.8	-	222	1	2.3 1	400 1655	4.	1 1 1	2666 7019	1 27.5
K+A+0+C+0	76	31	78,8		68	4 1	9,1		1171		12.1	2055	1 21.	2	9686	11,00.0

	INJLRY	RATES	(PERCENT)	
INJURY I UNHESTHAINED Categories i Children	I GHILD HESTHAINT	HESTRAINED CHILD	KEN I EITHER DEVICE	ALL CHILDREN
K¢A 2,46	1 1.47	f 0,94	i 1,17	1 2.1ª
K+A+B 18,28	12,76	10,93	+ 11,73	1 16.89
K+A+B+C 29,70	20,14	1 16.96	19,46	1 27.57

	ļ		ļ	SUMMARY	UF	EFF	ECTIVEN	Est	S VALUES (PERCE	NT)
INJURY Categonies	 	NESTRAINI USAGE		EFFECTIVENES	is 	ST DE	ANDARD VIATION	1	95% CONFI FROM	DENCE	INTERVAL TD
K + A		CHILD RESTRAINT SEATBELT EITMEN DEVICF		39,99 61,66 52,34		+	17.19 11.90 10.35	1 	11.80 42.15 35.36	 	68.17 81.18 69.32
K + A + B		CHILD RESTRAINT SEATBELT EITHER DEVICE		30,04 40,18 35.82	 		6.38 5.20 4.19	 	19,58 31,65 28,95		40.51 48.71 42.69
K+A+B+C	 	CHILD RESTRAINT SEATBELT EITMER DEVICE	- • 	32.18 36.14 34.44	- - 		4.7C 4.02 3.16	- • 	24.47 29.55 29.25		59.88 42.74 39.62

SUMMARY OF CHILD RESTRAINT EFFECTIVENESS STUDY USING NEW JERSEY 1975 DATA (SMOOTHED, ADJUSTED)

Total Cases = 6719

	-			D	I	N J 		Y REST	D I S RAINED	T R I Childri			
INJURY Categuries		N		X			2 2 2	, , , , , , , , , , , , , , , , , , ,	N				
K+A+U C+O	1	646 4509	1 9.	.6	64 569	1	1.0		46 885	1 0.7 1 13.2	1 14	10 1.6 54 21.6) 756 11.3) 5963 88.7
K+A+B+C U	1	1736 3418	1 25.	.8 1	171 462	1	2.5	1	162 770	1 2.4	1 3 1 12	33 5.0 32 18.3	0 1 2069 1 30.8 5 1 4650 1 69.2
K+A+8+C+0	1	5155	176	7	633	l	9.4	1	931	1 13.9	1 15	64 23,3	5 1 6719 1100.0

1		I	NJI,RY	K A	TES (PER	CENT)	
INJURY I Categuhied i	UNNESTNAINED CHILUNEN	/ CHIL	O NESTHAINT	RESTRAIN	ED CHILDRE	N I EITH	TER DEVICE	I I ALL CHILDREN
K+A+ti I	[2,53	(10.11	}	4.94	******	7.03	1 11,25
K+A+8+6 1	33,68		27.01	1 1	7.38		21.28	1 30.79

INJURY Categories	1	KESTHAINT Usage	 	EFF	51 EC		MAR VEN	ESS)F 	EF S	FE	CT: NU/ IA1	IVE RD IIO	NE:	89 	VA 95x	LU FR	ES ON OM	() F []	PER	ICE ICE	NT) IN	TU	R V /	- L -
**************************************	1	CHILD RESTRAINT Seatbelt Eithen uevice			1 6 4	9.	21 52 80	-	 		-	10,	05 87 58	***		***	20 50 34	•7	3 9 5	• • • 		3	S. 0. 2.	68 14 95	
K+A+8+C		CHILD RESTHAINT SEATHELT EITHEN DEVICE		• •	1 ⁴ 41 31	9.	77 38 80			÷	•	5, 3, 3,	,47 82 31	-		*	10 42 31	•7 •1	9 0 7			25	B. 4.	75 65 24	•

SUMMARY OF CHILD RESTRAINT EFFECTIVENESS STUDY USING IDAHO 1976-1978 DATA (SMOOTHED, ADJUSTED)

Total Cases = 3509

	 -		•	-		•	-	-		1	N	J	U R 	Y R	- EST	D RA	I INE	9 1 •	Г F -		. 8 	<i>ч</i>	7		0 -	N -	s -	•	•	 1	• •	-	•	-	4	
TNJURY	; ; ; =	UNR C	EST Hil	HA DR	INE En	.D.	1	- Сн	110	 	ES'	тя.	INT	-	•	-	SEA	781	۲. ۱		• •		εı	ТН	ER	• 01	EV			1	A	LL	C+	4IL ₽	DR	EN
CATEGURIES		N 			a	X 			۸ • • • •	 	•	 	*			-	N • • •	•••) • • • •	2 	••••			N	-		 		Ľ			N		 • • • •	-	X
K+A+U+C U	1	2 25	49 04		15	• 6	1 1 1			21		• • • 	U.6 3.2		•••	••	36 286			1.	5 (3	57 99	• • •		1.	6 4			29()6)3	، بر ا	1	7.3
K+A+8+C+0	1	30	53	1	87	•0	1		1	34		1	3,8	1			322	(9.	5 (4	56		1	13,	0	1		350	9	1	10	0.0
~																																				
	1	 	_						ľ	N	່ຼ	J R	У		-	H I	А. Т.	E	5		(F	E	R	C	E	N	Ţ)					,			
	i					_	I							R	EST	RA;	INE	DC	HI	601	1EN	I								!						
CATEGURIES	1		4 I L	URI		1) •• == •	 ••••	CH	ILO	H	ES	1 K A	INT	1			SEA	TBE	1		 	-	ΕI	TH	ER ==	0	EVI			 	A	LL 	CH	۱IL ۵۰	D R	E N
**************************************		****	17.	*** 98	. ~ ~	an 1991	• • •			15	. 6 i				***	147 AND 1		.18	: up #			-		-	12	. 5(0		-	• • • • •		e a a 1	. 7.	27	•• =	

	I	<u> </u>	I		st	MM	ARY	OF	EF	FFE	CT	Ĩ٧	ENË	585	V	A L	UES	ş	(PE	RC	EN	7)			
INJURY Categneies	1 	NESTHAINT USAGE		EFFE	EC 1	.IA	ENES	5	• 5 (37/ DE 1	ND /IA	- AH T1	D ON	1	95)	F	CON RON	₩ ₩₹: ₩ ₩	I D E	NC I	Ε	IN	TO	2 V A	
K+A+H+C	 i i	CHILD RESTRAINT SEATBELT EITHEN DEVICE			1 a 37 30	773	23	* -			17 10 9	.8	 4 4 6	 		-1	 6 - 5 1 - 1 5 - 1	53 19 53			-			97) 400 4

SUMMARY OF OVERALL RESTRAINT USAGE (CHILD RESTRAINTS OR SEAT BELTS) EFFECTIVENESS VALUES FOR CHILDREN 0-4 YEARS OF AGE* DERIVED FROM SMOOTHED, ADJUSTED MASS ACCIDENT DATA

Injury Level	State	Year	Unbiased Effectiveness	Standard Deviation	95% Con Inte	fidence rval	Is Effectiveness Significantly Different
			(%)		From	То	from Zero
K+A	New York	1974	31.1	11.7	12.0	50.2	Yes
		1977	52.3	10.4	35.4	69.3	Yes
		1974 & ** 1977	42.9	7.8	30.2	55.7	Yes
K+A+B	New York	1974	27.2	4.5	19.8	34.6	Yes
		1977	35.8	4.2	29.0	42.7	Yes
		1974 & ** 1977	31.8	3.1	26.8	36.8	Yes
	New Jersey	1975	43.8	5.6	34.6	53.0	Yes
K+A+B+C	New York	1974	24.3	3.4	18.6	29.9	Yes
		1977	34.4	3.2	29.2	39.6	Yes
		1974 & ** 1977	29.7	2.3	25.8	33.5	Yes
	New Jersey	1975	36.8	3.3	31.4	42.2	Yes
	Idaho	1976-1978	30.4	9.1	15.5	45.2	Yes

*In New Jersey and Idaho, the age range of children is 1-4 years.

** Weighted mean, using the inverse of the variance as a weighting factor.

SUMMARY OF OVERALL SEAT BELT EFFECTIVENESS VALUES FOR CHILDREN 0-4 YEARS OF AGE* DERIVED FROM SMOOTHED, ADJUSTED MASS ACCIDENT DATA

Injury	State	Year	Unbiased Effectiveness	Standard Deviation	95% Con Inte	fidence rval	Is Effectiveness Significantly Different		
LEVE!			(%)	Deviation	From	То	from Zero		
K+A	New York	1974	44.2	12.7	23.4	65.0	Yes		
		1977	61.7	11.9	42.2	81.2	Yes		
		1974 &** 1977	53.5	8.7	39.2	67.7	Yes		
К+А+В	New York	1974	31.2	5.4	22.3	40.0	Yes		
		1977	40.2	5.2	31,6	48.7	Yes		
		1974 & ** 1977	35.8	3.7	29.7	42.0	Yes		
	New Jersey	1975	60.5	5.9	50,9	70.1	Yes		
К+А+В+С	New York	1974	22.4	4.2	15,5	29.4	Yes		
		1977	36.1	4.0	29.6	42.7	Yes		
		1974 & ** 1977	29,7	2.9	24.9	34.4	Yes		
	New Jersey	1975	48.4	3.8	42.1	54.6	Yes :		
	Idaho	1976-1978	37.7	10.1	21.2	54.3	Yes		

*In New Jersey and Idaho, the age range of children is 1-4 years.

** Weighted mean, using the inverse of the variance as a weighting factor.

SUMMARY OF	OVERALL (CHILD RES	STRAINT	T EFFECTI	VENESS VALUES
FOR	CHILDREN	0-4 YEAI	rs of <i>f</i>	AGE* DERI	VED FROM
SN	100THED, /	ADJUSTED	MASS A	ACCIDENT	DATA

Injury	State	Year	Unbiased Effectiveness	Standard	95% Con Inte	fidence rval	Is Effectiveness Significantly
Level			(%)	Deviation	From	То	from Zero
K+A	New York	1974	8.6	21.1	-26.0	43.4	No
		1977	40.0	17.2	11.8	68.2	Yes
		1974 & ** 1977	27.5	13.3	5.6	49.4	Yes
K+A+B	New York	1974	20.5	7.4	8.4	32.6	Yes
		1977	30.0	6.4	19,6	40.5	Yes
	. î	1974 & ** 1977	25.9	4.8	18.0	33.8	Yes
	New Jersey	1975	19.2	10.0	2.7	35.7	Yes
K+A+B+C	New York	1974	27.5	5.3	18.8	36.2	Yes
		1977	32.2	4.7	24.5	39.9	Yes
		1974 & ** 1977	30.1	3.5	24.3	35.9	Yes
	New Jersey	1975	19.8	5.5	10.8	28.8	Yes
	Idaho	1976-1978	12.7	17,8	-16.5	42.0	No

^{*}In New Jersey and Idaho, the age range of children is 1-4 years.

**Weighted mean, using the inverse of the variance as a weighting factor.

presents the results of tests of the statistical significance of differences between seat belt and child restraint effectiveness values derived from smoothed, adjusted mass accident data. These findings suggest that almost all observed differences between the measured effectiveness of seat belts and child restraints in reducing both the frequency and severity of injuries are most likely due to chance.

With regard to the percent reduction in the <u>severity</u> of injuries sustained by restrained children, findings are suggestive only. For example, there appears to be a very slight trend whereby effectiveness values of child restraint usage decrease somewhat as the definition of the "injured" category narrows. In New York, there is a shift in child restraint effectiveness values from 30 percent to 26 percent to 24 percent for the KABC, KAB and KA injury categories, respectively. In New Jersey, effectiveness for KA is not computed because of small sample size, and the corresponding values for KABC and KAB are roughly equal.

Seat belt effectiveness shows the opposite trend. For example, effectiveness values for New York are 29, 36 and 52 percent for KABC, KAB and KA injury categories. The greatest difference occurs between the KA and KAB dichotomies. In New Jersey, the corresponding percentages are 48 and 60, for KABC and KAB, respectively.

It should be noted that, given the variability of the individual effectiveness values, these trends are slight, and are just as likely due to chance. Furthermore, the consistency of such trends is difficult to assess, insofar as all three injury dichotomies were not used for New Jersey and Idaho samples.

Finally, Table 3-26 summarizes all effectiveness values derived from observed, unadjusted data as well as from smoothed, adjusted data. From this table, it can be seen that on the average, the net effect of smoothing and adjusting the data was to decrease effectiveness values by roughly 1 to 5 percentage points for New York samples, and to increase effectiveness values by 4 to 8 percentage points for the Idaho sample. In the case of the New Jersey sample, modeling and adjustment had no appreciable impact on effectiveness values.

In any event, given the lack of detail characterizing state mass accident data bases with respect to the make and type of child restraint systems used, and to whether they are misused or not, one can safely conclude that the observed effectiveness values reported here most probably <u>underestimate</u> the reduction in injuries gained from the proper use of FMVSS 213 child restraints.

3-42

STATISTICAL SIGNIFICANCE^{*} OF DIFFERENCES BETWEEN SEAT BELT AND CHILD RESTRAINT EFFECTIVENESS VALUES DERIVED FROM SMOOTHED, ADJUSTED MASS ACCIDENT DATA

Injury Level State		Year	Seat Effect	Belt iveness	Child Re Effect	estraint iveness	Diff	erence	Is Difference Statistically Significant?		
			(%)	(5.0)	(%)	(s.a)	(%)	(3.0)			
K+A	New York	1974	44.2	12.7	8.6	21.1	35.6	24.6	No		
	1	1977	61.7	11.9	40.0	17.2	21.7	20.9	No		
		1974 & ** 1977	53.5	8.7	27.5	13.3	26.0	15.9	No		
K+A+B	New York	1974	31.2	5.4	20.5	7.4	10.7	9.1	No		
		1977	40.2	5.2	30.0	6.4	10.1	8.2	No		
		1974 & ** 1977	35.8	3.7	25.9	4.8	9.9	6.1	No		
	New Jersey	1975	60.5	5.9	19.2	10.0	41.3	11.6	Yes		
K+A+B+C	New York	1974	22.4	4.2	27.5	5.3	-5.0	6.8	No		
		1977	36.1	4.0	32.2	4.7	4.0	6.2	No		
		1974 & ** 1977	29.7	2.9	30.1	3.5	-0.4	4.6	No		
	New Jersey	1 97 5	48,4	3.8	19.8	5.5	28.6	6.7	Yes		
	Idaho	1976-1978	37.7	10.1	12.7	17.8	25.0	20.5	No		

^{*}Two-tailed test, $\alpha = 0.05$

*Weighted mean, using the inverse of the variance as a weighting factor.

.

SUMMARY OF OVERALL EFFECTIVENESS VALUES FOR CHILDREN 0-4 YEARS OF AGE 4

				C	bserved,	Unadjust	ted Data	1
Restraint	Injury Level	State	Year	Effectiveness (Percent)	Standard Deviation	95 % Cor Inter From	nfidence val To	Is Effectiveness Significantly Different From Zero?
	K+A	New York	1974 1977 1974 & 77*	22.2 40.0 32.2	19.4 17.2 12.9	-9.6 11.8 11.1	54.1 68.2 53.3	No Yes Yes
Child	К+А+В	New York	1974 1977 1974 & 77 [*]	23.2 29.3 26.6	7.2 6.4 4.8	11.3 18.8 18.8	35.0 39.8 34.4	Yes Yes Yes
Restraint		New Jersey	1975	18.0	10.1	1.4	34.6	Yes
	K+A+B+C	New York	1974 1977 1974 & 77 [*]	34.2 29.9 31.9	5.1 4.8 3.5	26.0 22.0 26.2	42.6 37.7 37.6	Yes Yes Yes
		New Jersey	1975	19.8	5.5	10.8	28.8	Yes
		Idaho	1976-1978	4.6	18.5	-25.8	34.9	No
	K+A	New York	1974 1977 1974 & 77 [*]	46.9 61.7 54.6	12.4 11.9 8.6	26.6 42.2 40.5	67.1 81.2 68.7	Yes Yes Yes
	K+A+B	New York	1974 1977 1974 & 77 [*]	32.8 42.0 37.6	5.3 5.1 3.7	24.2 33.6 31.6	41.5 50.4 43.6	Yes Yes Yes
Seat Belt		New Jersey	1975	60.5	5.9	51.0	70.2	Yes
bert	К+А+В+С	New York	1974 1977 1974 & 77*	24.6 37.8 31.5	4.2 4.0 2.9	17.8 31.3 26.8	31.4 44.4 36.3	Yes Yes Yes
		New Jersey	1975	47.4	3.9	41.0	53.7	Yes
		Idaho	1976-1978	41.3	9.8	25.2	57.4	Yes
	K+A	New York	1974 1977 1974 & 77 [*]	37.8 52.4 45.5	11.0 10.4 7.6	19.8 35.4 33.1	55.8 69.3 57.9	Yes Yes Yes
Either	K+A+B	New York	1974 1977 1974 & 77 [*]	29.3 36.5 33.1	4.4 4.2 3.0	22.0 29.7 28.1	36.6 43.4 38.0	Yes Yes Yes
Device		New Jersey	1975	43.3	5.6	34.1	52.5	Yes
	K+A+B+C	New York	1974 1977 1974 & 77 [*]	28.1 34.4 31.4	3.3 3.2 2.3	22.7 29.2 27.6	33.6 39.6 35.1	Yes Yes Yes
		New Jersey	1975	36.2	3.3	30.7	41.6	Yes
		Idaho	1976-1978	30.5	9.0	15.7	. 45.3	Yes

 $^{+}$ In New Jersey and Idaho, the age range of children is 1-4 years old.

*Weighted mean, using the inverse of the variance as a weighting factor.

TABLE 3-26 (Continued) SUMMARY OF OVERALL EFFECTIVENESS VALUES FOR CHILDREN 0-4 YEARS OF AGE 4

				annen fanne fanne fanne fan en fa	Smoothed,	Adjuste	d Data	
Restraint	Injury Level	State	Year	Effectiveness	Standard Deviation	95 % Con Inter	fidence val	ls Effectiveness Significantly Different
				(Percent)		From	To	From Zero?
	K+A	New York	1974 1977 1974 & 77	8.6 40.0 27.5	21.1 17.2 13.3	-26.0 11.8 5.6	43.4 68.2 49.4	No Yes Yes
Child	K+A+B	New York	1974 1977 1974 & 77 [*]	20.5 30.0 25.9	7.4 6.4 4.8	8.4 19.6 18.0	32.6 40.5 33.8	Yes Yes Yes
Restraint		New Jersey	1975	19.2	10.0	2.7	35.7	Yes
	К+А+В+С	New York	1974 1977 1974 & 77*	27.5 32.2 30.1	5.3 4.7 3.5	18.8 24.5 24.3	36.2 39.9 35.9	Yes Yes Yes
		New Jersey	1975	19.8	5.5	10.8	28.8	Yes
		Idaho	1976-1978	12.7	17.8	-16.5	42.0	No
	K+A	New York	1974 1977 1974 & 77*	44.2 61.7 53.5	12.7 11.9 8.7	23.4 42.2 39.2	65.0 81.2 67.7	Yes Yes Yes
	K+A+B	New York	1974 1977 1974 & 77 [*]	31.2 40.2 35.8	5.4 5.2 3.7	22.3 31.6 29.7	40.0 48.7 42.0	Yes Yes Yes
Seat		New Jersey	1975	60.5	5.9	50.9	70.1	Yes
Beit	K+A+B+C	New York	1974 1977 1974 & 77 [*]	22.4 36.1 29.7	4.2 4.0 2.9	15.5 29.6 24.9	29.4 42.7 34.4	Yes Yes Yes
		New Jersey	1975	48.4	3.8	42.1	54.6	Yes
		Idaho	1976-1978	37.7	70.1	21.2	54.3	Yes
	K+A	New York	1974 1977 1974 & 77 [*]	31.1 52.3 42.9	11.7 10.4 7.8	12.0 35.4 30.2	50.2 69.3 55.7	Yes Yes Yes
-	K+A+B	New York	1974 1977 1974 & 77 [*]	27.2 35.8 31.8	4.5 4.2 3.1	19.8 29.0 26.8	34.6 42.7 36.8	Yes Yes Yes
Device		New Jersey	1975	43.8	5.6	34.6	53.0	Yes
	К+А+В+С	New York	1974 1977 1974 & 77 [*]	24.3 34.4 29.7	3.4 3.2 2.3	18.6 29.2 25.8	29.9 39.6 33.5	Yes Yes Yes
		New Jersey	1975	36.8	3.3	31.4	42.2	Yes
		Idaho	1976-1978	30.4	9.1	15.5	45.2	Yes

 $^{+}$ In New Jersey and Idaho, the age range of children is 1-4 years old.

*Weighted mean, using the inverse of the variance as a weighting factor.
3.4.4 Extrapolation to the Nation

Using New York child restraint effectiveness estimates, it is possible (for heuristic purposes) to extrapolate to the nation, although the resulting estimates of the actual and potential reduction in injuries and fatalities that do result and could result from the use of child restraints are obviously approximate. The estimates given below pertain solely to child restraint usage and do not consider the additional savings in injuries and lives that result from the use of seat belts and shoulder straps, especially with children two years or older. It is further noted that the extrapolation is restricted to children and infants less than three years old, because actual usage of child seating systems declines to a very small percentage (less than 3 percent) for older children.

In the extrapolation, the following assumptions and use of data are critical:

- The actual effectiveness value for child restraint usage to be applied is 30 percent. This represents the weighted mean of New York 1974 and New York 1977 data effectiveness values, which were derived using a KABC vs. 0 injury dichotomy. However, this effectiveness is assumed to apply to all injury levels.
- The usage rates used for zero (less than 12 months), one and two year olds are 20 percent, 10 percent and 5 percent, respectively. These rates are reasonably conservative and representative of previous surveys.
- The percentages of child occupant fatalities relative to all occupant fatalities (0.654 percent for zero year olds, 0.540 percent for one year olds and 0.547 percent for two year olds) were determined from FARS 1976 data. The percentages of child occupant injury at each AIS level were assumed to be the same as those for fatalities.

