

US. Department of Transportation National Highway Traffic Safety Administration

# Statistical Evaluation of FMVSS 213 (Child Seating Systems)

George Y. H. Chi

Highway Safety Research Center University of North Carolina Chapel Hill, NC 27414 27514

Contract No. DTNH22-81-C-06006 Contract Amount \$99,407

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

#### CONTRACT TECHNICAL MANAGER'S ADDENDUM

Prepared for the National Highway Traffic Safety Administration in support of its program of regulatory reform - review of existing regulations - as required by Executive Order 12291. Agency staff will perform and publish an official evaluation of Federal Motor Vehicle Safety Standard 213 based on the findings of this report as well as other information sources. The values of effectiveness and benefits found in this report may be different from those that will appear in the official Agency evaluation.

## Technical Report Documentation Page

| 1. Report No.                             | 2. Government Accession No.                                 | 3. Recipient's Catalog N                  | 0,             |  |
|-------------------------------------------|-------------------------------------------------------------|-------------------------------------------|----------------|--|
| DOT-HS-806 238                            |                                                             |                                           |                |  |
|                                           |                                                             |                                           |                |  |
| 4. Little and Subtitle                    |                                                             | 5. Report Date                            |                |  |
| Statistical Evaluation o                  | f FMVSS 213 (Child Seating                                  | 6. Performing Organization Code           |                |  |
| Systems)                                  |                                                             |                                           |                |  |
|                                           |                                                             | 8. Performing Organizatio                 | on Report No.  |  |
| 7. Author(s)                              |                                                             |                                           |                |  |
| George Y. H. Chi                          |                                                             | 10 W ( 11 - 11 - 11 - 11 - 11 - 11 - 11 - |                |  |
| 9. Performing Organization Name and Addre | ss                                                          | 10. Work Unit No. (TRA)                   | 5)             |  |
| Highway Safety Research                   | Center                                                      | 11. Contract or Grant No                  | ,              |  |
| Chapol Hill NC 27514                      | iina                                                        | DTNH22-81-C-0                             | 06006          |  |
|                                           |                                                             | 13. Type of Report and P                  | eriod Covered  |  |
| 12. Sponsoring Agency Name and Address    |                                                             | Final Re                                  | eport          |  |
| Department of Transporta                  | tion                                                        | June 2, 1981 -                            | April 15, 1982 |  |
| National Highway Traffic                  | Safety Administration                                       | 14. Sponsoring Agency C                   | ode            |  |
| Nassif Building<br>Washington DC 20500    |                                                             | and a point of the goine y a              |                |  |
| 15. Supplementary Notes                   |                                                             |                                           |                |  |
|                                           |                                                             |                                           |                |  |
|                                           |                                                             |                                           |                |  |
| 16 Above                                  |                                                             |                                           |                |  |
| TO. Abstract                              |                                                             |                                           |                |  |
| This study investiga                      | ates the effect of Federal M                                | lotor Vehicle Safe                        | ety Standard   |  |
| 213 (Child Seating System                 | n) in terms of reducing inju                                | ries to children                          | age 0-4        |  |
| 10 crashes. The analysis                  | s is based on the police rep                                | orted accident fi                         | les from       |  |
| reported accident data de                 | 1975-1978) and Maryland (197                                | details needed to                         | e police       |  |
| a proper evaluation of t                  | he standard, this study is 1                                | imited to measuri                         | ing the        |  |
| effectiveness of child se                 | eating systems of all kind a                                | s they were used                          | on the         |  |
| road whether or not prop                  | erly installed and/or used.                                 | The results nece                          | essarily       |  |
| underestimate the true e                  | ffectiveness of <u>properly use</u>                         | <u>d</u> and dynamicall                   | y tested       |  |
| child seating systems.                    |                                                             |                                           |                |  |
| The analysis sugges                       | ts that both lap/lap and sho                                | ulder belts and d                         | child seat-    |  |
| ing systems are most effe                 | ective in reducing serious t                                | o fatal injuries                          | in children,   |  |
| and less effective, thou                  | gh still significant, in red                                | ucing moderate to                         | fatal, or      |  |
| than the child seating su                 | Tap/Tap and shoulder delts a<br>ustems the difference is no | ppear to be more                          | effective      |  |
| It is felt that this appa                 | arent difference could perha                                | ns be attributed                          | to improper    |  |
| usage of child seating s                  | ystems.                                                     |                                           | te improper    |  |
| Child seating system                      | ns placed on the front seats                                | are significant                           | v more         |  |
| effective than lap/lap an                 | nd shoulder belts in reducin                                | q all levels of i                         | njuries. and   |  |
| particularly in serious                   | to fatal injuries for childr                                | en age 0-1.                               |                |  |
| 17. Key Words                             | 18. Distribution Stat                                       | ement                                     | <u></u>        |  |
| FMVSS 213 Child seating s                 | systems                                                     |                                           |                |  |
| Variable screening                        | -                                                           |                                           |                |  |
| Categorical data analysis                 | s                                                           |                                           |                |  |
|                                           |                                                             |                                           |                |  |
| 19. Security Classif. (of this report)    | 20. Security Classif. (of this page)                        | 21. No. of Pages                          | 22. Price      |  |
|                                           |                                                             | 76                                        |                |  |
|                                           |                                                             | ,,,                                       |                |  |
| E DOT E 1700 7 (0. 70)                    |                                                             |                                           |                |  |

#### **METRIC CONVERSION FACTORS**



## TABLE OF CONTENTS

|      |                              |                                                                                                                                                   |        |                  |             |             |                  |                  |             | f                | age                             |
|------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|-------------|-------------|------------------|------------------|-------------|------------------|---------------------------------|
| TECI | HNICAL                       | SUMMARY                                                                                                                                           | •      | •                | •           | •           | •                |                  | •           | •                | v                               |
| ACKI | NOWLED                       | GEMENTS                                                                                                                                           | •      | •                | •           |             | •                | •                | •           | •                | ix                              |
| STA  | ristic/                      | AL EVALUATION OF FMVSS 213 (CHILD SEATING SYSTEMS                                                                                                 | 5)     | •                | •           | •           | •                | •                | •           | •                | I                               |
| 1.   | BACKG                        | ROUND                                                                                                                                             | •      |                  |             | •           | •                | •                | •           | •                | 1                               |
| 2.   | МЕТНО                        | DOLOGY                                                                                                                                            |        | •                |             | •           | •                | •                |             | •                | 2                               |
|      | 2.1.<br>2.2.<br>2.3.<br>2.4. | Creation of Working Files                                                                                                                         |        | ·<br>·<br>·<br>· | ·<br>·<br>· |             | •<br>•<br>•<br>• | •<br>•<br>•<br>• | ·<br>·<br>· | •<br>•<br>•<br>• | 2<br>2<br>2<br>3<br>3<br>4<br>4 |
| 3.   | THE N                        | EW YORK STATE ACCIDENT FILE                                                                                                                       | •      | •                | •           | •           |                  | •                | •           | •                | 6                               |
|      | 3.1.<br>3.2.<br>3.3.         | (A+K)-Injury Rate and Effectiveness Estimates .<br>(B+A+K)-Injury Rate and Effectiveness Estimates<br>All-Injury Rate and Effectiveness Estimates | •<br>• | •<br>•           | •<br>•<br>• | •<br>•<br>• | •<br>•<br>•      | •                | •           | •<br>•           | 8<br>16<br>23                   |
| 4.   | THE M                        | ARYLAND ACCIDENT FILE                                                                                                                             | •      | •                | ٠           | •           |                  | •                |             | •                | 31                              |
|      | 4.1.<br>4.2.<br>4.3.         | (A+K)-Injury Rate and Effectiveness Estimates .<br>(B+A+K)-Injury Rate and Effectiveness Estimates<br>All-Injury Rate and Effectiveness Estimates | •<br>• | •<br>•           |             | •<br>•      | •<br>•           | •<br>•           | •           | •<br>•           | 31<br>37<br>44                  |
| 5.   | SUMMA                        | RY                                                                                                                                                | •      | •                | •           | •           | •                | •                | •           | •                | 52                              |
| REFI | ERENCES                      | 5                                                                                                                                                 |        |                  |             |             |                  |                  |             |                  |                                 |

APPENDIX

ĸ

## TECHNICAL SUMMARY

The Federal Motor Vehicle Safety Standard 213 (Child Seating Systems) was introduced with the objective of reducing fatalities and injuries to young children 0-4 years old in crashes. It establishes requirements for labeling, installing, adjusting and attaching child seating systems to vehicle seat belts. The standard became effective on April 1, 1971. Specific revision was made with respect to requirements for dynamic testing which became effective on January 1, 1981.

Police reported state accident files at best only indicate whether a "child restraint" was used, but do not provide any indication as to its brand name or whether its usage was proper, etc. Among the states whose data are available to HSRC, only New York and Maryland contain this information. The present study is limited to the accident files from these two states (NY: 1975-1978, MD: 1977-1980) and the evaluation is limited to measuring the effectiveness of child seating systems of all kinds as they were <u>used on the road</u> whether or not properly installed and/or used. The results necessarily underestimate the true effectiveness of properly used and dynamically tested child seating systems.

In the evaluation, three injury characterizations were used, namely A+K, B+A+K, and All-injury. A screening procedure was applied with respect to these injury characterizations, and the variables, number of vehicles involved, age of child, child seating position, and driver sex were essentially selected as the controls. Various models were then fit (via the Grizzle, Starmer, and Koch weighted least squares procedure) to each contingency table generated by cross-classifying injury, standard, and these control variables. Overall effectiveness estimates were then derived from the final models.

The analysis demonstrates that both child seating systems and lap/lap and shoulder belts are most effective in reducing (A+K)-injuries and less effective (though still significant) in reducing (B+A+K) and All-injuries as shown in Table S-1.

Lap/lap and shoulder belts seem to be uniformly more effective than the child seating systems. However, these differences are not statistically significant as shown in Table S-2. The seemingly lower effectiveness estimates for child seating systems could be due to the significant amount of improper usage and/or installation of the seats as reported in other studies.

However, detailed analyses from the various models show that there are a few situations as described in Table S-3 where the child seating systems are signifi-

| Table S-1 |  |
|-----------|--|
|-----------|--|

Overall effectiveness of child safety seats and lap/ lap and shoulder belts for New York State and Maryland.

| Restraint<br>Type     | Injury<br>Characterization | State of<br>New York<br>1975-78 | State of<br>Maryland<br>1977-80 |
|-----------------------|----------------------------|---------------------------------|---------------------------------|
|                       | (A+K)                      | 34.12%<br>(8.34%)*              | 36.18%<br>(15.11%)              |
| Child Safety<br>Seats | (B+A+K)                    | 23.96%<br>(3.58%)               | 33.28%<br>(8.89%)               |
|                       | All                        | 24.73%<br>(3.44%)               | 16.59%<br>(4.60%)               |
|                       | (A+K)                      | 45.90%<br>(5.12%)               | 59.48%<br>(9.72%)               |
| Lap/lap and shoulder  | (B+A+K)                    | 28.84%<br>(2.81%)               | 46.05%<br>(6.34%)               |
| DEITS                 | A11                        | 23.96%<br>(2.23%)               | 21.72%<br>(3.20%)               |

\*Standard Error

Table S-2

Effectiveness of lap/lap and shoulder belts relative to child safety seats for New York State and Maryland.

| Injury<br>Characterization | State of<br>New York  | State of<br>Maryland |
|----------------------------|-----------------------|----------------------|
| (A+K)                      | 19.13%*<br>(13.69%)** | 36.51%<br>(20.52%)   |
| (B+A+K)                    | 6.40%<br>(5.45%)      | 17.87%<br>(12.45%)   |
| 11A                        | -1.02%<br>(5.32%)     | 6.19%<br>(6.13%)     |

\*Effectiveness of lap/lap and shoulder vs. child safety seats

\*\*Standard Error

cantly safer than the lap/lap and shoulder belts. This is especially significant in light of the above discussion.

## Table S-3

## Specific instances where child safety seats are significantly more effective than belts

| Injury Characterization | New York                           | Maryland        |
|-------------------------|------------------------------------|-----------------|
| (A+K)                   | Children age O-1 in<br>front seats |                 |
| (B+A+K)                 | Front seats                        |                 |
| A11                     | Front seats                        | Towaway crashes |

## ACKNOWLEDGEMENTS

The author wishes to acknowledge Dr. Charles J. Kahane, the Contract Technical Manager, for the various comments and suggestions made throughout this study.

Special thanks are due Mr. Douglas Easterling and Ms. Mei-Mei Ma for creating the necessary data files, Ms. Teresa Parks for typing the reports, and Dr. Donald W. Reinfurt for reviewing the results at various stages of progress of this study.

#### Chapter 1. BACKGROUND

The Federal Motor Vehicle Safety Standard 213 became effective April 1, 1971. The general purpose of this standard is to reduce fatalities and injuries to small children (age 0 through 4 years old) in crashes. The standard establishes requirements for labeling, installing, adjusting and attaching child seating systems to vehicle seat belts. It also requires manufacturers to produce child seating system components which meet specific static tests. The static test requires the child seating system to retain a torso block which is subjected to a static load of 1,000 lbs in a forward direction or 500 lbs in a rearward direction. This is intended to approximate a 30 mph frontal crash. Horizontal movement of the torso block is then measured. In March 1974, NHTSA published a revision to FMVSS 213 which replaced the static performance tests with dynamic tests requirements and also put car beds and infant carriers, covered by FMVSS 209 (seat belt assemblies), under FMVSS 213. This revision became effective starting January 1, 1981.

An evaluation of FMVSS 213 would ideally be based on accident data which specifies in each case whether a child seating system was present, and if so whether it was properly installed and used. Information on the type of child seating system is also desirable. However police reported State accident files at best only indicate whether a "child restraint" was used, but do not provide any indication as to its brand name or whether its usage was proper. In fact, only New York and Maryland, among the States whose data are available to HSRC, contain this information. Observational studies have indicated that there has been a great deal of improper usage (as much as 50%) as well as usage of non-safety child seating systems. Such improper usage includes improper installation of the seating system (for example the tether strap was not used) and/or incorrect usage of the restraint system component (for example, the three point harness was not used). Furthermore, many safety seats were capable of meeting the dynamic test criteria before the standard was put into effect and since the state data do not specify brand names, we would be unable to tell which cases involve these superior seats. Consequently, the proposed evaluation is limited to the New York and Maryland accident files and will measure the effectiveness of child seating systems of all kinds as they were used on the road whether or not properly installed and/or used. It will necessarily underestimate the effectiveness of properly used and dynamically tested child seating systems.

#### Chapter 2. METHODOLOGY

The purpose of this study is to evaluate the effectiveness of child seating systems as they were used on the road based on the 1975-1978 New York State police reported accident files and the 1977-1980 Maryland police reported accident files. The proposed method of analysis is outlined below and is carried out for each of the two states.

## 2.1. Creation of working files

An occupant-oriented subfile of children age 0-4 who were occupants in a crash-involved passenger car will be extracted from each state accident file. This file will contain various items of potential significance.

#### 2.2. Preliminary data analysis

Having created the working file, checks will be made of the quality of the data, the rate of missing/unknown in items of interest, and the possibility of reclassifying some of these missing/unknown items. For example, the injury severity scores in the New York file are not given in the KABCO scale. The KABCO injury codes and weight of the striking vehicle can be derived based on the schemes as discussed in Chi and Reinfurt (1981). Since the sample size is expected to be small, one does not have the luxury of liberally discarding cases with missing items.

## 2.3. Variable screening

Because of the large number of factors to be considered and the anticipated small sample size, a variable screening procedure as outlined below will be needed to select a subset of factors to be controlled for in the subsequent modeling stage. The screening procedure extends the method proposed by Higgins and Koch (1977) to the situation encountered in the evaluation of Standards or in comparative studies. This procedure will be repeated for each of the three injury characterizations: any injury, (B+A+K) injury and (A+K) injury. This procedure is outlined below:

## (a) Listing of potential confounding factors.

A list of potential confounding factors is determined by the relevancy of these factors to the problem at hand, and by the availability of information on these variables. From this list, a number of factors are then selected by the following selection or screening procedure.

#### -2-

(b) Calculation of relevant statistics.

At each stage of the selection procedure, the following statistics are calculated for each candidate variable V, or the joint distribution of V with variables already selected from the preceding stages:

- (1)  $T_1 = \chi^2$  (V x STANDARD): The Pearson Chi-square statistic for measuring the association between V and STANDARD, the associated degrees of freedom, and the corresponding p-value.
- (2)  $T_2 = \chi^2$  (V x INJURY): The Pearson Chi-square statistic for measuring the association between V and INJURY, the associated degrees of freedom, and the corresponding p-value.

If either or both of  $T_1$  and  $T_2$  are significant, then the following additional statistics are calculated:

- (3) T<sub>3</sub>, Pre =  $\chi^2$  ([V x INJURY]PRE-STANDARD]) and T<sub>3</sub>, Post =  $\chi^2$  ([V x INJURY]POST-STANDARD]): These are the statistics for measuring the partial association of V and INJURY for PRE- and POST-STANDARD.
- (4)  $T_4 = \chi^2 ([V \times INJURY|STANDARD]) =$  The generalized Cochran-Mantel-Haenszel statistic for measuring the association of V and INJURY across STANDARD.
- (c) The Screening Criteria

5

Consider the criteria:

Criterion A: <u>Either or both of statistics</u> T<sub>1</sub> and T<sub>2</sub> must be significant.

If the association between V and STANDARD as measured by T1 is significant, then its inclusion is necessary if one wishes to attribute (to the extent possible) any observed difference in injury experience to the STANDARD. On the other hand, if the association between V and INJURY is significant, then the inclusion of V as a control will contribute significantly to the reduction of variation in injury.

Criterion B: The significant relationship between V and INJURY should be consistent for both PRE- and POST-STANDARD populations.

The relationship between V and INJURY is consistent for both PRE- and POST-STANDARD if T<sub>4</sub> > max { T<sub>3</sub>, Pre, T<sub>3</sub>, Post }. The relationship is not consistent if  $0 \le T_4 \le max \{ T_3, Pre, T_3, Post \}$ . By controlling for all such variables, one can presumably attribute the remaining variation in the injury experience to the Standard.

(d) The selection procedure

Among the variables that met both screening criteria, select one preferably with the largest  $T_1/d.f.$  and/or  $T_2/d.f.$  statistics. If there are several variables with about the same magnitude for the statistics,  $T_1/d.f.$  and/or  $T_2/d.f.$ , then the variable with the least ambiguity and with the index I =  $T_4/(T_3, \text{Pre} + T_3, \text{Post})$  closest to l is to be preferred.

Thus, a certain amount of subjectivity is involved in the selection process. The procedure repeats itself after each selection has been made and will be terminated if one of the following situations occurs.

- (1) No more relevant factors are available for consideration;
- (2) The statistics T1/d.f. and T2/d.f. are not significant for any of the remaining variables; or
- (3) Sample size limits the usefulness of further screening.

### 2.4. Effectiveness estimates

Based on the appropriate set of control variables selected by the preceding procedure with respect to each one of the three injury characterizations, a multi-dimensional contingency table cross-classifying Standard by injury will be generated. Linear models of the form  $P = \chi_{\beta}$  will be fitted to the contingency table via the Grizzle-Starmer-Koch (GSK) method of weighted least squares, where P is the vector of observed injury rates in the various subpopulations stratified by the variables selected for control,  $\chi$  is a design matrix, and  $\beta$  is the vector of model coefficients.

A series of models will be fitted to the injury data starting with the analysis of a saturated model where the design matrix X contains all main effects and interactions. Subsequent models are obtained by successively deleting non-significant interactions and/or main effect terms from the immediately preceding model.