With the above assumptions in mind, the extrapolation of child seating system effectiveness to national estimates of injuries and fatalities saved proceeds in the following manner:

- The total number of automobile occupant fatalities and injuries in the United States for AIS levels 1 through 5 are estimated using 1977 FARS data and NCSS ratios of OAIS injuries-to-fatalities.
- 2. The number of child occupants of zero, one and two years of age are computed.

- 3. For each age level, the casualties that would result if no child seating systems were available or used (0 percent usage) are determined.
- 4. A similar computation as (3) is performed assuming that every child 2 years of age or less is in a child seat (100 percent usage).
- 5. The actual reduction in fatalities and injuries for zero to two year old children is obtained by subtracting the actual fatalities and injuries from the fatalities and injuries that would occur if no child seating systems were used (0 percent usage).
- 6. The potential reduction in fatalities and injuries is computed by subtracting the fatalities and injuries for 100 percent usage from those obtained with 0 percent usage.

Before presenting and discussing the results, the formulas for carrying out steps 3 and 4 will be given. The effectiveness E is defined by:

$$E = \frac{p_1 - p_2}{p_1}$$

where P_1 is the injury probability for unrestrained children and P_2 is the injury probability for children in child seating systems. This equation can be rewritten as:

$$p_2 = p_1 (1 - E)$$

The relationship between the number of injuries (n) and the total population (N) can be expressed as:

$$n = N \left[u \cdot p_2 + (1 - u) p_1 \right],$$

,

where u is the assumed usage rate for child seating systems. If we substitute for p_2 it can be easily shown that:

$$n = N p_1 (1 - u E).$$

Rearranging terms, the total population N is written as:

$$N = \frac{n}{p_1 (1 - u E)}$$

The number of injuries when everyone is restrained, n, is given by:

$$n_r = Np_2 = Np_1 (1 - E) = \frac{n}{(1 - u E)}$$
 (1 - E).

Similarly, the number of injuries when no one is restrained, n_, is expressed as:

$$n_u = Np_1 = \frac{n}{(1 - uE)}$$

The equations for n_r and n_u are used to compute the number of casualties assuming 100 percent vs. 0 percent child restraint usage, respectively. As noted above, the usage rate values (u) assumed for child seating systems are 20 percent, 10 percent and 5 percent for zero, one and two year-old children, respectively.

Estimates of the number of child occupants who were either killed or injured in motor vehicle accidents in 1977 are depicted in Table 3-27. The results of the extrapolation of effectiveness of child seating systems to national estimates of fatalities and casualties avoided are shown in Table 3-28.

With the current low usage rates of child seating systems, it is estimated that roughly 1440 injuries and 19 fatalities are prevented in children two years of age and younger through the use of child seats. About 900 of the injuries and 11 of the fatalities avoided occur in children under one year old. The potential savings are, of course, much greater if usage rates for child seating systems are, in fact, higher than estimated here. If 100 percent usage of child seats were assumed, about 12,000 injuries and 1.50 fatalities could be prevented in children two years of age and younger. This includes 4,500 injuries and 57 fatalities in children under one year old.

In the above estimates of actual and potential savings of injuries and fatalities, it should be noted that no assumption has been made about the correct usage of child seats or about the <u>particular types</u> of child seats currently being used. Thus, the estimates of potential savings in injuries and fatalities that result from the universal use of child seats implicitly reflect the present degree of correct and incorrect use, as well as the particular variety of types of child seats currently in use, including those which do not meet the requirements of FMVSS 213. Hence, these extrapolated estimates most likely <u>underestimate</u> the potential reduction in both the frequency and severity of injuries to be gained from the proper use of FMVSS 213 child restraints.

TABLE 3-27

Severity	Number of Child	Number of Auto Occupants of Indicated Age (n)					
	Casualties 1977*	0 Yea r 0.654 %	1 Year 0.540 %	2 Year 0.547 %			
Fatalities	27,353	179	148	150			
AIS 5 (Nonfatal)	2,750	18	15	16			
AIS 4 (Nonfatal)	11,000	72	59	66			
AIS 3	69,000	451	373	377			
AIS 2	137,000	896	740	749			
AIS 1	1,910,000	12,491	10,314	10,477			
Total	2,157,103	14,107	11,649	11,805			

NUMBER OF ACCIDENT-INVOLVED CHILD OCCUPANTS EITHER KILLED OR INJURED IN 1977

*Source: Kahane, C.J., An Evaluation of Standard 214, U.S. Department of Transportation, NHTSA Office of Program Evaluation, September 1979, p. 145.

TABLE 3-28

NATIONAL ESTIMATES OF CASUALTIES ACTUALLY AND POTENTIALLY PREVENTED BY CHILDREN 0-2 USING CHILD RESTRAINTS

Child Age	AIS Injury Severity	Casualties if O % Restrained	Casualties if 100 % Restrained	Actual Savings [*] in Casualties	Potential Savings ^{**} in Casualties
	Fatalities	190	133	נו	57
	5	19	13	1	6
	4	77	54	5	23
0	3	480	336	29	144
	2	953	667	57	286
	1	13,288	9,302	797	3,986
	Total	15,007	10,505	900	4,502
	Fatalities	153	107	5	46
	5	15	11	0	4
	4	61	43	2	18
1	3	384	269	וו	115
	2 763		534	23	229
-	1	10,633	7,443	319	3,190
	Tota ?	12,009	8,407	360	3,603
	Fatalities	153	107	3	46
	5	16	11	0	5
	4	67	47	١	20
2	3	383	268	6	115
	2	760	532	וו	228
	1	10,606	7,424	159	3,182
	Total	11,985	8,389	180	3,596
	Fatalities	496	347	19	149
	5	50	35	1	. 15
	4	205	144	8	61
0-2	3	1,247	873	46	374
	2	2,476	1,733	91	743
	1	34,527	24,169	٦,275	10,358
	Total	39,001	27,301	1,440	11,700

*Assumes use rate of 20% for zero-, 15% for one-, and 10% for two-year old children.

**Assumes 100% use rate.

APPENDIX A

SUMMARY OF BACKGROUND CHARACTERISTICS OF IDAHO, NEW JERSEY AND NEW YORK SAMPLES

ť

APPENDIX A

SUMMARY OF BACKGROUND CHARACTERISTICS OF IDAHO, NEW JERSEY AND NEW YORK SAMPLES

This Appendix contains simple tabulations for New Jersey, Idaho (pooled) and New York samples as follows:

- Idaho: 1976,1977,1978 (3,766 cases)
- New Jersey: 1975 (6,738 cases)
- New York: 1974 (10,745 cases)
- New York: 1977 (11,092 cases)

In general, for passenger car accidents involving children of ages 1, 2, 3 and 4 years, the univariate and bivariate tabulations for Idaho, New Jersey and New York show:

- Over one-half of the drivers are female. (Table 1)
- More than two-thirds of all drivers are age 25 or older. (Table 2)
- Children 1, 2, 3 and 4 years of age in accidents are approximately uniformly distributed in age, with the exception that in Idaho and New York (1977), one-year old children in accidents occur slightly more frequently than older children. The higher number of one-year-olds in New York, however, is due to coding procedures which include infants in this category. In the case of Idaho, the data suggest the *possible* inclusion of infants in the one-year-old category, which might be attributed to errors in police reporting with respect to infants' age. (*Table 3*)
- Male children appear in accidents slightly more frequently than female children. (Table 4)
- In Idaho, roughly 18 percent of the children in accidents were injured, compared to 31 and 28 percent of children in New Jersey and New York, respectively. Type B injuries account for 10-15 percent of the cases in the three states, but New Jersey children have 3.4 more Type C injuries than Idaho children (5.7 percent in Idaho; 19.6 percent in New Jersey) and nearly twice as many Type C injuries as New York children. Type A injuries are three times more frequent in New York, compared with New Jersey (2.5 percent in New York; 0.8 percent in New Jersey). Also, children are more likely to be killed in Idaho accidents (0.2 percent) compared to New Jersey (0.4 percent) and New York (0.1 percent). (Table 5)
- The usage rates of child seats in New Jersey and New York are at least twice the Idaho rate (3.8 percent). Also, the usage rates for seat belts (including shoulder straps) in New Jersey and New York are approx imately 1.5 times greater than in Idaho (8.8 percent). (Table 6)
- In Idaho, about 60 percent of accident-involved children ride in the front seat, with slightly more than half of these occupying the front center seat. In New York and New Jersey, roughly one-half of the children ride in the front seat, with equal frequency of front right and front center seat occupancy. The three rear seat positions have approximately equal probability of occupancy in Idaho and New York. However, in New Jersey, the left rear seat is more frequently occupied than the other two. (Table 7)

- On an overall basis, the reduction in injury risk due to child restraint usage ranges from 13 percent (Idaho) to 36 percent (New York 1974). For children in seat belts, the range is 27 percent (Idaho) to 48 percent (New Jersey). These reductions are relative to the injury risks of unrestrained children. With the exception of New York (1974), the injury rates of children in seatbelts are consistently lower than those of children using child restraints. (Table 8)
- The probability of children being injured is approximately independent of age in both Idaho and New Jersey. In New York, however, where infants are included in the samples, the injury rate of children increased with age. (Table 9)
- In all three states, children in the front seat were more likely to be injured than children in the rear seat. (Table 10)
- Of the children (at least one-year olds)* using child restraints, nearly two-thirds are one year old (65 percent in Idaho; 63 percent in New Jersey; 64 percent in New York). Four year old children were four to five times more likely to be restrained by seat belts, rather than child seats. At age three, they are two to three times more likely to be restrained by seat belts, while at age two, the usage rates are approximately the same. (Table 12)
- Children in either child restraints or seat belts are approximately equally likely to be found in front or rear seats. (Table 13)
- Two-thirds to three-quarters (77 percent in Idaho; 71 percent in New Jersey; 64 percent in New York) of one-year-old children are found in front seats. As the children grow older, they shift to the rear seat, so that by age four, over half ride in the rear seat (52 percent in Idaho; 59 percent in New Jersey; 61 percent in New York). (Table 14)

^{*}Because of procedures used in data recording and handling, neither the Idaho nor the New Jersey data base has information on children less than one year old. However, the age distribution of children in Idaho suggests that the one-year-old category might in fact include some infants, possibly as a result of police reporting errors with respect to the age of children less than one year old.

1.0 DRIVER SEX

Drivers of cars in accidents in which children one to four years old are involved are more likely to be female.

TABLE 1

DRIVER SEX IN PASSENGER CAR ACCIDENTS INVOLVING CHILDREN (1-4) AS PASSENGERS

Driver Sex	Idaho	New Jersey	New York		
Female Male	64.7 % 25.3	60.4 % 39.6	53.9 % 46.1	53.1 % 46.9	
No. of Cases	of Cases 3,766 6,729		10,745	11,092	
Year(s)	76, 77, 78	75	74	77 .	

2.0 DRIVER AGE

The drivers in passenger car accidents involving children 1-4 are predominantly 25 years of age or older. However, accident-involved drivers in Idaho are younger than drivers in New Jersey and New York.

TABLE 2

DRIVER AGE, BY	SEX, IN	PASSENGE	₹ CAR	ACCIDENTS
INVOLVING C	HILDREN	(1-4) AS	PASSE	ENGERS

Driver Sex	Age	Idaho	New Jersey	New York 1974	New York 1977
Female	≥ 25	63.4 %	79.6 %	70.6 %	71.5 %
	< 25	36.6	20.4	29.4	28.5
Male	≥ 25	74.7	.7 83.6 76.7		78.4
	< 25	25.3	.3 16.4 23.3		21.6
No. of Ca	ses	3,713	6,718	10,640	11,024

3.0 CHILD AGE

Children in accidents are essentially uniformly distributed by age; the higher incidence of one-year-olds in New York 1977 is due to the fact that infants (less than one year old) are included in this category. Since 1974, police in New York State have reported the age of occupants 23 months or younger as one year old. Furthermore, the higher number of one-year-olds in Idaho suggests that some infants may have also been included in this category, possibly as a result of reporting errors with respect to the age of infants and very young children.

Child Age	Idaho	New Jersey	New York 1974	New York 1977
One	29.5 %	25.8 %	25.1 %	29.4 %
Two	26.8	23.2	23.6	24.0
Three	22.6	25.4	26.0	23.6
Four	21.1	25.6	25.3	22.9
No. of Cases	3,766	6,738	10,745	11,092

			TABLE 3		
CHILD	AGE	IN	PASSENGER	CAR	ACCIDENTS

4.0 CHILD SEX

Male and female children in accidents are essentially equally probable, although males are slightly more probable than females.

TABLF	4	

SEX OF CHILDREN (1-4) IN PASSENGER CAR ACCIDENTS

Child Sex	Idaho	New Jersey	New York 1974	New York 1977
Male Female	50.3 % 49.7	51.8 % 48.2	52.0 % 48.0	51.3 % 48.7
No. of Cases	3,755	6,702	10,685	11,060

5.0 CHILD INJURY RATES

Injury rates of children in accidents range from 18 percent (Idaho) to 31 percent (New Jersey). It appears that Idaho and New York are less likely to classify very minor "injuries" as Type C injuries than in New Jersey. Only 32 to 39 percent of all injuries are Type C in Idaho and New York *vs*. 63.5 of all injuries in New Jersey.

				TABLE	5			
INJURY	RATES	FOR	CHILDREN	(1-4)	IN	PASSENGER	CAR	ACCIDENTS

Injury Classification	Idaho		New Jersey		New York 1974		New York 1977	
0	82.4 %	Injury Distribution	69.0 %	Injury Distribution	71.2 %	Injury Distribution	72.5 %	Injury Distribution
с	5.7	32.2 %	19.6	63.5 %	10.4	36.1 %	10.7	39.0 %
В	9.8	55.7	10.5	33.9	15.2	52.7	14.5	52.8
А	1.9	11.1	0.8	2.5	2.7	9.5	2.2	7.8
к	0.2	1.1	0.04	0.14	0.1	0.3	0.1	0.4
Injured Extent Unknown					0.4	1.4		
None (0)	82.4 %		69.0 %		71.2 %		72.5 %	
C+B+A+K	17.6		31.0		28.8		27.5	
No. of Cases	3,766		6,738		10,745		11,092	

6.0 RESTRAINT USAGE

From 13 percent (Idaho) to 23 percent (New Jersey) of children age 1-4 in accidents use either seat belts or child restraints. Children in New Jersey are 2.5 times as likely to be in child seats than in Idaho. The New Jersey children are 1.6 times as likely to be in seat belts. Overall, New Jersey children are 1.8 times more likely than Idaho children to be in seat belts or child restraints. Restraint usage rates for New York children in both 1974 and 1977 fall between the rates of the above two states, but are considerably closer to New Jersey.

TABLE 6

USE OF RESTRAINTS BY CHILDREN (1-4) IN PASSENGER CAR ACCIDENTS

Restraint Usage	Idaho	New Jersey	New York 1974	New York 1977	
Child Seat	3.8 % (12 6 "	9.4 %	7.4 %	8.8 %	
Seat Belt*	8.8	13.8 { 23.2 %	13.1	12.0) 20.8 %	
No Restraint	87.3	76.8	79.5	79.2	
No. of Cases	3,766	6,738	10,745	11,092	

^{*}Includes belt with shoulder strap.

7.0 SEATING POSITION

Between 49 percent (New York 1974) and 61 percent (Idaho) of all children in accidents are in the front seat. In New Jersey and New York, these children are found in the front center or front right seats with approximately equal probability. However, in Idaho, they are more likely to be sitting in the front right seat.

TABLE 7

SEATING POSITION OF CHILDREN (1-4) IN PASSENGER CAR ACCIDENTS

Seat Position	Idaho	New Jersey	New York 1974	New York 1975
Front Seat	60.7 %	53.5 %	49.3 %	50.1 %
Front Center	27.1	26.5	25.4	25.4
Front Right	33.6	26.9	23.9	24.7
Rear Seat	39.3 %	46.5 %	50.7 %	49.9 %
Rear Left	12.9	20.5	16.8	16.1
Rear Center	14.2	13.1	15.5	16.2
Rear Right	12.1	12.9	• 18.4	17.6
No. of Cases	3,766	6,738	10,745	11,092

8.0 INJURED /UNINJURED FREQUENCIES, BY RESTRAINT USAGE

Children using seat belts or child restraints are more likely to avoid injury than unrestrained children. Children in seat belts are less likely to be injured than children in child seats in Idaho and New Jersey. In New York 1974, children using child restraints have the lowest injury rate. However, in New York 1977, the injury rate is lower for seat belts, as is the case in Idaho and New Jersey.

TABLE 8

FREQUENCY OF INJURED/UNINJURED CHILDREN (1-4) IN PASSENGER CAR ACCIDENTS

Restraint	Idai	10	New Jer	rsey	New York	< 1974	New York 1977		
Usage	Uninjured	Injured	Uninjured	Injured	Uninjured	Injured	Uninjured	Injured	
Child Restraint	84.1 %	15.9 %	73.0 %	27.0 %	80.2 %	19.8 %	78.9 %	21.1 %	
Seat Belt	89.5 10.5		82.3 17.7		77.7	22.3	81.4 18.6		
No Restraint	81.7 18.3		66.2 33.8		69.3 30.7		70.4	29.6	
No. of Cases	3,766		6,73	38	10,74	15	11,092		
x ² /d.f./p	12.9/2 d.f./p=0.002		100.8/2 d.f	./p=0.000	75.6/2 d.f.	/p=0.000	91.6/2 d.f./p≍0.000		

9.0 INJURED/UNINJURED FREQUENCIES, BY AGE

The distribution of injury by age in Idaho and New Jersey is essentially uniform, i.e., being injured or not injured is independent of age. This is not the case in New York where one year-old children have the lowest injury rate and four year-old children have the highest rate. It should be noted, however, that the one-year-old age category in New York also includes infants.

Т	A	B	L	E	9
					-

FREQUENCY OF INJURED/UNINJURED CHILDREN, BY AGE, IN PASSENGER CAR ACCIDENTS

Child's	Idai	10	New Je	rsey	New Yor	< 1974	New Yorl	k 1977
Age	Uninjured	Injured	Uninjured	Injured	Uninjured	Injured	Uninjured	Injured
One	82.5 %	17.5 %	68.6 %	31.4 %	75.4 %	24.6 %	75.0 %	25.0 %
Тwo	84.3	15.7	68.9	31.1	70.5	29.5	71.3	28.7
Three	81.1	18.9	70.3	29.7	71.2	28.8	72.0	28.0
Four	81.4	18.6	68.4	31.6	67.6	32.4	71.0	29.0
No. of Cases	3,76	56 ·	6,7	38	10,1	745	11,09	92
x ² /d.f./p	4.2/3 d.f./p≖0.24		1.8/3 d.	f./p=0.61	40.7/3 d.1	f./p=0.000	15.0/3 d.f./p=0.002	

10.0 INJURED /UNINJURED FREQUENCIES, BY FRONT/REAR SEAT

The rear seat is 25 to 30 percent safer than the front seat. The benefits of placing unrestrained children in the rear seat, in other words, are about the same as placing them in a child restraint in the front seat.

TABLE 10

FREQUENCY OF	INJURE	D/UM	VINJURED C	HILD	REN (1-4),
BY FRONT/REAR	SEAT,	ΙN	PASSENGER	CAR	ACCIDENTS

Seat	Idal	סו	New Jer	rsey	New Yor	k 1974	New York 1977		
Position	Uninjured	Injured	Uninjured	Injured	Uninjured	Injured	Uninjured	Injured	
Front Rear	79.3 % 87.3	20.7 % 12.7	63.9 % 75.0	36.1 % 25.0	66.9 % 75.3	33.1 % 24.7	68.2 % 76.7	31.8 % 23.3	
No. of Cases	3,76	6	6,73	38	10,7	745	11,	.092	
$\chi^2/d.f./p$	39.6/1 d.1	°./p=0.0	96.6/1 d.1	f./p=0.0	93.4/1 d.1	f./p=0.0	100.0/1 d.f./p=0.0		

11.0 INJURY LEVEL FREQUENCIES, BY RESTRAINT USAGE

Restrained children are less likely to be injured or killed than unrestrained children. In terms of reducing fatalities, child restraints and seat belts appear to be equally effective. However, compared to child restraint usage, seat belts account for a greater reduction in child injury rates for Type A, Type B and (with the exception of New York 1974) Type C injuries. This latter finding might be attributed to the fact that child restraints are often misused.

TABLE 11

Occhanist	Ī	Ida	ho (i	5)		1	lew Je	ersey	(%)		New York 1974 (%)				6)	New York 1977 (%)				
Usage	0	c	В	A	ĸ	0	С	В	A	к	0	с	В	A	к	0	С	В	A	к
Child Restraint	84.1	4.1	9.7	2.1	0.0	73.0	16.7	9.5	0.8	0.0	80.6	4.9	12.1	2.3	0.1	78.9	8.1	11.5	1.5	0.0
Seat Belt	89.5	3.3	6.0	1.2	0.0	82.3	12.8	4.3	0.6	0.0	78.0	9.6	10.7	1.6	0.1	81.4	8.1	9.6	1.0	0.0
No Restraint	81.7	6.0	10.2	2.0	0.2	66.2	21.2	11.7	0.8	0.06	69.5	11.1	16.3	3.0	0.1	70.4	11.4	15.6	2.4	0.1
No. of Cases	1	3.	766				6	,738				10	,702				11	,0 9 2	-	
$\chi^2/d.f./p$	13.	9/8 (1.f./	p=0.	08	106.3/8 d.f./p=0.000			88.0/8 d.f./p=0.000			96.1/8 d.f./p=0.000			00					

FREQUENCY OF INJURY LEVELS FOR RESTRAINED/UNRESTRAINED CHILDREN (1-4) IN PASSENGER CAR ACCIDENTS

12.0 RESTRAINT USAGE, BY AGE

Parents who restrain accident-involved children tend to put one-year-olds in child restraints, while shifting to seat belts for two, three and tour-yearold children.

TABLE 12

FREQUENCY	0F	USE OF CI	HILD	RESTRAINT	S AN	D SEAT	BELTS
BY AGE	0F	CHILDREN	IN	PASSENGER	CAR	ACCIDE	NTS .

<u> </u>		Id	aho (%)			New J	ersey	(%)		Ne	ew Yo	rk 19	74 (%))	New York 1977 (%)				
Restraint Usage	Total	Usag	e by	Age (year)	Total	Usage	e by /	∖ge ()	/ear)	Total	Usag	e by	Age (y	/ear)	Total	Usag	e by	Age Y	ear
	Usage	1	2	3	4	Usage	1	2	3	4	Usage	1	2	3	4	Usage	1	2	3	4
Child Restraint	3.8	65.5	21.4	9.0	4.1	9.4	63.2	25.0	7.4	4.4	7.4	61.2	23.4	10.7	4.7	8.8	68.1	21.5	6.3	4.1
Seat Belt	8.8	37.3	28.0	18.4	16.3	13.8	25.6	25.8	23.4	25.2	13.1	26.3	23.0	25.8	24.9	12.0	32.7	23.7	22.8	20.8
No Restraint	87.9	27.1	26.9	23.6	22.3	76.8	21.2	22.6	27.9	28.2	79.5	21.5	23.7	27.5	27.2	79.2	24.6	24.3	25.7	25.4
No. of Cases		3	,766				6,738			10,745				11,092						
$\chi^2/d.f./p$	120.	.7/6 (d.f./∣	p=0.00	00	609	609.7/6 d.f./p=0.000			681.3/6 d.f./p=0.000				893.3/6 d.f./p=0.000						

"In New York (and possibly Idaho), the one-year-old category includes infants.

13.0 RESTRAINT USAGE, BY FRONT/REAR SEAT

The percentages of restrained children occupying the front and rear seats are approximately equal. This also holds true when considering children in seat belts and child restraints separately.

TABLE 13

FREQUENCY OF USE OF CHILD RESTRAINTS AND SEAT BELTS BY CHILDREN (1-4) IN FRONT/REAR SEATS IN PASSENGER CAR ACCIDENTS

Postmint	Ida	ho	New J	ersey	New Yor	k 1974	New York 1977		
Usage	Front Seat	Rear Seat	Front Seat	Rear Seat	Front Seat	Rear Seat	Front Şeat	Rear Seat	
Child Restraint	3.4 %	4.5 %	9.0 %	9.8 %	7.1 %	7.7 %	7.7 %	9.9 %	
Seat Belt	8.8	8.8	14.9	12.6	13.0	13.2	11.5	12.5	
No Restraint	87.8	86.7	76.1	77.6	79.9	79.1	80. 8	77.6	
No. of Cases	3,766		6,7	38	10,	745	11,092		
χ ² /d.f./p	3.02/2 d.f./p≕0.22		7.8/2 d.f	./p=0.02	1.69/2 d.	f./p=0.43	20.7/2 d.f./p≖0.00		

14.0 AGE FREQUENCIES, BY FRONT/REAR SEAT

As age increases, the position of the child-passenger shifts from the front to rear seat. The shift is most pronounced between ages one and two.

TABLE 14

05434	Ida	iho	New Je	ersey	New Yor	< 1974	New York 1977		
Age	Front Seat	Rear Seat	Front Seat	Rear Seat	Front Seat	Rear Seat	Front Seat	Rear Seat	
One	77.3 %	22.7 %	70.5 %	29.5 %	64.5 %	35.5 %	63.8 %	36.2 %	
Тwo	58.9	41.1	54.9	45.1	51.2	48.8	50.7	49.3	
Three	53.2	46.8	47.3	52.7	42.8	57.2	43.7	56.3	
Four	47.8	52.1	41.2	58.8	39.0	61.0	38.6	61.4	
No. of Cases	3,766		6,73	18	10,7	45	11,092		
x ² /d.f./p	205.4/3 d.f./p=0.000		335.2/3 d	l.f./p=0.000	416.5/3 0	l.f./p=0.000	421.7/3 d.f./p=0.000		

FREQUENCY OF AGE OF CHILDREN (1-4) IN FRONT/REAR SEATS IN PASSENGER CAR ACCIDENTS

*In New York (and possibly Idaho), the one-year-old category includes infants.

APPENDIX B

FULLY CROSS-CLASSIFIED CONTINGENCY TABLES DERIVED FROM STATE MASS ACCIDENT DATA BASES

TABLE B-1

FULLY CROSS-CLASSIFIED TABLE OF NEW YORK 1974 RAW DATA FOR KA/BCO INJURY DICHOTOHY

DAMAGE X	WEIGHT W	OCCAGE D	RDCLA88 C	RESTRAINI R I	KAXBCO K+A	(I) B+C+D
NUNELITE	LT 3000	1 YEAR	STATEHWY	NONE I BEATBELTI CH. REBTI I	3 0 0	39 14 16
			COUNTYRD	NONE I SEATBELTI CH _R Resti I	1 0 0	26 12 6
			CITY STR	NDNE I SEATBELTI CH. RESTI I	0 0 0	54 7 6
			INTERST	NONE I Seatbelti Ch. Resti	0 0	9 4 2
		2 YEARS	STATEHWY	NONE I SEATBELTI CH _s Resti I	000	56 10 7
			COUNTYRD	NONE I SEATBELTI CH. RESTI I	0 0	49 8 5
			CITY STR	NONE I SEATBELTI CH. RESTI I	0 0 0	53 10 0
			INTERST	NONE I BEATBELTI CH. RESTI	0 0	5 1 1
		3 YEARS	STATEHWY	NONE I Seatbelti CH, Resti I	2 0 0	60 7 3
			COUNTAND	NONE I SEATBELTI CH. RESTI I	3 0 0	32 7 3
			CITY STR	NONE I SEATBELTI CH. REBTI I	1 1 0	40 8 1
			INTERST	NUNE I Seatbelyi Ch. Resti	0 0 0	10 2 1
		4 YEARS	STATEMWY	NONE I SEATBELTI CH. RESTI	. 20	56 4 0
			COUNTYRD	NONE I SEATBELTI CH. RESTI I	2 0 0	39 7 0
			CITY STR	NONE I SEATBELTI CH. REBTI I	000	5 6 29
			INTERST	NONE I SEATBELTI CH. RESTI	0 0 0	10 4 0

TABLE B-1 (continued)

۰.

******		*******	I	****
30003599 1 YEAK	STATEHWY	NONE Seatbelt Ch, Rest	I 2 I 0 I 0	44 10 17
,	COUNTYRD	NONE Beatbelt: Ch, Rebt:		35 8 11
	CITY STR	NDNE Beatbelt: Ch, Rest:	0 0 2	44 5 7
	INTERST	NDNE Beatbelt Ch. Rest	0 0 0	4 1 3
2 YEARS	STATEHWY	NONE Seatbelt Ch, Rest	1 0 0	47 8 6
	COUNTYRD	NONE Seatbelt Ch, rest	0 0 0	44 4 7
	CITY STR	NONE SEATBELT CH. REST	0 0 0	49 4 1
	INTERST	NDNE SEATBELTI CH, RESTI	0 0 1 0	8 1 2
3 YEARS	STATEHWY	NONE SEATBELTI CH, RESTI	0 0 0	61 8 4
	COUNTAND	NONE SEATBELTS CH. REST	0 0 1 0	64 6 2
	CITY STR	NONE Seathelt Ch, Resti	1 0 0	54 7 1
	INTERST	NDNE Seatbelti Ch _e Resti	0 0 0	4 1 0
4 YEANS	STATEHWY	NONE BEATBELTI CH, RESTI	2 0 0	67 9 2
	COUNTYRD	NONE SEATBELTI CH. RESTI	0 0 0	48 5 0
	CITY STR	NONE SEATBELTI CH. RESTI	2 0 0	35 2 0
	INTERST	NDNE SEATBELTI CH, RESTI	0 0 0	5 3 1

B-2

3600 +	1 YEAR	STATEHWY	NONE Beatbelt Ch. Rest	I 2 I 0 I 1	90 18 33
		COUNTYND	NONE Seatbelt Ch. Rest		57 12 21
		CITY STR	NONE SEATBELT		65 15
		INTENST	NUNE BLATBELT		8 4 2
					5.
	2 YEARS	STATEHWY	NDNE SEATBELT CH. REST	1 0 1 0	96 20 14
		COUNTYHD	NONE Seatbelt CH. Rest	Î 2 1 0 1 0	90 14 7
		CITY STR	NDNE [®] SEATBELTS CH, RESTS	5 7 9	84 12 3
		INTERST	NONE SEATBELTS CH. RESTS	1 0 1 0	14 2 1
	3 YEANS	STATEHWY	NONE SEATBELT) CH. RESTI	2 1 0 2	123 18 4
		COUNTYRD	NONE 1 SEATBELTI CH. RESTI	0 0 2 2	87 17 5
		CITY STH	NONE I SEATBELTI CH, RESTI	0 0 2	82 7 5
		INTERST	NONE J BEATBELTI CH, RESTJ	0 0 1 0	13 3 1
	4 VEANS	STATEHWY	NUNE SEATBELTI CH ₀ RESTI	,	201 21 2
		COUNTYRD	NONE SEATBELT CH. REST		128 20 1
		CITY STR	NUNE BEATBELT CH, REST	1 1 0 1 0	89 10 0
		INTERST	NONE SEATBELTS CH. RESTS	0 0 0 0 0	19 0 1
			 [بها هه هه هه هه هه وب [بها	[

ų.

Page .					I	
NODERATE LT	3000 1	YEAR	STATEHWY	NONE	1 3	87
· · · -				SEATRELT	T Ó	20
				CH. REST	T O	10
				0111 10001	• •	30
			COUNTYPD	NONE	* *	E 4
			gugninnu	GEATOEL +		26
				SEMIDEE!		13
				CHª KEAL	1 0	18
					I	
			CITY STR	NUNE	I i	68
				SEATBELT	I 1	16
				CH, REST	I 2	18
					I	
	-		INTERST	NUNE	I I	21
				SEATBELT	I 0	2
				CH, REST	I O	5
			********	********		
	2	VEARS	STATEHWY	NONE	15	68
				SEATBELT:	T 0	13
				CH. REST	i 0	12
						••
			COUNTYRD	NONE	3	56
				BEATBELT	0	21
				CH. RESTI	0	-:
				- UN 4 - NEU 1 1		2
			CTTY STR	NONE 1		71
			Wall win	SEATREL TI		11
				- CH DECTI		
				CHE REGII		3
			THEFURT			7.0
			THICKAL		0	20
				SEATBELTI	<u> </u>	7
				CH, RESTI	Ű	2
	-		********	*********	*********	
		TEARS	STATEMWY,	NUNE I	1	112
				SEATBELTI		17
		-		CH, RESTI	0	3
				I		
			COUNTYHD	NONE I	4	67
				SEATBELTI	0	51
				CH. RESTI	1	3
				I	-	
			CITY STR	NUNE I	7	82
				SEATBELTI	0	11
				CH. RESTI	0	3
				I		
	-		INTERST	NONE I	1	20
				SEATBELTI	0	7
				CH, RESTI	. 0	0
			********			****
	4	YEARS	STATEHWY	NONE I	5	110
				SEATBELTI	1	55
				CH. RESTI	0	1
				I		
			COUNTAND	NONE I	0	77
			-	SEATBELTI	0	7
				CH, RESTI	0	4
				I		
			CITY STR	NONE I	0	90
				SEATBELTI	0	6
				CH. RESTI	0	0
				I		
			INTENST	NONE I	0	18
				SEATBELTI	0	3
				CH. RESTI	Ö	0

TABLE B-1 (continued)

#41	*****	*******	₽₩₩₽ ₽₩ ₩		1 Sa 49 49 49
30003599 1	YEAR	67ATEHWY	NONE BEATBELT CH, REBT	3 1 0 1 0	78 12 24
		COUNTYRD	NONE SEATBELT CH. REST	1 3 1 0 1 1	61 12 24
		CITY 8TR	NONE BEATBELTS CH. RESTS	3 0 1 2	61 9 11
		INTERST	NONE SEATBELTI CH. RESTI	0 0 0	17 4 3
2	YEARS	STATEHNY	NONE SEATBELTI CH, RESTI	2	77 17 10
		COUNTYRD	NONE DEATBELTS CH. REBTS	1 0 0	74 11 6
		CITY STR	NUNE SEATBELTI CH. RESTI	4 0 0	80 12 8
		INTERST	NONE I BEATBELTI CH, RESTI	0 0 0	21 3 0
3	YEARS	STATEHWY	NONE I SEATBELTI CH. RESTI	4 1 0	110 16 9
		COUNTYRD	NONE I BEATBELTI CH, RESTI	3 0 0	75 11 3
		CITY STR	NONE I SEATBELTI CH, RESTI	5 3 0	84 7 3
		INTERST	NONE I SEATBELTI CH. RESTI	1 0 0	16 3 1
4	YEANS	STATEHWY	NONE I SEATBELTI CH, REBTI	2 0 0	85 15 3
		COUNTAND	NDNE I SEATBELTI CH, RESTI	2 0 0	61 11 0
		CITY STR	NDNE I SEATBELTI CH ₈ RESTI	2 1 0	83 11 1
		INTERST	NONE I SEATBELTI CH. RESTI		25 2 1

.

.

B--5

1

				<u>I</u>	
3600 +	1 YEAH	STATEHWY	NONE BEATBELT CH, REBT	1 1 0 1 2 2	122 37 -38
		COUNTYRO	NONE SEATBELT CH, REST	2 1 0 1 0	80 13 28
	,	CITY STR	NDNE Seatbelt Ch, Rest	I 4 I 0 I 0	132 18 13
		INTERST	NONE Seatbelt Ch. Rest	I 1 I 0 I 0	22 4 3
	'Z YEARS	-STATEHWY	NONE Seatbelt Ch. Rest	i 0 1 0	133 24 20
		CDUNTYRD	NDNE Seatbelt Ch, Rest	1 6 1 0 1 0	100 23 13
		CITY STR	NDNE Seatbelt Ch. Rest	2 1 0 1 1	140 13 7
		INTERST	NONE Seatbelti Ch. Resti	1 0 0	24 8 3
	J YEARS	STATEHWY	NONE I Seatbelti Ch. Resti	7 0 0	190 26 7
		COUNTYRD	NONE I SEATBELTI CH, RESTI	3 0 0	122 19 4
		CITY STR	NONE I SEATBELTI CH, RESTI	2 1 0	152 25 4
		INTERST	NONE I Seatbelti Ch. Redti	1 1 0	30 7 1
	4 YEARS	STATEHNY	NDNE I BEATBELTI CH, RESTI	4 0 0	191 31 1
		COUNTYRD	NONE I BEATBELTI CH, REBTI	0	122 -28 4
		ÇITY SYR	NÖNE I BEATBELTI CH. RESTI	6 1 0	164 18 2
		INTENST	NONE I BEATBELTI CH. RESTI	0 0 0	85 9 0
		**********		*************	

. ..

.

.

SEVERE	LT 3000	1 YEAR	STATEHWY	NONE Beatbelt Ch. Rest		21 5 12
			COUNTYRD	NONE Seatbelt: Ch. Rest		24 2 10
			ÇITY STR	NDNE Seatbelt Ch, Rest	I 2 I 0 I 1	16 4 3
			INTERST	NONE Seatbelt Ch, Rest	7 2 7 0 1 0	4 2 0
		2 YEARS	STATEHWY	NONE Seatbelt Ch. Rest		36 5 2
			COUNTYRD	NONE SEATBELT CH, REST		25 4 5
			CITY STR	NONE BEATBELT CH, REST	0 0 0	13 1 1
			INTERST	NONE BEATBELT CH. REST	0 0 0	8 1 2
		3 YEARS	STATEHWY	NONE SEATBELTS CH, RESTI	1 0 0	.34 0 2
			COUNTYRD	NONE SEATBELTS CH. RESTI	1 0	26 9 1
			CITY STR	NONE SEATBELTS CH. RESTI	3 0 0	50 50
			INTERST	NDNE I Seatbelti Ch. Resti	3 0 0	5
		4 VEARS	STATEHWY	NONE I BEATBELTI CH, RESTI	2 0 0	23 4 2
			COUNTYRD	NONE I SEATBELTI CH, RESTI	4 0 0	26 6 0
			CITY STR	NONE I SEATBELTI CH, RESTI	0 0 0	14 2 0
			INTERST	NONE I SEATBELTI CH. RESTI	1 0 0 0	5 2 0

30003599 1 YEAR	STATERWY	NONE	1 3	53
		BRATBELT	I 0	5
		CH. REST	1 1	4
			I	
	COUNTYRD	NONE	I O	17
		BEATBELT:	I 0	5
		CH. REST	I O	5
			I	
	CITY STR	NONE	1 O	14
		BEATBELT	T Ö	4
		CH. REST	T O	×.
				-
	TNTEURT	NONE	• • >	7
	101001	SEATORI T		2
				ų,
		UN, REGI		e
	**********	NONE		
E TEARD	a i a i chint	NUNG .	E E	30
		SEA (BELT)	0	4
		CH, NEST	I 9	1
	COUNTARD	NONE	1 1	20
		SEATBELT	0	2
		CH, RESTI	0 1	1
		3	l	
	CITY STR	NONE 1	1 3	11
		SEATBELT	t -0	3
		CH. REST	i i	ō
			-	•
	TNTERST	NONE 1		4
	**************************************	REATORI TO		4
		GENIDERIA		1
		GUT 42017		0
		NONE		
3 TEARS	JIAILMAT			6 4
		SEA (BELT)	L V	2
		CH. REST	u o	5
]		
	COUNTARD	NUNE 1	2	15
		SEATBELTI	τ ο	0
		CH, RESTI	0	2
		3	L	
	CITY STR	NDNE 1	2	7
		SEATBELTS	0	3
		CH. RESTI	0	0
		1		-
	INTERST	NONE 1	1	3
		SEATBELT	0	ō
		CH. RESTI	Ő	ŏ

A VEANS	STATEHEV	NONE T	2	28
		SFATREL 71	0	2
		CLAIDERIA	0	с 1
		CUT WCOLL	. 0	1
	****	NONE =		• #
	CONNIAND	NUNE	1	14
		BEATBELTI	0	0
		CH. RESTI	0	Ø
		I		
	CITY STR	NONE I	1	13
		SEATBELTI	0	1
		CH. RESTI	0	Ð
		I		
	INTERST	NONE I	0	4
		SEATBELTI	0	0
			0	<u>, , , , , , , , , , , , , , , , , , , </u>
		LR. REOIL		U

i ,

		# % i				******	***
3600	•	1	YEAH	STATEHWY	NONE SEATBELTI CH. RESTI	3 0	28 6 4
				COUNTYRD	NDNE D SEATBELTI CH, RESTI	2 0 0	2 i 2 3
				CITY STR	NUNE 1 BEATBELTS CH, RESTS	0 0 2	17 4 6
				INTERST	NONE SEATBELTI CH. RESTI	1 0 0	1 2
		2	YEARS	STATENWY	NONE J SEATBELTI CH, RESTI	1 0 0	21 7 5
				COUNTYRD	NDNE I SEATBELTI CH. RESTI	2 1 0	17 3 2
				CITY STR	NDNE 1 SEATBELT1 CH. RESTI	0 0 0	17 1 1
				INTERST	NONE T SEATBELTI CH. RESTI	1 0 0	7 0 0
		3	YEARS	STATEHWY	NDNE I Seatbelti Ch. Resti	2 0 0	33 5 2
				COUNTYND	NONE I SEATBELTI CH. RESTI	1 0 0	30 6 1
				CITY STR	NDNE I SEATBELTI CH. RESTI	0 0 0	27 4 0
				INTERST	NONE I Seatbelti Ch _o resti	1 0 0	4 3 0
		4	YEARS	STATEHWY	NONE I SEATBELTI CH, RESTI	2 2 0	50 4 0
				COUNTYRD	NONE I SEATBELTI CH. RESTI	4 0 0	22 5 1
				CITY STR	NONE I SEATBELTI CH. RESTI	0	22 2 2
 				INTERST	NONE I Seatbelti Ch. Resti	2 0 0	9 1 0
 	- -	-			, 100 100 107 441 442 544 558 554	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

THE TOTAL FREQUENCY IS 9103

,

.

.