Estimates together with the associated standard errors for overall injury rates and effectiveness of the Standard can then be computed from the predicted injury rates resulting from the final model. Depending upon the set of control variables selected for each one of the three injury characterizations, injury rate and effectiveness estimates together with their associated standard errors for each of the following subpopulations will be obtained based on the final model.

(1) Child seating position (front vs. rear)

(2) Crash mode (frontal vs. side impact)

(3) Age of child

(4) Calendar year

## Chapter 3. THE NEW YORK STATE ACCIDENT FILE

An occupant-oriented file of accidents involving children age 0-4 is created using the police-reported accident data from New York State covering the period 1975-1978. An extensive list of items such as injury severity, restraint type, age of child, seating position etc. is extracted and placed in this file. The basic contents of this file can be seen by examining the list of variables appearing in Table A-1.

Preliminary analysis shows that some items such as the KABCO injury codes and weight of the striking vehicle are not available from the New York State accident file. These items are derived based on the scheme as discussed in Chi and Reinfurt (1981). The KABCO child injury distribution for this file is given in Table 3-1. Table 3-2 gives the overall child restraint usage distribution.

Another item that is of substantial interest is Initial Impact Site. A simple cross-tabulation of Accident Year by Initial Impact Site (see Table 3-3) reveals that this item is mostly missing for accident years 1976-1978. A follow-up call to the NY State DMV reveals that, for economic reasons, values for this variable were not computerized from early 1976 through part of 1978. Since this variable might be of interest, it is suggested that this information be retrieved.

## Table 3-1 Overall Child Injury Distribution (New York)

| Injury Level | Frequency             | <u>%</u> |
|--------------|-----------------------|----------|
| К            | 58                    | 0.13     |
| А            | 1045                  | 2.29     |
| В            | 6504                  | 14.24    |
| С            | <b>4</b> 8 <b>9</b> 9 | 10.73    |
| 0            | 33,159                | 72.61    |
| Total        | 45,665                | 100.00   |

|         |       | Table 3-   | -2    |              |
|---------|-------|------------|-------|--------------|
| Overall | Child | Restraint  | Usage | Distribution |
|         |       | (New York) | )     |              |

| Restraint<br>Usage | Frequency | <u>%</u> |
|--------------------|-----------|----------|
|                    | 2315      | 5.07     |
| Unbelted           | 34,060    | 74.59    |
| Child Restraint    | 3,724     | 8.16     |
| Belted             | 5,566     | 12.19    |
| Total              | 45,665    | 100.00   |

|          | Tabi | le 3 | 3-3*   |      |
|----------|------|------|--------|------|
| Accident | Year | by   | Impact | Site |

| Accident<br>Year | Front             | Side            | Rear            | Others +<br>Unknown | Total |
|------------------|-------------------|-----------------|-----------------|---------------------|-------|
| 1975             | 6075<br>(58.91)** | 1318<br>(12.78) | 2392<br>(23.19) | 528<br>(5.12)       | 10313 |
| 1976             | 1395<br>(14.04)   | 304<br>(3.06)   | 519<br>(5.22)   | 7719<br>(77.68)     | 9937  |
| 1977             | 0                 | 0               | 0               | 9950                | 9950  |
| 1978             | 4289<br>(43.81)   | 1056<br>(10.79) | 1658<br>(16.94) | 2786<br>(28.46)     | 9789  |

\*This table is based on the child oriented file. \*\*Row percent

Table 3-4 below compares the distribution of Impact Site (reconstructed)† by Accident Year. Note that the reconstruction scheme was not applied to the 1975 accident data.

tA scheme for reconstructing the variable Impact Site was outlined in the monthly report dated October 22, 1981.

|                  |                | Impact       | Site         |                    |                |
|------------------|----------------|--------------|--------------|--------------------|----------------|
| Accident<br>Year | Front          | Side         | Rear         | Unknown<br>+ Other | Total          |
| 1975             | 6075<br>59.6** | 1318<br>13.0 | 2392<br>23.4 | 528                | 10313<br>25.8† |
| 1976             | 5141<br>51.7   | 1774<br>17.9 | 1785<br>18.0 | 1237               | 9937<br>24.9   |
| 1977             | 5244<br>52.7   | 1663<br>16.7 | 1440<br>14.5 | 1603               | 9950<br>24.9   |
| 1978             | 5639<br>57.6   | 1430<br>14.6 | 1996<br>20.4 | 724                | 9789<br>24.5   |
| Total            | 22,165         | 6208         | 7630         | 3986               | 39,989         |

Table 3-4\* Accident Year by Impact Site (reconstructed)

\*This table is based on the child oriented file.
\*\*Row percent
tColumn percent

Using only the 1975 data, the reasonableness of this scheme can be examined by cross-classifying this reconstructed Impact Site variable with the original Impact Site variable. Table 3-5 provides a measure of the misclassification involved in this reconstructed variable. It shows that with the exception of Impact Site = 'side', the reclassification scheme is satisfactory.

#### 3.1 (A+K)-Injury Rate and Effectiveness Estimates

Applying the variable screening procedure outlined in the preceding section, the variables Number of Vehicles Involved, Age of Child, Child Seating Position, and Driver Sex were selected as the controls. Preliminary analysis indicated that Driver Sex was not significant and was dropped from the subsequent analysis. The various statistics generated in the variable screening process are given in Table A-1 in Appendix A.

Table 3-6 provides the contingency table cross-classifying Number of Vehicles Involved, Age of Child, Seating Position, Child's Restraint Type and Child's (A+K)-injury.

|  | Ta | b 1 | е | 3- | •5 |
|--|----|-----|---|----|----|
|--|----|-----|---|----|----|

## Cross-classification of the Reconstructed Impact-Site Variable and Original Impact Site Variable for Accident Year 1975.

|                           |                   | Impact Site (Reconstructed) |               |              |              |                    |               |  |  |  |  |
|---------------------------|-------------------|-----------------------------|---------------|--------------|--------------|--------------------|---------------|--|--|--|--|
| <b></b>                   |                   | •                           | Front         | Side         | Rear         | Unknown<br>+ Other | Total         |  |  |  |  |
| Impact Site<br>(original) | •                 | 289                         |               |              |              |                    | 289           |  |  |  |  |
|                           | Front             |                             | 3728<br>61.4* | 1347<br>22.2 | 179<br>3.0   | 821                | 6075<br>58.9† |  |  |  |  |
|                           | Side              |                             | 521<br>29.5   | 511<br>38.8  | 59<br>4.5    | 227                | 1318<br>12.8  |  |  |  |  |
|                           | Rear              |                             | 451<br>18.9   | 374<br>15.6  | 1418<br>59.3 | 149                | 2392<br>23.2  |  |  |  |  |
|                           | Unknown+<br>Other |                             | 5             | 7            | 44           | 183                | 239<br>2.3    |  |  |  |  |
|                           | Total             | 289                         | 4705          | 2239         | 1700         | 1380               | 10313         |  |  |  |  |

\*Row percent †Column percent

Linear models were fit to the contingency table via the Grizzle-Starmer-Koch (GSK) weighted least squares procedure. For a detailed discussion on the procedure see Chi (1980). Table 3-7 provides the final parameter estimates and restraint effectiveness estimates corresponding to the final design  $\chi_f$  as given in Figure 3-1.

The predicted injury rates,  $r = \chi_{f\beta}$ , corresponding to Table 3-6 are determined from the matrices in Figure 3-1, where  $\beta$  is the vector of parameter estimates from Table 3-7.

The coefficients of the model can be explained as follows:

- Single-vehicle crashes have a higher injury risk than multivehicle crashes ( $\beta_N = 0.0406$ )
- The front seat is less safe than the rear seat ( $\beta_N = 0.01$ ), especially in single vehicle crashes ( $\beta_{NxP} = 0.0217$ )

## Table 3-6

## (A+K)-Injury distribution by type of Child Restraint, Seating Position, Age of Child and Number of Vehicles Involved

| No. of<br>Vehicles<br>Involved | Age<br>of<br>Child | Seating<br>Position | Child<br>Restraint<br>Type | (A+K)-<br>No             | Injury<br>Yes   | Total                | Stratum<br>Weight |
|--------------------------------|--------------------|---------------------|----------------------------|--------------------------|-----------------|----------------------|-------------------|
| ]                              | 0-1                | Front               | C*<br>L<br>N               | 125<br>68<br>542         | 5<br>2<br>54    | 130<br>70<br>596     | 796<br>0.0211     |
|                                |                    | Rear                | C<br>L<br>N                | 97<br>57<br>230          | 5<br>0<br>17    | 102<br>57<br>247     | 406<br>0.0108     |
|                                | 2-4                | Front               | C<br>L<br>N                | 35<br>97<br>11 <b>56</b> | 2<br>5<br>112   | 37<br>102<br>1268    | 1407<br>0.0374    |
|                                |                    | Rear                | C<br>L<br>N                | 62<br>146<br>1275        | 1<br>1<br>71    | 63<br>147<br>1346    | 1556<br>0.0413    |
| 2+                             | 0-1                | Front               | C<br>L<br>N                | 968<br>693<br>4200       | 12<br>13<br>104 | 980<br>706<br>4304   | 5990<br>0.1591    |
|                                |                    | Rear                | C<br>L<br>N                | 975<br>532<br>1854       | 10<br>2<br>31   | 985<br>534<br>1885   | 3404<br>0.0904    |
|                                | 2-4                | Front               | C<br>L<br>N                | 342<br>1288<br>8788      | 9<br>23<br>230  | 351<br>1311<br>9018  | 10680<br>0.2836   |
|                                |                    | Rear                | C<br>L<br>N                | 557<br>1619<br>11049     | 7<br>19<br>170  | 564<br>1638<br>11219 | 13421<br>0.3564   |

(New York)

\*C = Child restraint

L = Lap/lap and shoulder

N = None used

| (New York)       |                                                 |                               |         |                   |  |  |  |  |
|------------------|-------------------------------------------------|-------------------------------|---------|-------------------|--|--|--|--|
| Parameter        | <u>Estimate (S.E.)</u>                          | Parameter                     | Estima  | te (S.E.)         |  |  |  |  |
| μ                | 0.0152 (0.0010)                                 | β <sub>Ny</sub> d             | 0.021   | 7 (0.0073)        |  |  |  |  |
| β <mark>ň</mark> | 0.0406 (0.0054)                                 | βNXC                          | -0.028  | 7 (0.0109)        |  |  |  |  |
| β <sub>P</sub>   | 0.0100 (0.0015)                                 | βN×L                          | -0.040  | 4 (0.0077)        |  |  |  |  |
| βC               | -0.0038 (0.0027)                                | βAxPxC                        | -0.009  | 5 (0.0044)        |  |  |  |  |
| <sup>β</sup> L   | -0.0075 (0.0018)                                |                               |         |                   |  |  |  |  |
|                  | Goodness-of-F<br>$\chi^2$ (due to error) = 8.96 | it Statistic<br>, d.f. = 15,  | p = 0.8 | 8                 |  |  |  |  |
|                  | Effectivene                                     | ess Estimate                  |         |                   |  |  |  |  |
|                  | (                                               | arizzle-Starmer-<br>Estimates | Koch    | Standard<br>Error |  |  |  |  |
| l. Chi           | ild Restraint vs. None†                         | 33.28%†                       |         | 8.89%             |  |  |  |  |
| 2. Lap           | D∕L+S vs. None                                  | 46.05%                        |         | 6.34%             |  |  |  |  |
| 3. Lap           | D/L+S vs. Child Restraint†1                     | 19.13%††                      |         | 13.69%            |  |  |  |  |

$$*N = \begin{cases} 1 & \text{if single vehicle} \\ 0 & \text{if multi-vehicle} \end{cases} C = \begin{cases} 1 & \text{if child restraint} & t = (\hat{r}_N - \hat{r}_C)/\hat{r}_N *100 \\ 0 & \text{otherwise} & tt = (\hat{r}_C - \hat{r}_L)/\hat{r}_C *100 \end{cases}$$
$$A = \begin{cases} 1 & \text{if age 0-1} \\ 0 & \text{if age 2-4} & L = \begin{cases} 1 & \text{if lap/lap & shoulder} \\ 0 & \text{otherwise} & 0 & \text{otherwise} \end{cases}$$
$$P = \begin{cases} 1 & \text{if front seat} \\ 0 & \text{if rear seat} & L & L & L & L \end{cases}$$

Table 3-7

Final parameter estimates, goodness-of-fit statistic, and effectiveness estimates for (A+K)-injury

Figure 3-1 Predicted injury rates  $\hat{r} = \chi_f \hat{\beta}$ 

| No. of<br>Vehicles<br>Involved | Age<br>of<br>Child | Seating<br>Position            | Child<br>Restraint<br>Type |             |                                                          |                                                                         | X f                                                           | <br>:       |             |             |                                                               | ŝ                       |      |
|--------------------------------|--------------------|--------------------------------|----------------------------|-------------|----------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|-------------|-------------|-------------|---------------------------------------------------------------|-------------------------|------|
| 1                              | 0-1                | Front                          | C*<br>L<br>N               | 1<br>1<br>1 | 1 1 1 1                                                  | 1<br>0                                                                  | 0 1 0                                                         | ]<br>]<br>] | 1 0         | 0           | $\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$                     | β <sub>N</sub>          | ]    |
|                                |                    | Rear                           | CL                         | <br> <br>   | 000                                                      | 1<br>0                                                                  | 01                                                            | 000         | 100         | 0<br>1      | 0                                                             | βP<br>βC<br>βL          |      |
|                                | 2-4                | Front                          | C<br>L                     | 1           | 1<br>1                                                   | 0<br>1<br>0                                                             | 0<br>0<br>1                                                   | 0<br>1<br>1 | 0<br>1<br>0 | 0<br>0<br>1 | 0<br>0<br>0                                                   | β<br>Nx<br>β<br>Nx<br>β |      |
|                                |                    | Rear                           | N<br>C<br>L                | <br> <br>   | 1<br>0<br>0                                              | 0<br>1<br>0                                                             | 0<br>0<br>1                                                   | 1<br>0<br>0 | 0<br>1<br>0 | 0<br>0<br>1 | 0<br>0<br>0                                                   | L <sup>B</sup> AxI      | PxC] |
| 2+                             | 0-1                | Front                          | N<br>C<br>L                | 1<br>0<br>0 | 0<br>1<br>1                                              | 0<br>1<br>0                                                             | 0<br>0<br>1                                                   | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>1<br>0                                                   |                         |      |
|                                |                    | Rear                           | N<br>C<br>L                | 0<br>0<br>0 | 1<br>0<br>0                                              | 0<br>1<br>0                                                             | 0<br>0<br>1                                                   | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0                                                   |                         |      |
|                                | 2-4                | Front                          | N<br>C<br>L                | 0<br>0<br>0 | 0<br>1<br>1                                              | 0<br>1<br>0                                                             | 0<br>0<br>1                                                   | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0                                                   |                         |      |
|                                |                    | Rear                           | N<br>C<br>L                | 0<br>0<br>0 | 1<br>0<br>0                                              | 0<br>1<br>0                                                             | 0<br>0<br>1                                                   | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0                                                   |                         |      |
| 2+                             | 0-1<br>2-4         | Front<br>Rear<br>Front<br>Rear | N C L N C L N C L N        |             | 0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>1<br>0<br>0 | 0<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>1<br>0 |             |             |             | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                         |      |

\*C = Child restraint

- L = Lap/lap and shoulder
- N = None used
  - Child seats are effective ( $\beta_{C} = -0.0038$ ), especially in single vehicle crashes ( $\beta_{NxC} = -0.0287$ )
  - Child seats are especially effective for babies in the front seat ( $\beta_{AXPXC} = -0.0095$ ). Note, however, that even this enhanced effectiveness does not overcome the added risk of sitting in the front seat ( $\beta_P = 0.01$ ,  $\beta_P + \beta_{NXP} = 0.0317$ ).
  - Lap belts are effective ( $\beta_L = -0.0075$ ), especially in single vehicle crashes ( $\beta_{NxL} = -0.0404$ ).

The overall restraint effectiveness estimates are obtained from the weighted average of the appropriate predicted stratum injury rates. For instance, the effectiveness estimate for none vs child restraint is defined as

Effectiveness = 
$$\frac{\sum_{i=1}^{N} W_{i} (\hat{r}_{N,i} - \hat{r}_{C,i})}{\sum_{i=1}^{N} W_{i} \hat{r}_{N,i}}$$

where  $\hat{r}_{N,i}$  is the predicted (A+K)-injury rate for an unrestrained child in the ith-stratum, and  $\hat{r}_{C,i}$  is the corresponding predicted injury rate for a child in some kind of child seating system as reported by police whether or not properly used and installed. The various effectiveness estimates are given in Table 3-7.

The effectiveness estimates in Table 3-7 indicate that both child safety seats as they are used (disregarding improper usage, etc.) and lap/lap and shoulder belts are very effective in reducing (A+K)-injuries. Relative to unrestrained children, child safety seats are 33.28% effective, while lap/lap and shoulder belts are 46.05% effective. The apparently higher overall effectiveness of lap/lap and shoulder belts is however not statistically significant. The only situation where child safety seats appear to be significantly more effective is in the case of children age 0-1 occupying the front seat. The injury rate is reduced by 0.95% ( $\beta_{AxPxC} = -0.0095$ ) whereas for lap/lap and shoulder belts, the corresponding reduction is nil.

In view of the significance of the factors Number of Vehicles Involved, Age of Child, and Seating Position, the injury rate and effectiveness estimates are calculated based on the final model above for each subpopulation defined by the various strata of these factors. These estimates are given in Table 3-8 and Table 3-9.

Now for the variable Accident Year, since it was not selected as a control, one cannot derive the injury rate and effectiveness estimates based on the final model. However, Table 3-10 shows how the injury rates vary by Accident Year. There is a moderate downward trend for children in the unrestrained and lap/lap and shoulder belt groups and a stronger trend, especially, for children in some kind of child seating systems.