÷

TABLE B-2

FULLY CROSS-CLASSIFIED TABLE OF NEW YORK 1974 RAW DATA FOR KAB/CO INJURY DICHOTOMY

DAMAGE	WEIGHT	OCCAGE D	RDCLASS C	RESTRAINI	KABXCO (I) K+A+B +Q	
NONELITE	LT 3000	1 YEAR	STATENNY	NDNE I SEATBELTI CH, RESTI	8 3 1	34 11 15
			COUNTYHD	NDNE I SEATBELTI CH. RESTI I	4 1 0	23 11 6
			CITY STR	NDNE I Seatbelti CH, Resti I	7 0 0	47 7 6
			INTERST	NONE I BEATBELTI CH, RESTI	1 1 0	8 3 2
		2 YEARS	STATEHWY	NONE I BEATBELTI CH. RESTI I	8 2 0	48 8 7
			COUNTYRD	NONE I SEATBELTI CH, RESTI I	8 0 0	41 8 5
			CITY STR	NUNE I Seatbelti Ch. Resti I	9	44 9 0
				NONE I Seatbelti Ch. Resti	1 1 0	4 0 1
		3 YEANS	STATEHWY	NONE I SEATBELTI CH, RESTI I	7	55
			COUNTYRD	NONE I Seatbelti Ch, Resti I	6 1 0	29 5
			CITY STR	NONE I SEATBELTI CH, RESTI I	5 1 0	56 6 1
			INTENST	NUNE I SEATBELTI CH, RESTI	1	1
		4 YEARS	STATEHWY	NONE I BEAYBELTI CH, RESTI I	11 3 0	45 3 0
			COUNTYRD	NUNE I SEATBELTI CH. RESTI I	4 0 0	37 7 0
			UITY STR	NONE I SEATBELTI CH, RESTI I	12 2 0	26 7 2
			INTERST	NUNE I SEATBELTI CH. RESTI	3 1 0	7 3 0

_				¹	
10001598	VEAN	RTATENNY	NONE	Y 7	20
	1 1640		ACATACI T		10
				1. V f A	10
				1 U Y	* '
		COUNTYRD	NONE	4 Y 5	21
			SEATRELT	4 J 10 P	
			CH. REST	* V	4 4
			ong neor	* ¥ 7	**
		"TTV 979	NANE	* *	28
			REATER	* / * ^	37
			UNA REGI	*	/
		TNTERST	NONE	1 7 (
		Tre I million I	SLATSFI V	• •	د ۱
					1
	P VEARS	STATENNY	NONE	Y A	40
			REATRELT	r (
			CH. REST	r n	
					•
		COUNTYRD	NONE	, 7 6	3A
			REATRELT	τ 0	4
			CH. REST		
			6110 110 11	• •	¢
		CITY STR	NONE	х Х	46
			SFATRELY	ι Λ 1	40
			CH. REST		
				v v	+
		INTERST	NONE 1	, 7 4	7
			SEATBELT	n n	4
			CH. REST	r n	2

	3 YEARS	STATEHWY	NONE	9	52
			SEATBELTS	0	8
			CH. RESTI	a a	ű
				í v	
		COUNTYRD	NONE 1	6	58
			SEATBELTS	1	5
			CH. RESTI	Ő	ž
		CITY STR	NONE 1	8	47
			SEATBELTS	Č I	7
			CH. RESTI	Ō	i
		INTENST	NONE 1	0	4
			SEATBELTI	0	1
			CH. RESTI	0	D
				*************	er (P (2) (2)
	4 YEAKS	STATEHWY	NONE 1	9	60
			BEATBELTI	0	¢,
			CH, RESTI	1	1
			1		
		COUNTYRD	NONE 1	8	40
			SEATBELTI	0	5
			CH, RESTI	0	D
			J		_
		CITY STR	NONE 1	6	31
			SEATBELT	0	5
			CH, RESTI	0	0
			1.0.1		
		INTERST	NUNE	1	4
			BEATBELT	U 0	5
			CH, RESTI	\$	0
			· · · · · · · · · · · · · · · · · · ·	【 199 199 199 199 199 199 199 199 199 19	*****

- ¥ --

_ _

3600 +	1 YEAK	STATEHWY	NONE SEATBELT CH, REST	1 10 I 1 I 1	82 17 33
		COUNTYRD	NONE Seatbelt Ch, Rest	I 5 I 1 I 0	5 2 11 21
		CITY STR	NONE BEATBELT CH, REBT	I 9 I 1 I 2	57 14 13
Y		INTERST	NONE SEATBELT CH, REBT		8 3 2
	2 YEARS	STATEHWY	NONE BEATBELT CH, REST	10 10 10 10	88 20 14
		COUNTYRD	NDNE SEATBELT CH. REST		81 14 6
		CITY STR	NONE BEATBELTS CH. REST	13 10 122	76 12 1
		INTERST	NONE Seatbelt CH. Rest	3 0 0	12 2 1
	3 YEARS	STATEHWY	NDNE 1 SEATBELTI CH, RESTI	11 1 0	114 17 4
		COUNTYRD	NONE SEATBELTI CH, RESTI	5 1 1	84 16 4
		CITY STR	NDNE I SEATBELTI CH, RESTI	5 5 8	76 5 3
		INTERST	NONE BEATBELT CH. REBT	0 0 0	13 3 1
	4 YEANS	STATENNY	NONE I SEATBELTI CH. RESTI	14 3 0	88 19 2
		COUNTYND	NONE I SEATBELTI CH, RESTI	14 1 0	115 19 1
		CITY STR	NONE I SEATBELTI CH. RESTI	14 0 0	76 10 0
		INTENST	NUNE I Seathelti Ch, Resti	2 0 0	17 0 1

Pasta and a second s			*****			the set of the
NUDERATE LT 3000	1	YEAR	STATEHWY	NONE	I 9	81
				SEATRELT'	r o	50
				CH PEST	r 6	25
				ung Keut	L	C, J
			COUNTYRD	NONE 1	[9	50
				SEATBELT	1	13
				CH. REST	2	16
					k 1	
			CITY STR	NUNE ;	[<u>1</u> 2	57
				SEATBELT	l 1	16
				CH. REST	1 4	16
						••
			******	NONE		
			THICKOL			12
				BEATBELT	L 1	1
				CH. RE871	0	5

	2	VEADR	STATEHUV	NONE	25	48
	E.	TENNU	OTHER WITH			
				ACAINEL1)	1	16
				CH, RE871	. 5	7
				5	l l	
			COUNTYPD	NONE	1 15	44
			00001100	- 65 A 7 65 4 1	L 4 20	4.9
				SCAIBELI		11
				CH, RESTI	[1	4
				1	[
			CITY STR	NONE	22	52
,			••••••••••••••••••••••••••••••••••••••			
				OCAIDELIJ		<u>'</u>
				CH. REST	C Q	3
				1	[
			INTENST	NONE 1	1 1	19
				BEATORI TY		
						<u>_</u>
				CH. KESI	U U	2

	3	YEARS	STATEHWY	NONE 1	[18	95
				SEATRELY	4	14
				4 H g R G G I J	4	e
				3		
			COUNTYRD	NONE 1	7	64
				SEATBELTI	1 1	20
				CH 05971	5	
				CUP KCOIT	6	E
				1		
			CITY STR	NONE 3	28	61
				SEATBELTS	4	7
				CH DERTI	Ö	7
				ang newia	•	~
			7 K: 7 E D B #	NONE 1		
			THIGHOL	WUNE]	4	11
				SEATBELTI	L 1	6
				CH. RESTI	. 0	0
	4	VELDE	RTATENUV	NUNE 1	26	89
	-	16410	Q P B P	CEATOEI TE		22
				GEAIDELII	4	ee
				CH. RESTI	0	1
				1		
			COUNTYRD	NONE 1	17	60
					· · ·	Ē
						2
				CH, RESTI	0	4
				1		
			CITY STR	NONE 1	19	71
				SEATREL TT	<u>د</u>	ú
					L	~
				VH. REALL	U	U
				1		_
			INTERST	NONE I	5	13
				8EATRELTT	1	5
				PH. DERTY	Â	ñ
				PLIS HEDIT	v	v

1

TABLE B-2 (continued)

30003599 1	YEAR	STATEHWY	NONE	16	65
•••••••		•••••••	BEATBELT	1 2	10
			CH. REST	i s	19
					• ·
		COUNTYRD	NONE	1 10	54
			8EATBELT	Î Î	11
			CH. REST	Ĩ Š	20
				Ĩ	
		CITY STR	NONE	I 8	56
			SEATBELT	r o	9
			CH. REST	1 3	10
				-	••
		INTERST	NONE	1 1	16
		•	SEATBELT	ī i	3
			CH. REST	t õ	3
		********	******		
5	YEARS	STATENWY	NDNE	1 14	65
•		•	SEATBELT	1 2	16
			CH. REST	a a	10
				-	
		COUNTYRD	NONE 1	14	61
		•••	BEATBELT	1	10
			CH. RESTI	1	5
				•	-
		CITY STR	NONE 1	19	65
			SEATRELT	3	9
			CH. REST	i õ	Å
				-	-
		INTERST	NONE 1	3	18
		-	SEATBELT	ī	2
			CH. REST	t o	õ
3	YEARS	STATENNY	NONE 1	25	89
-			SEATBELT	2	15
			CH. RESTI	ō i	5
				-	
		COUNTYRD	NONE 1	12	66
			SEATBELTS	i i	10
			CH. RESTI	i i	2
				t -	
		CITY STR	NONE 1	[18	71
			SEATBELTI	1 3	7
			CH. RESTI	0	3
			1		-
		INTERST	NONE 1	3	14
			SEATBELTI	0	5
	•		CH. RESTI	. Ō	1

4	YEAR8	STATEHWY	NONE I	11	76
			SEATBELTI	1	14
			CH. RESTI	ŏ	τ. τ
			Ĩ	÷	2
		COUNTYRD	NONE I	12	51
			SEATBELTI	2	
			CH. RESTI	0	ō
			ľ	-	-
		CITY STR	NONE I	25	60
			SEATBELTI	2	10
			CH. RESTI	0	1
			I		
		INTERST	NONE I	4	15
			SEATBELTI	1	1
			CH, RESTI	1	0

TABLE B-2 (continued)

.

7

	*******		****	,	
3600 +	1 YEAR	STATEHWY	NONE	I 14	109
			SEATBELT	1 3	34
			CH. REST	r 5	35
				Ĩ	
		COUNTYRD	NDNE	16	66
		••••	SFATRELT	7 1	12
			CH. REST		27
				• •	
		CITY STR	NONE	r 21	115
			SEATBELT		14
			CH. REST	r 2	11
				r –	• •
		INTERST	NUNE		17
			REATRELT	t o	• / /
			PH. PFSY	r u	2
				• •	
	2 VEARS	RTATENNY	NONE	1 17	117
		W / H / E / H /	SEATAFI Y	r 1/	2/
			CH DEGYS		20
			արը դապես	s v	EU
		COUNTYPO		1 24	85
		DODATIND		1 G1 1 Y	20
			ALAIDELII Al Beave		18
			UNA MEGII		13
		0778 87D	- NONE - 1	h	101
		PTIL OLH		*	101
			SCAISELII	. E	11
			CH, RESTI		7
		******	1	, ,	
		INTERST	NUNE I	4	۲ ۲
			SEAIBELTI		6
			CM, MEDII		2
	-		លាសណៈសេសាមាមាណ្ឌ] សភាសាក		· · · · · · · · · · · · · · · · · · ·
	J YEARS	STATERWY	NUNE 1		105
			SEAIDELTI	1	< 2
			CH, HESTI	u u	7
			1		
		COUNTYND		<i>c 3</i>	102
			SEALDELII	с 1	17
			CHE REDIT	+	.>
			1 NOVE 1	24	
		CITA 914	NUNE 1	50	110
			PU DESTI	~	"
				v	4
			LOVE 1	2	30
		INIENDI	GEATREITT	2	E 4
			CH PEST	0	
					1
			NOLE 1	11	
	4 TEANS	BIAISONT	SFATAFLTT	2	102
			CH PERTY	· · · · · · · · ·	29
			4 CONT	ě.	U
		COUNTYRO	NONE T	21	101
		••••	SEATRELTY	5	101
			CH. RESTT	0	E O //
			1	~	-
		CITY STR	NONE T	Ц Э	128
			SEATAFLAT	4	16
			CH. RESY	~	10
			11000 T	v	C
		INTERST	NONE T	▲	22
		#	SEATREL TY	5	F C 9
			CH. PEST	<u>د</u>	6
		****	wing neutle	V 	V
	***			************	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				47 (B) (B) (B)

TABLE B-2 (continued)

۰.

×

SEVERE	LT	3000	1	YEAN	STATEHWY	NUNE	11	11
	-					BEATBELT	1 2	3
						CH, RESTI	5	7
					0011117 V 100	NONE		
					CODATARO	SFATRELT		13
						CH. REST	i 5	5
						1	[
					CITY STR	NONE 1	6	12
						SEATBELT		3
						LUB MEGII		1
					INTERST	NONE 1	4	2
						SEATBELT	1	ĩ
						CH. RESTI	0	0
			2	VELDE		**************************************		99999 21
			6	TERNO	STATEDA1	SEATBELTS	1	<u> </u>
						CH. RESTI	2	1
							I	
					COUNTYRD	NONE 1	11	15
						SEATSELTI	2	2
						CUT KEOIN		6
					CITY STR	NONE J	2	11
						SEATBELTI	0	1
						CH. RESTI	0	1
					INTEURT		R R	5
					* if the low t	SEATBELTI	ō	ĩ
						CH. RESTI	0	5

			2	TEANS	DIAIE DMY	NUNG I Reatrei vi		6
						CH. RESTI	ŏ	ž
						I		
					COUNTYRD	NONE I	11	16
						SEATBELTI	. .	0
							v	•
					CITY STR	NONE I	7	16
						SEATBELTI	1	5
						CH. RESTI	U U	2
					INTERST	NONE I	3	5
						SEATBELTI	0	1
						CH, RESTI	0	0
			4	VEADE	STATENUV		. (1	14
			-	1 ERNO	01412041	SEATBELTI	1	3
						CH. RESTI	1	1
]		
					COUNTYRD	NUNE]	15	15
						CH. RESTI		0
								v
					CITY STR	NONE 1	7	7
					-	SEATBELT		1
						LN, KEOTI		U
					INTEKST	NONE I	3	3
						SEATBELT	0	2
						CH, REST		0

B-16

		*******]	
30003599 1 YEAH	R STATENWY	NONE	т ь	3.6
		BEATBELT		6 V #
				2
		CH1 HEDI	1 3	2
			I	
	COUNTYRD	NONE	I 8	9
		SEATBELT	I 0	2
		CH. REST	T i	-
			÷ •	-
	CTT4 840	NONE	* 7	
	CTIA SIM	NUNE	1 3	11
		SEATHELT	1 1	3
		CH. REST	1 2	1
			1	
	INTERAT	NONE	τ Υ	τ
		REATORI Y	* * * ^	
		CH9 HEST	1 0	2
	******] ********************	
2 YEAF	RS STATEHWY	NONE	I 14	18
		BEATBELT	12	2
		CH. REST	t Ö	Ĩ
		9119 (1899)	, v	•
	COUNTROP	NAME	• .	
	COUNTRY			1.4
		SEATBELT	I 0	5
		CH, RE81	1 0	1
			I	
	CITY STR	NONE	r a	6
	••••	SEATHEL T	r 1	2
				5
		CH. REST.	1 1	Ø
			I	
	INTERST	NONE	2	5
		SEATBELT	1 1	٥
		CH DEST		ň
3 4548	S STATEMNY	NUNE	4	21
		SEATBELT	C 0	5
		CH, REST	C 0	5
		2	ľ	
	COUNTYRD	NONE D	9	8
		REATREL TY	Ó I	ň
		9000 (9000) 201 10009		Ň
		CH, REALI	U U	2
	CITY BTR	NONE I	- 4	5
		SEATBELTI	1	5
		CH. RESTI	0	0
			-	•
		NONE 1	4	
	1412441		4	3
		OLAIBEL 11	U	0
		CH. KERLI	. D	Ū.
	********		****	
4 YEAR	S STATEHWY	NUNE I	7	23
	• • • • • • • • •	SEATBELTS	O	2
		CH. RESTY	ň	
			· · ·	2
		1000	_	
	COUNTYRD	NONE 1	5	10
		BEATBELTI	0	0
		CH. RESTI	0	0
		1	-	
	CITY STR	NONE	7	7
	A a i i a i i			
				1
		un, REOLI	v	U
		3	-	
	INTERST	NONE 1	(3	1
		SLATBELTS	0	0
		CH. RESTI	0	0
				-

.

B-17

.

.

,

	********		****		
3600 +	1 YEAR	STATEHHY	NONE	10 21	
		-	SEATBELT		5
			CH, REBT	1 3	2
				I	
		COUNTYHD	NDNE	I 4 19	•
			BEATBELT	1 1	1
			CH. REOT		1
		CITY STR	NONE	7 7 5 1:	•
			SEATBELT	T 2	2
			CH. REST	1 3	5
				I	
		INTERST	NONE	I 1 1	5
			SEATBELT	1 0	l
		•	CH. REST	I 0 2	2
	-	071451100 VIII24170	NDNE -	d – – – – – – – – – – – – – – – – – – –	
	E TEARD	GIAIGNAT	SFATRELY		
			CH. REST	- 1 7 7 3	, ,
			ong neor	, <i>,</i> ,	•
		COUNTYRD	NONE	r 7 12	2
		•-•	SEATBELT	I 1 3	5
			CH. REST	ī o a	2
				I	
		CITY STR	NONE	L 6 11	
			SEATBELT	r 1 0)
			CH. REST	<u> </u>	
		TNTEDET	NONE		
		fulene!	REATRELT		1
			CH. REST	r a a	
				***************************************	I.
	3 YEARS	STATEHWY	NDNE	7 28	
			SEATBELT	1 0 5	
			CH. RESTI	r 1 1	
			1		
		COUNTYRD	NONE 1	6 43	
			SEATBELTI		
			CH, REBI		
		CTTY STR		6 21	
		CTAL CAN	SEATBELTI	3 1	
			CH. RESTI	0 0	
			1		
		INTERST	NONE 1	1 4 1	
			SEATBELTI		
			CH, RESTI		
				10 42	
	4 YEARS	STATEMAT	SEATHFLY!	2 4	
			CH. RESTI	0 0	
			1	1	
		COUNTYRD	NONE I	11 15	
			SEATBELTI	2 3	
	-		CH, RESTI	0 1	
			I DIE		
		CTIL DIM	SFATELITY	te 18	
			CH. PERTY	0 5	
		-	ant vent	v U	
		INTERST	NONE I	4 7	
			SEATBELTI	0 1	
			CH, RESTI	U 0	
	******			*************	

THE TOTAL FREQUENCY IS 9103

B-18

.

TABLE B-3

FULLY CROSS-CLASSIFIED TABLE OF NEW YORK 1974 RAW DATA FOR KABC/O INJURY DICHOTOMY

DAMAGE X	WEIGHT	DCCAG D	E RDCLASS C	RESTRAIN	I KABCXO (I) I K+A+6+C D	
NONELITE	LT 3000	1 YEA	R STATEHWY	NONE Seathelt CH, Rest	I 10 I 3 I 1	32 11 15
			COUNTYRD	NONE Seatbelt CH, Rest	Î 4 Î 2 Î 0	23 10 6
			CITY STR	NDNE 8eatbelt Ch, rest	I 15 I 1 I J	39 6 5
			INTERST	NONE BEATBELT CH, REST		7 3 2
		2 YEA	RS STATEHWY	NONE SEATBELTS CH, REST		42 8 6
			COUNTYHD	NONE SEATBELTS CH, RESTS	14 0 1 0	35 8 5
			CITY STR	NONE 1 SEATBELTI CH, REST)	16 1 0	37 9 0
			INTERST	NONE I Seatbelti Ch, Rest	1 1 0	4 0 1
		3 YEAH	S STATEHNY	NONE I SEATBELTI CH, RESTI	9 2 0	53 6 3
			COUNTARD	NONE I SEATBELTI CH. RESTI	9 2 0	26 5 3
			CITY STR	NONE I SEATBELTI CH. RESTI		30 8 1
			INTERST	NONE I Seatbelti Ch. Resti	1 1 0	9 1 1
		4 YEAF	RS STATEHWY	NONE I Seatbelti Ch. Resti	••••••••••••••••••••••••••••••••••••••	38 3 0
			COUNTAND	NONE I SEATBELTI CH. RESTI	12 0 0	29 7 0
			CITY STR	NONE I SEATBELTI CH, RESTI	15 3 0	5 5 5
			INTERST	NONE I Seatbelyi CH, Resti	3 1 0	7 3 0

5
· # \$	******	******	***		
30003599 1	YËAR	STATENNY	NONE	т 9	17
			SEATREL Y	T	
					10
			CUP KEGI	1 0	17
				I	
		COUNTYRD	NDNE	19	27
			SEATBELT	Ι Ο	8
			CH. REST	1 2	, i
				7 -	•
			NAME		~ .
		CTLL OIR	NUNE	1 10	55
		,	BRATBELT	I O	5
			CH, REST	I O	7
				I	
		INTERST	NONE	Ť 1	T.
		• • • • • • •	SEATOFI Y	- -	
					-
			CH, RESI	I 1	2
		********		<u> </u> #2am##88###a>aa	****
5	YEAHS	STATEHWY	NONE	I 13	35
			SEATBELT'	T i	7
			CH OFRY		É
			CHA NEOL		. ว
				L .	
		COUNTYRD	NONE	6	36
			SEATBELT	t 0	4
			CH. REST	r ż	5
					-
		CTTV 970	NUNE 1		/1 Å
		erts off	- RUPE - 1		41
			SEATBELT	0	4
			CH. REST	C 0	1
			5	l	
		INTERST	NONE 1	1 1	1
			SEATHEL T		,
				, , , , , , , , , , , , , , , , , , ,	
			LN REOIL	U U	۲
_		*********		*****	
3	YEARS	STATEHWY	NONE 1	15	46
			8EATBELTI	. o	8
			CH. RESTI	Ő	Δ
				•	-
		COUNTYPD			67
		CUUNITRO	NUNE I	11	23
			SEATBELTI	1	5
			CH. RESTI	0	5
			I		
		CITY STR		12	43
			9517051 99		
				Ĕ	2
			CH. RESTI	0	1
			I		
		INTERST	NONE I	0	4
			SEATBELTI	0	1
			CH. RESTY	Ó	ň
					C 19
4	TLAND	STAICHWY	NUNE I	16	23
			SEATBELTI	0	9
			CH. RESTI	1	1
			r		
		COUNTYRD	NONE T	11	37
			SFATRELTY	0	5
				6	ñ
			UNA REOLI	U	v
			1		M •
		CITY STR	NUNE I	7	30
		CITY STR	NUNE I Seatbelti	7 0	30 2
		CITY STR	NONE I SEATBELTI CH. RESTY	7 0	30 2 0
		CITY STR	NONE I SEATBELTI CH, RESTI	7 0 0	30 2 0
		CITY STR	NONE I SEATBELTI CH, RESTI	7 0 0	30 2 0
		CITY STR	NONE I SEATBELTI CH, RESTI NONE I	7 0 0	30 2 3 3
		CITY STR Interst	NONE I SEATBELTI CH, RESTI NONE I SEATBELTI	7 0 2 1	0 2 0 2 2 2 2
		CITY STR Interst	NONE I SEATBELTI CH, RESTI NONE I SEATBELTI CH, RESTI	7 0 2 1 1	0 2 3 2 3 2 0 0

*

×

.