The fact that this downward trend is stronger for child seats than for unrestrained and belted children perhaps reflects the result of a combination of safer child seating systems and/or more proper usage of child restraints in later years. The differences of the trend lines, however are not statistically significant.

|                                | Restraint<br>Type | Child<br>Restraint | Lap/L+S          | None             |
|--------------------------------|-------------------|--------------------|------------------|------------------|
| Age of<br>Child                | 0-1               | 1.47%†<br>(0.25%)* | 1.58%<br>(0.17%) | 2.79%<br>(0.09%) |
|                                | 2-4               | 1.84%<br>(0.26%)   | 1.33%<br>(0.16%) | 2.53%<br>(0.09%) |
| Seating<br>Position            | Front             | 2.20%<br>(0.23%)   | 2.03%<br>(0.20%) | 3.25%<br>(0.13%) |
|                                | Rear              | 1.27%<br>(0.25%)   | 0.77%<br>(0.16%) | 1.95%<br>(0.11%) |
| No. of<br>Vehicles<br>Involved | 1                 | 3.83%<br>(0.98%)   | 2.47%<br>(0.64%) | 7.26%<br>(0.44%) |
|                                | 2+                | 1.47%<br>(0.22%)   | 1.27%<br>(0.16%) | 2.02%<br>(0.09%) |

(New York)

(A+K)-Injury Rates Estimates by Child Age, Seating Position, and Number of Vehicles Involved

Table 3-8

†Injury rate multiplied by 100
\*Standard Error

•

## Table 3-9

## (A+K)-Injury Effectiveness Estimates by Child Age, Seating Position, and Number of Vehicles Involved

|                                | Effectiveness | Child Restraint<br>vs None | Lap/L+S<br>vs None | Lap/L+S<br>vs<br>Child Restraint |
|--------------------------------|---------------|----------------------------|--------------------|----------------------------------|
| Age of<br>Child                | 0-1           | 47.09%<br>(9.10%)**        | 43.37%<br>(6.02%)  | -7.03%<br>(21.25%)               |
|                                | 2-4           | 27.32%<br>(10.58%)         | 47.21%<br>(6.45%)  | 27.36%<br>(13.22%)               |
| Seating<br>Position            | Front         | 32.42%<br>(6.89%)          | 37.59%<br>(5.40%)  | 7.65%<br>(11.53%)                |
|                                | Rear          | 34.73%<br>(13.43%)         | 60.25%<br>(8.16%)  | 39.09%<br>(17.37%)               |
| No. of<br>Vehicles<br>Involved | ]             | 47.20%<br>(13.87%)         | 65.98%<br>(8.86%)  | 35.56%<br>(22.97%)               |
|                                | 2+            | 27.06%<br>(11.15%)         | 37.14%<br>(8.31%)  | 13.82%<br>(16.54%)               |
|                                |               |                            |                    |                                  |

(New York)

 $*\frac{(\hat{r}_{N}-\hat{r}_{C})}{\hat{r}_{N}} = \text{Effectiveness of Child Restraint vs. None}$ 

\*\* Standard Error

## Table 3-10 Observed (A+K)-Injury Rates by Accident Year (New York)

|                   | 19             | 975         | 19             | 976         | 19             | 977         | 19             | 978         |
|-------------------|----------------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|
| Restraint<br>Type | Not<br>Injured | Injured     | Not<br>Injured | Injured     | Not<br>Injured | Injured     | Not<br>Injured | Injured     |
| Child             | 711            | 20<br>2.74* | 725            | 9<br>1.23   | 841            | 11<br>1.29  | 895            | 11<br>1.21  |
| Lap/L+S           | 1242           | 23<br>1.82  | 1089           | 23<br>2.07  | 1097           | 11<br>0.99  | 1082           | 9<br>0.82   |
| None              | 7465           | 245<br>3.18 | 7327           | 221<br>2.93 | 7237           | 175<br>2.36 | 7148           | 151<br>2.07 |

\*Injury rate

### 3.2. (B+A+K)-Injury Rate and Effectiveness Estimates

Application of the variable screening procedure relative to (B+A+K)-injury characterization produces the following set of variables as controls: Age of Child, Seating Position, Number of Vehicles Involved, and Driver Sex. The variables statistics generated in the process are given in Table A-2 of Appendix A.

Table 3-11 is the contingency table cross-classifying the Number of Vehicles Involved, Age of Child, Driver Sex, Seating Position, Child Restraint Type, and Child's (B+A+K)-injury status.

A sequence of linear models were fit to this table using the GSK-weighted least squares method. Table 3-12 gives the final parameter estimates and overall restraint effectiveness estimates corresponding to the final design matrix  $X_f$  which is given in Figure 3-2.

The estimated model coefficients suggest the following interpretation:

- Single vehicle crashes have significantly higher injury risk than multivehicle crashes ( $\beta_N = 0.1804$ ).
- The front seat is much less safe than the rear seat ( $\beta_p = 0.0958$ ), especially so in single vehicle accidents ( $\beta_{NxP} = 0.0705$ ).
- Babies 0-1 seem to sustain less injury than children 2-4 ( $\beta_A = -0.0147$ ), especially in the front seat ( $\beta_{A\times P} = -0.0272$ ).

## Table 3-11

Contingency table cross-classifying Number of Vehicles Involved,Age of Child, Driver Sex, Seating Position, Child Restraint Type, and Child's (B+A+K)-injury status

| No. of<br>Vehicles<br>Involved | Age<br>of<br>Child | Driver | Seating<br>Position | Child<br>Restraint<br>Type | (B+A-           | ⊦K)-injury<br>1 | Total            | 141+ |
|--------------------------------|--------------------|--------|---------------------|----------------------------|-----------------|-----------------|------------------|------|
| 1                              |                    |        |                     |                            |                 |                 |                  | MC.  |
| I                              | 0-1                | Male   | Front               | L<br>N                     | 13<br>190       | 4<br>4<br>89    | 26<br>17<br>279  | 322  |
|                                |                    |        | Rear                | C<br>L<br>N                | 26<br>15<br>96  | 7<br>4<br>33    | 33<br>19<br>129  | 181  |
|                                |                    | Female | Front               | C<br>L<br>N                | 78<br>36<br>179 | 26<br>17<br>138 | 104<br>53<br>317 | 474  |
|                                |                    |        | Rear                | C<br>L<br>N                | 56<br>32<br>83  | 13<br>6<br>35   | 69<br>38<br>118  | 225  |
|                                | 2-4                | Male   | Front               | C<br>L<br>N                | 7<br>17<br>272  | 2<br>6<br>215   | 9<br>23<br>487   | 519  |
|                                |                    |        | Rear                | C<br>L<br>N                | 17<br>52<br>434 | 5<br>15<br>159  | 22<br>67<br>593  | 682  |
|                                |                    | Female | Front               | C<br>L<br>N                | 16<br>55<br>402 | 12<br>24<br>379 | 28<br>79<br>781  | 888  |
|                                |                    |        | Rear                | C<br>L<br>N                | 32<br>68<br>534 | 9<br>12<br>219  | 41<br>80<br>753  | 874  |

(New York)

\*C = Child restraint

L = Lap/lap and shoulder belt

N = None used

| No. of   | Age   | Drivor | Soating  | Child        | (B+                | A+K)-inj          | ury                |      |
|----------|-------|--------|----------|--------------|--------------------|-------------------|--------------------|------|
| Involved | Child | Sex    | Position | Туре         | 0                  | 1                 | Total              | Wt.  |
| 2+       | 0-1   | Male   | Front    | C*<br>L<br>N | 229<br>218<br>1974 | 25<br>31<br>369   | 254<br>249<br>2343 | 2846 |
|          |       |        | Rear     | C<br>L<br>N  | 322<br>211<br>937  | 29<br>17<br>105   | 351<br>228<br>1042 | 1621 |
|          |       | Female | Front    | C<br>L<br>N  | 635<br>402<br>1608 | 91<br>55<br>353   | 726<br>457<br>1961 | 3144 |
|          |       |        | Rear     | C<br>L<br>N  | 570<br>286<br>750  | 64<br>20<br>93    | 634<br>306<br>843  | 1783 |
|          | 2-4   | Male   | Front    | C<br>L<br>N  | 96<br>431<br>3277  | 13<br>81<br>815   | 109<br>512<br>4092 | 4713 |
|          |       |        | Rear     | C<br>L<br>N  | 165<br>694<br>4606 | 23<br>62<br>669   | 188<br>756<br>5275 | 6219 |
|          |       | Female | Front    | C<br>L<br>N  | 201<br>673<br>3860 | 41<br>126<br>1066 | 242<br>799<br>4926 | 5967 |
|          |       |        | Rear     | C<br>L<br>N  | 335<br>810<br>5257 | 41<br>72<br>687   | 376<br>882<br>5944 | 7202 |

.

Table 3-11 (Con't)

\*C = Child restraint L = Lap/lap and shoulder belt N = None used

| Ta | Ьl | е | 3- | 1 | 2 |
|----|----|---|----|---|---|
|    |    |   |    |   |   |

## Final Parameter Estimates, Goodness-of-Fit Statistic, and Effectiveness Estimate for (B+A+K)-injury

(New York)

|                                                | Parameter              | Estimate (S.E.)                             | Parameter                     | Estimate (S.E.)                                |
|------------------------------------------------|------------------------|---------------------------------------------|-------------------------------|------------------------------------------------|
| •                                              | μ                      | 0.1212 (0.0029)                             | <sup>β</sup> N×P              | 0.0705 (0.0148)                                |
|                                                | β <mark>*</mark>       | 0.1804 (0.0130)                             | <sup>β</sup> N×C              | -0.0896 (0.0250)                               |
| -                                              | β <sub>A</sub>         | -0.0147 (0.0059)                            | <sup>β</sup> NxL              | -0.0794 (0.0233)                               |
|                                                | β <sub>P</sub>         | 0.0958 (0.0054)                             | βΑΧΡ                          | -0.0272 (0.0084)                               |
|                                                | βC                     | -0.0100 (0.0085)                            | <sup>β</sup> SxP              | -0.0188 (0.0059)                               |
|                                                | <sup>β</sup> L         | -0.0427 (0.0052)                            | <sup>B</sup> PxC              | -0.0457 (0.0127)                               |
|                                                | <sup>β</sup> NxS       | -0.0314 (0.0148)                            |                               |                                                |
|                                                |                        | Goodness-of                                 | f-Fit Statistic               |                                                |
|                                                |                        | $\chi^2$ (due to error) = 25.               | .01, d.f. = 35,               | p = 0.89                                       |
|                                                |                        | Overall Effect                              | tiveness Estimate             |                                                |
|                                                |                        |                                             | Grizzle-Starmer-<br>Estimates | Koch Standard<br>Error                         |
|                                                | l. Chil                | d Restraint vs. None                        | 23.96%†                       | 3.58%                                          |
|                                                | 2. Lap/1               | _+S vs. None                                | 28.84%                        | 2.81%                                          |
|                                                | 3. Lap/1               | _+S vs. Child Restraint                     | 6.40%††                       | 5.45%                                          |
|                                                |                        |                                             |                               |                                                |
| - +N - ∫ 1 i                                   | f single vehi          | cle $\int 1$ if front                       | seat † (r                     | $(n-\hat{r}_{c})/\hat{r}_{N} * 100 = 23.96\%$  |
| ~~                                             | f multi-vehic          | le <sup>r -</sup> (0 if rear s              | seat <b>††(</b> ?             | $(r_c - \hat{r}_L) / \hat{r}_c * 100 = 6.40\%$ |
| $A = \begin{cases} 1 & i \\ 0 & i \end{cases}$ | f age 0-1<br>f age 2-4 | C = {    l if child<br>C = {    O otherwise | restrained                    |                                                |

 $S = \begin{cases} 1 \text{ if male driver} \\ 0 \text{ if female driver} \end{cases} L = \begin{cases} 1 \text{ if child belted} \\ 0 \text{ otherwise} \end{cases}$ 

Figure 3-2 Predicted (B+A+K)-Injury Rates  $\hat{r} = \chi f_{\beta}$ (New York)

| Age   | Duivon | Contino  | Child       | Number of Venicles Involved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |  |  |
|-------|--------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| Child | Sex    | Position | Type        | Single Xf Multi ĝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |
| 0-1   | Male   | Front    | C<br>L<br>N | $ \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |  |  |
|       |        | Rear     | C<br>L<br>N | $ \begin{vmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cS              |  |  |
|       | Female | Front    | C<br>L<br>N | $ \begin{vmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | رP<br>دC<br>دL  |  |  |
|       |        | Rear     | C<br>L<br>N | $\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | с <b>Т</b><br>5 |  |  |
| 2-4   | Male   | Front    | C<br>L<br>N | 1       1       0       1       1       0       0       1       1       0       0       0       0       1       1         1       1       0       1       1       0       1       0       0       0       0       1       1       0       0       0       0       0       1       1       0       0       0       0       0       0       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       |                 |  |  |
|       |        | Rear     | C<br>L<br>N | 1       1       0       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                 |  |  |
|       | Female | Front    | C<br>L<br>N | 1       1       0       1       1       0       0       1       1       0       0       0       0       0       0       0       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                 |  |  |
|       |        | Rear     | C<br>L<br>N | 1       1       0       1       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                 |  |  |

.

2

.

f

-20-

- Children in cars with male drivers have fewer injuries than those in cars with female drivers, in the more hazardous accident situations ( $\beta_{NxS} = -0.0314$ ,  $\beta_{SxP} = -0.0188$ ).
- Child restraint is effective in reducing injuries ( $\beta_{C} = -0.0100$ ) and significantly so in the more hazardous situations ( $\beta_{NxC} = -0.0896$ ,  $\beta_{PxC} = -0.0457$ ).
- Lap/lap and shoulder belts are significantly effective in reducing injuries ( $\beta_L = -0.0427$ ) particularly in single vehicle accidents ( $\beta_{N\times L} = -0.0794$ ).

Thus, even though the overall effectiveness estimates of lap/lap & shoulder belts and child seating systems are not significantly different, the above analyses show that child seating systems might be more effective than belts in single vehicle accidents ( $\beta_{NxC} = -0.0896$  compare to  $\beta_{NxL} = -0.0794$ ), especially in the front seat ( $\beta_{PxC} = -0.0457$ ).

Based on the final model above, injury rate and effectiveness estimates are also calculated for each subpopulation defined by the levels of the factors: number of vehicles involved, seating position, and child's age. These estimates are given in Table 13 and 14.

### Table 3-13

(B+A+K)-Injury Rates Estimates by Child Age, Seating Position, and Number of Vehicles Involved

|          | Restraint<br>Type | Child<br>Restraint  | Lap/L+S           | None              |
|----------|-------------------|---------------------|-------------------|-------------------|
| Age of   | 0-1               | 11.97%†<br>(0.64%)* | 11.74%<br>(0.56%) | 16.91%<br>(0.38%) |
| Chita    | 2-4               | 14.22%<br>(0.65%)   | 13.10%<br>(0.50%) | 18.24%<br>(0.24%) |
| Seating  | Front             | 15.53%<br>(0.92%)   | 16.95%<br>(0.54%) | 22.15%<br>(0.31%) |
| FUSITION | Rear              | 11.63%<br>(0.80%)   | 8.46%<br>(0.49%)  | 13.56%<br>(0.27%) |
| No. of   | J                 | 23.97%<br>(2.29%)   | 24.14%<br>(2.13%) | 36.35%<br>(0.80%) |
| Involved | 2+                | 12.29%<br>(0.62%)   | 11.29%<br>(0.47%) | 15.57%<br>(0.22%) |

(New York)

†Injury rate multiplied by 100
\*Standard Error

Table 3-14 shows that effectiveness estimates for child seating systems and lap/lap & shoudler belts are not statistically significantly different except for children in rear seats where lap/belts appear to be significantly more effective.

Since Accident Year was not significantly interrelated with restraint usage and injury risk and consequently was not selected as one of the controls, it is not possible to obtain injury rate and effectiveness estimates based on the final (contingency table) model. However, in order to see how the injury rates vary by Accident Year, Table 15 illustrates the trend.

## Table 3-14

(B+A+K)-Injury Effectiveness Estimates by Child Age, Seating Position, and Number of Vehicles Involved

|                                     | Effectiveness | Child Restraint<br>vs None | Lap/L+S<br>vs None | Lap/L+S vs.<br>Child Restraint |
|-------------------------------------|---------------|----------------------------|--------------------|--------------------------------|
| Age of                              | 0-1           | 29.24%*<br>(3.91%)**       | 30.59%<br>(2.99%)  | 1.91%<br>(6.73%)               |
|                                     | 2-4           | 22.05%<br>(3.52%)          | 28.20%<br>(2.76%)  | 7.89%<br>(5.10%)               |
| Seating<br>Position                 | Front         | 29.88%<br>(4.27%)          | 23.48%<br>(2.32%)  | -9.12%<br>(7.31%)              |
|                                     | Rear          | 14.26%<br>(6.17%)          | 37.62%<br>(3.63%)  | 27.25%<br>(6.49%)              |
| No. of<br>Vehicles                  | 1             | 34.06%<br>(6.47%)          | 33.59%<br>(6.03%)  | 0.71%<br>(13.03%)              |
| Involved                            | 2+            | 21.03%<br>(4.16%)          | 27.45%<br>(3.17%)  | 8.13%<br>(5.94%)               |
| $(\mathbf{r}_{N} - \mathbf{r}_{C})$ |               |                            |                    |                                |

(New York)

\*  $r_N$  = effectiveness of Child Restraint vs. None  $r_N$ 

\*\* Standard Error

It appears that there is a trend of decreasing injury rates for children in lap/lap and shoulder belts and for unrestrained children. The corresponding

trend is not so obvious for children in child seating systems. The trends would not appear to indicate that child restraints became safer (or more often properly used) in later years.

|          | (New )         | (ork) |    |          |      |
|----------|----------------|-------|----|----------|------|
| Observed | (B+A+K)-Injury | Rates | bу | Accident | Year |
|          | Table          | 3-15  |    |          |      |

|                   | 1975           |               | 1976           |               | 1977           |                 | 1978           |               |
|-------------------|----------------|---------------|----------------|---------------|----------------|-----------------|----------------|---------------|
| Restraint<br>Type | Not<br>Injured | Injured       | Not<br>Injured | Injured       | Not<br>Injured | Injured         | Not<br>Injured | Injured       |
| Child             | 633            | 98<br>13.41*  | 648            | 86<br>11.72   | 740            | 112<br>13.15    | 796            | 110<br>12.14  |
| Lap/L+S           | 1094           | 171<br>13.52  | 972            | 140<br>12.59  | 986            | 122<br>11.01    | 970            | 121<br>11.09  |
| None              | 6245           | 1465<br>19.00 | 6170           | 1378<br>18.26 | 6099           | 1313<br>17.71 / | 6012           | 1287<br>17.63 |

\*Injury rate

### 3.3. All-Injury Rate and Effectiveness Estimates

Application of the variable selection procedure relative to All-injury characterization produces the same set of variables for controls, namely Number of Vehicles Involved, Age of Child, Driver Sex, and Seating Position. The various statistics generated are presented in Table A-3 of Appendix A.

Table 3-18 is the cross-classification of the Number of Vehicles Involved, Age of Child, Driver Sex, Seating Position, Child Restraint Type, and Child's All-injury status.

A sequence of linear models were fit to the above table via the GSK-weighted least squares method. The final parameter estimates and overall restraint effectiveness estimates corresponding to the design matrix  $\chi_f$  given in Figure 3-3 are presented in Table 3-19.

The estimated model coefficients suggest a similar interpretation as follows:

• Both single vehicle accidents ( $\beta_N = 0.1840$ ) and front seat ( $\beta_P = 0.1168$ ), especially in combination ( $\beta_{NXP} = 0.0875$ ) offer higher injury risk.

## Table 3-18

Contingency table cross-classifying Number of Vehicles Involved, Age of Child, Driver Sex, Seating Position, Child Restraint Type, and Child's All-Injury Status

| No. of<br>Vehicles | Age   | Driver | Seatino  | Child<br>Restraint |                  | All-injury      |                  |     |
|--------------------|-------|--------|----------|--------------------|------------------|-----------------|------------------|-----|
| Involved           | Child | Sex    | Position | Туре               | 0                | 1               | Tota]            | Wt. |
| 1                  | 0-1   | Male   | Front    | C*<br>L<br>N       | 20<br>11<br>171  | 6<br>6<br>108   | 26<br>17<br>279  | 322 |
|                    |       |        | Rear     | C<br>L<br>N        | 25<br>15<br>85   | 8<br>4<br>44    | 33<br>19<br>129  | 181 |
|                    |       | Female | Front    | C<br>L<br>N        | 67<br>34<br>160  | 37<br>19<br>157 | 104<br>53<br>317 | 474 |
|                    |       |        | Rear     | C<br>L<br>N        | 53<br>30<br>70   | 16<br>8<br>48   | 69<br>38<br>118  | 225 |
|                    | 2-4   | Male   | Front    | C<br>L<br>N        | 6<br>13<br>207   | 3<br>10<br>280  | 9<br>23<br>487   | 519 |
|                    |       |        | Rear     | C<br>L<br>N        | 16<br>46<br>366  | 6<br>21<br>227  | 22<br>67<br>593  | 682 |
|                    |       | Female | Front    | C<br>L<br>N        | 15<br>50<br>307  | 13<br>29<br>474 | 28<br>79<br>781  | 888 |
|                    |       |        | Rear     | C<br>L<br>N        | 30<br>60<br>45 1 | 11<br>20<br>302 | 41<br>80<br>753  | 874 |

(New York)

\* C = Child restraint L = Lap/lap and shoulder belt

N = None used

| No. of<br>Vehicles | Age<br>of | Driver | Seating  | Child<br>Restraint | A                  | All-injury        |                             |      |
|--------------------|-----------|--------|----------|--------------------|--------------------|-------------------|-----------------------------|------|
| Involved           | Child     | Sex    | Position | Туре               | 0                  | ]                 | Total                       | Wt.  |
| 2+                 | 0-1       | Male   | Front    | C*<br>L<br>N       | 206<br>196<br>1791 | 48<br>53<br>552   | 254<br>249<br>2343          | 2846 |
|                    |           |        | Rear     | C<br>L<br>N        | 300<br>195<br>825  | 51<br>33<br>217   | 351<br>228<br>1042          | 1621 |
|                    |           | Female | Front    | C<br>L<br>N        | 578<br>371<br>1445 | 148<br>86<br>516  | 726<br>457<br>1961          | 3144 |
|                    |           |        | Rear     | C<br>L<br>N        | 516<br>270<br>689  | 118<br>36<br>154  | 634<br>306<br>843           | 1783 |
|                    | 2-4       | Male   | Front    | C<br>L<br>N        | 88<br>378<br>2745  | 21<br>134<br>1347 | 109<br>512<br>4092          | 4713 |
|                    |           |        | Rear     | C<br>L<br>N        | 149<br>610<br>3982 | 39<br>146<br>1293 | 188<br>756<br>5275          | 6219 |
|                    |           | Female | Front    | C<br>L<br>N        | 182<br>592<br>3248 | 60<br>207<br>1678 | 2 <b>4</b> 2<br>799<br>4926 | 5967 |
|                    |           |        | Rear     | C<br>L<br>N        | 310<br>728<br>4661 | 66<br>154<br>1283 | 376<br>882<br>5944          | 7202 |

Table 3-18 (Con't)

\*C = Child restraint L = Lap/lap and shoulder belt N = None used

ø

•
#### Table 3-19

### Final Parameter Estimates, Goodness-of-Fit Statistic, and Effectiveness Estimate for All-Injury

(New York)

| Parameter        | <u>Estimate (S.E.)</u> | Parameter                       | Estimate (S.E.)      |
|------------------|------------------------|---------------------------------|----------------------|
| μ                | 0.2188 (0.0048)        | <sup>β</sup> N×C                | -0.0894 (0.0278)     |
| <sup>β</sup> Ň   | 0.1840 (0.0142)        | <sup>β</sup> N×L                | -0.0885 (0.0259)     |
| <sup>β</sup> A   | -0.0307 (0.0093)       | βAxS                            | -0.0182 (0.0099)     |
| <sup>β</sup> s   | 0.0274 (0.0066)        | <sup>β</sup> AxP                | -0.0419 (0.0106)     |
| <sup>β</sup> Ρ   | 0.1168 (0.0071)        | <sup>β</sup> AxC                | 0.0291 (0.0164)      |
| <sup>β</sup> c   | -0.0488 (0.0143)       | <sup>β</sup> SxP                | -0.0347 (0.0092)     |
| βL               | -0.0588 (0.0067)       | <sup>β</sup> PxC                | -0.0404 (0.0158)     |
| <sup>β</sup> NxS | -0.0391 (0.0161)       | <sup>β</sup> NxAxP              | -0.0532 (0.0232)     |
| <sup>β</sup> N×P | 0.0875 (0.0180)        |                                 |                      |
|                  | Goodness-of-           | Fit Statistic                   |                      |
| x <sup>2</sup>   | (due to error) = 22.8  | , d.f. = 31, p                  | = 0.86               |
|                  | Overall Effecti        | veness Estimate                 |                      |
|                  | -                      | Grizzle-Starmer-Ko<br>Estimates | ch Standard<br>Error |
| l. Child         | Restraint vs. None†    | 24.73%†                         | 3.44%                |
| 2. Lap/L+        | S vs. None             | 23.96%                          | 2.23%                |
| 3. Lap/L+        | S vs. Child Restraint† | † -1.02%††                      | 5.32%                |

|           | Figure 3-3       |     |     |
|-----------|------------------|-----|-----|
| Predicted | All-Injury Rates | r = | Xfβ |
|           | (New York)       | ~   | ~`~ |

t r

**t** 4

| Age   | Duringu | Santing  | Child       | Number of Vehicles Involved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |  |  |  |  |
|-------|---------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
| Child | Sex     | Position | Туре        | Single Xf Multi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Â                                                                            |  |  |  |  |
| 0-1   | Male    | Front    | C<br>L<br>N | $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μ<br><sup>β</sup> N<br><sup>β</sup> A                                        |  |  |  |  |
|       |         | Rear     | C<br>L<br>N | 1       1       1       0       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | <sup>β</sup> S<br>βP<br>βC<br>βL                                             |  |  |  |  |
|       | Female  | Front    | C<br>L<br>N | 1       1       0       1       0       1       0       1       0       0       0       0       0       1       0       1       0       0       0       0       0       1       0       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | <sup>β</sup> NxS<br><sup>β</sup> NxP<br><sup>β</sup> NxC<br><sup>β</sup> NxL |  |  |  |  |
|       |         | Rear     | C<br>L<br>N | 1       1       1       0       1       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | <sup>β</sup> AxS<br><sup>β</sup> AxP<br><sup>β</sup> AxC<br><sup>β</sup> SxP |  |  |  |  |
| 2-4   | Male    | Front    | C<br>L<br>N | 1       1       1       1       1       1       1       1       0       0       1       1       0       0       0       1       1       0       0       0       0       1       1       0       0       0       0       1       1       0       0       0       0       0       1       1       0       0       0       0       0       0       0       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | <sup>B</sup> PxC<br><sup>B</sup> NxA <u>x</u> I                              |  |  |  |  |
|       |         | Rear     | C<br>L<br>N | 1       1       0       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                              |  |  |  |  |
|       | Female  | Front    | C<br>L<br>N | 1       1       0       1       1       0       0       1       0       0       0       0       1       0       0       0       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                              |  |  |  |  |
|       |         | Rear     | C<br>L<br>N | 1       1       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                              |  |  |  |  |

- Children age 0-1 generally have less injury than children age 2-4  $(\beta_A = -0.0307, \beta_{AxP} = -0.0419, \beta_{AxNxP} = -0.0532)$ .
- The presence of male drivers is generally a higher injury risk factor than female drivers ( $\beta_S = 0.0274$ ). However, in the more hazardous accident situations, male drivers appear to be associated with lower injury risk than female drivers ( $\beta_{SxN} = -0.0391$ ,  $\beta_{SxP} = -0.0347$ ).
- Lap/lap and shoulder belts are significantly effective ( $\beta_L = -0.0588$ ), especially in single vehicle crashes ( $\beta_{NxL} = -0.0885$ ).
- Child restraint is significantly effective in reducing injuries  $(\beta_{C} = -0.0488)$ , and especially in the more hazardous situations  $(\beta_{NxC} = -0.0894, \beta_{PxC} = -0.0404)$ .

The overall effectiveness estimates seem to suggest that child safety seats and lap/lap & shoulder belts are about equally effective. However, the above analysis shows that child safety seats are relatively more effective for frontal position (a further reduction of 4.04%,  $\beta_{PXC} = -0.0404$ )). The injury rate and effectiveness estimates are also calculated for each subpopulation defined by the levels of the factors, Age of Child, Seating Position, and Number of Vehicles Involved. These estimates are given in Table 3-20 and Table 3-21. They indicate that in each case, overall the child safety seats and the lap/lap & shoulder belts are about equally effective.

Table 3-22 shows that there is a trend toward decreasing injury rate over the years; however, the trend is clearer for lap/lap & shoulder belts than for child safety seats which again exhibit a break in the trend for the accident year 1977. There is little evidence that child seats became more effective in later years.

|            | Table  | 3-2  | 22       |      |
|------------|--------|------|----------|------|
| All-Injury | Rates  | by   | Accident | Year |
|            | (New ) | rorl | <)       |      |

|                   | 197            | 75            | 197            | 76            | 192            | 77            | 197            | 78            |
|-------------------|----------------|---------------|----------------|---------------|----------------|---------------|----------------|---------------|
| Restraint<br>Type | Not<br>Injured | Injured       | Not<br>Injured | Injured       | Not<br>Injured | Injured       | Not<br>Injured | Injured       |
| Child             | 569            | 162<br>22.16* | 592            | 142<br>19.35  | 667            | 185<br>21.71  | 742            | 164<br>18.10  |
| Lap/L+S           | 969            | 296<br>23.40  | 852            | 260<br>23.38  | 903            | 205<br>18.50  | 883            | 208<br>19.07  |
| None              | 5421           | 2289<br>29.69 | 5351           | 2197<br>29.11 | 5267           | 2145<br>28.94 | 5232           | 2077<br>28.42 |

\*Injury rate

# Table 3-20

# All-Injury Rates Estimates by Child Age, Seating Position, and Number of Vehicles Involved

|                                | Restraint<br>Type | Child<br>Restraint  | Lap/L+S           | None              |
|--------------------------------|-------------------|---------------------|-------------------|-------------------|
| Age of                         | 0-1               | 19.60%†<br>(0.88%)* | 18.29%<br>(0.70%) | 25.17%<br>(0.48%) |
| Child                          | 2-4               | 22.24%<br>(1.28%)   | 23.11%<br>(0.63%) | 29.95%<br>(0.29%) |
| Seating<br>Position            | Front             | 24.18%<br>(1.26%)   | 26.19%<br>(0.67%) | 33.10%<br>(0.36%) |
|                                | Rear              | 18.88%<br>(1.17%)   | 17.30%<br>(0.63%) | 24.10%<br>(0.34%) |
| No. of<br>Vehicles<br>Involved | ]                 | 31.87%<br>(2.60%)   | 32.26%<br>(2.36%) | 46.98%<br>(0.84%) |
|                                | 2+                | 20.25%<br>(0.98%)   | 20.45%<br>(0.61%) | 26.32%<br>(0.27%) |

†Injury rate multiplied by 100
\*Standard Error

# Table 3-21

# All-Injury Effectiveness Estimates by Child Age, Seating Position, and Extent of Damage

(New York)

|                     | Restraint<br>Type | Child<br>Restraint<br>vs.<br>None | Lap/L+S<br>vs.<br>None | Lap/L+S<br>vs.<br>Child<br>Restraint |
|---------------------|-------------------|-----------------------------------|------------------------|--------------------------------------|
| Age of              | 0-1               | 22.14%*<br>(3.82%)**              | 27.34%<br>(2.53%)      | 6.67%<br>(5.50%)                     |
| UNITU               | 2-4               | 25.58%<br>(4.34%)                 | 22.85%<br>(2.14%)      | -3.67%<br>(6.61%)                    |
| Seating<br>Position | Front             | 26.95%<br>(3.89%)                 | 20.88%<br>(1.95%)      | -8.31%<br>(6.29%)                    |
|                     | Rear              | 21.66%<br>(4.99%)                 | 28.22%<br>(2.62%)      | 8.36%<br>(6.58%)                     |
| No. of              | 1                 | 32.16%<br>(5.69%)                 | 31.34%<br>(5.17%)      | -1.22%<br>(11.03%)                   |
| Involved            | 2+                | 23.08%<br>(3.81%)                 | 22.32%<br>(2.46%)      | -0.98%<br>(5.75%)                    |

 $\frac{(\hat{r}_{N}-\hat{r}_{C})}{\hat{r}_{N}} = \text{Effectiveness of child restraint vs none.}$ 

\*\* Standard Error

#### Chapter 4. THE MARYLAND ACCIDENT FILE

A child-oriented file of accidents involving children age 0-4 in passenger cars is created using the police-reported accident data from the state of Maryland covering the period 1977-1980. The file contains 25943 cases. The basic contents of this file can be seen from the variables appearing in Table A-4. Some items such as the weight of the striking vehicles are not available from the Maryland accident data and are subsequently derived based on the scheme as discussed in Chi and Reinfurt (1981).

The Maryland injury severity codes are not given in the KABCO scale. For the purpose of this study, the following three injury characterizations are defined to correspond to the KABCO scale.

| Injury<br>Characterization | Definition                                            |
|----------------------------|-------------------------------------------------------|
| (A+K)                      | Fatal + Incapacitating Injury                         |
| (B+A+K)                    | Fatal + Incapacitating +<br>Non-Incapacitating Injury |
| ALL                        | Any Injury                                            |

#### 4.1. (A+K)-Injury Rate and Effectiveness Estimates

Application of the variable screening procedure relative to the (A+K)-injury characterization produces the variables, Extent of Damage, Age of Child, and Seating Position. A summary of the statistics generated in the process are given in Table A-3 of Appendix A.

Table 4-1 provides the contingency table cross-classifying Extent of Damage, Age of Child, Seating Position, Child Resraint Type, and (A+K)-injury status.

Starting from a saturated model, a sequence of linear models were fit to the above table. The final model corresponding to the design matrix  $\chi_f$  given in Figure 4-1 produces the parameter estimates and overall effectiveness estimates given in Table 4-2.

The model coefficient estimates in Table 4-2 provide the following interpretation:

• Towaway accident ( $\beta_E = 0.0391$ ) or front seat ( $\beta_P = 0.0013$ ), or in combination ( $\beta_{FxP} = 0.0113$ ) have higher injury risk.

| Tal | ble | ે 4 | -1 |
|-----|-----|-----|----|
|     |     |     |    |

#### The Contingency Table Cross-Classifying Extent of Damage, Child's Age, Seating Position, Child Restraint Type, and (A+K)-Injury . . 1 . .

| (Mary | land) |
|-------|-------|
|-------|-------|

| Extant of | Age Child |          | (A+K)-       | (A+K)-Injury       |               | Stuatum            |                |
|-----------|-----------|----------|--------------|--------------------|---------------|--------------------|----------------|
| Damage    | Child     | Position | Туре         | No                 | Yes           | Total              | Weight         |
| 1         | 0-1       | Front    | C*<br>L<br>N | 145<br>110<br>670  | 6<br>5<br>34  | 151<br>115<br>704  | 970<br>0.0374  |
|           |           | Rear     | C<br>L<br>N  | 138<br>57<br>224   | 5<br>0<br>15  | 143<br>57<br>239   | 439<br>0.0169  |
|           | 2-4       | Front    | C<br>L<br>N  | 50<br>219<br>1765  | 2<br>8<br>101 | 52<br>227<br>1866  | 2143<br>0.0826 |
|           |           | Rear     | C<br>L<br>N  | 78<br>206<br>1829  | 1<br>2<br>84  | 79<br>208<br>1913  | 2200<br>0.0848 |
| 2+        | 0-1       | Front    | C*<br>L<br>N | 391<br>389<br>2233 | 0<br>0<br>6   | 391<br>389<br>2239 | 3019<br>0.1164 |
|           |           | Rear     | C<br>L<br>N  | 353<br>222<br>979  | 1<br>0<br>2   | 354<br>222<br>981  | 1557<br>0.0600 |
|           | 2-4       | Front    | C<br>L<br>N  | 179<br>877<br>6123 | 0<br>2<br>36  | 179<br>879<br>6159 | 7217<br>0.2782 |
|           |           | Rear     | C<br>L<br>N  | 322<br>948<br>7098 | 1<br>1<br>26  | 323<br>949<br>7124 | 8396<br>0.3237 |

\*C = Child restraint L = Lap/L+S N = None used

| Paramet                | er Estimate (                                                                           | <u>S.E.)</u>                                                                                  | Parameter                                                         | Estimat                                        | te (S.E.) |
|------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|-----------|
| μ                      | 0.0038 (0.0                                                                             | 0006)                                                                                         | β <sub>I</sub>                                                    | -0.0025                                        | (0.0009)  |
| β <mark></mark> ξ      | 0.0391 (0.0                                                                             | 0042)                                                                                         | β <sub>β</sub> FxP                                                | 0.0113                                         | (0.0053)  |
| β <sub>A</sub>         | -0.0018 (0.0                                                                            | 000 <b>9)</b>                                                                                 | β <sub>FxC</sub>                                                  | -0.0174                                        | (0.0087)  |
| β <sub>P</sub>         | 0.0013 (0.0                                                                             | 0008)                                                                                         | β <sub>Fx1</sub>                                                  | -0.0267                                        | (0.0063)  |
| βC                     | -0.0012 (0.0                                                                            | 0014)                                                                                         | -//-                                                              |                                                |           |
|                        |                                                                                         |                                                                                               |                                                                   |                                                |           |
|                        | Good                                                                                    | ness-of-Fit Si                                                                                | tatistic                                                          | - 0 90                                         |           |
|                        | Good<br>x <sup>2</sup> (due to error)<br>Ef                                             | ness-of-Fit Si<br>= 8.76, d.f<br>fectiveness Es                                               | tatistic<br>. = 15, p<br>stimate                                  | = 0.89                                         |           |
|                        | Good<br>X <sup>2</sup> (due to error)<br>Ef                                             | ness-of-Fit Si<br>= 8.76, d.f<br>fectiveness Es                                               | tatistic<br>. = 15, p<br>stimate                                  | = 0.89                                         |           |
|                        | Good<br>χ <sup>2</sup> (due to error)<br>Ef                                             | ness-of-Fit Si<br>= 8.76, d.f<br>fectiveness Es<br>Grizzle-Stan<br>Estima                     | tatistic<br>. = 15, p<br>stimate<br>rmer-Koch<br><u>tes</u>       | = 0.89<br>Standard<br>Error                    |           |
| . Child R              | Good<br>$\chi^2$ (due to error)<br>Ef<br>estraint vs. None                              | ness-of-Fit Si<br>= 8.76, d.f<br>fectiveness Es<br>Grizzle-Stan<br>Estima<br>36.185           | tatistic<br>. = 15, p<br>stimate<br>rmer-Koch<br><u>tes</u><br>%† | = 0.89<br>Standard<br>Error<br>15.11%          |           |
| . Child R<br>. Lap/L+S | Good<br><sub>X</sub> <sup>2</sup> (due to error)<br>Ef<br>estraint vs. None<br>vs. None | ness-of-Fit Si<br>= 8.76, d.f<br>fectiveness Es<br>Grizzle-Stan<br>Estima<br>36.185<br>59.485 | tatistic<br>. = 15, p<br>stimate<br>rmer-Koch<br><u>tes</u><br>%† | = 0.89<br>Standard<br>Error<br>15.11%<br>9.72% |           |

 $*E = \begin{cases} 1 \text{ if car was disabled} \\ 0 \text{ if not disabled} \end{cases} C = \begin{cases} 1 \text{ if child restrained} & \pm (\hat{r}_{N} - \hat{r}_{C})/\hat{r}_{N} & \pm 100 = 36.18\% \\ 0 \text{ otherwise} & \pm \pm (\hat{r}_{C} - \hat{r}_{L})/\hat{r}_{C} & \pm 100 = 36.51\% \end{cases}$   $A = \begin{cases} 1 \text{ if age } 0 - 1 \\ 0 \text{ if age } 2 - 4 & L = \end{cases} \begin{cases} 1 \text{ if child belted} \\ 0 \text{ otherwise} & L = \end{cases}$   $P = \begin{cases} 1 \text{ if front seat} \\ 0 \text{ if seat} & L = \end{cases}$ Note: Seating position,  $\beta_{P}$ , is not significant but is retained so that one can calculate the injury rate and effectiveness estimates by position (see

Table 4-3 and Table 4-4).