•

•			10 ar an 40 ch an 10 ch		an die en die die uie die die
3600 +	t vear	STATENUV	NONE	19 19	80
	• • • • • • •		SEATBELT	Î Î	15
			CH, REST	I 1	33
				I	
		COUNTARD	NONE	I 15	43
			PLAIDELI.	L L	11
				i i	EV .
		CITY STR	NONE	I 15	51
			SEATBELT	s z	13
			CH. REST	1 2	13
		INTERST	NONE	1 7 4	A
		Buil Build 1	SEATBELT	i j	ĭ
			CH, REBT	i õ	2
			no sta ese on en eta tao ca gar	Y an an me with the state of the second	0 0 0 0 0 0 0 0 0 0 0 0
	2 YEARS	STATEHWY	NONE	1 20 1	78
			CH PEAT	1 & 1 >	10
			ung nuor	, I	8 H
		COUNTYRD	NONE	1 19	73
			SEATBELT:	1 2	12
			CH, REST	I 1	6
		CITV 810	NONE	r >%	67
			SEATBELT	i ž	10
			CH, REST	5 1	1
			1.01 T	I "	
		TNIENSI	NUNE 1	[4 P 0	11
			CH. RESTI	r o	с 1
		****	2.000 (B)		فې هې مې چې چې چې چې د
	3 YEARS	STATEHWY	NONE	1 19	106
			SEATBELT	(4	14
			CHB MEOIL	r U	4 2
		COUNTYRD	NONE 5	14	75
			BEATBELT	t i	16
			CH. REST	ľ 1	4
			มกพร์ 1	[/ 1) D	6.3
		CTIL GIN	SEATRELT	1 CC 1 2	ci e e
			CH. REBT	i ž	3
			3	ť	
		INTENST	NONE 1	i Š	12
			THE DEAVI		.5 1
		***	പറാള സംയം() തെതേത്തെങ്ങളെ	. V	1 20 20 49 40 40 40 40 40
	4 YEAHS	STATEHWY	NONE 1	26	74
			SEATHELTI	6	16
			LPIS KENTI	0	2
		COUNTYRD	NONE 1	56	103
			SEATBELTI	5	18
			CH. RESYS	0	i
		CITY STR	NONE 1		7.4
			SEATBELTS	2	A
			CH. RESTI	i o	õ
		TNTELLAT	NONE 9		
		PUICKOI	NUNG J	. €	17
			CH. RESTI	ů ő	1
					un sila ste ice star tar bar bar
	6. 6. 6. 10 m m m m m m m				හ දේශ අනු එම අනු යුතු රුම හමු

TABLE B-3 (continued)

,

*******	-		******	****]	*****
HUDERATE LT 3000	1	YEAR	STATENWY	NDNE	19	72
•				SEATBELT	1 .3	18
				CH, REBT	1 7	23
			COUNTYRD	NONE	I 12	47
				SEATBELT	I 3	11
				CH, REST	1 2	16
•			CITY STR	NONE	r 24	46
				SEATBELT	5	12
				CH, REST	[<u>5</u>	15
			INTERST	NONE	9	13
				BEATBELT	1	1
				LH. REST	1	4
	2	YEARS	STATENWY	NONE	30	44
	-		• • • • • • • • • • • • • • • • • • • •	SEATBELT	2	11
				CH. REST	5	7
			COUNTYRD	NONE	24	35
-				SEATBELT		13
				CH, REST	2	4
			CITY STR	NONE 1	36	.38
				SEATBELT	6	5
				CH. REST	Ō	3
			TNTFHST		L	16
			1010001	SEATREL T		
				CH, RESTI	1	1
	_		*******		*****	
	3	YEARS	STATENWY	NUNE	35	78
				CH. RESTI	. 0	25
					•	-
			COUNTYRD	NONE 1	15	56
				SEATBELTI	5	16
				CH, RESTI	2	e
			CITY STR	NONE 1	40	49
				SEATBELTI	5	6
				CH. RESTI	0	3
			INTERST		7	14
				SEATBELTY	2	5
				CH, RESTI	Q	0
	<i></i> ~	apro-z			*************	
	4	YEAKS	STATEMWY	NUNE I	. 45	75
				CH. RESTI	8 0	1
				I		-
			COUNTYRD	NONE I	28	50
				SEATBELTI	2	5
				LN, RESTI	1	3
			CITY STH	NONE I	40	50
				SEATBELTI	5	2
				CH. RESTI	0	0
			INTERST	NUNE I	8	10
				SEATBELTI	5	1
				CH. RESTI	0	0

.

B-22

30003599	1	YEAR	STATEHWY	NONE Beatbelt Ch, Rest	[19 [3 [6	62 -9 18
			COUNTYRD	NONE Seatbelt CM, Rest	I 15 I 1 I ¢	49 11 19
			CITY STR	NONE Seatbelt Ch. Rest	17 0 1 4	47 9 10
			INTERST	NDNE Beatbelt Ch, Rest	1 1 1 1 0	14 3 3
	5	YEARS	STATEHWY	NONE Seatbelt Ch. Rest	21	58 15 9
			COUNTYRD	NDNE Seatbelt Ch. Rest	21 1 4	54 10 3
			ÇITY STR	NDNE BEATBELT CH, REST	34 4 0	-51 8 8
			INTERST	NONE SEATBELT CH. REST	4 1 0	17 2 0
	3	YEARS	STATEHWY	NONE Seatbelts Ch, Rests	40 5 1	76 12 4
			COUNTYRD	NONE 1 SEATBELT1 CH. REST1	18 3 1	60 8 2
			CITY STR	NONE 1 SEATBELTI CH, RESTI	39 4 0	50 6 3
			INTERST	NONE SEATBELTS CH, REST	6 1 0	11 2 1
	4	YEARS	STATEHWY	NONE BEATBELTS CH. REBTS	22 2 0	65 13 3
			COUNTYRD	NONE SEATBELT CH, REST	21 3 7 0	42 8 0
			CITY STR	NONE SEATBELT CH, REST	44 4 0	42 8 1
			INTERST	NONE SEATBELTI CH. REBTI	- 5 1 1	20 1 0

TABLE B-3 (continued)

	**		********	**********		
3690 +	1	YEAR	STATEHWY	NONE Beatbelt Ch, Rest	I 26 I 5 I 6	98 52 34
			COUNTYRD	NONE Seatbelt Ch. Rest	25 I I 22 I 2	56 15 60
			CITY STR	NONE Seatbelt Ch. Rest	1 43 I 6 I 3	93 12 10
			INTERBY	NONE SEATHELY CH. REST		15 3 2
	5	YEARS	STATEHWY	NONE Seatbelt Ch. Rest	I 30 I 0 I 1	104 24 19
			COUNTYRD	NONE Seathelt Cha Rest	1 30 1 3 1 1	77 20 12
			CITY STR	NONE Seatbelt Ch, rest	1 63 1 2 1 5	79 11 3
			INTERST	NONE Seatbelt Ch. Rest	I 7 I 1 I 0	18 7 3
	3	YEAKS	STATEHWY	NONE BEATBELT Ch, Rest	I 53 I 3 I 0	145 23 7
			COUNTYRD	NONE Seatbelt Ch. Rest	I 34 I 3 I 1	92 16 3
			CITY STR	NUNE SEATBELT CH. REBT	60 10 1	94 16 3
,			INTERST	NONE SEATBELTI CH, RESTI	5 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26 4 1
	4 1	EARS	STATEHWY	NONE SEATBELTI Ch. RESTI	50 4 1	147 29 0
			COUNTYKD	NDNE I SEATBELTI CH, RESTI	40 6 0	85 22 4
			CITY BTR	NONE I SEATBELTI CH. RESTI	75 10 0	96 10 2
			INTERST	NONE I SEATBELTI CM. RESTI	10 6 0	18 3 0
	****	*****	******		<i>你你没你会你你</i> 你你你你你。 	

B-24

	****			*****		******]	*****
SEVERE	LT 3	5000	1	YEAR	STATEHWY	NONE	12	10
						CH. REST	I 2 I 6	3
								-
					ÇUVNTYKD	SEATBELT	1 16 1 2	11
						CH, REST	5	5
					CITY STR	NDNE	I I 10	8
					•••	SEATBELT	2	S
						CH. REST	I 4	1
					INTERST	NONE	i 5	5
						CH. REST		1
			_		*******	*******		
			2	YEARS	STATEHWY	NONE SEATBELT	L 17 L 2	.50
						CH, REST	2	ī
					COUNTYRD	NONE	[[14	13
						BEATBELT	L 3	2
						CHA NEDT	[3	· 2
					CITY STR	NONE	4	9
						CH. REST		0
					an ba an ar to an an			-
					INTERST	SEATRELT1		3
						CH. REST	Ō	2
			3	YEARS	STATENWY	NONE 1		18
						SEATBELT	0	0
						CH, RESTI	Q	2
					COUNTYRD	NONE	15	14
						CH, RESTI	0	1
						NONE	4 1	12
					CIT OIR	SEATBELT	2	1
						CH. RESTI	1	1
					INTERST	NONE 1	3	5
						SEATBELTI	0	1
					*			*****
			4	YEARS	STATEHWY	NONE I	13	12
						CH. RESTI	F	1
					COUNTNER	NONE	-	4.79
					LUUNITRU	SEATBELTI	10 3	13
						CH, RESTI	Ö	0
					CITY STR	NONE 1	11	3
						SEATBELTI	2	0
						ung KEOli	Ų	U
					INTERBY	NONE I	3	3
						CH, RESTI	0	e O
					*****	I	********	

.

TABLE B-3 (continued)

**	*****	********		
30003599 1 YEAR	STATEHWY	NONE	1 10	16
		BEATBELT:	0 I	5
		CH, REST	131 1	Ż
	COUNTYRD	NONE	10	7
		SEATBELT	I O	2
		CH, REST	I 1 I	4
	CITY STR	NDNE	I 4	10
		SEATBELT	1	3
		CH, RESTI	I 2	1
	INTERST	NONE 1	2	3
		SEATBELT	t 0	0
		CH. REST	0	2
5 46408		- NONG	, um ma an	4 4 4 4 4 4 4 4
E TEANO	SINICHUT	SFATREL T	r 2	10
		CH. REST		Ĩ
	CONTROD	NOUT		•
	GUUNITRD	REATREL T	I 7	12
		CH. RESTI	r o	н 1
			ř Č	
	CITY STR	NONE	2 9	5
		BEATBELT	<u> </u>	2
		CH. REST	l l L	0
	INTERST	NONE 1	I 4	3
-		SEATBELT		0
-		UN, REOTI		
T VEAUS	STATENUV	NUNE	A A	17
	Winitelini	SEATBELT	i i	1
		CH. REST	i õ	ž
		1	l	
	COUNTYRD	NONE 1	11	7
		SEATBELTS	0	0
		CH. RESTI		5
	CITY STR	NONE 1	4	5
	•	SEATBELT	1	2
		CH. REST	0	0
	INTERST	NONE 1	2	2
	THEFT	SEATRELY		ō
		CH. REST	0	0
	* = * * * * * * * *			
4 YEARS	STATEHWY	NONE 1	13	17
		SEATBELTY	0	e 1
		CM, MESTI		. •
	COUNTYRD	NONE I	ç Ç	7
		BEATBELTI	0	0
		CH, RESTI	0	0
	CITY STR	NUNE I	10	4
		SEATBELTI	0	i
		CH. RESTI	0	0
		1	• <u>5</u> .	
	THIFRAT		د . ۲	1
		CH. RESTY	. v	6
	******	inis nuvis Péeseseses		

1

3600 +	1 YEAR	STATENWY	NONE SEATBELTS CH, RESTS	12 2 4	19 4 1
		COUNTYKD	NONE SEATBELTI CH. REST	7 1 2	16 1 1
		CITY STR	NONE SEATBELTI CH. RESTI	7 2 4	10 2 4
		INTERST	NONE I Seatbelti Ch, Resti	2 1 0	2 2
	2 YEARS	STATEHWY	NONE I SEATBELTI CH. RESTI	6 1 3	14 6 2
		COUNTYRD	NUNE I SEATBELTI CH. RESTI	8 1 0	11 3 2
		CITY STR	NUNE I SEATBELTI CH. RESTI	8 1 1	9 0 0
		INTERST	NONE I Seatbelti Ch. Resti	3 0 0	5 0 0
	3 YEARS	STATEHWY	NONE I SEATBELTI CH. RESTI	13 1 2	22 4 0
		COUNTYRD	NONE I SEATBELTI CH. RESTI	14 1 1	17 5 0
		CITY STR	NONE I SEATBELTI CH. RESTI	12 3 0	15 1 0
		INTERBT	NUNE I SEATBELTI CH. RESTI	5 2 0	0 1 0
	4 YEARS	STATEMNY	NONE I SEATBELTI CH, RESTI	17 4 0	35 2 0
		COUNTYRD	NONE I SEATBELTI CH. RESTI	12 2 0	14 3 1
		CITY STR	NONE I Seatbelti Ch. Resti	13 1 0	11 2 0
		INTERST	NONE I Seatbelti Ch. Resti	4 0 0	7 1 0

THE TOTAL FREQUENCY IS 9145

ч

٠

.

TABLE R-4

FULLY CROSS-CLASSIF	FIED TABLE C	OF NEW YORK 1977
RAW DATA FOR KA	YBCO INJURY	/ DICHOTOMY

DKVAGE	WEIGHT	ROCLASS	HESTRAIN	KAXBCO	(1)
D	*	C	Ř)	[K+A	8+C+0
16+25	LT 3000	STATENWY	NONE	8	240
	-		SEATBELTS	1 1	30
			CH. REST	Î Î	40
				•	145
		000111100	SFATAFI TY	4	25
			CH. RESTI	o o	18
					1
		CTIL OIN	10116 J		131
,					
			LNg KEDIJ		10
		INTERST	NONE 3	2	28
			SEATBELTI	0	7
			CH. RESYI	i õ	1

	30003599	STATEHWY	NONE 3	4	267
			SEATBELTI	; 0	28
			CH, RESTI	(O	31
		COUNTYRD	NONE 1		154
			SEATBELT	, õ	20
			CH. RESTI		25
				•	
		CITY STR	NONE 1	5	103
			SEATBELTI	- 0	10
			CH. RESTI	1	1.9
		INTERST	NONE I	3	29
			SEATBELTI	0	1
	_		CH. RESTI	0	2
	3600 +	STATENWY	NDNE.	, 	368
			SEATBELTI	. 0	37
			CH. RESTI	0	29
		COUNTYRD	NONE I	8	212
			SEATBELTI	0	25
			CH. RESTI	0	19
		CITY STR	NONE I	6	237
			SEATBELTI	Ó	17
			CH, KESTI	Ö	15
		INTERST	NONE T	•	34
			SEATBELTT	. Å	6
			CH. NESTI	i i	· 2
	•	*****			

26+30	LT 3000	STATEMWY	NONE Seatbelt CH, Rest	1 2 2 1 0 1 1	48 57 39
		COUNTYRD	NDNE SEATBELT CH, NEST	I 5 1 I 1 I 0	57 36 49
		CITY STR	NDNE SEATBELT CH, REST	2 4 3 5 0 1 C	65 23 24
		INTERST	NONE SEATBELT CH. REST	2 0 1 0	50 7 12
	30003599	8TATEHWY	NONE SEATBELT CH, MEST	2 2 1 0	45 41 34
		COUNTYRD	NONE SEATHELT CH, REST	131 0 122	63 36 26
		CITY STR	NONE SEATBELT CH, REST	3 1 1 0	57 20 21
		INTERST	NONE SEATBELTI CH, KESTI	.3 .0 .0	49 9 8
	3600 +	STATEHWY	NONE SEATBELT CH, REST	10 4 C 1	30 58 55
		COUNTYRD	NONE SEATBELTI CH. RESTI	6 3 0 2	00 68 46
		CITY STR	NONE SEATBELTI CH, RESTI	1 2: 0 0	38 41 22
		INTERST	NONE I SEATBELTI CH. HESTI		59 14 8
		*****		予备64464464646464646464646464646464646464	

J.

¥

TABLE B-4 (concluded)

				******	*****
31 +	LT 3000	STATEHWY	NONE 1	11	291
- •			SEATHELTI	1	41
			CH. HESTI	Ö	35
		COUNTYRD	NDNE I	2	163
			SEATBELTI	ő	
			CH. RESTI	Ť	20
			1	•	-+
		CITY STR		A	198
			SEATHELTI		26
					14
				, v	14
		TNTERST		و	60
			8517451 Y1		1.0
			CH DERYS		
					11
	30003596	STATEMUV			254
	30002397	ala lenat	SFATREL TT	, , , , , , , , , , , , , , , , , , ,	50
			CH. NESTI	, i	21
			1		~ 4
		COUNTYRD			200
			SFATHFLTT		200
			CH. MESTI		27
				, U	5 7
		CITY STR			177
		eril ove	-		38
			CH. HESTI		50
				v	7.4
		TNTEDST		'n	40
		21116101			47
			OW DEST		11
•			Chy REdia		4
	3600 +	STATEHWY	NONE T	11	793
	3000 +	OTHICHHI	SEATREL YT	**	123
			TH. WEST	2	123
			T T T	E.	91
		COUNTYRD	NONE T	1.6	# A 2
		00000000	SEATHEL TT		406
			CH. HESTI	ŏ	50
			T T T	v	27
		CITY STR		.0	477
			SFATHFL TI	, n	۰ ۱۰ ۳
			CH. HEST	0 0	24
			-ψβ π⊭-914 ¶	v	- 0
		INTERST			127
			SEATBEL TT	0	+⊏/ A
			CH. RESTT	6	17
	********			********	
					-

THE TOTAL FREQUENCY IS 9685

B-30

TABLE B-5

FULLY CROSS-CLASSIFIED TABLE OF NEW YORK 1977 RAW DATA FOR KAB/CO INJURY DICHOTOMY

DRVAGE	WEIGHT	ROCLASS	RESTRAINI	KABXCO Kaaab	(1)
16=25	LT 3000	STATENWY	NUNE I SEATBELTI	56	192
			CH, RESTI	4	37
		CUUNTYRD	NONE I	42	110
			SEATHELTI CH. RESTI	4 4	22
					14
		CITY STR	NONE I Seatheltí	31	108
			CH. RESTI	3	13
		INTERST	NDNE I	9	21
			SEATBELTI	0	Ÿ
		* * ******		هه هه دي (۲۰ هه وه هه هه دي ا	
	30003599	STATEHWY	NONE I	48	223
			CH, RESTI	4	27
		COUNTYRD		15	125
			SEATBELTI	.5	15
			CH. RESTI	9	i7
		CITY STR	NONE I	31	77
			CH. RESTI	·2 4	8 16
		*******	I		• •
		INTERAT	SEATBELTI	e 0	24
			CH, RESTI	1	1
	3600 +	STATENWY	NONE I	72	303
			SEATBELTI CH. RESTI	3	34
			I	-	
		COUNTYRD	NONE I Seatbelti	42 i	178
			CH. RESTI	1	18
		CITY STR	NONE I	42	201
		•	SEATBELTY	2	15
			un, arsil I	٤	13
		INTERST	NONE I	6	59
			CH. RESTI	1	2
	*	********		********	

26=30

LT 3000	BTATENWY	NÖNE	I 38 21	5
-	•••••	OFATHEL T	7 E B	5
		GENIDEET.		6
		СН. НЕВТ:	I 2 3	8
			T	
	COLLEVED	101.E		
	LUURITRU	NUME	1 30 16	4
		SEATBELT	L 5 3	2
		CH. REST	r c a	n
				•
			4	
	CITY STR	NONE	I 30 13	9
		SFATHELT'	כ פ	1
				:
		Une Acar	L 4 C	U
			I	
	INTERST	NÔNE	I 11 4	1
	•	REATHELT		÷.
		GENIDELI.	ų v	f .
		CH, NEST	1 4	8
	*****		[·*********************	-
30003599	RTATENWY	NONE	. <u>45 20</u>	2
	WINIEIN!			6
		SCAIBELT.	L 3 3	Υ
		CH. RESTI	L -3 3	1
			, i i i i i i i i i i i i i i i i i i i	•
		NENE		~
	CUDNITED	NUNE .	1 31 16	Υ
		BEATHELTI	[4 3	2
		CH. REST)	t 3 2	5
				-
	CITY STR	NONE]	L 36 12	4
		SEATBELTI	A 1	5
		CH. KESI	3 1	ð
		1		
	INTERST	NDNE J	1 7 4	5
		SEATHELYT		<u> </u>
		OCHIOCEIL		
		CH, MESTI	, C	8
•		*********		
3600 +	STATEHWY	NONE 1	69 39	7
2000	OTHIN181			2
		DENTOCLI		C
		CH. HESTI	9 4	7
			1	
	COUNTYPO	NUNE 1	4/1 54	•
	COUNTRO	NUNE	44 20	2
		SEATBELTI	5 6	3
		CH. RESTI	10 %	A
				-
				~
	GITT STR	NONE 1	40 19	Ψ
		SEATBELTI	.3 3	6
		CH. NESTY	9 9	<u>^</u>
		neg weg t		-
		I		
	INTERST	NDNE I	14 70	6
		SEATHELTT		1
		UNA REATI	1	1
•		••••••	**************	•
				-
		•		

.