Table 4-2

# Final Parameter Estimates, Goodness-of-Fit Statistic, and Effectiveness Estimates for (A+K)-Injury.

- Children age 0-1 have generally lower injury rate than children age 2-4 ( $\beta_A = -0.0018$ ).
- Child restraint is effective ( $\beta_{c} = -0.0012$ ), but primarily in towaway accidents ( $\beta_{F_{VC}} = -0.0174$ ).
- Lap/lap and shoulder belts are generally effective ( $\beta_L = -0.0025$ ), and especially in towaway accidents ( $\beta_{ExL} = -0.0267$ ).

Overall effectiveness estimates show that both child safety seats and lap/lap & shoulder belts are significantly effective, particularly in towaway accidents, in reducing injuries. However, the standard errors suggest that the apparent differences in the effectiveness of child safety seats and lap/lap & shoulder belts are not statistically significant. This is also observed in Table 4-3 and Table 4-4 for the effectiveness estimates obtained for each subpopulation defined by the levels of the factors, age of child, seating position and extent of damage.

| [ab] | e 4 | -3 |
|------|-----|----|
|------|-----|----|

(A+K)-Injury Rate Estimates by Child Age, Seating Position, and Extent of Damage

|           | Child<br>Restraint<br>Type | Child<br>Restraint | Lap/L+S          | None             |
|-----------|----------------------------|--------------------|------------------|------------------|
| Age of    | 0-1                        | 0.87%†<br>(0.22%)* | 0.52%<br>(0.17%) | 1.39%<br>(0.09%) |
| Child     | 2-4                        | 0.91%<br>(0.21%)   | 0.59%<br>(0.13%) | 1.42%<br>(0.08%) |
| Seating   | Front                      | 1.11%<br>(0.23%)   | 0.76%<br>(0.17%) | 1.63%<br>(0.12%) |
| Position  | Rear                       | 0.68%<br>(0.21%)   | 0.37%<br>(0.12%) | 1.17%<br>(0.10%) |
| Extent of | Disabled                   | 3.07%<br>(0.81%)   | 2.03%<br>(0.54%) | 4.92%<br>(0.32%) |
| Dailiaye  | Not<br>Disabled            | 0.28%<br>(0.13%)   | 0.15%<br>(0.08%) | 0.40%<br>(0.05%) |

(Maryland)

†Injury rate multiplied by 100.

\*Standard error

# Table 4-4

# (A+K)-Injury Effectiveness Estimates by Child Age, Seating Position, and Extent of Damage

|           | Restraint<br>Type | Child<br>Restraint<br>vs. None | Lap/L+S<br>vs. None | Lap/L+S<br>vs. Child<br>Restraint |
|-----------|-------------------|--------------------------------|---------------------|-----------------------------------|
| Age of    | 0-1               | 38.30%*<br>(15.76%)**          | 62.78%<br>(10.86%)  | 39.68%<br>(22.49%)                |
|           | 2-4               | 35.56%<br>(14.96%)             | 58.51%<br>(9.55%)   | 35.62%<br>(20.03%)                |
| Seating   | Front             | 32.47%<br>(13.71%)             | 53.25%<br>(9.48%)   | 30.77%<br>(18.41%)                |
| Position  | Rear              | 41.65%<br>(17.39%)             | 68.67%<br>(10.87%)  | 46.31%<br>(23.89%)                |
|           | Disabled          | 37.81%                         | 59.13%              | 34.29%                            |
| Extent of |                   | (16.69%)                       | (11.17%)            | (24.04%)                          |
| Damaye    | Not<br>Disabled   | 30.53%<br>(34.19%)             | 60.70%<br>(19.62%)  | 43.44%<br>(36.63%)                |

(Maryland)

\* 
$$\frac{(\hat{r}_N - \hat{r}_C)}{\hat{r}_N}$$
 = Effectiveness of Child Restraint vs. None.

\*\*Standard Error

Figure 4-1 Predicted (A+K)-Injury Rates  $\hat{r} = \chi_{f}\hat{\beta}$ (Maryland)

| Age   | Contino  | Child       | Extent of Damage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Child | Position | Type        | Disabled $\hat{X}_{f}$ Not Disabled $\hat{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0-1   | Front    | C<br>L<br>N | $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | Rear     | C<br>L<br>N | 1       1       0       1       0       1       0       0       0       0       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       β       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B       C       B |
| 2-4   | Front    | C<br>L<br>N | $\begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | Rear     | C<br>L<br>N | 1       1       0       1       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |

-

¥ į

( · · · ·

One can not discern from Table 4-5 any meaningful trend in injury rate as a function of accident year. The rise in injury rates in the accident years 1979 and 1980 is inexplicable, other than perhaps due to differences in reporting thresholds or injury classification practices.

| Table 4-5 |              |       |    |          |      |  |  |
|-----------|--------------|-------|----|----------|------|--|--|
| Observed  | (A+K)-Injury | Rates | by | Accident | Year |  |  |
|           | (Maryla      | and)  |    |          |      |  |  |

|                   | 19             | 977        | 19             | 978        | 19             | 979        | 19             | 978        |
|-------------------|----------------|------------|----------------|------------|----------------|------------|----------------|------------|
| Restraint<br>Type | Not<br>Injured | Injured    | Not<br>Injured | Injured    | Not<br>Injured | Injured    | Not<br>Injured | Injured    |
| Child             | 420            | 3<br>0.71* | 485            | 3<br>0.61  | 499            | 5<br>0.99  | 262            | 5<br>1.87  |
| Lap/L+S           | 953            | 4<br>0.42  | 908            | 4<br>0.44  | 812            | 6<br>0.73  | 380            | 4<br>1.04  |
| None              | 5811           | 85<br>1.44 | 6689           | 82<br>1.21 | 5704           | 69<br>1.20 | 3085           | 69<br>2.19 |

\*Injury rate.

#### 4.2. (B+A+K)-Injury Rate and Effectiveness Estimates

The variable screening procedure selected in addition to Extent of Damage, the variables, Age of Child, Seating Position, and Driver Sex as controls. The contingency table cross-classifying these variables together with child restraint type and (B+A+K)-injury status is given by Table 4-6.

The parameter estimates, goodness of fit statistic, and the overall matrix  $\chi_f$  are given in Figure 4-2 where  $\beta$  is the vector of parameter estimates. The product  $\chi_f$  in Figure 4-2 provides the predicted injury rates.

The model parameter estimates in Table 4-7 offer the following interpretation:

• Towaway crashes ( $\beta_E = 0.1521$ ), or front seat ( $\beta_P = 0.0189$ ), or in combination ( $\beta_{EXP} = 0.0254$ ) have higher injury risk as noted before

|                     |                    |               | (Mary               | Tand)                      |                     |                |                           |                   |
|---------------------|--------------------|---------------|---------------------|----------------------------|---------------------|----------------|---------------------------|-------------------|
| Extent of<br>Damage | Age<br>of<br>Child | Driver<br>Sex | Seating<br>Position | Child<br>Restraint<br>Type | ( B+A+K ) - ]<br>No | Injury<br>Yes  | Total                     | Stratum<br>Weight |
| Disabled            | 0-1                | Male          | Front               | C*<br>L<br>N               | 22<br>23<br>265     | 6<br>4<br>74   | 28<br>27<br>339           | 394<br>0.0152     |
|                     |                    |               | Rear                | C<br>L<br>N                | 48<br>18<br>90      | 8<br>1<br>14   | 56<br>19<br>104           | 179<br>0.0069     |
|                     |                    | Female        | Front               | C<br>L<br>N                | 109<br>80<br>299    | 14<br>8<br>66  | 123<br>88<br>3 <b>6</b> 5 | 576<br>0.0222     |
|                     |                    |               | Rear                | C<br>L<br>N                | 71<br>33<br>111     | 16<br>5<br>24  | 87<br>38<br>135           | 260<br>0.0100     |
|                     | 2-4                | Male          | Front               | C<br>L<br>N                | 13<br>612<br>634    | 0<br>11<br>166 | 13<br>73<br>800           | 886<br>0.0346     |
|                     |                    | /             | Rear                | C<br>L<br>N                | 18<br>77<br>699     | 1<br>9<br>132  | 19<br>86<br>831           | 936<br>0.0361     |
|                     |                    | Female        | Front               | C<br>L<br>N                | 31<br>1318<br>822   | 8<br>16<br>244 | 39<br>154<br>1066         | 1259<br>0.0485    |
|                     |                    |               | Rear                | C<br>L<br>N                | 54<br>113<br>888    | 6<br>9<br>194  | 60<br>122<br>1082         | 1264<br>0.0487    |

| Tab | le | 4-6 |
|-----|----|-----|
|-----|----|-----|

Contingency table cross-classifying extent of damage, age of child, driver sex, seating position, child restraint type, and (B+A+K)-injury

(Manuland)

| Extent of<br>Damage | Age<br>of<br>Child | Driver<br>Sex | Seating<br>Position | Child<br>Restraint<br>Type | (B+A+K)-I<br>No    | njury<br>Yes    | Total              | Stratum<br>Weight |
|---------------------|--------------------|---------------|---------------------|----------------------------|--------------------|-----------------|--------------------|-------------------|
| Not<br>Disabled     | 0-1                | Male          | Front               | C<br>L<br>N                | 82<br>127<br>1102  | 1<br>1<br>28    | 83<br>128<br>1130  | 1341<br>0.0517    |
|                     |                    |               | Rear                | C<br>L<br>N                | 115<br>99<br>473   | 1<br>0<br>6     | 116<br>99<br>479   | 694<br>0.0268     |
|                     |                    | Female        | Front               | C<br>L<br>N                | 297<br>257<br>1083 | 11<br>4<br>26   | 308<br>261<br>1109 | 1678<br>0.0647    |
|                     |                    |               | Rear                | C<br>L<br>N                | 235<br>123<br>491  | 3<br>0<br>11    | 238<br>123<br>502  | 863<br>0.0333     |
|                     | 2-4                | Male          | Front               | C<br>L<br>N                | 53<br>343<br>2577  | 1<br>11<br>92   | 54<br>354<br>2669  | 3077<br>0.1186    |
|                     |                    |               | Rear                | C<br>L<br>N                | 116<br>421<br>3118 | 3<br>6<br>56    | 119<br>427<br>3174 | 3720<br>0.1434    |
|                     |                    | Female        | Front               | C<br>L<br>N                | 121<br>507<br>3347 | 4<br>18<br>43 1 | 125<br>525<br>3490 | 4140<br>0.1596    |
|                     |                    |               | Rear                | C<br>L<br>N                | 201<br>520<br>3862 | 3<br>2<br>88    | 204<br>522<br>3950 | 4676<br>0.1802    |

.

Table 4-6 (Con't)

| Parameter        | Estimate (S.E.)               | Parameter                     | Estimate (S.E.)        |
|------------------|-------------------------------|-------------------------------|------------------------|
| μ                | 0.0224 (0.0019)               | <sup>β</sup> FxC              | -0.0938 (0.0256)       |
| <sup>β</sup> Ě   | 0.1521 (0.0077)               | <sup>β</sup> Exi              | -0.0764 (0.0136)       |
| βĀ               | -0.0032 (0.0030)              | β <sub>AxP</sub>              | -0.0108 (0.0045)       |
| βS               | -0.0056 (0.0023)              | <sup>β</sup> SxL              | 0.0101 (0.0047)        |
| β <sub>P</sub>   | 0.0189 (0.0026)               | <sup>β</sup> ExAxP            | -0.0325 (0.0182)       |
| βC               | -0.0046 (0.0040)              | <sup>β</sup> ExAxC            | 0.0672 (0.0330)        |
| βL               | -0.0167 (0.0028)              | <sup>β</sup> ExAxSxP          | 0.0546 (0.0257)        |
| <sup>β</sup> ExP | 0.0254 (0.0113)               |                               |                        |
|                  | Goodness-of-                  | Fit Statistic                 |                        |
|                  | $\chi^2$ (due to error) = 21. | 05, d.f. = 33,                | p = 0.95               |
|                  | Effectiven                    | ess Estimate                  |                        |
|                  |                               | Grizzle-Starmer-<br>Estimates | Koch Standard<br>Error |
| 1. Cł            | nild Restraint vs. None†      | 34.12%†                       | 8.34%                  |
| 2. La            | ap/L+S vs. None               | 45.90%                        | 5.12%                  |
| 3. La            | ap/L+S vs. Child Restraintt   | 17.87%††                      | 12.45%                 |
|                  |                               |                               |                        |

|                 | Table 4-7          |                    |  |  |  |  |  |
|-----------------|--------------------|--------------------|--|--|--|--|--|
| Final Parameter | Estimates Goodnes  | s-of-Fit Statistic |  |  |  |  |  |
| and Effective   | eness Estimate for | (B+A+K)-injury     |  |  |  |  |  |

(Maryland)

 $F = \begin{cases} 1 \text{ if car was disabled} \\ 0 \text{ if not disabled} \end{cases}$   $P = \begin{cases} 1 \text{ if front seat} & + (\hat{r}_{N} - \hat{r}_{C})/\hat{r}_{N} * 100 = 34.12\% \\ 0 \text{ if rear seat} & + (\hat{r}_{C} - \hat{r}_{C})/\hat{r}_{C} * 100 = 17.87\% \end{cases}$   $A = \begin{cases} 1 \text{ if age } 0 - 1 \\ 0 \text{ if age } 2 - 4 \end{cases}$   $C = \begin{cases} 1 \text{ if child restrained} \\ 0 \text{ otherwise} \end{cases}$   $S = \begin{cases} 1 \text{ if male driver} \\ 0 \text{ if female driver} \end{cases}$   $L = \begin{cases} 1 \text{ if child belted} \\ 0 \text{ otherwise} \end{cases}$ 

NOTE: The Age effect,  $^{\beta}A$ , is not statistically significant, but is retained so that one can calculate the injury rates and effectiveness estimates by Child Age (see Tables 4-8, 4-9).

Figure 4-2 Predicted (B+A+K)-Injury Rates  $\hat{r} = \chi_f \hat{\beta}$ (Maryland)

1

4

/

I I

| Age    | Driver         | Seatino  | Child<br>Restraint | Extent of Damage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |
|--------|----------------|----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Child  | Sex            | Position | Туре               | Disabled 🕺 Kf Not Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ß                                                                                      |
| 0-1    | Male           | Front    | C<br>L<br>N        | $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μ<br>β<br>β<br>β<br>β                                                                  |
|        |                | Rear     | C<br>L<br>N        | 1       1       1       0       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | βS<br>βp<br>βC<br>βL                                                                   |
|        | Female         | Front    | C<br>L<br>N        | 111011011010110       101011000010000         111010110100       1010101000000000         11100001001000       101000000000000000         1010100000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>β</sup> ExP<br><sup>β</sup> ExC<br><sup>β</sup> ExL<br><sup>β</sup> AxP           |
|        |                | Rear     | C<br>L<br>N        | 1       1       1       0       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | <sup>β</sup> ExAxP<br><sup>β</sup> ExAxC<br><sup>β</sup> ExAxC<br><sup>β</sup> ExAxSxP |
| 2-4    | Male           | Front    | C<br>L<br>N        | 1       1       1       1       1       1       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                        |
|        |                | Rear     | C<br>L<br>N        | 1       1       0       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                        |
| -<br>- | <b>Fe</b> male | Front    | C<br>L<br>N        | 1       1       0       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                        |
|        |                | Rear     | C<br>L<br>N        | 1       1       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                        |

- Generally, the presence of male drivers presents a higher risk factor than that of female drivers ( $\beta_{S} + \beta_{SxL} = 0.0045$ )
- Child restraint is effective ( ${}^{\beta}C = -0.0046$ ) and especially significant in towaway crashes ( ${}^{\beta}ExC = -0.0938$ )
- Lap/lap and shoulder belts are significantly effective  $(\beta_{L} = -0.0167)$ , especially in towaway crashes  $(\beta_{Fx1} = -0.0764)$ .

The overall effectiveness estimates show again that both child safety seats and lap/lap & shoulder are significantly effective in reducing injuries as used. However, there is no significant difference in their effectiveness estimates. The same conclusion is drawn from the effectiveness estimates for each subpopulation defined by the levels of the factors, Age of Child, Seating Position, and Extent of Damage as shown in Table 4-8 and Table 4-9.

#### Table 4-8

# (B+A+K)-Injury Rate Estimates by Child Age, Seating Position, and Extent of Damage

| (1,00, ), 0,00 | ( | Ma | ry | 1 a | nd) |  |
|----------------|---|----|----|-----|-----|--|
|----------------|---|----|----|-----|-----|--|

|           | Restraint<br>Type | Child<br>Restraint | Lap/L+S           | None              |
|-----------|-------------------|--------------------|-------------------|-------------------|
| Age of    | 0-1               | 4.94%†<br>(0.56%)* | 3.02%<br>(0.39%)  | 6.03%<br>(0.30%)  |
| CHITA     | 2-4               | 3.96%<br>(0.62%)   | 3.57%<br>(0.25%)  | 6.46%<br>(0.17%)  |
| Seating   | Front             | 5.38%<br>(0.54%)   | 4.53%<br>(0.37%)  | 7.54%<br>(0.23%)  |
| Position  | Rear              | 2.95%<br>(0.54%)   | 2.31%<br>(0.33%)  | 5.13%<br>(0.19%)  |
| Extent of | Disabled          | 11.00%<br>(1.94%)  | 10.29%<br>(1.22%) | 19.16%<br>(0.59%) |
| Damage    | Not<br>Disabled   | 2.26%<br>(0.39%)   | 1.49%<br>(0.21%)  | 2.71%<br>(0.13%)  |

†Injury rate multiplied by 100
\*Standard Error

#### Table 4-9

# (B+A+K)-Injury Effectiveness Estimates by Child Age, Seating Position, and Extent of Damage

| (Maryl | and | ) |
|--------|-----|---|
|--------|-----|---|

|                     | Restraint<br>Type | Child<br>Restraint<br>vs.<br>None | Lap/L+S<br>vs.<br>None | Lap/L+S<br>vs.<br>Child<br>Restraint |
|---------------------|-------------------|-----------------------------------|------------------------|--------------------------------------|
| Age of<br>Child     | 0-1               | 17.95%*<br>(9.88%)**              | 50.06%<br>(5.86%)      | 39.14%<br>(9.94%)                    |
|                     | 2-4               | 38.65%<br>(9.62%)                 | 44.73%<br>(5.04%)      | 9.90%<br>(15.88%)                    |
| Seating<br>Position | Front             | 28.63%<br>(7.06%)                 | 40.03%<br>(4.60%)      | 15.97%<br>(9.96%)                    |
|                     | Rear              | 42.68%<br>(10.48%)                | 55.04%<br>(6.16%)      | 21.57%<br>(17.14%)                   |
| Extent of           | Disabled          | 42.73%<br>(10.17%)                | 46.33%<br>(6.51%)      | 6.30%<br>(19.56%)                    |
| ngunage             | Not<br>Disabled   | 16.81%<br>(14.61%)                | 45.02%<br>(8.00%)      | 33.91%<br>(14.08%)                   |

 $\frac{(\hat{r}_{N} - \hat{r}_{C})}{\hat{r}_{N}}$  = Effectiveness of child restraint vs. none

\*\*Standard Error

No discernible trend is evident in Table 4-10 that would suggest an increasing effectiveness of child safety seats as a consequence of improved safety features of the child seats or an increasingly more proper usage of child safety seats.

|                   |                |             | (Maryi         | and)        |                |             |                |                     |
|-------------------|----------------|-------------|----------------|-------------|----------------|-------------|----------------|---------------------|
|                   | 197            | 77          | 197            | 78          | 197            | 79          | 198            | 30                  |
| Restraint<br>Type | Not<br>Injured | Injured     | Not<br>Injured | Injured     | Not<br>Injured | Injured     | Not<br>Injured | Injured             |
| Child             | 410            | 13<br>3.07* | 464            | 24<br>2.96  | 483            | 21<br>4.17  | 239            | 28<br>10 <b>.49</b> |
| Lap/L+S           | 928            | 29<br>3.03  | 885            | 27<br>2.96  | 788            | 30<br>3.67  | 365            | 19<br>4 <b>.9</b> 5 |
| None              | 5536           | 360<br>6.11 | 6370           | 401<br>5.92 | 5421           | 352<br>6.10 | 2887           | 267<br>8.47         |

Table 4-10 Observed (B+A+K)-Injury Rates by Accident Year (Maryland)

\*Injury rate.

#### 4.3. All-Injury Rate and Effectiveness Estimates

Relative to all-injury characterization, the variable selection procedure basically produces the same set of variables as in the preceding section. The contingency table cross-classifying these factors by Child Restraint Type and All-Injury status is given by Table 4-11.

The parameter estimates, goodness of fit statistic, and the overall effectiveness estimates corresponding to the final design matrix  $X_f$  as given in Figure 4-3 are presented in Table 4-12.

The predicted all-injury rates,  $\hat{r} = \chi_{f\hat{\beta}}$  are determined by the matrices in Figure 4-3, where  $\beta$  is the vector of parameter estimates from Table 4-12.

The model coefficient estimates in Table 4-12 render the following interpretation:

- Towaway accidents ( $\beta_E = 0.2837$ ), or front seat ( $\beta_P = 0.0482$ ) have higher injury risk
- Babies are generally less vulnerable than children age 2-4 ( $\beta_A = -0.0050$ ,  $\beta_{AXP} = -0.0261$ ). However, in towaway accidents, babies seem to be more vulnerable ( $\beta_{AXE} = 0.0401$ ).
- Child restraint is most effective in towaway accidents  $(\beta_{ExC} = -0.0926)$ .
- Lap/lap and shoulder belts are very effective ( $\beta_L = -0.0296$ ) in reducing injuries, especially in front seat towaway crashes ( $\beta_{ExPxL} = -0.1122$ ).

#### Table 4-11

# Contingency table cross-classifying extent of damage, child age, driver sex, seating position, child restraint type and all-injury status

| Extent<br>of<br>Damage | Age<br>of<br>Child | Driver<br>Sex | Seating<br>Position | Child<br>Restraint<br>Type | A11-<br>0        | injury<br>1            | Total             | Stratum<br>Weight |
|------------------------|--------------------|---------------|---------------------|----------------------------|------------------|------------------------|-------------------|-------------------|
| 1                      | 0-1                | Male          | Front               | C*<br>L<br>N               | 13<br>19<br>183  | 15<br>8<br>1 <b>56</b> | 28<br>27<br>339   | 394<br>0.0152     |
|                        |                    |               | Rear                | C •<br>L<br>N              | 38<br>13<br>57   | 18<br>6<br>47          | 56<br>19<br>104   | 179<br>0.0069     |
|                        |                    | Female        | Front               | C<br>L<br>N                | 85<br>62<br>200  | 38<br>26<br>165        | 123<br>88<br>365  | 576<br>0.0222     |
|                        |                    |               | Rear                | C<br>L<br>N                | 56<br>22<br>78   | 31<br>16<br>57         | 87<br>38<br>135   | 260<br>0.0100     |
|                        | 2-4                | Male          | Front               | C<br>L<br>N                | 10<br>48<br>457  | 3<br>25<br>343         | 13<br>73<br>800   | 886<br>0.0346     |
|                        |                    |               | Rear                | C<br>L<br>N                | 16<br>60<br>498  | 3<br>26<br>333         | 19<br>86<br>831   | 936<br>0.0361     |
|                        |                    | Female        | Front               | C<br>L<br>N                | 24<br>109<br>575 | 15<br>46<br>491        | 39<br>154<br>1066 | 1259<br>0.0485    |
|                        |                    |               | Rear                | C<br>L<br>N                | 40<br>82<br>648  | 20<br>40<br>434        | 60<br>122<br>1082 | 1264<br>0.0487    |

# (Maryland)

\*C = Child restraint
 L = Lap/lap and shoulder belt
 N = None used

| Extent<br>of<br>Damage | Age<br>of<br>Child | Driver<br>Sex | Seating<br>Position | Child<br>Restraint<br>Type | A11-<br>O          | injury<br>1      | Total              | Stratum<br>Weight |
|------------------------|--------------------|---------------|---------------------|----------------------------|--------------------|------------------|--------------------|-------------------|
| 2+                     | 0-1                | Male          | Front               | C<br>L<br>N                | 70<br>113<br>982   | 13<br>15<br>148  | 83<br>128<br>1130  | 1341<br>0.0517    |
|                        |                    |               | Rear                | C<br>L<br>N                | 109<br>94<br>422   | 7<br>5<br>57     | 116<br>99<br>479   | 694<br>0.0268     |
|                        |                    | Female        | Front               | C<br>L<br>N                | 268<br>236<br>968  | 40<br>25<br>14 1 | 308<br>261<br>1109 | 1678<br>0.0647    |
|                        |                    |               | Rear                | C<br>L<br>N                | 212<br>115<br>443  | 26<br>8<br>59    | 238<br>123<br>502  | 863<br>0.0333     |
|                        | 2-4                | Male          | Front               | C<br>L<br>N                | 46<br>308<br>2236  | 8<br>46<br>433   | 54<br>354<br>2669  | 3077<br>0.1186    |
|                        |                    |               | Rear                | C<br>L<br>N                | 110<br>385<br>2806 | 9<br>42<br>368   | 119<br>427<br>3174 | 3720<br>0.1434    |
|                        |                    | Female        | Front               | C<br>L<br>N                | 104<br>446<br>2944 | 21<br>79<br>546  | 125<br>525<br>3490 | 4140<br>0.1596    |
|                        |                    |               | Rear                | C<br>L<br>N                | 184<br>479<br>3512 | 20<br>43<br>438  | 204<br>522<br>3950 | 4676<br>0.1802    |

Table 4-11 (Con't)

.

.

#### Table 4-12

# Final Parameter Estimates, Goodness-of-Fit Statistic, and Effectiveness Estimate for All-Injury

(Maryland)

| <u>Paramete</u> | er <u>Estimate (S.E.)</u>                                           | Parameter                              | <u>Estimate (S.E.)</u> |
|-----------------|---------------------------------------------------------------------|----------------------------------------|------------------------|
| μ               | 0.1132 (0.0035)                                                     | <sup>β</sup> ExA                       | 0.0401 (0.0167)        |
| <sup>β</sup> Ě  | 0.2837 (0.0081)                                                     | β <sub>Ex</sub> C                      | -0.0926 (0.0264)       |
| βA              | -0.0050 (0.0082)                                                    | βΑχΡ                                   | -0.0261 (0.0105)       |
| <sup>β</sup> ρ  | 0.0482 (0.0051)                                                     | <sup>β</sup> ExPxL                     | -0.1122 (0.0268)       |
| βc              | -0.0167 (0.0096)                                                    | <sup>β</sup> AxSxPxC                   | 0.0655 (0.0380)        |
| β               | -0.0296 (0.0065)                                                    |                                        |                        |
|                 | χ <sup>2</sup> (due to error) = 25.5<br>Overall Effect <sup>+</sup> | 50, d.f. = 37, p =<br>iveness Estimate | 0.92                   |
|                 |                                                                     | Grizzle-Starmer-Koch<br>Estimates      | Standard<br>Error      |
| 1. Ch           | nild Restraint vs. None†                                            | 16.59%†                                | 4.60%                  |
| 2. La           | up/L+S vs. None                                                     | 21.75%                                 | 3.20%                  |
| 3. La           | up/L+S vs. Child Restaint†1                                         | +6.19%††                               | 6.13%                  |

Note: Age of Child is not significant but is retained so that one may calculate the injury rate and effectiveness etimates by Age of Child.

Figure 4-3 Predicted (All)-Injury Rates  $\hat{r} = \chi_{f\hat{\beta}}$ (Maryland)

| Age         |               | 0                   | Child             | Extent of Damage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
|-------------|---------------|---------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| ot<br>Child | Driver<br>Sex | Seating<br>Position | Kestraint<br>Type | Disabled X <sub>f</sub> Not Disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | β<br>ζ                                                                             |
| 0-1         | Male          | Front               | C<br>L<br>N       | $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μ<br>βE<br>βA                                                                      |
|             |               | Rear                | C<br>L<br>N       | 1       1       0       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | <sup>β</sup> Ρ<br><sup>β</sup> C<br><sup>β</sup> L<br><sup>β</sup> ExA             |
|             | Female        | Front               | C<br>L<br>N       | 1       1       1       1       1       1       0       1       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | <sup>β</sup> ExC<br><sup>β</sup> AxP<br><sup>β</sup> ExPxL<br><sup>β</sup> AxSxPxC |
|             |               | Rear                | C<br>L<br>N       | 1       1       0       1       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                    |
| 2-4         | Male          | Front               | C<br>L<br>N       | 1       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                    |
|             |               | Rear                | C<br>L<br>N       | 1       1       0       1       0       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                    |
|             | Female        | Front               | C<br>L<br>N       | 1       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                    |
|             |               | Rear                | C<br>L<br>N       | 1       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                    |

.

a,

-48-

Overall effectiveness estimates again confirm the effectiveness of both the child seating systems as used and the lap/lap & shoulder belts. Although, no significant difference in overall effectiveness estimates are detected between child safety seats and lap/lap & shoulder belts as used, it is clear that generally in the more severe accidents, child safety seats are significantly more effective than conventional belt systems.

Generally, the same conclusion can be drawn with respect to each subpopulation defined by the levels of the factors, Age of Child, Seating Position, and Extent of Damage. However, for children age 0-1, or for children in front seat, lap/lap & shoulder belts are significantly more effective than child safety seats as used. This can be seen from Table 4-13 and Table 4-14.

| Restraint<br>Type | Child<br>Restraint                                                              | Lap/L+S                                                                                                                                                                                                                                                                                                | None                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-1               | 17.97%†                                                                         | 15.13%                                                                                                                                                                                                                                                                                                 | 19.94%                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | (1.26%)*                                                                        | (0.74%)                                                                                                                                                                                                                                                                                                | (0.52%)                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-4               | 16.08%                                                                          | 15.60%                                                                                                                                                                                                                                                                                                 | 19.76%                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | (0.94%)                                                                         | (0.62%)                                                                                                                                                                                                                                                                                                | (0.29%)                                                                                                                                                                                                                                                                                                                                                                                        |
| Front             | 19.14%                                                                          | 16.56%                                                                                                                                                                                                                                                                                                 | 22.13%                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | (0.97%)                                                                         | (0.76%)                                                                                                                                                                                                                                                                                                | (0.35%)                                                                                                                                                                                                                                                                                                                                                                                        |
| Rear              | 13.72%                                                                          | 14.36%                                                                                                                                                                                                                                                                                                 | 17.33%                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | (0.91%)                                                                         | (0.64%)                                                                                                                                                                                                                                                                                                | (0.33%)                                                                                                                                                                                                                                                                                                                                                                                        |
| Disabled          | 32.24%                                                                          | 33.68%                                                                                                                                                                                                                                                                                                 | 42.74%                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | (2.34%)                                                                         | (1.40%)                                                                                                                                                                                                                                                                                                | (0.72%)                                                                                                                                                                                                                                                                                                                                                                                        |
| Not               | 12.03%                                                                          | 10.31%                                                                                                                                                                                                                                                                                                 | 13.26%                                                                                                                                                                                                                                                                                                                                                                                         |
| Disabled          | (0.91%)                                                                         | (0.60%)                                                                                                                                                                                                                                                                                                | (0.26%)                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | Restraint<br>Type<br>0-1<br>2-4<br>Front<br>Rear<br>Disabled<br>Not<br>Disabled | Restraint<br>Type         Child<br>Restraint           0-1         17.97%†<br>(1.26%)*           2-4         16.08%<br>(0.94%)           Front         19.14%<br>(0.97%)           Rear         13.72%<br>(0.91%)           Disabled         32.24%<br>(2.34%)           Not         12.03%<br>(0.91%) | Restraint<br>TypeChild<br>RestraintLap/L+S $0-1$ $17.97\%^+$<br>$(1.26\%)^*$ $15.13\%$<br>$(0.74\%)$ $2-4$ $16.08\%$<br>$(0.94\%)$ $15.60\%$<br>$(0.62\%)$ Front $19.14\%$<br>$(0.97\%)$ $16.56\%$<br>$(0.76\%)$ Rear $13.72\%$<br>$(0.91\%)$ $14.36\%$<br>$(0.64\%)$ Disabled $32.24\%$<br>$(2.34\%)$ $33.68\%$<br>$(1.40\%)$ Not<br>Disabled $12.03\%$<br>$(0.91\%)$ $10.31\%$<br>$(0.60\%)$ |

Seating Position, and Extent of Damage (Maryland)

Table 4-13

All-Injury Rate Estimates by Child Age,

†Injury rate multiplied by 100
\*Standard Error

| Ta  | зb | le  | 4 - | 14  |
|-----|----|-----|-----|-----|
| ••• | ~~ | ••• | •   | ••• |

# All-Injury Effectiveness Estimates by Child Age, Seating Position, and Extent of Damage

|                                     | Restraint<br>Type                               | Child<br>Restraint<br>vs.<br>None | Lap/L+S<br>vs.<br>None | Lap/L+S<br>vs.<br>Child<br>Restraint |
|-------------------------------------|-------------------------------------------------|-----------------------------------|------------------------|--------------------------------------|
| Age of                              | 0-1                                             | 9.79%*<br>(6.47%)**               | 23.99%<br>(3.37%)      | 15.74%<br>(6.98%)                    |
| UN110                               | 2-4                                             | 18.64%<br>(4.71%)                 | 21.07%<br>(3.18%)      | 2.99%<br>(6.49%)                     |
| Seating                             | Front                                           | 13.46%<br>(4.38%)                 | 25.20%<br>(3.47%)      | 13.57%<br>(5.68%)                    |
| Position                            | Rear                                            | 20.82%<br>(5.29%)                 | 17.07%<br>(3.66%)      | -4.74%<br>(8.04%)                    |
| Extent of                           | Disabled                                        | 24.53%<br>(5.68%)                 | 21.14%<br>(3.30%)      | -4.49%<br>(8.76%)                    |
| Damage                              | Not<br>Disabled                                 | 9.29%<br>(17.08%)                 | 22.30%<br>(4.73%)      | 14.35%<br>(8.03%)                    |
| (r̂ <sub>N</sub> -r̂ <sub>C</sub> ) | <b>Fffa bi bi b a b b i b b b b b b b b b b</b> |                                   |                        |                                      |

(Maryland)

 $\hat{r}_{N}$  = Effectiveness of child restraint vs. none

\*\*Standard error

Finally, there seems to be a reverse trend in injury rates as a function of accident year. In fact, the observed injury rate for children in child safety seats in 1980 is about double the rates in 1977, 1978, and 1979. The corresponding trend is also observed for children in lap/lap & shoulder belts and unrestrained children but not as pronounced.

| Table 4-15 |            |       |    |          |      |  |  |  |  |
|------------|------------|-------|----|----------|------|--|--|--|--|
| Observed   | All-Injury | Rates | by | Accident | Year |  |  |  |  |
| (Maryland) |            |       |    |          |      |  |  |  |  |

|                   | ]              | 977           | 19             | 78            | ]              | 979                    | 19             | 980          |
|-------------------|----------------|---------------|----------------|---------------|----------------|------------------------|----------------|--------------|
| Restraint<br>Type | Not<br>Injured | Injured       | Not<br>Injured | Injured       | Not<br>Injured | Injured                | Not<br>Injured | Injured      |
| Child             | 372            | 51<br>12.06*  | 413            | 75<br>15.37   | 419            | 85<br>16.87            | 190            | 77<br>28.84  |
| Lap/L+S           | 821            | 136<br>14.21  | 778            | 134<br>14.69  | 695            | 123<br>15.04           | 321            | 63<br>16.41  |
| None              | 4795           | 1101<br>18.67 | 5552           | 1219<br>18.00 | 4621           | 1152<br>19 <b>.</b> 95 | 2368           | 786<br>24.92 |

.

\*Injury rate

#### Chapter 5. SUMMARY

This analysis of the New York State and Maryland child files demonstrated that both child safety seats and lap/lap and shoulder belts are most (significantly) effective in reducing (A+K)-injuries and less effective (though still significant) in reducing (B+A+K)- and all-injuries as shown in Table 5-1.

| Tab | le | 5-1 |  |
|-----|----|-----|--|
|-----|----|-----|--|

Overall effectiveness of child safety seats and lap/ lap and shoulder belts for New York State and Maryland.

| Restraint<br>Type     | Injury<br>Characterization | State of<br>New York<br>1975-78 | State of<br>Maryland<br>1977-80 |
|-----------------------|----------------------------|---------------------------------|---------------------------------|
|                       | (A+K)                      | 34.12%<br>(8.34%)*              | 36.18%<br>(15.11%)              |
| Child Safety<br>Seats | (B+A+K)                    | 23.96%<br>(3.58%)               | 33.28%<br>(8.89%)               |
|                       | A11                        | 24.73%<br>(3.44%)               | 16.59%<br>(4.60%)               |
|                       | (A+K)                      | 45.90%<br>(5.12%)               | 59.48%<br>(9.72%)               |
| Lap/lap and shoulder  | (B+A+K)                    | 28.84%<br>(2.81%)               | 46.05%<br>(6.34%)               |
| DELES                 | A11                        | 23.96%<br>(2.23%)               | 21.72%<br>(3.20%)               |

\*Standard Error

Overall effectiveness estimates for lap/lap and shoulder belts seem to be uniformly higher than the corresponding estimates for child safety seats. However, these differences are not statistically significant as shown in Table 5-2.

| Injury<br>Characterization | State of<br>New York  | State of<br>Maryland |
|----------------------------|-----------------------|----------------------|
| (A+K)                      | 19.13%*<br>(13.69%)** | 36.51%<br>(20.52%)   |
| ( B+A+K )                  | 6.40%<br>(5.45%)      | 17.87%<br>(12.45%)   |
| A11                        | -1.02%<br>(5.32%)     | 6.19%<br>(6.13%)     |

| Effectiv | eness of | of lap/ | 'lap | and | shoul | lder be | elts | relative  | to |
|----------|----------|---------|------|-----|-------|---------|------|-----------|----|
| child    | safety   | seats   | for  | New | York  | State   | and  | Maryland. |    |

Table 5-2

 $\frac{\hat{r}_{C}-\hat{r}_{L}}{\hat{r}_{C}}$  = Effectiveness of Lap/L+S relative child safety seats \*C

The generally lower estimates for the effectiveness of lap/lap and shoulder belts relative to child safety seats could be due to the significant amount of improper usage and/or installation of the seats. Even so, detailed analyses from the various models show that there are a few specific instances as described in Table 5-3 where the child safety seats are significantly more effective than the lap/lap and shoulder belts.

Table 5-3

Specific instances where child safety seats are significantly more effective than (lap & shoulder) belts.

| Injury Characterization | New York                           | Maryland        |
|-------------------------|------------------------------------|-----------------|
| (A+K)                   | Children age O-l in<br>front seats |                 |
| (B+A+K)                 | Front seats                        |                 |
| A11                     | Front seats                        | Towaway crashes |

The injury rates for children seem to be decreasing over the years as can be seen from the New York data. However, the trend is there for both the child safety seats, the lap/lap and shoulder belt systems and the unrestrained children. Consequently the downward trend observed cannot be attributed to safer child seats and/or more proper usage of such seats over the years without further information.

More definitive results require detailed accident data at a level that is not available at present from the police reported state accident data.