•

		********	*****			
31		17 3000	STATENNY	NONF	f 54	ALA
~ 4	•	E1 3000				10
				SCAIDELI.	1 2	34
				CHe NEST	1 3	35
			CUUNTYRD	NONE	. 42	123
				SEATHELY	(3	30
				CH. HENTI	i õ	10
					-	
			CITY STR	NONE	t 41	165
				SEATHELT	10	17
				CH DEGT	r n	• 1
						14
			INTERST	NONE	13	49
				SEATBELT;	[1	14
				CH. REST	ă Î	11
				5 ay 60 at av ga at an an at		*****
		30003599	STATENNY	NONE	48	217
				SEATOELY	(3	49
				CH. NEST	()	21
			COUNTYRD	NONE	36	168
				SEATBELT	6	31
			Ŧ	CH. HESTI	i o	27
			CITY STR	NDNE 1	L .36	144
				SEATHELT	1 5	23
				CH. RESTI	2	17
					-	•
			INTERST	NONE 1	8	45
				SEATHELT	L I	14
				CH. RESTI	0	- 4
		1	19 49 19 19 19 19 19 19 19 19 19 19 19 19 19			
		3600 +	STATEHWY	NUNE 1	89	645
				SEATHELTI	10	115
			·	CH. RESTI	10	53
				1		
			COUNTYRD	NONE J	86	411
				SEATBELTI	. 6	81
				CH. HEST	5	54
				10055 T		70/
			LITY STN	NUNE	. 40	240
				SEATBELT.	4	20
				CH, REST	3	53
			INTERST		21	109
				SEATHELTY	e e e e e e e e e e e e e e e e e e e	15
				CH. NEBTY	2	11
						19 40 40 40 41 40
• -			,			

THE TOTAL FREQUENCY IS 9685

TABLE B-6

FULLY CROSS-CLASSIFIED TABLE OF NEW YORK 1977 RAW DATA FOR KABC/O INJURY DICHOTOMY

DRVAGE D	WEIGHT W	RDCLASS C	HESTRAIN.	I KABCXD (I) I K+A+B+C D	
*****	*******	********		**********	***
16=25	LT 3000	STATEMWY	NONE	I 79 1	69
			STAIDELI.	1 9 7 E	22
			ung Koar.		36
		COUNTYRD	NONE	71	81
			SEATBELT;	L 5	21
			CH. RESTI	5	13
		CITY STR	NONE 3	58	81
			SEATBELTI	1	8
			CH. RESTI	4	12
		INTERST		14	17
			SEATHELTI		6
			CH. NEBTI	1	ō
	30003599	STATENWY	NONE 1	-*************************************	9 4
			SEATBELTI	4	24
			CH. RESTI	7	24
		COUNTYRD	NONE 3	.51 1	09
			SEATHELT	5	15
			CH. REST	10	16
		CITY STR	NONE 1	37	71
			SEATBELTI	.3	7
			CH. RESTI	-5	15
		INTERST	NONE I	11	21
			SEATBELTI	Ō	1
			CH. RESTI	1	Ĩ
	3600 +	STATENWY	NÖNE I	***************************************	 76
	•		SEATBELTI	5	32
			CH, RESTI	6	23
		COUNTYRD	NONE I	72 1	48
			SEATBELTI	5	20
			CH. RESTI	7	12
		CITY STR	NONE I	72 1	71
			SEATBELTI	8	9
			CH. RESTI	4	11
		INTERST	NUNE I	8	27
		· · · · · · /	SEATHELTI	ĩ	5
			CH. RESTI	1	2
_	*	********	********	*****	
-					

i

ì

•

.

-

			***	[*]	
56+30	LT 3000	STATEMWY	NDNE SEATBELT CH. REST	1 72 1 7 1 6	178 50 34
		COUNTYRD	NÛNÊ SEATBELT CH, KEST	1 63 1 7 1 12	99 30 37
		CITY STR	NDNE SEATBELT CH. REST	I 55 I 8 I 6	114 15 18
		INTERST	NONE SEATBELT CH. REST	a I 15 I 4 I 4	37 3 8
	30003599	STATEMWY	NONE SEATHELT CH, NEUT	67 5 6 7	180 37 27
		CUUNTYRD	NONE Seatbelt Ch, Rest	1 55 1 6 1 4	111 30 24
		CITY STR	NDNE SEATBELT CH, NEST	1 62 1 6 1 4	98 15 17
		INTERST	NONE SEATBELTI CH, RESTI	12 1 1	40 8 7
	3600 +	STATEMWY	NONE SEATHELT CH, HEST	106 9 13	334 49 43
		CUUNTYRD	NONE J SEATBELTI CH, HESTJ	77 10 15	229 58 33
		CITY STR	NONE J BEATBELTJ CH, RESTI	71 7 3	168 34 19
	a	INTERST	NONE SEATBELTI CH, RESTI	26 4 1 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 10 7
	*********				9 40 40 6 69

TABLE B-6 (concluded)

	*********	********		Feedder ad Adamse	
1 +	LT 3000	STATEHWY	NONE Seatbelt Ch, Rest	I 86 I 5 I 5	2
		COUNTYRD	NONE SEATBELT CH. REST	L 65 I 7 L 6	1
		CITY STR	NONE SEATBELT CH. REST	I 72 I 72 I 12 I 3	1
		INTERST	NDNE SEATBELT CH, NENT	I 21 I 6 I 1	:
	30003599	STATEHWY	NONE Seathelti CH, Kesti	73 6 2	1
		COUNTYRD	NONE SEATHELT CH. REST	1 61 1 8 1 1	1
		CITY STR	NONE J SEATBELTJ CH. NESTJ	1 63 1 7 1 3	1
		INTERST	NONE J Seatbeltj Ch. Restj	10 1 1	1
	3600 +	STATEHWY	NDNE SEATBELTI CH, HESTI	156 15 11	51 11
		COUNTYRD	NONE SEATBELTI CH, HESTI	126 8 12	31
		CITY STN	NONE I SEATUELTI CH, HESTI	163 14 4	38
		INTERST	NONE I Seathelti Ch, Resti	40 4 3	4 1 1

THE FREQUENCY IS TOTAL

B--36

TABLE B-7

ł

FULLY CROSS-CLASSIFIED TABLE OF NEW JERSEY 1975 RAW DATA FOR KAB/CO INJURY DICHOTOMY

DHVAGE D	RUNUKB P	RDCLASS C	SEATPOS S	HESTRAINI R 1	KABXCO K¢A¢B	(I) C¢O
15-25	LT 25K	STATEHWY	FRONT	NONE I SEATBELTI CH. RESTI	29 29 29	161 26 14
			BACK	NONE I Seatbelti CH. Resti	18 4 4	146 20 22
		COUNTYRD	FRONT	NONE I SEATBELTI CH. RESTI	32 0 2	163 19 22
			BACK	NONE I Seatbelti Ch, Resti	18 0 3	107 9 14
		CITY STR	FRONT	NONE I Seatbelti Ch, Resti	26 2 0	89 8 7
			BACK	NOKE I Seatbelti CH. Resti	0 0 1	40 11 10
	25K +	STATEHWY	FRONT	NONE 1		87
				SEATBELTI CH. RESTI	4	26 7
			HACK	NONE I Seatbelt? Ch. Resti	5 1 0	80 13 12
		COUNTYRD	FRONT	NONE I Seatbelti Ch. Resti	27 27 2	115 29 14
			BACK	NONE I Seatbelti CH. Resti	16 0 1	99 10 6
		CITY STR	FRUNT	NONE I SEATBELTI CH. RESTI	20 2 1	155 28 13
		_	BACK	NONE I Seatbelti Ch. Resti	9 1 1	89 7 7
	• • • • • • • • • •				* = * * * * * * * * * * * * * * * * * *	****

26-30	LT 25K	STATEHWY FRONT	NDNE Í Seatheltí Ch _a resti T	86 2 3	157 37 35
		BACK	NONE Î Seatbelti Ch, resti	11 0 3	149 33 25
		CUUNTYRD FRONT	NONE I Seathelti Ch. Resti	24 1 1	152 51 19
		BACK	NDNE I Seatbelti Ch. Resti	23 1 3	143 40 10
		CITY STH FRONT	NONE I Beatbelti Ch. Resti	16 0 0	65 16 24
		BACK	NONE I SEATBELTI CH _s Resti	5 0 0	51 11 19
	25K +	STATENWY FRONT	NONE I Seatbelti Ch. Resti	1 1 4 5	89 27 15
		BACK	NONE I BEATBELTI CH, REBTI	18 0 1	82 20 17
		*****			\$P\$ \$P\$ \$P\$ \$P\$ \$P\$
		CDUNTYRD FRONT	NONE I Seatbelti Ch, Resti I	12 1 2	126 27 15
		BACK	NONE I Seatbelti Ch. Resti	14 0 4	201 25 22
		CITY STR FRONT	NONE I Seatbelti Ch, Resti	25 2 0	96 16 7
		BACK	NONE I Seatbelty CH: Resti	10 1 2	106 13 5
	********	,	• • • • • • • • • • • • • • • • • • •		

٠

ľ

•

٨

,

		*********		***********		
31 +	LT 25K	STATEHWY	FRONT	NONE Seatbelt Ch, resti	24 4 2	167 38 15
			BACK	NONE Seatbelt Ch, Resti	21 4 5	221 41 29
		COUNTYRD	FRUNT	NONE SEATBELTI CH. RESTI	29 1 2	206 23
			BACK	NONE Seatbelti Ch, resti	29 0 4	891 35 55
		СІТҮ ВТК	FRONT	NONE SEATBELTI CH, RESTI	17 2 1	88 26 24
			BACK	NONE I Seatbelti Ch, Resti	7 0 0	104 15 13
		•				*********
	25K +	STATEHWY	FRONT	NONE SEATBELTI CH, RESTI	17 0 0	111 25 9
			BACK	NONE I SEATBELTI CH, RESTI	7 0 2	162 28 13
		COUNTYRD	FRONT	NONE SEATBELTI CH, REBTI	30 4 .2	140 35 20
			BACK	NONE Seatbelti Ch. Resti	8 0 2	161 34 16
		CITY STR	FRONT	NONE I Seatbelti Ch. Resti	5 5 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	152 18 15
			BACK	I NONE I SEATBELTI CH, REBTI	16 0 1	148 18 8
*******		* - 4 * * * * * * + = = *			***	*******

THE TOTAL FREQUENCY IS 6718

B-39

TABLE B-8

FULLY CROSS-CLASSIFIED TABLE OF NEW JERSEY 1975 RAW DATA FOR KABC/O INJURY DICHOTOMY

DRVAGE D	NUKUHB P	RDCLASS	SEATPDS S	RESTRAINI R I	KABCXD (I) K+A+B+C D	
15+25	LT 25K	STATEHWY	FRONT	NONE I SEATBELTI CH, RESTI	72 1 4 6	18 22 10
			BACK	NDNE I SEATBELTI CH, REBTI	41 1 5 7	23 19 19
		COUNTYPD	FRONT	NONE I Seatbelti Ch, Resti	74 1 1 7	21 18 17
			BACK	NDNE I Seatbelti Ch, Resti	41 1 7	84 8 10
		CITY STR	FRONT	NONE I SEATBELTI CH. RESTI	49 3 2	66 7 5
			84CK	NDNE I Seatbelti Ch, Resti	5 2 2	35 9 9
	25K +	STATEHWY	FRONT	NONE I Seatbelti Ch, Resti	48 11 2	57 19 6
			BACK	NONE I Seatbelti Ch. Resti	26 2 2	59 12 10
		COUNTYRD	FRUNT	NDNE I Seatbelti Ch, Resti	68 7 4	74 24 12
		-	64CK	NONE I Seatbelti Ch. Resti	42 3 2	73 7 5
		CITY STR	FRONT	NONE I SEATBELTI CH. RESTI	84 ? 4	91 23 10
			BACK	NONE I Seathelti Ch. Resti	28 2 1	70 6 7
•	******	*********		· · · · · · · · · · · · · · · · · · ·		**

ł

TABLE B-8 (continued)

26+30	LT 25K	STATEHWY	FRONT	NUNE I BEATBELTI CH, RESTI	60 3 11	123 36 27
			BACK	NONE I Seatbelti Ch. Resti	37 7 11	123 26 17
		COUNTYRD	FRONT	NUNE I Seatbelti Ch, Resti	60 6 7	116 46 13
			84CK	NONE I Seatbelti Ch, Resti	48 5 5	118 36 8
		СІТҮ ЗТК	FRONT	NONE I SEATBELTI Ch, Resti	29 0 2	52 16 22
			BACK	NONE I Seatbelti CH, Resti	14 0 3	42 11 16
	25K +	STATEHWY	FRONT	NONE I Beatbelti Ch. Resti	46 13 9	54 18 11
			BACK	NONE I Seatbelti Ch, Rebi	29 2 1	71 18 17
		COUNTYRU	FRONT	NONE I Seatbelty CH, Resti	61 5 3	77 23 14
			BACK	NDNE I Seatbelti Ch. Resti	39 1 9	78 24 17
		CITY STH	FRONT	NONE I SEATBELTI CH, RESTI	70 5 2	51 13 5
			BACK	NONE I Seatbelti CH, Resti		85 12 4
		********			******	
	******				**********	

5

TABLE B-8 (concluded)

31 +	LT	25K STATEHWY	FRUNT	NUNE SEATBELT CH, REST	67 9 3	124 33 14
			BACK	NONE Seatbelt Ch, Rest	52 10 11	190 35 23
		COUNTYRD	PRONT	NONE SEATBELT CH. REST	70 3 4	165 48 21
			BACK	NONE Seatbelt Ch, Resti	60 0 6	167 35 20
		CITY STR	FRONT	NONE SEATBELTS CH. RESTS	38 4 4	67 24 21
			BACK	NONE SEATBELTI CH, RESTI	22 3 3	89 12 10
	25K	+ STATEHWY	FRONT	NONE SEATBELTI CH, RESTI	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	08 19 8
			BACK	NONE SEATBELTI CH ₀ RESTI	41 4 2	128 24 13
		COUNTYRD	FRONT	NONE SEATBELTS CH. RESTS	69 12 10	101 27 12
			BACK	NONE SEATBELTS Ch, rests	36 6 5	133 28 13
		CITY STR	FRONT	NDNE I SEATBELTI CH, RESTI	88 9 6	92 12 11
			BACK	NONE I BEATBELTI CH _p Resti	43 2 4	121 16 3
				,		*********

THE TOTAL FREQUENCY 18 6718

TABLE R-9

FULLY CROSS-CLASSIFIED TABLE OF IDAHO 1976-1978 RAW DATA FOR KABC/O INJURY DICHOTOMY

DAMAGE X	OCCAGE U	DRVAGE	HESTRAINI N I	KABCXO (I) K+A+B+C O	
LT 3500	1 YEAH	16=25	NDNE I SEATHELTI CH. HESTI	39 1 5	220 33 20
		26=30	NONE I SEATHELTI CH, KESTI	1 1 2 1	133 36 23
		31 +	NONE I SEATHELTI CH, RESTI	8 1 C	125 9 6
	2 YEARS	16+25	NONE I SEATBELTI CH, RESTI	26 1 C	222 19 6
		26=30	NONE I SEATBELTI CH: KESTI	15 2 0	161 22 8
		31 +	NONE I SEATHELTI CH: KESTI	13 C O	119 21 2
	3 YEARS	16+25	NONE I SEATBELTI CH. HESTI	28 0 0	150 5 6
		26=30	NONE I Seathelti Ch _i Resti	19 0 0	138 14 1
		31 +	NDNE I BEATBELTI CH. HESTI	16 0 0	140 21 0
	4 YEARS	16=25	NONE I SEATUELTI CH, RESTI	25 0 0	94 10 2
		26+30	NONE I SEATBELTI CH. RESTI	15 C O	148 15 1
		31 *	NONE I SEATHELTI CH, RESTI	16 2 0	176 11 1
		*********			****

TABLE B-9 (concluded)

\$501 +	1 YEAR	16+25	NONE Seathelt Ch, Rest	I 51 I 6 I 5	102 9 9
		26=30	NONE Seatbelt CH, rest	23 3 2	58 6 9
		31 +	NONE Seatbelt CH _s Rest	14 2 2	39 10 6
	2 YEARS	16=25	NONE BEATBELT CH, REST	36 2 1	86 5 1
		26=30	NONE SEATBELT CH, REST	21 2 2	58 6 4
		31 +	NONE SEATHELT CH, REST	17 1 4	42 6 1
	3 YEARS	16=25	NONE SEATBELTI CH. RESTI	29 1 0	43 \$
		26=30	NONE I SEATBELTI CH, RESTI	27 2 0	53 3 2
		31 +	NONE SEATBELTI CH, NESTI	24 22 1	59 6 1
	4 YEARS	16=25	NONE SEATBELTI CH. RESTI	.21 0 0	42 3 0
		26=30	NDNE I SEATBELTI CH, RESTI	31 2 0	44 3 0
*****		31 +	NCNE I SEATBELTI CH. HESTI	22 2 2	51 6 1

THE TOTAL FREQUENCY IS 3509

APPENDIX C

SUMMARY OF THE MARGINAL ASSOCIATION OF MODEL EFFECTS

TABLE C-1 SUMMARY OF TESTS OF MARGINAL ASSOCIATIONS OF MODEL EFFECTS FOR THREE INJURY DICHOTOMIES

F <i>ff</i> +	К	A vs. BC	0	KA	AB vs. (0	KABC vs. O			
ETTECL	LR X ²	df	Prob.	LR x ²	df	Prob.	lr x ²	df	Prob.	
Injury x Restraint	9.58	2	0.0083	35.32	2	0.0000	59.65	2	0.0000	
Injury x Rd. Class	5.16	3	0.1602	22.22*	3	0.0001	79.91	3	0.0000	
Injury x Child Age		-		12.69*	3	0.0054	38.12*	3	0.0000	
Injury x Weight		-		37.95*	2	0.0000	39.16*	2	0.0000	
Injury x Damage	65.49*	2	0.0000	259.52	2	0.0000	278.30	2	0.0000	
Restraint x Rd. Class	49.75	6	0.0000	49.75*	6	0.0000	47.70*	6	0.0000	
Restraint x Child Age	570.39*	6	0.0000	570.39*	6	0.0000	574.69*	6	0.0000	
Restraint x Weight	13.55*	4	0.0089	13.55*	4	0.0089	14.49*	4	0.0059	
Restraint x Damage		-	~-	3.27	4	0.5131	3.27	4	0.5141	
Rd. Class x Child Age		-			-	tra tea	9.76*	9	0.3701	
Rd. Class x Weight	7.26	6	0.2979	7.26	6	0.2979	7.16	6	0.3060	
Rd. Class x Damage	54.48	6	0.0000	54.48	6	0.0000	54.98	6	0.0000	
Child Age x Weight	21.64*	6	0.0014	21.64*	6	0.0014	22.54*	6	0.0010	
Weight x Damage	57.96	4	0.0000	57.96	4	0.0000	62.70	4	0.0000	
Injury x Restraint x Rd. Class	17.25*	6	0.0084		-	20 41		-		
Injury x Restraint x Damage		-		13.85*	4	0.0078	10.51*	4	0.0327	
Injury x Rd. Class x Damage		-			-		15.49*	6	0.0168	
Rd. Class x Weight x Damage	21.21*	12	0.0474	21.21*	12	0.0474	22.65*	12	0309	
SUMMARY OF MODEL	641.42	787	1.0000	780.99	780	0.4833	734.55	765	0.7799	

NEW YORK 1974 SAMPLE

^{*}Effect is directly specified in model. All others are forced into the model by hierarchical inclusion.

TABLE C-2

SUMMARY OF TESTS OF MARGINAL ASSOCIATIONS OF MODEL EFFECTS FOR THREE INJURY DICHOTOMIES

NEW YORK 1977 SAMPLE

	KA	vs. I	3C0	K#	\B vs.	CO	KABC vs. O			
Effect	LR x ²	df	Prob.	LR x ²	df	Prob.	LR x ²	df	Prob.	
Injury x Restraint	15.76*	2	0.0004	57.89	2	0.0000	91.20	2	0.0000	
Injury x Rd. Class		-		16.64	3	0.0008	55.05	3	0.0000	
Injury x Weight	6.83*	2	0.0329	21.62	2	0.0000	33.78*	2	0.0000	
Injury x Dr. Age	9.85*	2	0.0073	19.04*	2	0.0001	16.32*	2	0.0003	
Restraint x Rd. Class	39.43*	6	0.0000	39.43	6	0.0000	39.43	6	0.0000	
Restraint x Weight	28.15*	4	0.0000	28.15	4	0.0000	28.15*	4	0.0000	
Restraint x Dr. Age	65.56*	4	0.0000	65.56*	4	0.0000	65.56*	4	0.0000	
Rd. Class x Weight	7.83	6	0.2508	7.83	6	0.2508	7.83	6	0.2508	
Rd. Class x Dr. Age	45.17	6	0.0000	45.17	6	0.0000	45.17	6	0.0000	
Veh. Wt. x Dr. Age	143.29	4	0.0000	143.29	4	0.0000	143.29	4	0.0000	
Injury x Restraint x Rd. Class		-		4.21	6	0.6477	14.44*	6	0.0251	
Injury x Restraint x Weight				4.45	4	0.3484		-		
Injury x Rd. Class x Weight		-		8.14	6	0.2278		-		
Restraint x Rd. Class x Weight		-		10.61	12	0.5623		-		
Rd. Class x Weight x Dr. Age	23.51*	12	0.0237	23.51*	12	0.0237	23.51*	12	0.0237	
Injury x Restraint x Rd. Class x Weight		-		20.32*	12	0.0613		-		
SUMMARY OF MODEL	151.73	157	0.6039	129.51	114	0.1519	149.46	148	0.4509	

*Effect is specified directly in the model. All others are forced into the model by hierarchical inclusion.

TABLE C-3 SUMMARY OF MARGINAL ASSOCIATIONS OF MODEL EFFECTS FOR NEW JERSEY 1975 SAMPLE

×

ı.