<sub>с</sub>.,

#### REFER INCES

- Chi, G.Y.H. (1980). Statistical evaluation of the effectiveness of FMVSS 214: Side door strength. (Report No. 4254-676). Hartford, CT: The Center for the Environment and Man, Inc.
- Chi, G.Y.H. and Donald W. Reinfurt (1981). A comparison of the automatic shoudler belt/knee bolster restraint system with the lap and shoulder belt system in VW Rabbits. Chapel Hill, N.C.: University of North Carolina Highway Safety Research Center.
- 3. Higgins, J.H. and Gary G. Koch (1977). Variable selection and generalized chi-square analysis of categorical data applied to a large cross-sectional occupational health survey. <u>International Statistical</u> Review 45, 51-62.
- 4. Knoop, J.C., Kayla Costenoble, John T. BAll, and Garyland M. Northrop (1980). Statistical evaluation of the effectiveness of child restraints. (Report No. 4254-675). Hartford, CT: The Center for the Environment and Man, Inc.

Appendix Statistics Generated in the Variable Screening Procedure for FMVSS 213. The variable screening procedure is discussed in Section 2 of this report on FMVSS 213.

The following list of variables on the New York State file was screened on: accident year, number of vehicles involved, hour of the day, road type, accident type, intersection/non-intersection, day of the week, model year, extent of damage, tow, number of children in the car, weight of the vehicle, weight of the striking vehicle, impact site (reconstructed), vehicle size, age of driver, driver sex, driver belt usage, child age, child ejection status, sex of child, seating position, restraint type used by child.

Tables A-1, A-2 and A-3 contain the statistics generated for a selected list of variables for the screening procedure relative to (A+K), (B+A+K), and all-injury characterizations, respectively.

For the Maryland file, the variables, locality, weather, and road condition, were considered in addition to the list of variables indicated for the New York State file. Tables A-4, A-5 and A-6 contain the statistics generated for a selected subset of these variables.

37

# Table A-1. Statistics derived for variable selection with respect to (A+K)-injury characterization.

(New York)

|                               | x <sup>2</sup> [Child Restra | int x V] ;    | x <sup>2</sup> [ <b>(A+</b> K)- | Inju       | ury x       | x <sup>2</sup> [V x<br>V] x <sup>2</sup> [V x | (A+K)-<br>(A+K)- | -inj<br>-inj | .[Restraint]<br>.[No Restraint] | <br> <br>! | Mantel<br>Haensz<br>Statis | -<br>cel<br>stic | Index*** |
|-------------------------------|------------------------------|---------------|---------------------------------|------------|-------------|-----------------------------------------------|------------------|--------------|---------------------------------|------------|----------------------------|------------------|----------|
| Accident Year (4)*            | 37.4 (3)<br>12.5 (           | †<br>(1)      | 27.5                            | (3)<br>9.2 | †<br>(1)    |                                               | 8.1<br>22.6      | (3)<br>(3)   | 0.0441<br>†                     | 26.3       | 3 (3)                      | †                | 0.86     |
| No Vehicles (2)               | 4.4 (1) (                    | 0.04          | 352.7                           | (1)        | t           |                                               | 12.9<br>338.0    | (1)<br>(1)   | †<br>†                          | 350.       | (1)                        | t                | 1.00     |
| Extent of Damage (            | 5) 10.6 (4) (<br>2.7 (       | ).03**<br>(1) | 302.2<br>7                      | (4)<br>5.6 | †<br>(1)    |                                               | 27.0<br>279.1    | (4)<br>(4)   | †<br>†                          | 302.0      | ) (4)                      | †                | 0.99     |
| Vehicle Weight (4)            | 45.6 (3)<br>15.2 (           | †<br>(1)      | 29.0                            | (3)<br>9.7 | †<br>(1)    |                                               | 10.7<br>25.3     | (3)<br>(3)   | 0.01<br>†                       | 30.4       | (3)                        | t                | 0.84     |
| Age of Driver (4)             | 246.7 (3)<br>82.2 (1)        | †             | 12.2                            | (3)<br>4.1 | †<br>(1)    |                                               | 2.1<br>10.5      | (3)<br>(3)   | 0.56<br>0.01                    | 12.0       | ) (3)                      | †                | 0.95     |
| Age of Child (4)              | 3164.8 (3)<br>1054.9 (       | †<br>(1)      | 0.3                             | (3)<br>0.1 | 0.96<br>(1) |                                               | 4.4<br>3.1       | (3)<br>(3)   | 0.22<br>0.38                    | 2.3        | 3 (3)                      | 0.52             | 0.31     |
| Child Seating (2)<br>Position | 20.6 (1)                     | t             | 52.7                            | (1)        | †           |                                               | 1.4<br>50.4      | (1)<br>(1)   | 0.23<br>†                       | 51.5       | 5 (1)                      | †                | 0.99     |

.

-

,

\*Number of levels (e.g., 1975, 1976, 1977 and 1978)

1 N

\*\* $\chi^2$  = 10.6 (d.f. = 4) p-value = 0.03  $\chi^2/d.f. = 2.7$ 

\*\*\*Index =  $\frac{Mantel-Haenszel}{\chi^2[V \times INJ[Restraint] + \chi^2[V \times INJ[No Restraint]]}$ tp < 0.01

| Table A-1. ( | Con't | ) |
|--------------|-------|---|
|--------------|-------|---|

1 3

t .

|                           | $\chi^2$ [(No.Veh. x V) x Rest.] | χ <sup>2</sup> [(No.Veh. x V) x<br>(A+K)-inj.] | $\chi^{2}$ [(No.Veh. x V) x<br>$\chi^{2}$ [(No.Veh. x V) x | (A+K)-inj. Rest.]<br>(A+K)-inj. No Rest.] | Mantel-<br>Haenszel<br>Statistic | Index         |
|---------------------------|----------------------------------|------------------------------------------------|------------------------------------------------------------|-------------------------------------------|----------------------------------|---------------|
| Accident Year             | 43.5 †<br>6.2 (1)                | 388.3 †<br>55.5 (1)                            | 25.3 (7)<br>373.5 (7)                                      | 0.01<br>†                                 | 384.7 (7) †                      | 0 <b>.9</b> 6 |
| Extent of Damage          | 20.2 (9) †<br>2.2 (1)            | 413.3 (9) †<br>46.0 (1)                        | 38.4 (9)<br>383.1 (9)                                      | †<br>†                                    | 411.8 (9) †                      | 0.98          |
| Vehicle Weight            | 49.7 (7) †<br>7.1 (1)            | 286.9 (7) †<br>40.9 (1)                        | 38.4 (7)<br>268.5 (7)                                      | †<br>†                                    | 286.9 (7) †                      | 0.93          |
| Age of Driver             | 252.3 (7) †<br>36.0 (1)          | 380.3 (7) †<br>54.3 (1)                        | 23.5 (7)<br>362.8 (7)                                      | †<br>†                                    | 375.3 (7) †                      | 0.97          |
| Age of Child              | 3177.1 (7) †<br>453.9 (1)        | 354.1 (7) †<br>50.6 (1)                        | 19.6 (7)<br>343.5 (7)                                      | 0.01<br>†                                 | 354.8 (7) †                      | 0 <b>.9</b> 8 |
| Child Seating<br>Position | 24.7 (3) †<br>8.2 (1)            | 415.7 (3) †<br>138.6 (1)                       | 14.1 (3)<br>399.1 (3)                                      | †<br>†                                    | 411.5 (3) †                      | 1.0           |

.

# Table A-2. Statistics derived for variable selection with respect to (B+A+K)-injury characterization.

(New York)

|           | $\chi^2$ [Child Restraint x V] | χ²[(B+A+K)-Injury x V]    | <pre>x<sup>2</sup>[V x (B+A+K)-inj. Restraint]<br/>x<sup>2</sup>[V x (B+A+K)-inj. No Restraint]</pre> |
|-----------|--------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------|
| *         | 37.4 (3) †<br>12.5 (1)         | 12.4 (6) 0.054<br>2.1 (1) | 1.4 (3) 0.72<br>6.1 (3) 0.11                                                                          |
|           | 4.4 (1) 0.04                   | 943.5 (1) †               | 39.5 (1) †<br>901.0 (1) †                                                                             |
| <br>!<br> | 5) 10.6 (4) 0.03**<br>2.7 (1)  | 636.4 (4) †<br>159.1 (1)  | 69.4 (4) †<br>578.6 (4) †                                                                             |

| S | TAGE | Ι |
|---|------|---|
|   |      |   |

|                               | $\chi^2$ [Child Restraint x | V] <sub>X</sub> 2[(B+A+K)-Injury x V] | <sub>X</sub> ²[V x (B+A+K)-inj. Restraint]<br><sub>X</sub> ²[V x (B+A+K)-inj. No Restraint] | Mantel-<br>Haenszel<br>Statistic | Index*** |
|-------------------------------|-----------------------------|---------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|----------|
| Accident Year (4)*            | 37.4 (3) †<br>12.5 (1)      | 12.4 (6) 0.054<br>2.1 (1)             | 1.4 (3) 0.72<br>6.1 (3) 0.11                                                                | 6.3 (3) 0.10                     | 0.85     |
| No Vehicles (2)               | 4.4 (1) 0.04                | 943.5 (1) †                           | 39.5 (1) †<br>901.0 (1) †                                                                   | 937.6 (1) †                      | 1.00     |
| Extent of Damage (5           | ) 10.6 (4) 0.03*<br>2.7 (1) | * 636.4 (4) †<br>159.1 (1)            | 69.4 (4) †<br>578.6 (4) †                                                                   | 640.9 (4) †                      | 0.99     |
| Vehicle Weight (4)            | 45.6 (3) †<br>15.2 (1)      | 162.3 (3) †<br>54.1 (1)               | 29.7 (3) †<br>147.2 (3) †                                                                   | 167.7 (3) †                      | 0.95     |
| Age of Driver (4)             | 246.7 (3) †<br>82.2 (1)     | 59.5 (3) †<br>19.8 (1)                | 6.9 (3) 0.08<br>56.5 (3) †                                                                  | 62.5 (3) †                       | 0.99     |
| Age of Child (4)              | 3164.8 (3) †<br>1054.9 (1)  | 30.1 (3) †<br>10.0 (1)                | 6.0 (3) 0.11<br>14.8 (3) †                                                                  | 16.5 (3) †                       | 0.80     |
| Child Seating (2)<br>Position | 20.6 (1) †                  | 403.2 (1) †                           | 7.5 (1) 0.01<br>396.3 (1) †                                                                 | 396.3 (1) †                      | 0.98     |

\*Number of levels (e.g., 1975, 1976, 1977, and 1978)

4

\*\* $\chi^2$  = 10.6 (d.f. = 4) p-value = 0.0003  $\chi^2/d.f. = 2.7$ \*\*\*Index =  $\frac{Mantel-Haenszel}{\chi^2 [V \times INJ]Restraint] + \chi^2 [V \times INJ]NO Restraint]}$ t p < 0.01

| Table | A-2. | (Con' | t) |  |
|-------|------|-------|----|--|
|-------|------|-------|----|--|

٤

.

ţ

-

• 1

¢

STAGE II

|                           | x <sup>2</sup> [(No. Veh. x V) x Rest.] | x <sup>2</sup> [(No.Veh. x V) x<br>(B+A+K)-injury] | x <sup>2</sup> [(No.Veh. x V) x (B+A+K)-inj.<br>x <sup>2</sup> [(No.Veh. x V) x (B+A+K)-inj. | Mantel-<br>Rest.] Haenszel<br>No Rest.] Statistic | Index |
|---------------------------|-----------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------|-------|
| Accident Year             | 43.5 (7) †<br>6.2 (1)                   | 958.7 (7) †<br>137.0 (1)                           | 52.4 (7) †<br>917.8 (7) †                                                                    | 952.2 (7) †                                       | 0.98  |
| Extent of Damage          | 20.2 (9) †<br>2.2 (1)                   | 1056.3 (9) †<br>117.4 (1)                          | 89.5 (9) †<br>979.0 (9) †                                                                    | 1056.2 (9) †                                      | 0.99  |
| Vehicle Weight            | 49.7 (7) †<br>7.1 (1)                   | 875.1 (7) †<br>125.0 (1)                           | 66.6 (7) †<br>827.1 (7) †                                                                    | 877.4 (7) †                                       | 0.98  |
| Age of Driver             | 252.3 (7) †<br>36.0 (1)                 | 976.2 (7) †<br>139.5 (1)                           | 50.0 (7) †<br>929.9 (7) †                                                                    | 972.7 (7) †                                       | 0.99  |
| Age of Child              | 3177.1 (7) †<br>453.9 (1)               | 982.8 (7) †<br>140.4 (1)                           | 50.4 (7) †<br>920.0 (7) †                                                                    | 961.2 (7) †                                       | 0.99  |
| Child Seating<br>Position | 24.7 (3) †<br>8.2 (1)                   | 1356.2 (3) †<br>452.1 (1)                          | 46.9 (3) †<br>1304.1 (3) †                                                                   | .1340.7 (3) †                                     | 0.99  |
## Table A-3. Statistics derived for variable selection with respect to All-injury characterization.

#### (New York)

|                               | •χ²[Child Restrai      | nt x V]   | χ <sup>2</sup> [(All)-Inju | ury x V]    | χ <sup>2</sup> [V x (A]<br>χ <sup>2</sup> [V x (A] | 1)-in<br>1)-in | j. Res<br>j. No  | traint]<br>Restraint] | ]     | Mantel<br>Haens:<br>Statis | -<br>ze]<br>stic | Index*** |
|-------------------------------|------------------------|-----------|----------------------------|-------------|----------------------------------------------------|----------------|------------------|-----------------------|-------|----------------------------|------------------|----------|
| Accident Year (4)*            | 37.4 (3)<br>12.5 (     | †<br>1)   | 18.1 (6)<br>3.0            | 0.01<br>(1) | 5<br>2                                             | .7 (3<br>.8 (3 | ) 0.12<br>) 0.42 |                       | 4.8   | 8 (3)                      | 0.19             | 0.56     |
| No Vehicles (2)               | 4.4 (1) 0              | .04       | 663.9 (1)                  | ŧ           | 21<br>641                                          | .9 (1<br>.7 (1 | ) †<br>) †       | •<br>•.<br>. •        | 658.  | 7 (1)                      | †                | 0.99     |
| Extent of Damage (            | 5) 10.6 (4) 0<br>2.7 ( | .03<br>1) | 634.7 (4)<br>158.7         | †<br>(1)    | 61<br>586                                          | .8 (4<br>.6 (4 | ) †<br>) †       |                       | 642.  | 7 (4)                      | †                | 0.99     |
| Vehicle Weight (4)            | 45.6 (3)<br>15.2 (     | †<br>1)   | 170.6 (3)<br>56.8          | †<br>(1)    | 34<br>159                                          | .4 (3<br>.5 (3 | ) †<br>) †       |                       | 179.  | 7 (3)                      | t                | 0.93     |
| Age of Driver (4)             | 246.7 (3)<br>82.2 (    | †<br>1)   | 11.7 (3)<br>3.9            | (1)         | 4<br>13                                            | .1 (3<br>.0 (3 | ) 0.25<br>) †    |                       | 10.9  | 9 (3)                      | 0.01             | 0.64     |
| Age of Child (4)              | 3164.8 (3)<br>1054.9 ( | †<br>1)   | 110.4 (3)<br>36.8          | †<br>(1)    | 2<br>57                                            | .2 (3<br>.4 (3 | ) 0.52<br>) †    |                       | 58.4  | 4 (3)                      | †                | 0.98     |
| Child Seating (2)<br>Position | 20.6 (1)               | t         | 329.2 (1)                  | †           | 8<br>317                                           | .2 (1<br>.6 (1 | ) †<br>) †       |                       | 321.0 | ) (1)                      | †                | 0.99     |

| C. | т۸ | CF  | т |
|----|----|-----|---|
| J  | 10 | UL. | 1 |

\*Number of levels (e.g., 1975, 1976, 1977, and 1978)

1

\*\* $\chi^2 = 10.6$  (d.f. = 4) p-value = 0.03  $\chi^2/d.f. = 2.7$ \*\*\*Index =  $\frac{Mantel-Haenszel}{\chi^2 [V \times INJ] Restraint] + \chi^2 [V \times INJ] NO Restraint]}$ † p < 0.01

| Table A | -3. ( | (Con' | t) |
|---------|-------|-------|----|
|---------|-------|-------|----|

.

.

\*

· · · · · · · ·

.

STAGE II

|                           | Chi<br>x²[(No.Veh. x V) x Res | ld x <sup>2</sup> [(No.Veh. x V) x<br>t.] (All)-inj.] | χ <sup>2</sup> [(No.Veh. x V) x (All)-inj.[Rest.]<br>χ <sup>2</sup> [(No.Veh. x V) x (All)-inj.[No Rest.] | Mantel-<br>Haenszel<br>Statistic | Index |
|---------------------------|-------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------|-------|
| Accident Year             | 43.5 (7) †<br>6.2 (1)         | 673.8 (7) †<br>96.3 (1)                               | 37.0 (7) †<br>646.9 (7) †                                                                                 | 667.5 (7) †                      | 0.98  |
| Extent of Damage          | 20.2 (9) †<br>2.2             | 953.1 (9) †<br>105.9 (1)                              | 75.5 (9) †<br>889.8 (9) †                                                                                 | 956.7 (9) †                      | 0.99  |
| Vehicle Weight            | 49.7 (7) †<br>7.1 (1)         | 642.7 (7) †<br>91.8 (1)                               | 50.8 (7) †<br>622.0 (7) †                                                                                 | 649.2 (7) †                      | 0.96  |
| Age of Driver             | 252.3 (7) †<br>36.0 (1)       | 667.9 (7) †<br>94.4 (1)                               | 38.4 (7) †<br>644.5 (7) †                                                                                 | 671.4 (7) †                      | 0.98  |
| Age of Child              | 3177.1 (7) †<br>453.9 (1)     | 783.9 (7) †<br>112.0 (1)                              | 27.8 (7) †<br>705.9 (7) †                                                                                 | 725.8 (3) †                      | 0.99  |
| Child Seating<br>Position | 24.7 (3) †<br>8.2 (1)         | 996.2 (3) †<br>332.1 (1)                              | 32.1 (3) †<br>955.0 (3) †                                                                                 | 978.1 (3) †                      | 0.99  |

### Table A-4. Statistics derived for variable selection with respect to (A+K)-injury characterization.

(Maryland)

| Variable           | $\chi^2$ [Child Rest | craint x V]    | <sub>X</sub> ²[(A+K)- | Injury          | × V] | $\chi^{2} \begin{bmatrix} V \times (A+K) \\ \chi^{2} \begin{bmatrix} V \times (A+K) \end{bmatrix}$ | -inj<br>-inj | .[Restraint]<br>.[No Restraint] | Mar<br>Hac<br>Sta | ntel-<br>ensze<br>atist | el<br>ic | Index*** |
|--------------------|----------------------|----------------|-----------------------|-----------------|------|----------------------------------------------------------------------------------------------------|--------------|---------------------------------|-------------------|-------------------------|----------|----------|
| Accident Year (4)* | 13.7 (3<br>4         | 3) †<br>1.6    | 20.2                  | (3) †<br>6.7    |      | 18.1<br>3.2                                                                                        | (3)<br>(3)   | †<br>0.36                       | 20.3              | (3)                     | †        | 0.95     |
| No Vehicles (2)    | 2.1 (1               | ) 0.15         | 56.1                  | (1) †           |      | 51.1<br>5.1                                                                                        | (1)<br>(1)   | †<br>0.02                       | 55.8              | (1)                     | †        | 0.99     |
| Hour (4)           | 118.4 (3<br>39       | 3) †<br>9.4    | 21.7                  | (3) †<br>7.2    |      | 21.8<br>7.5                                                                                        | (3)<br>(3)   | †<br>0.06                       | 21.4              | (3)                     | †        | 0.73     |
| Road Type (5)      | 54.6 (4<br>13        | 4) †<br>3.6    | 51.1                  | (4) †<br>12.8   |      | 16.1<br>6.1                                                                                        | (4)<br>(4)   | †<br>0.1951                     | 17.1              | (4)                     | †        | 0.77     |
| Acc Severity (5)   | 4.5 (4<br>1          | ) 0.35**<br>.1 | 4724.5                | (4) †<br>01.1   |      | 4453.6<br>282.7                                                                                    | (4)<br>(4)   | †<br>†                          | 4721.0            | (4)                     | †        | 1.00     |
| Ext Damage (4)     | 22.0 (3<br>7         | 3) †<br>'.3    | 580.3<br>ו            | (3) †<br>93.4   |      | 550.7<br>33.1                                                                                      | (3)<br>(3)   | †<br>†                          | 583.2             | (3)                     | †        | 1.00     |
| Weight (4)         | 32.7 (3<br>10        | 3) †<br>1.9    | 19.6                  | (3) †<br>6.5    |      | 18.0<br>5.5                                                                                        | (3)<br>(3)   | †<br>0.14                       | 20.3              | (3)                     | †        | 0.86     |
| Site (3)           | 5.8 (2<br>2          | 2) 0.05<br>.9  | 61.0                  | (2) †<br>30.5   |      | 58.3<br>5.5                                                                                        | (2)<br>(2)   | †<br>0.06                       | 62.0              | (2)                     | t        | 0.97     |
| Veh Size (2)       | 13.5 (1              | ) †            | 14.2                  | (1) †           |      | 16.7<br>0.8                                                                                        | (1)<br>(1)   | †<br>0.37                       | 14.8              | (1)                     | †        | 0.85     |
| Child Age (4)      | 1804.8 (3<br>601     | ;) †<br>.6     | 6.2                   | (3) 0.10<br>2.1 | 0    | 6.0<br>1.4                                                                                         | (3)<br>(3)   | 0.11<br>0.71                    | 5.8               | (3)                     | 0.12     | 0.78     |
| Seating (2)        | 18.9 (1              | ) (†           | 5.2                   | (1) 0.0         | )2   | 4.9<br>0.1                                                                                         | (1)<br>(1)   | 0.03<br>0.76                    | 5.0               | (1)                     | 0.03     | 0.99     |

STAGE I

\*Number of levels (e.g., 1975, 1976, 1977, and 1978)

\*\*\*Index =  $\frac{Mantel-Haenszel}{\chi^2 [V \times INJ] Restraint] + \chi^2 [V \times INJ] NO Restraint]}$ 

.....