				INJURY D	ICHOTOMY		
	Effect	KA	B vs. (0	KA	BC vs.	0
		LR X ²	df	Prob.	LR x ²	df	Prob.
	Injury x Restraint	54.68	2	0.0000	106.89	2	0.0000
	Injury x Seat Position	28.21	1	0.0000	100.18	1	0.0000
	Injury x Rd. Class	1.70	2	0.4283	7.99	2	0.0185
I I	Injury x City Size	0.00	1	0.9734	40.67	1	0.0000
	Injury x Dr. Age	9.22	2	0.0099	22.43*	2	0.0000
	Restraint x Seat Position	7.83	2	0.0199	7.83	2	0.0199
	Restraint x Rd. Class	12.18	4	0.0160	12.18	4	0.0160
	Restraint x City Size	10.97	2	0.0042	10.97	2	0.0042
	Restraint x Dr. Age	32.98	4	0.0000	32.98	4	0.0000
	Seat Position x Rd. Class	27.50	2	0.0000	27.50	2	0.0000
	Seat Position x City Size	0.01	1	0.9032	0.01	1	0.9032
	Seat Position x Dr. Age	48.33	2	0.0000	48 .3 3	2	0.0000
	Rd. Class x City Size	195.25	2	0.0000	195.25	2	0.0000
	Rd. Class x Dr. Age	9.33	4	0.0535	9.33	4	0.0535
	City Size x Dr. Age	2.50	2	0.2872	2.50	2	0.2872
	Injury x Restraint x Seat Pos.	11.14*	2	0.0038	13.63	2	0.0011
	Injury x Restraint x Rd. Class	15.90*	4	0.0032	16.23*	4	0.0027
Ī	Injury x Restraint x City Size		-		6.68	2	0.0354
[Injury x Seat Pos. x Rd. Class	8.65	2	0.0133	12.72*	2	0.0017
	Injury x Seat Pos. x City Size	2.13	1	0.1443	14.54	1	0.0001
	Injury x Seat Pos. x Dr. Age	2.66	2	0.2646		-	
	Injury x Rd. Class x City Size	0.83	2	0.6619		ł	
[Injury x Rd. Class x Dr. Age	3.47	4	0.4825			
	Injury x City Size x Dr. Age	2.85	2	0.2407		-	
Ĩ	Restraint x Seat Pos. x City Size	1.63	2	0.4418	1.63	2	0.4418
[Restraint x Seat Pos. x Dr. Age	4.86	4	0.3022	4.86	4	0.3022
[Restraint x Rd. Class x City Size	30.44	4	0.0000	30.44	4	0.0000

	INJURY DICHOTOMY											
Effect	KA	B vs. C	0	КА	BC vs.	0						
	LR x ²	df	Prob.	LR x ²	df	Prob.						
Restraint x Rd. Class x Dr. Age	14.53	8	0.0639	14.53	8	0.0689						
Restraint x City Size x Dr. Age	10.13	4	0.0383	10.13	4	0.0383						
Seat Pos. x Rd. Class x City Size	0.50	2	0.7781		-							
Seat Pos. x Rd. Class x Dr. Age	12.97	4	0.0114	12.97*	4	0.0114						
Seat Pos. x City Size x Dr. Age	2.20	2	0.3326	2.20	2	0.3326						
Rd. Class x City Size x Dr. Age	5.93	4	0.2044	5.93	4	0.2044						
Injury x Restraint x Seat Pos. x City Size		-		6.17*	2	0.0457						
Injury x Seat Pos. x Rd. Class x City Size	11.28	2	0.0035		-							
Injury x Seat Pos. x Rd. Class x Dr. Age	2.41	4	0.6616		-							
Injury x Seat Pos. x City Size x Dr. Age	6.22	2	0.0445		-							
Injury x Rd. Class x City Size x Dr. Age	10.68	4	0.0304		-							
Restraint x Seat Pos. x City Size x Dr. Age	13.04*	4	0.0111	13.04*	4	0.0111						
Restraint x Rd. Class x City Size x Dr. Age	21.27*	8	0.0065	21.27*	8	0.0065						
Seat Pos. x Rd. Class x City Size x Dr. Age	2.09	4	0.7189		-							
Injury x Seat Pos. x Rd. Class x City Size x Dr. Age	12.01*	4	0.0172		-							
SUMMARY OF MODEL	99.95	88 of 215	0.1808	121.36	116 of 215	0.3482						

TABLE C-3 (continued)

۰.,

I

1

.

*Effect is specified <u>directly</u> in the model. All others are forced into the model by hierarchical inclusion.

TABLE C-4

SUMMARY OF MARGINAL ASSOCIATIONS OF MODEL EFFECTS FOR KABC/O INJURY DICHOTOMY

,

IDAH0 1976-1978 SAMPLE

	KAI	BC vs.	0
Effect	lr x ²	df	Prob.
Injury x Restraint	12.63*	2	0.0018
Injury x Dr. Age	13.80*	2	0.0010
Injury x Damage	219.76*	1	0.0000
Restraint x Dr. Age	15.27	4	0.0042
Restraint x Child Age	111.15*	б	0.0000
Restraint x Damage Age	3.20	2	0.2019
Dr. Age x Child Age	128.37*	6	0.0000
Dr. Age x Damage	1.22	2	0.5446
Restraint x Dr. Age x Damage	14.82*	4	0.0051
SUMMARY OF MODEL	110.13	1.05	0.3468

*Effect is specified directly in the model. All others are forced into the model by hierarchical inclusion.

APPENDIX D

SUMMARY OF EFFECTIVENESS RESULTS FOR OBSERVED, UNADJUSTED STATE MASS ACCIDENT DATA

SUMMARY OF CHILD RESTRAINT EFFECTIVENESS STUDY USING NEW YORK 1974 DATA (OBSERVED, NOT ADJUSTED)

Total Cases = 9103

INJURY Categuried		UNKEST CHIL	HA DRI	INED EN	1	 LH1		I N HES	J TK		R Y	EST	D 'HAI 8	I S NEL	5 Т С ГШЕ 		I LDH X	U 1		DHER	N S		CE	· · · ·	• •	ALL N	- + - +		REN X
N+A B+C+U N+A+B C+U	- 10 at 10 	227 6974 1387 5819	(2,5 76,7 15,2 63,9			1 68 10 59	7034			2 5 1 5	- 26 Ha 63	1 j 1 j	20 80 55 45	• • • • 	1	0.2 3.0 1.7	 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	 	37 860 258 639			0.1 2.8 8,0			26 883 164 745	4 9 5 8		2,9 97.1 18.1 81.9
K+A+0+C *		2231 5008 7206	• مر ا ا ا ا	24,4 54.8 79,2			14) 55 69)		, 1 1 1 1 1	1 • 1 6 • 1		(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	29	80 25 00	- - - - - - - - - - - - - - - - - - -	- 1 (- 1 (- 1)	3,1 0.1 3,2	 ين د ه د	• 1 • • • 1	422 484 597	ب ا ا ا ا ا	1	4,6		, 10 m m	265 649 910	323	 	95.0 1.0

!		INJURY	HATES	(PERCENT)	and a first first part of the first of the first sector of the first sector of the first sector of the first se
INJURY Categuries	UNKESTHAINED CHILDREN	I CHILD NESTHAINT	RESTRAINED CHILD	KEN I EITHER DEVICE	I ALL CHILDREN
	************	***********************	*****	****************	
K+A	3.15	2,44	1 1.67	1 1,95	06.5
K+A+8 1	19.25	14.78	1 15.85	1 13.60	18.07
K+A+8+C I	30.62	1 20,26	1 23.24	1 22,14	1 29.01

	1			SU!	1MARY	UF ""	EFFEC	TIVE	NE 55	VALUES	(PERCE	INT)
INJURY CATEGORIES	i REST	HAINT AGE	; 	EFFECY		85 i 1	STAN DEVI	DARD ATIO	 	e e s s FROM		TO
	I CHILD R	ESTRAINT			.23		 1					54.07
K+A	I SEATBEL I EITHEN	T	1	46. 37.	86		1	2.36	1	26.60	1	67.12 55.85
• • • • •	I CHILD F	ESTRAINT	","	23,	.18	••••• . {	* * *	7.23	» * 	i i . 32		35.04
K+A+8	I SEATBEL EITHER	T DEVICE	ł	32 29	85	1		5,29 4,44		24.17 22.07	1	41.53 36.58
	I CHILD R	ESTRAINT	* •	34,	25	•• •• {	9° 80 90	5.06	°,	25,95		42.55
K+A+B+C	I SEATBEL	TOEVICE	Ì	24	58	Ì		4.17		17.75		31.42

Row totals for the K+A+B+C vs O injury categories do not equal the row totals for K+A+B+C+O, due to the inclusion of 43 cases classified as "injured - extent unknown."

SUMMARY OF CHILD RESTRAINT EFFECTIVENESS STUDY USING NEW YORK 1977 DATA (OBSERVED, NOT ADJUSTED)

Total Cases = 9685

		UNRESTI CHILI	HAINED UREN	· · · · · · · · · · · · · · · · · · ·	CHILD	I N J	U H Y H AINT I	D	I S INED Seati	T R I Child Belt	BL REN I	EITHER	DEVICE	 	L CHILDREN
INJURY CATEGURIES	1 •	• • • • • N	X	- P 	N		* X		• • • N	 X	- # 	• = • • N	* = • • X	· · · · ·	N 1 2
K+A 6+C+0	**** } 	188 7442	1 1.	9 8	5 87	3 1	0.1 9,0	1	11 160	1 0. 1 12.	1 0	24 2031) 0,2 21,(2) (212 1 2.2 473 1 97.8
K+A+8 [+0	 	1393 6237	1 14.	4 1	11 77	4 1	1.2 1		124 047	1. 10.	3 8	238 1817	1 2.		1631 16.8 1054 83.2
K+A+0+C D	 } 	2265 5365	1 23.	4 1	18	4 } 0	1.9 1		216	12.	2 9 9	40C 1655	4. 17.		665 1 27.5 1020 1 72.5
K+A+B+C+0		7630	1 78,	6 1	88	4 1	9,1	1	171	1 12.	1	2055	1 51.5	2 (645 110C.0

		INJLRY	RATES (P	ERCENT)	
INJURY Categuries	UNKESTRAINED CHILDREN	i I I CHILD RESTRAINT	RESTRAINED CHILDREN 1 SEATBELT 1	EITHER DEVICE	I ALL CHILDREN
	************************	oppositetetetetetetetetetetetetetetetetetete			
K+A	2,46	1 1.47	1 0.94 1	1.17	1 2,19
K+A+B	18,26	1 12,90	1 10.59 1	11.58	1 16.84
				10 //4	1 27.52

INJURY CATEGONIES	1		BUNMARY OF EFFECTIVENESS VALUES (PERCENT)													
	 	RESTRAINT USAGE	 	EFFECTIVENESS	 	STANDARD DEVIATION		95% F	CONF ROM	IDENCE	INTERVAL TO					
K + A	 	CHILD RESTRAINT Slatbelt Eithen device	ين ها: 	39,99 61.67 52,35	• ••• 	17,18 11,90 10,35	 	 1 4 3	1.81 2.16 5.37	, 20 10 10 10 10 10 10 10 10 10 10 1 1 1 1	68.17 81.18 69.32					
K+A+8		CHILD RESTRAINT SEATBELT EITHER DEVICE		29.32 41.96 36.53	••• 	6,42 5,13 4,17	- - -	1 3 2	8.80 3.55 9.69		39.84 50.38 43.36					
K+A+8+C		CHILD RESTRAINT SEATBELT EITHEN DEVICE	1	29.86 37.84 34,41	 	4.77 3.97 3.16	1	5 5 5	2.04 1.32 9.22	 	37.68 44.36 39.60					

SUMMARY OF CHILD RESTRAINT EFFECTIVENESS STUDY USING NEW JERSEY 1975 DATA (OBSERVED, NOT ADJUSTED)

Total Cases = 6718

بمدور المتراسط الخاران الم				a a chuir an tha an	selfansan filosofi	ali thories of T	N .I	ennonenen Li Li	A	n í	s t	R 7	kennesiana 14. l.)	aaniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	eneration (1) N	9					
		, .		a a a a		* *		भा त का स्थ	, 	674 848 847 N 67	ິຜູ່ ກໍຕະ		ະ, ເງ ພູ່ນ 67 N	, .	53 58 58 5	້ະ	4 4		• • •	• •• •	
		i i	INREST	HAINED		• •		a			ທີ່ ບໍ່ກ - ສີ່ ອ - ສີ່		6. (N 69 - 63 1		• •						
INJU	RY	} •• •		.UKEN 		~ ~			1 •u •u •	964 9 4	1956	.f . us en	-	, 4 % FT14	EN L 	1Ε.Υ • •	166. 	- 1 - 10 - 10	ALL U		, 48 F
CATEGU	RIES	{ ••••••••	به ده هو ده د	1 X	 =======	N 184841994	 	۲ همه ه ه		N • • • • • • •	 	Х 101-со на на -	 ~~~~	N euua	a # # 7	1	¥ •••••	 =====	N 	 	
K + A + U	*****		646	1 9.6	******	65		1.0		46	مەدە ھە ا	0.7			11	1	1.7	!	757		11
C+0		1 	4508	1 57.1	 	566	,	8.5	•	885		13.2	- 1 	14	53 •••		21,6	 	5961	 	88 •
K+A+d	+C	1	1736	1 25.8	1	171	ł	2,5	1	165 764		2.5	1	3	36 2 A	ł	5.0	1	2072	2	30
	*****	, 	5154	1 76.7	به به مه بي مه ا			9.4	່ ເພາະເຫັນ ໄ	arereran G7€1				ين. مەمەمە 15			23.3		6718	•	
		, 84434865546 1	Designation of the second		n an	8-9	All a state of the state of t	in a film and the second s		entra Germania	7101200 392	7 MU20404-MU404	, Pristantikajo	20 000 20020	() -4		Maren Marry	, Qûşalî û K			
												_									
		1	وبراي يوني المراجع	nite in the second state of the	çilingə yəkirə kilmini yaşını	IN J	ынынын ILF) Y	in and the second s	A T	E 9		(PE	RC	Εh	T)	. <u>1997 ya</u> 1997 ya 1997			
) .		-		ж, но	100 e.)		HESTH	AINE	o ๊	ILDA	en t En	ା ବର୍ଷ	et e			1	ay 164 49		•••
INJU	NY DIE4	i i	INNEST	RAINED	і н н і сят			* • 1NT	ه سر مد ۱	 Sea	* # 7451	ы н Т				Fu	# #	1			1851
******	*****				******	****				*****	47 46 68 AU			*****		-			******		
K+A+d	~ ~ ~ ~ ~ ~	1 1	12.	53		10,	27		1	145 00 44 02 - (4)	•94		1		7.1	0		1	11	. 27	
K+A+8	•••		33,		2) -	27.	01		••••• 1	• • • 17	.72	186 (B)	1	es (1) (1	21.4	4	199 199 199		30	.84	
(Contraction of the second								a Chilesen	and a second state of the		1401-94000						يعتمو الألو	ing kanala na	a na ann an a		
.	un Linit Marson	Filmenana			ngu sedagar	-		an a		an a	95-12 <u>0-</u> 04-109	Mesonation	6512/3486			i Crater			الانبار بيرانزارار ايزو	-	
			1				1	<u>ຮ</u> ຸ	MMARY	1 ()F	EFFE	CTIVI	ENES	S VA	LUES	(PERCI	ENT)			
		1	ł				i –			1			l I	95%	CON	FI	DENC	EIN	TERVAL	.]	
	LN GATE	jiure¥ ip©reIt	1 5 1	- HES	THAINT SAGE		1 1 1	FECT	IVENE	551	STA Dev	NDANI) 1 N 1	~ ~	FROM	-	1		то		
Ŀ	*****	*****		*****	***				wa ate no 44 a			*****					****		*****		
[1	CHILD	RESTRA	INT	1	17	.96	1		10.1	5 1		1.3	6	1	3	4.56		
	K + A	+9 (4	SEATHER EITHER	LT DEVIC	E	1	60 43	.53	1		5.8	7 1		5C.9 34.1	0	1	75	0.15 2.49		
				CHILD		n n . Int		• • • •		بىد مى ا	AL 44	υ . 5 . μ.	••• 7 1	an ⁶ n a	 10.7	ы. ср		•• 2	≈ ∾ • 8 • 7 5	ſ	
1	K + A	+H+C		SEATHE	LT		i	47	. 36	i		3.8	5 1		41.0	3	i	5	3.69		
l			- +	EITHEN	DEVIC	E	1	36	.19			3.3	3 1		30.7	3	1	4	1,65	8	

SUMMARY OF CHILD RESTRAINT EFFECTIVENESS STUDY USING IDAHO 1976-78 DATA (OBSERVED, NOT ADJUSTED)

Total Cases = 3509

			I N J	URY	D 1 3 Y	RIBU	TIGN	5	
				RESTR	AINED CH	ILDHEN		!	
INJURY	CHIL	DREN I	CHILD RESTRA	INT I	SEATBEL	1 1	EITHER D	EVICE	ALL CHILDREN
CATEGORIES	N	%	N	X 	N	Z	N	%	N X
K+A+6+C i 0 i	550 2503	15.7 71.3	23 i 111 i	0.7 3.2	34 I 288 I	1,0 8,2	57 399	1.6 11.4	607 17.3 2902 82.7
K+A+B+C+O I	3053	1 87.0 1	134	3.6	355 1	9.2 1	456	1 13,0	3509 1100.0

		INJLRY 	RATES (P	ERCENT)	
ÍNJURY Categories	I I UNRESTRAINED I CHILUREN	I CHILD RESTRAINT	RESTRAINED CHILDREN I SEATBELT I	EITHER DEVICE	I I - ALL CHILDREN
K+A+B+C	1 18.02	17.16	l 10.56	12,50	i 17.30

-

				I SUMMARY OF EFFECTIVENESS VALUES (PE								(PERCE	RCENT)			
INJURY Categories	1	RESTHAIN! USAGE		EFFF	. 10	IVEN	ESS	1	STAND DEVIA	AND	 	95%	CONF	IDENCE	INTERV/	AL
к + A + B + C	• • • • 	CHILD RESTRAINT SEATBELT Either Device			41 30	.58 .30 .51	***	 	18 9 9	•51 •80 •04	• • • • 		25.77	· · · · · · · · · · · · · · · · · · ·	34.93 57.38 45.33	
APPENDIX E

CONFIDENCE LIMITS FOR EFFECTIVENESS ESTIMATES BASED UPON THE SIMPLE RATIO OF PROBABILITIES

APPENDIX E

CONFIDENCE LIMITS FOR A SIMPLE RATIO OF PROBABILITIES

1. Objective

To estimate a confidence interval for

$$R = \frac{p_1}{p_2} \tag{1}$$

where $p_i = x_i/n_i$, and the x_i are bionomially distributed random variables.

2. Approach

We write

$$R = \frac{\pi_1}{\pi_2} \times \frac{(1+\varepsilon_1)}{(1+\varepsilon_2)}$$
(2)

where the π_{i} are the expected values of the p_{i} .

Then we study

$$r = \frac{(1+\varepsilon_1)}{(1+\varepsilon_2)}$$
(3)

by expanding the fraction in a power series in ε_2 . These series expressions hold only if $|\varepsilon| <1$; that requires p to be restricted to the range $0...2\pi$, or x to the range $0...2n\pi$. Since $\sigma(x) = \sqrt{n\pi(1-\pi)}$, this is a $\pm 2\sigma$ range for $n\pi = 4(1-\pi)$. Since $n\pi = m$ is usually much larger than 4, the restriction is violated only by a minimal fraction of all cases. We calculate the first four moments of r to various degrees of approximation and compare them. Finally, we will explore by numerical examples how large the data base from which r is estimated has to be in order to use the simple approximation.

3. Some Basic Formulas

The ε are implicitly defined as:

$$\varepsilon = \frac{p - \pi}{\pi} \,. \tag{4}$$

Since p = x/n

$$\varepsilon = \frac{\gamma - n\pi}{n \pi} . \tag{5}$$

Therefore, for the central moments the relation

$$\mu_{i}(\varepsilon) = \frac{\mu_{i}(\mathbf{x})}{(n\pi)^{i}}$$
(6)

holds. Since x was assumed to be binomially distributed,

$$\mu_{1}(\mathbf{x}) = 0$$

$$\mu_{2}(\mathbf{x}) = n\pi(1-\pi)$$

$$\mu_{3}(\mathbf{x}) = n\pi(1-\pi)(1-2\pi)$$

$$\mu_{4}(\mathbf{x}) = 3n^{2}\pi^{2}(1-\pi)^{2} + n\pi(1-\pi)(1-6\pi(1-\pi)),$$
(7)

therefore

$$\mu_{1}(\varepsilon) = 0$$

$$\mu_{2}(\varepsilon) = \frac{1-\pi}{n\pi}$$

$$\mu_{3}(\varepsilon) = \frac{(1-\pi)(1-2\pi)}{(n\pi)^{2}}$$

$$\mu_{4}(\varepsilon) = \frac{3(1-\pi)^{2}}{(n\pi)^{2}} + \frac{(1-\pi)(1-6\pi(1-\pi))}{(n\pi)^{3}}$$
(8)

Introducing the number of "successes" (or injuries in our context) $m = n\pi$, and assuming π to be negligibly small relative to 1, one obtains the approximation

$$\mu_{2}(\varepsilon) \approx \frac{1}{m}$$

$$\mu_{3}(\varepsilon) \approx \frac{1}{m^{2}}$$

$$\mu_{4}(\varepsilon) \approx \frac{3}{m^{2}} + \frac{1}{m^{3}}$$
(9)

Later we will use t = 1/m to simplify the writing of the formulas. To calculate powers of r, we need

$$(1+\epsilon)^{2} = 1 + 2\epsilon + \epsilon^{2}$$

$$(1+\epsilon)^{3} = 1 + 3\epsilon + 3\epsilon^{2} + \epsilon^{3}$$

$$(10)$$

$$(1+\epsilon)^{4} = 1 + 4\epsilon + 6\epsilon^{2} + 4\epsilon^{3} + \epsilon^{4}$$

~

and

.

$$\frac{1}{1+\epsilon} = 1-\epsilon + \epsilon^{2} - \epsilon^{3} + \epsilon^{4} \dots$$

$$(\frac{1}{1+\epsilon})^{2} = 1-2\epsilon+3\epsilon^{2} - 4\epsilon^{3} + 5\epsilon^{4} \dots$$

$$(\frac{1}{1+\epsilon})^{3} = 1 - 3\epsilon + 6\epsilon^{2} - 10\epsilon^{3} + 15\epsilon^{4} \dots$$

$$(\frac{1}{1+\epsilon})^{4} = 1 - 4\epsilon + 10\epsilon^{2} - 20\epsilon^{3} + 35\epsilon^{4} \dots$$

$$(11)$$

Taking expectations, one obtains

$$E(1+\epsilon) = 1$$

$$E(1+\epsilon)^{2} = 1 + \mu_{2}$$

$$E(1+\epsilon)^{3} = 1 + 3\mu_{2} + \mu_{3}$$

$$E(1+\epsilon)^{4} = 1 + 6\mu_{2} + 4\mu_{3} + \mu_{4}$$
(12)

and

$$E\left(\frac{1}{1+\epsilon}\right) = 1 + \mu_{2} - \mu_{3} + \mu_{4} \dots$$

$$E\left(\frac{1}{1+\epsilon}\right)^{2} = 1 + 3\mu_{2} - 4\mu_{3} + 5\mu_{4} \dots$$

$$E\left(\frac{1}{1+\epsilon}\right)^{3} = 1 + 6\mu_{2} - 10\mu_{3} + 15\mu_{4} \dots$$

$$E\left(\frac{1}{1+\epsilon}\right)^{4} = 1 + 10\mu_{2} - 20\mu_{3} + 35\mu_{4} \dots$$
(13)

If we substitute the approximations (9) and use t = 1/m, we obtain

$$E(1+\varepsilon)^{2} \approx a_{2} = 1+t$$

$$E(1+\varepsilon)^{3} \approx a_{3} = 1 + 3t + t^{2}$$

$$E(1+\varepsilon)^{4} \approx a_{4} = 1 + 6t + 7t^{2} + t^{3}$$

$$(14)$$

and

· · .

$$E\left(\frac{1}{1+\epsilon}\right) \approx b_{1} = 1 + t + 2t^{2} + t^{3}$$

$$E\left(\frac{1}{1+\epsilon}\right)^{2} \approx b_{2} = 1 + 3t + 11t^{2} + 5t^{3}$$

$$E\left(\frac{1}{1+\epsilon}\right)^{3} \approx b_{3} = 1 + 6t + 35t^{2} + 15t^{3}$$

$$E\left(\frac{1}{1+\epsilon}\right)^{4} \approx b_{4} = 1 + 10t + 85t^{2} + 35t^{3}$$
(15)

We will later also need b_1^2 , b_1^3 , and b_1^4 and a_2^2 . The approximations up to t^3 are:

$$a_{2}^{2} = 1 + 2t + t^{2}$$

$$b_{1}^{2} = 1 + 2t + 5t^{2} + 6t^{3}$$

$$b_{1}^{3} = 1 + 3t + 9t^{2} + 16t^{3}$$

$$b_{1}^{4} = 1 + 4t + 14t^{2} + 32t^{3}$$
(16)

We also will use that for independent random variables x and y

$$E(xy) = E(x)E(y)$$
(17)

holds.