٠

\*\* $\chi^2$  = 4.5 (d.f. = 4) p-value = 0.35  $\chi^2/d.f. = 1.1$ 

† p < 0.01

| Table A-4. | (Con' | t) |
|------------|-------|----|
|------------|-------|----|

---

4

.

4

STAGE II

| Variable         | χ <sup>2</sup> [(Ext Damage x | V) x      | Belt] <sub>X</sub> {(Ext Damage x V) | x | χ <b>ą[Ext Da</b> mage x V)<br>INJ]χ[Ext Damage x V) | x<br>x   | INJAK Rest.]<br>INJAK No Rest.] | Mantel-<br>Haensze<br>Statisi | -<br>el<br>tic | Index         |
|------------------|-------------------------------|-----------|--------------------------------------|---|------------------------------------------------------|----------|---------------------------------|-------------------------------|----------------|---------------|
| Accident Year    | 26.9 (7<br>3                  | ) †<br>.8 | 694.1 (7)<br>9 <b>9.</b> 2           | † | 558.8<br>35.9                                        | (7<br>(7 | ) †<br>) †                      | 594.0 (                       | (7) †          | 1.00          |
| No. Veh Involved | 13.1 (3<br>4                  | ) †<br>.4 | 267.0 (3)<br>89.0                    | † | 554.6<br>37.8                                        | (3<br>(3 | ) †<br>) †                      | 588.5 (                       | (3) †          | 0 <b>.9</b> 9 |
| Hour             | 128.9 (7<br>18                | ) †<br>.4 | 778.1 (7)                            | † | 578.9<br>53.1                                        | (7<br>(7 | ) †<br>) †                      | 607.7 (                       | (7) †          | 0.96          |
| Road Type        | 32.4 (9<br>3                  | ) †<br>.6 | 689.6 (9)<br>76.6                    | t | 419.5<br>64.4                                        | (9<br>(9 | ) †<br>) †                      | 447.2 (                       | (9) †          | 0.92          |
| Acc Severity     | 77.0 (9<br>8                  | ) †<br>.6 | 7424.8 (9)<br>825.0                  | † | 4923.4<br>343.9                                      | (9<br>(9 | ) †<br>) †                      | 5246.3 (                      | (9) †          | 1.00          |
| Weight           | 26.2 (7<br>3                  | ) †<br>.7 | 232.1 (7) 33.2                       | † | 464.9<br>41.4                                        | (7<br>(7 | ) †<br>) †                      | 492.1 (                       | (7) †          | 0.97          |
| Site             | 20.9 (5<br>4                  | ) †<br>.2 | 614.6 (5)<br>122.9                   | t | 777.9<br>38.2                                        | (5<br>(5 | ) †<br>) †                      | 801.5 (                       | (5) †          | 0.98          |
| Veh Size         | 16.0 (3<br>5                  | ) †<br>.3 | 274.0 (3)<br>91.3                    | ŧ | 403.5<br>32.6                                        | (3<br>(3 | ) †<br>) †                      | 420.6 (                       | (3) †          | 0 <b>.9</b> 6 |
| Child Age        | 586.9 (3<br>195               | ) †<br>.6 | 435.4 (3)<br>145.1                   | t | 541.6<br>35.2                                        | (3<br>(3 | ) †<br>) †                      | 575.3 (                       | (3) †          | 1.00          |
| Seating          | 1072.2 (3<br>357              | ) †<br>.4 | 571.5 (3)<br>190.5                   | † | 544.3<br>35.1                                        | (3<br>(3 | ) †<br>) †                      | 578.1 (                       | (3) †          | 1.00          |

#### Table A-5. Statistics derived for variable selection with respect to (B+A+K)-injury characterization.

#### (Maryland)

| Variable           | $\chi^2$ [Child Restraint x V]   | χ²[(B+A+K)-Injury x V] | χ <sup>2</sup> [V x (B+A+K)-inj. Restraint]<br>  χ <sup>2</sup> [V x (B+A+K)-inj. No Restraint] | Mantel-<br>Haenszel<br>Statistic | Index***      |
|--------------------|----------------------------------|------------------------|-------------------------------------------------------------------------------------------------|----------------------------------|---------------|
| Accident Year (4)* | 13.7 (3) †<br>4.6                | 35.1 (3) †<br>11.7     | 25.5 (3) †<br>20.1 (3) †                                                                        | 35.4 (3) †                       | 0.78          |
| No Vehicles (2)    | 2.1 (1) 0. <b>15</b>             | 62.5 (1) †             | 160.1 (1) †<br>8.1 (1) †                                                                        | 168.2 (1) †                      | 1.00          |
| Hour (4)           | 118.4 (3) †<br>39.4              | 40.2 (3) †<br>13.4     | 39.5 (3) †<br>1.8 (3) 0.62                                                                      | 40.0 (3) †                       | 0 <b>.9</b> 7 |
| Road Type (5)      | 54.6 (4) †<br>13.6               | 92.9 (4) †<br>23.2     | 10.2 (4) 0.04<br>2.8 (4) 0.59                                                                   | 11.0 (4) 0.03                    | 0.85          |
| Acc Severity (5)   | 4.5 (4) 0.34<br>1.1              | 6696.9 (4) †<br>1674.2 | 6266.8 (4) †<br>438.8 (4) †                                                                     | 6693.3 (4) †                     | 1.00          |
| Ext Damage (4)     | 22.0 (3) †<br>7.3                | 1797.6 (3) †<br>599.2  | 1717.7 (3) †<br>90.2 (3) †                                                                      | 1804.1 (3) †                     | 1.00          |
| Weight (4)         | 32.7 <sup>°</sup> (3) †<br>310.9 | 66.1 (3) †<br>22.0     | 66.4 (3) †<br>2.5 (3) 0.48                                                                      | 67.8 (3) †                       | 0.98          |
| Site (3)           | 5.8 (2) 0.05<br>2.9              | 161.4 (2) †<br>80.7    | 148.8 (2) †<br>15.9 (2) †                                                                       | 163.9 (2) †                      | 1.00          |
| Veh Size (2)       | 13.5 (1) †                       | 32.9 (1) †             | 30.9 (1) †<br>0.9 (1) 0.33                                                                      | 31.6 (1) †                       | 0.99          |
| Child Age (4)      | 1804.8 (3) †<br>601.6            | 5.4 (3) 0.15<br>1.8    | 4.5 (3) 0.22<br>2.9 (3) 0.41                                                                    | 4.0 (3) 0.26                     | 0.55          |
| Seating (2)        | 18.9 (1) †                       | 60.9 (1) †             | 59.2 (1) †<br>1.4 (1) 0.24                                                                      | 60.0 (1) †                       | 0 <b>.99</b>  |

STAGE I

\*Number of levels (e.g., 1975, 1976, 1977, and 1978)

•

\*\*\*Index =  $\frac{Mantel-Haenszel}{\chi^2 [V x INJ[Restraint] + \chi^2 [V x INJ]NO Restraint]}$ 

-1

\*\*
$$\chi^2$$
 = 4.5 (d.f. = 4) p-value = 0.34  
 $\chi^2/d.f. = 1.1$ 

`۲

t p < 0.01

### Table A-5. (Con't)

4

~

٠

.

ູ'

- -- -----

| STAGE | II |
|-------|----|
|       | -  |

| Variable         | x²[(Ext Damage  | exV) | x Belt] | <sub>X</sub> 名(Ext Damage | e x V) | x | X <b>4(Ext</b><br>INJ]X4(Ext | Damage x V)<br>Damage x V) | x I<br>x I | NBAK   Re<br>NBAK   No | st.]<br>Rest.] | Mante<br>Haens<br>Stati | l-<br>zel<br>stic |                | Index |
|------------------|-----------------|------|---------|---------------------------|--------|---|------------------------------|----------------------------|------------|------------------------|----------------|-------------------------|-------------------|----------------|-------|
| Accident Year    | 26.9<br>3.8     | (7)  | †       | 3428.9<br>489.8           | (7)    | † |                              | 1705.8<br>108.1            | (7<br>(7   | ') †<br>') †           |                | 1800.8                  | (7)               | †              | 0.99  |
| No. Veh Involved | 13.1<br>4.4     | (3)  |         | 661.3<br>220.4            | (3)    | † |                              | 1756.5<br>93.2             | (3<br>(3   | ) †<br>) †             |                | 1842.9                  | (3)               | t              | 1.00  |
| Hour             | 128.9<br>18.4   | (7)  | ŧ       | 2240.6<br>320.1           | (7)    | † |                              | 1726.3                     | (7<br>(7   | ) †<br>) †             |                | 1810.8                  | (7)               | †              | 1.00  |
| Road Type        | 32.4<br>3.6     | (9)  | ŧ       | 2050.8                    | (9)    | t |                              | 1153.4<br>94.3             | (9<br>(9   | ) †<br>) †             |                | 1230.3                  | (9)               | † <sup>-</sup> | 0.99  |
| Acc Severity     | 77.0<br>8.6     | (9)  | †       | 9056.8<br>1006.3          | (9)    | † |                              | 6982.5<br>496.4            | (9<br>(9   | ) †<br>) †             |                | 7461.9                  | (9)               | †              | 1.00  |
| Weight           | 26.2<br>3.7     | (7)  | †       | 210.1<br>30.0             | (7)    | ŧ |                              | 1335.2                     | (7<br>(7   | ) †<br>) †             |                | 1393.7                  | (7)               | <b>†</b> .     | 0.99  |
| Site             | 20.9<br>4.2     | (5)  | †       | 1692.2                    | (5)    | † |                              | 2049.7<br>107.3            | (5<br>(5   | ) †<br>) †             |                | 2147.9                  | (5)               | †              | 1.00  |
| Veh Size         | 16.0<br>5.3     | (3)  | †       | 737.6                     | (3)    | ţ |                              | 1107.1<br>54.2             | (3<br>(3   | ) †<br>) †             |                | 1150.7                  | (3)               | †              | 0.99  |
| Child Age        | 586.9<br>195.6  | (3)  | †       | 1155.7<br>385.2           | (3)    | t |                              | 1694.7<br>92.4             | (3<br>(3   | ) †<br>) †             |                | 1782.5                  | (3)               | t              | 1.00  |
| Seating          | 1072.2<br>357.4 | (3)  | †       | 1805.3<br>601.8           | (3)    | † |                              | 1748.1<br>91.5             | (3<br>(3   | ) †<br>) – †           |                | 1835.2                  | (3)               | †              | 1.00  |

# Table A-6. Statistics derived for variable selection with respect to (All)-injury characterization.

(Maryland)

| STAG | ΕI |
|------|----|
|      |    |

| Variable           | $\chi^2$ [Child Restraint x V] | $\chi^2[(All)-Injury \times V]$ | χ <sup>2</sup> [V x (All)-inj.[Restraint]<br>χ <sup>2</sup> [V x (All)-inj.[No Restraint] | Mantel-<br>Haenszel<br>Statistic | Index*** |
|--------------------|--------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|----------------------------------|----------|
| Accident Year (4)* | 13.7 (3) †<br>4.6              | 91.6 (3) †<br>30.5              | 71.9 (3) †<br>32.4 (3) †                                                                  | 92.5 (3) †                       | 0.89     |
| No Vehicles (2)    | 2.1 (1) 0.15                   | 168.9 (1) †                     | 60.5 (1) †<br>1.9 (1) 0.17                                                                | 62.1 (1) †                       | 1.00     |
| Hour (4)           | 118.4 (3) †<br>39.4            | 59.3 (3) †<br>19.8              | 50.4 (3) †<br>8.8 (3) 0.03                                                                | 58.0 (3) †                       | 0.98     |
| Road Type (5)      | 54.6 (4) †<br>13.6             | 135.8 (5) †<br>27.2             | 41.1 (4) †<br>8.0 (4) 0.09                                                                | 46.8 (4) †                       | 0.95     |
| Acc Severity (5)   | 4.5 (4) 0.34**<br>1.1          | 7930.0 (4) †<br>1982.5          | 7426.5 (4) †<br>504.7 (4) †                                                               | 7 <b>9</b> 28.7 (4) †            | 1.00     |
| Ext Damage (4)     | 22.0 (3) †<br>7.3              | 2175.2 (3) †<br>725.1           | 2074.5 (3) †<br>114.0 (3) †                                                               | 2182.4 (3) †                     | 1.00     |
| Weight (4)         | 32.7 (3) †<br>10.9             | 87.7 (3) †<br>29.2              | 79.2 (3) †<br>11.2 (3) 0.01                                                               | 89.6 (3) †                       | 0.99     |
| Site (3)           | 5.8 (2) 0.05<br>2.9            | 61.9 (2) †<br>31.0              | 56.0 (2) †<br>5.4 (2) 0.07                                                                | 60.1 (2) †                       | 0.98     |
| Veh Size (2)       | 13.5 (1) †                     | 56.4 (1) †                      | 42.6 (1) †<br>4.0 (1) 0.05                                                                | 46.5 (1) †                       | 1.00     |
| Child Age (4)      | 1804.8 (3) †<br>601.6          | 5.1 (3) 0.17<br>1.7             | 7.2 (3) 0.07<br>4.9 (3) 0.18                                                              | 6.0 (3) 0.11                     | 0.50     |
| Seating (2)        | 18.9 (1) †                     | 78.9 (1) †                      | 71.4 (1) †<br>6.3 (1) 0.01                                                                | 77.7 (1) †                       | 1.00     |

\*Number of levels (e.g., 1975, 1976, 1977, and 1978)

~

. +

\*\*\*Index =  $\frac{Mantel-Haenszel}{\chi^2 [V \times INJ[Restraint] + \chi^2 [V \times INJ[No Restraint]]}$ 

\*\*
$$\chi^2$$
 = 4.5(d.f. = 4) p-value = 0.34  
 $\chi^2/d.f. = 1.1$ 

\*

t p < 0.01

Table A-6. (Con't)

**4** •••

٠

|  |  | STAGE II |
|--|--|----------|

| SINGL II         |                                  |   |                                       |   |                                                |            |                                   |                            |           |   |              |  |  |
|------------------|----------------------------------|---|---------------------------------------|---|------------------------------------------------|------------|-----------------------------------|----------------------------|-----------|---|--------------|--|--|
| Variable         | χ <sup>2</sup> [(Ext Damage x V) | x | Belt] <sub>X</sub> 2[(Ext Damage x V) | x | χ²[[Ext Damage x V)<br>INJ]χ²[[Ext Damage x V) | x A<br>x A | ALLINJ[Rest.]<br>ALLINJ[No Rest.] | Mantel<br>Haensz<br>Statis | el<br>tic |   | Index        |  |  |
| Accident Year    | 26.9 (7)<br>3.8                  | † | 5967.4 (7)<br>852.5                   | ŧ | 2098.2<br>140.9                                | (7<br>(7   | 7) †<br>7) †                      | 2216.8                     | (7)       | † | 0.99         |  |  |
| No. Veh Involved | 13.1 (3)<br>4.4                  | † | 493.7 (3)<br>164.6                    | † | 2077.1<br>111.9                                | (3         | 3) †<br>3) †                      | 2177.9                     | (3)       | † | 0 <b>.99</b> |  |  |
| Hour             | 128.9 (7)<br>18.4                | t | 3065.5 (7)<br>437.9                   | t | 2087.8<br>121.7                                | (7<br>(7   | 7) †<br>7) †                      | 2193.4                     | (7)       | ŧ | 0.99         |  |  |
| Road Type        | 32.4 (9)<br>3.6                  | † | 1953.6 (9)<br>217.1                   | † | 1377.8<br>100.8                                | (9<br>(9   | 9) †<br>9) †                      | 1469.5                     | (9)       | t | 0.99         |  |  |
| Acc Severity     | 77.0 (9)<br>8.6                  | † | 9134.2 (9)<br>1014.9                  | t | 7928.7<br>532.0                                | (9<br>(9   | 9) †<br>9) †                      | 8452.4                     | (9)       | † | 1.00         |  |  |
| Weight           | 26.2 (7)<br>3.7                  | t | 252.3 (7)<br>36.0                     | † | 1565.6<br>80.0                                 | (7<br>(7   | 7) †<br>7) †                      | 1636.2                     | (7)       | † | 0.99         |  |  |
| Site             | 20.9 (5)<br>4.2                  | ŧ | 2074.0 (5)<br>414.8                   | † | 2272.5<br>112.5                                | (5<br>(5   | 5) <b>†</b><br>5) †               | 2373.9                     | (5)       | t | 1.00         |  |  |
| Veh Size         | 16.0 (3)<br>5.3                  | † | 801.0 (3)<br>267.0                    | ŧ | 1233.1<br>55.7                                 | (3<br>(3   | 3) †<br>3) †                      | 1284.2                     | (3)       | † | 1.00         |  |  |
| Child Age        | 586.9 (3)<br>195.6               | † | 1307.4 (3)<br>435.8                   | † | 2062.0<br>110.1                                | (3<br>(3   | 3) †<br>3) †                      | 2165.3                     | (3)       | 1 | 1.00         |  |  |
| Seating          | 1072.2 (3)<br>357.4              | † | 2276.1 (3)<br>758.7                   | † | 2109.9<br>115.3                                | (3<br>(3   | 3) †<br>3) †                      | 2220.5                     | (3)       | t | 1.00         |  |  |

.

,