Finally, we will use the following relations between the central moments μ_i and non-central moments μ_i :

$$\begin{array}{c} \mu_{2} = \mu_{2}' - (\mu_{1}')^{2} \\ \mu_{3} = \mu_{3}' - 3\mu_{1}'\mu_{2}' + 2(\mu_{1}')^{3} \\ \mu_{4} = \mu_{4}' - 4\mu_{1}'\mu_{3}' + 6(\mu_{1}')^{2}\mu_{2}' - 3(\mu_{1}')^{4} \end{array} \right\}$$

$$(18)$$

4. The First Moment

4.1 Approximation Using Linear Terms Only

If one expands r, considering only the linear terms, one obtains

$$\mathbf{r} = 1 + \varepsilon_1 - \varepsilon_2 \tag{19}$$

and, therefore,

$$E(r) = 1.$$
 (20)

4.2 Approximation Using Terms Up to the Second Order

An expansion up to second order terms is

$$\mathbf{r} = (1+\varepsilon_1)(1-\varepsilon_2+\varepsilon_2^2)$$
(21)
= 1 + \varepsilon_1-\varepsilon_2-\varepsilon_1\varepsilon_2+\varepsilon_2^2.

Because independence between the ε_i was assumed, this gives

$$E(r) = 1 + \mu_2(\epsilon_2).$$
 (22)

This shows that the expected value of R is greater than (p_1/p_2) . Therefore, using this as an estimator for R overestimates the effectiveness 1-R. To assess the magnitude of this bias, we use the approximation (9) and obtain:

$$E(r) \approx 1 + \frac{1}{m_2}$$
 (23)

For the situation where each of the two p's is calculated from 20 injuries,

for the situation where each is based on 100 injuries,

 $E(r) \approx 1.01.$

These biases may appear small. However, if, e.g., R = 0.95 was estimated, in the first case the true expected value would be R' = 0.998, and instead of an effectiveness 1-0.95 = 0.05, 1-0.998 = 0.002 should be used in the first case: this means that the expected effect is less than that which one would expect from the biased estimate. In the second case R' = 0.96is the unbiased expected value and the effectiveness should be 0.04 instead of 0.05, a reduction by 20 percent.

4.3 Approximation Using Terms Up to the Third Order

Using equation (17), we obtain

$$E(\mathbf{r}) = E(1+\varepsilon_1)E(\frac{1}{1+\varepsilon_2}) , \qquad (24)$$

and from (12) and (15)

$$E(r) = 1 + t_2 + 2t_2^2 + t_2^3 , \qquad (25)$$

retaining only terms up to the third order. To make estimates of the order of magnitude of the higher order terms, we assume $t_2 = T$ and obtain $E(r) = 1+T+2T^2+T^3$. (26)

For the first case discussed in 4.2, m = 20, T = 0.05, one obtains E(r) = 1.005, compared with 1.05 in Section 4.2. Whether this difference is important depends on how large R is. For the second case, m = 100, T = 0.01, the effect is to increase E(r) from 1.01 to 1.0102, which is negligible.

5. The Second Moment

5.1 Approximation Using Linear Terms Only

Using (12), (13) and (17), we obtain

$$E(r^{2}) = (1+\mu_{2}(\varepsilon_{1}))(1+3\mu_{2}(\varepsilon_{2}))$$

$$= 1 + \mu_{2}(\varepsilon_{1}) + 3\mu_{2}(\varepsilon_{2})$$
(27)

when only first order terms in the μ_2 are retained. In order to calculate $\mu_2(r)$, we use (18) which requires

$$\mu_1'(\mathbf{r}) = 1 + \mu_2(\epsilon_2)$$
 and (28)

$$(\mu_1'(r))^2 = 1 + 2\mu_2(\epsilon_2),$$
 (29)

retaining only the first order terms in the μ_2 . Combining (27) and (29) according to (18) gives

$$\mu_2(\mathbf{r}) = \mu_2(\varepsilon_1) + \mu_2(\varepsilon_2); \tag{30}$$

the variance of the double ratio is the sum of the variances of the two factors.

5.2 Approximation Using Terms Up to the Third Order

For this approximation we immediately use the approximation (15) and (16). First we have

$$\mu_{2}'(\mathbf{r}) = \mathbf{E}(\mathbf{r}^{2}) = \mathbf{E}(1+\epsilon_{1})^{2} \mathbf{E}(\frac{1}{1+\epsilon_{2}})^{2}$$

= $(1+t_{1})(1+3t_{2}+1)t_{2}^{2}+5t_{2}^{3}$ (31)
= $1 + t_{1}+3t_{2}+1)t_{2}^{2}+5t_{2}^{3}+3t_{1}t_{2}+1)t_{1}t_{2}^{2}+5t_{1}t_{2}^{3}$

if one retains only terms up to the third order. Since

$$\mu_1' = b_1(\epsilon_2) \tag{32}$$

(16) gives

ļ

$$(\mu_1')^2 = 1 + 2t_2 + 5t_2^2 + 6t_2^3$$
(33)

retaining only terms up to the third order. Combining (31) and (33) according to (18) gives

$$\mu_{2} = t_{1} + t_{2} + 6t_{2}^{2} - t_{2}^{3} + 3t_{1}t_{2} + 11t_{1}t_{2}^{2} + 5t_{1}t_{2}^{3}$$
(34)

The linear terms correspond to the sum of the two $\mu_2(\varepsilon_i)$. The higher order terms are impracticably complicated to be used. Therefore, we use again the special case where all $t_i = T$ and obtain:

$$\mu_{2}(\mathbf{r}) = 2\mathbf{T} + 9\mathbf{T}^{2} + 10\mathbf{T}^{3}$$

$$= 2\mathbf{T}(1 + \frac{9}{2}\mathbf{T} + 5\mathbf{T}^{2})$$

$$= 2\mathbf{T}\mathbf{f}$$
(35)

Since 2T corresponds to the linear terms of $\mu_2(\mathbf{r})$, f is the factor by which it has to be increased. For m = 20 one has f = 1.24, and for m = 100, one has f = 1.05, for m = 500, f = 1.009. Thus, for m = 20, the higher terms are not negligible; for 100 they will usually be so, whereas for 500 they are practically always negligible.

6. The Third Moment

(18) gives for the third moment

$$\mu_{3} = \mu_{3}' - 3(\mu_{1}'\mu_{2}') + 2(\mu_{1}')^{3}$$
(36)

Using directly (14), (15) and (16) and substituting one T for the ${\rm t_i},$ we obtain

$$\mu'_{3}(\mathbf{r}) = (1+3T+T^{2})(1+6T+35T^{2}+15T^{3})$$

$$= 1 + 9T + 54T^{2} + 126T^{3}$$
(37)

omitting all terms of higher than third order. Combining

$$\mu_{2}'(\mathbf{r}) = (1+T)(1+3T+11T^{2}+5T^{3})$$

$$= 1 + 4T + 14T^{2} + 16T^{3}$$
(38)

with (26) gives

$$\mu_{1}'(\mathbf{r})\mu_{2}'(\mathbf{r}) = (1+T+2T^{2}+T^{3})(1+4T+14T^{2}+16T^{3})$$

$$= 1 + 5T + 20T^{2} + 31T^{2}$$
(39)

up to terms of the third order.

Finally, we need

$$(\mu'_1)^3 = [1 + T + 2T^2 + T^3]^3$$
(40)

according to (26). This gives

$$(\mu'_1)^3 = 1 + 3T + 9T^2 + 16T^3$$
 (41)

again omitting terms of higher than third order. Combining (37), (39) and (41) according to (36) gives

$$\mu_3 = 12T^2 + 65T^3.$$
(42)

Since μ_3 is not easily interpretable, we will use it only for the Gram-Charlier series expansion to be performed later.

7. The Fourth Moment

$$\mu_{4} = \mu_{4}' - 4(\mu_{1}'\mu_{3}') + (6(\mu_{1}')^{2}\mu_{2}') - 3(\mu_{1}')^{4}$$
(43)

$$\mu_{4}' = E(r^{4}) = E(1+\epsilon_{1})^{4} E(\frac{1}{1+\epsilon_{2}})^{4}.$$
(44)

Using (14) and (15) this becomes:

$$\mu'_{4} = (1+6T+7T^{2}+T^{3})(1+10T+85T^{2}+35T^{3})$$

$$= 1 + 16T + 152T^{2} + 616T^{3}$$
(45)

if omitting terms of higher than third order. Combining (26) and 27) . gives

$$\mu_{1}'(r)\mu_{3}'(r) = (1+T+2T^{2}+T^{3})(1+9T+54T^{2}+126T^{3})$$

$$= 1 + 10T + 65T^{2} + 199T^{3}.$$
(46)

Combining the simplified versions of (31) and (33) gives

$$(\mu_{1}'(r))^{2}\mu_{2}'(r) = (1+4T+14T^{2}+16T^{3})(1+2T+5T^{2}+6T^{3})$$

= 1 + 6T + 27T^{2} + 70T^{3}. (47)

Finally, by squaring (33), we obtain

$$(\mu_{1}')^{4} = [1 + 2T + 5T^{2} + 6T^{3}]^{2}$$

$$= 1 + 4T + 14T^{2} + 32T^{3}.$$
(48)

Combining (45), (46), (47) and (48) according to (43), we obtain

$$\mu_{4} = 1 + 16T + 152T^{2} + 616T^{3}$$

$$- 4(1+10T+65T^{2}+199T^{3})$$

$$+ 6(1+6T+27T^{2}+70T^{3})$$

$$- 3(1+4T+14T^{2}+32T^{3})$$

$$= 12T^{2} + 144T^{3}$$
(49)

Since $\mu_2 = 2T+...$, the excess or curtosis μ^4/μ_2^2 approaches 3 for small values of T; this is the value for the normal distribution.

8.1 Basic Formulas

A probability density function f(x) can be expanded into a series

$$f(x) = \phi(x) \left(1 + \frac{\mu_3^*}{6} H_3(x) + \frac{\mu_4^* - 3}{24} H_4(x) + \ldots\right),$$
 (50)

where it is assumed that x is transformed to have mean zero and variance 1; μ_3^* and μ_4^* are the correspondingly transformed third and fourth moments. $H_i(x)$ are the Hermite polynomials

$$H_{2}(x) = x^{2} - 1$$

$$H_{3}(x) = x^{3} - 3x$$

$$H_{4}(x) = x^{4} - 6x^{2} + 3$$
(51)

 $\phi(x)$ is the normal probability density.

The cumulative probability function can be expressed as

$$F(x) = \phi(x) - \phi(x) \left(\frac{\mu_3^*}{6} H_2(x) + \frac{\mu_4^* - 3}{24} H_3(F) + \ldots \right)$$
(52)

where $\phi(x)$ is the cumulative normal probability distribution.

In standard texts, no remainder terms were found which indicate how accurately a finite series using only a few terms of the infinite series approximates the true distribution.

8.2 Numerical Examples

8.2.1 m = 20

If we assume that both p_i are estimated from 20 injury cases, and that the injury probability is small, we obtain:

First two moments (using linear terms only):

$$\mu_1' = 1$$

$$\mu_2 = \frac{2}{20} = 0.1$$
(53)

First two moments (using terms up to the third order):

$$\mu_{1}' = 1 + \frac{1}{20} + \frac{2}{20^{2}} + \frac{1}{20^{3}} = 1.055$$

$$\mu_{2} = \frac{2}{20} + \frac{9}{20^{2}} + \frac{10}{20^{3}} = 0.124$$
(54)

First four moments (using terms up to the third order):

$$\mu_{1} = 1.0551$$

$$\mu_{2} = 0.1238$$

$$\mu_{3} = 0.0381 \quad \mu_{3}^{*} = \mu_{3} / \mu_{2}^{3} = 0.8747$$

$$\mu_{4} = 0.0480 \quad \mu_{4}^{*} = \mu_{4} / \mu_{2}^{2} = 3.1318$$
(55)

Figure 1 shows the two tails of the cumulative distribution of r. The approximation of the first four moments was calculated from the Gram-Charlier series. It is presumably the closest approximation to the "true" distribution of r. The lower and upper fifth percentiles are at r = 0.55 and r = 1.74.

The approximation of the first two moments using terms up to the third order is based upon a normal distribution with the "true" mean and variance; the lower and upper fifth percentiles are 0.47 and 1.64.

The approximation of the first two moments using linear terms only is based upon a normal distribution with mean 1 and variance = $\varepsilon_1^2 + \varepsilon_2^2$. It has the lower and upper fifth percentiles 0.48 and 1.52.

Both of the latter two approximations are unsatisfactory since the effectiveness is 1-R; using one of them may result in accepting an effect as significant which is with a fairly high probability due to chance. r = 1.70would be considered significant at the 96.5 percent level, whereas it is only 94 percent significant with the "true" distribution.

8.22 m = 100

The corresponding results are:

First two moments (using linear terms only):

$$\mu_1' = 1 \tag{56}$$

$$\mu_2^2 = \frac{2}{100} = 0.02$$

First two moments (using terms up to the third order):

$$\mu_{1}' = 1 + \frac{1}{100} + \frac{2}{100^{2}} + \frac{1}{100^{3}} = 1.01$$

$$\mu_{2} = \frac{2}{100} + \frac{9}{100^{2}} + \frac{10}{100^{3}} = 0.021$$
(57)

Figure 1. Two tails of the cumulative distribution of r depicting the lower and upper fifth percentiles (m = 20).

First four moments (using terms up to the third order):

$$\mu_{1}^{*} = 1.0102$$

$$\mu_{2} = 0.0209$$

$$\mu_{3} = 0.0013 \qquad \mu_{3}^{*} = \mu_{3}/\sqrt{\mu_{2}^{3}} = 0.4302$$

$$\mu_{4} = 0.0013 \qquad \mu_{4}^{*} = \mu_{4}/\mu_{2}^{2} = 2.9761$$
(58)

Figure 2 shows the tails of the corresponding distribution. Here, at the left tail, the differences between two of the three distributions are negligible. At the right tail, the difference between the approximations of the first four and the first two moments (using terms up to the third order) is negligible; the difference between them and the approximation of the first two moments using linear terms only may just be important in some cases.

8.3 Approximate Estimation of Confidence Limits

To calculate the entire distribution or part of it to determine for which x', $F(x') = 1-\alpha$ holds is relatively time-consuming. An approximation may be sufficient. We write

$$F(x) = F(x_{0}) + F'(x_{0})(x - x_{0})$$
(59)

We now chose x so that $\phi(x_0) = 1 - \alpha \cdot x_0$ is the derived confidence limit. for the normal distribution. We define x' as the confidence limit for the studied distribution: $F(x') = 1-\alpha$. Then we have

$$x' - x_{o} = \frac{1 - \alpha - F(x_{o})}{F'(x_{o})}$$
 (60)

(52) gives

s.

$$F(x_{o}) = \phi(x_{o}) - \phi(x_{o}) \left(\frac{\mu_{3}^{*}}{6} H_{2}(x_{o}) + \frac{\mu_{4}^{*}-3}{24} H_{2}(x_{o})\right)$$

$$= 1 - \alpha - \phi(x_{o}) \left(\frac{\mu_{3}^{*}}{6} H_{2}(x_{o}) + \frac{\mu_{4}^{*}-3}{24} H_{3}(x_{o})\right)$$
(61)

Since F'(x) = f(x), we can combine (60), (61) and (50) and obtain

$$\mathbf{x'-x}_{o} = \frac{\frac{\mu_{3}^{*}}{6} H_{2}(\mathbf{x}_{o}) + \frac{\mu_{4}^{*-3}}{24} H_{3}(\mathbf{x}_{o})}{\frac{\pi}{1 + \frac{\mu_{3}}{6}} H_{3}(\mathbf{x}_{o}) + \frac{\mu_{4}^{*-3}}{24} H_{4}(\mathbf{x}_{o})}$$
(62)

Figure 2. Two tails of the cumulative distribution of r depicting the lower and upper fifth percentiles (m = 100).

If we use $\alpha = 0.05$ as an example, $x_0 = 1.64$, and we have $H_2(x_0) = 1.690$, $H_3(x_0) = -0.509$, $H_4(x_0) = -5.904$. Therefore,

$$\mathbf{x'} - 1.64 = \frac{0.282\mu_3^* - 0.021(\mu_4^{*-3})}{1 - 0.085\mu_3^* - 0.246(\mu_4^{*-3})} .$$
(63)

Thus, one can calculate the approximate upper 95 percent confidence limit for any distribution, where the μ_3^* (skewness) and μ_4^* (excess, curtosis) are given.

9. Conclusions and Recommendations

The numerical examples suggest that for m > 100 one can use the normal approximation, preferably corrected for the bias in \overline{r} ; but for m > 400 or 500, this is definitely not necessary.

For m = 20, the normal approximation, even if corrected for bias and with an inflated ε , is definitely inadequate. Somewhere between 20 and 100 is an m where it becomes sufficient to correct r and inflate ε . The approximations were derived for "small" values of the π_i . That means that the p_i have highly skewed distributions. For larger π_i , the distributions are less skewed; for $\pi_i = 0.5$ they are symmetric. Therefore, one can expect that the normal approximations will be sufficient for smaller values of m than suggested above, if the π_i are not small.

For small values of m one should proceed as follows:

1) Calculate
$$\mu_i(\varepsilon_i)$$
.

2) Calculate
$$E(\frac{1}{1+\epsilon_2})^k$$
; $E(1+\epsilon_1)^k$.

- 3) Calculate $E(r^k)$.
- 4) Calculate $\mu_k(r)$.

5) Calculate
$$\mu_3^*(\mathbf{r})$$
 and $\mu_4^*(\mathbf{r})$.

Elaboration:

1) Calculate
$$\mu_{i}(\varepsilon_{j})$$

 $i = \text{ order of moment, } j \text{ index of } p_{j} \text{ in } \frac{p_{1}}{p_{2}}$
2) Using equation (8), calculate $E(\frac{1}{1+\varepsilon_{2}})^{k}$; $E(1+\varepsilon_{1})^{k}$.
Assume that only the second order
approximation will be used: $k = 1, 2$.
 $E(\frac{1}{1+\varepsilon_{2}})^{2} = 1 + \mu_{2}(\varepsilon_{2}) - \mu_{3}(\varepsilon_{2}) + \mu_{4}(\varepsilon_{2})$
 $E(\frac{1}{1+\varepsilon_{2}})^{2} = 1 + 3\mu_{2}(\varepsilon_{2}) - 4\mu_{3}(\varepsilon_{2}) + 5\mu_{4}(\varepsilon_{2})$

 $E(1+\varepsilon_1) = 1$ $E(1+\varepsilon_2)^2 = 1 + \mu_2(\varepsilon_2)$

3) Calculate $E(r^k) = E(1+\epsilon_1)^k E(\frac{1}{1+\epsilon_2})^k$

$$\mu_{k}'(r) = E(r^{k}).$$

- 4) Calculate $\mu_2(\mathbf{r})$. Use equation (18). Calculate $\mu_k(\mathbf{R}) = (\frac{\pi_1}{\pi_2})\mu_k(\mathbf{r})$. Calculate $\mu'_k(\mathbf{R}) = (\frac{\pi_1}{\pi_2})\mu'_k(\mathbf{r})$.
- 5) Omit for this level approximation.
- 6) For $m_j > 100$, use a normal distribution with $\mu_1'(R)$ and $\mu_2(R)$.