Historical Perspectives on the Evolution of Cancer Epidemiology

Robert N. Hoover, M.D., Sc.D.

Trends in 21st Century: From Scientific Discoveries to Population Health Impact

December 12, 2012

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institues of Health

Formal Cancer Epidemiology: The Early Years

<u>Studies</u>	Relative Risk
Smoking and Lung Cancer	
Richard Doll & A. Bradford Hill	14
(Brit Med J Sept 1950)	
Ernest L. Wynder & Everts A. Graham	
(JAMA May 1950)	13
Alcohol – Upper GI Cancers	
Radiation – Leukemia	Ranging from
Tobacco – Other Cancers	4 to several
18 specific chemical or industrial processes (IARC 1979)	hundred

Epidemiology - Then

Small, simple studies
 Small study teams
 PI did virtually everything

Epidemiology - Now

Large, complex studies
 Large, multidisciplinary teams
 Specialization

Why the Differences?

Major changes in the goals of Classical Epidemiology

Introduction of, and major shift to, Molecular Epidemiology

Classical Epidemiology

<u>Now</u>

Large Risks

Low-level Risks

Evident Exposures

Main Effects

Difficult to measure exposures

Effect Modification

Molecular Epidemiology: Opportunities

- > Overcome Some Weaknesses of Classical Approaches
 - Measure Exposures
 - Measure Outcomes
 - Assess Susceptibility
 - Mechanistic Studies
 - Assess larger numbers of markers simultaneously

Hormone Therapy (HT) for Menopause and Cancer

Pooled Analysis: 4 follow-up studies of all cancers		Relative Risk (RR) of Breast Cancer by Duration of HT use			
HT Exposed	N = 1130	Duration of ERT (yrs.) < 1	RR	95% CI	
Cases: Observed = 7 Expected = 74	Observed = 7	1 - 4	} 0.9	0.5 – 1.5	
		5 – 9	1.2	0.6 - 2.0	
		10 - 14	1.3	0.6 - 2.4	
		15+	2.0	1.1 - 3.4	
		P for trend	(0.02	
		# of exposed cases		49	

Lancet 1971;1:135-6

N Engl J Med 1976;295:401-5

Relative Risk (RR) of Breast Cancer: Never Users, Recent Users, and Past Users

<u>RR for Recent Users for ≥ 5 Years</u>

Weig	<u>ht</u>	<u>BMI</u>
≤ 65 kg =	1.65	≤ 25.0 = 1.52
≥ 65 kg =	1.06	≥ 25.0 = 1.02
P _{trend}	4x10 -3	1x10 -4

Lancet 1997;350:1047

Genetic Epidemiology

1980s onward: Mendelian Inheritance
 Genome-wide linkage
 High-risk families

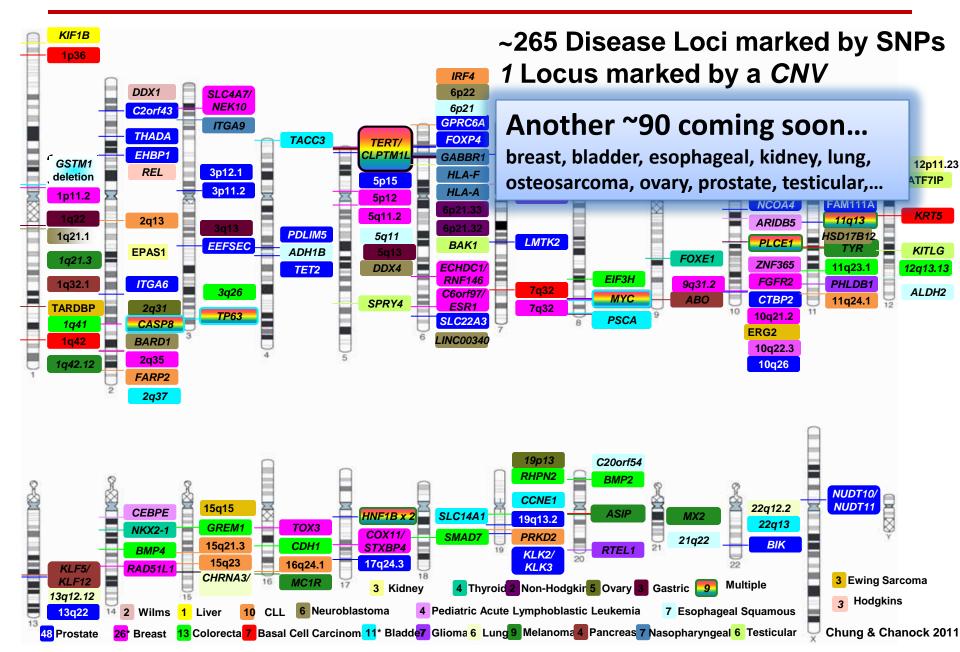
1990s onward: Susceptibility Genes
 ORFLP + other technologies
 Candidate genes

Genomics – A Lost Decade

Thousands of candidate genes

Pursued "to extinction" in tens of thousands of studies

 Tiny fraction of reported associations ever replicated
 Even fewer GxE interactions


Genetic Epidemiology

1980s onward: Mendelian Inheritance
 OGenome-wide linkage
 OHigh-risk families

1990s onward: Susceptibility Genes
 ORFLP + other technologies
 Candidate genes

2006 onward: Susceptibility Genes
 Oatabase + SNP chip
 Agnostic search

Published Cancer GWAS Etiology Hits: 10.18.12

Early Established Susceptibility Loci for Breast Cancer

Loci	m.a.f * Eur / As / Afr	OR het	OR hom	Population Attributable Risk
CASP8	0.13 / 0.00 / 0.21	0.89	0.74	20
FGFR2	0.38 / 0.30 / 0.50	1.23	1.63	19
TNRC9	0.25 / 0.60 / 0.53	1.23	1.39	10
MAP3K1	0.28 / 0.54 / 0.35	1.13	1.27	7
8q24	0.40 / 0.56 / 0.58	1.06	1.18	6
LSP1/H19	0.31 / 0.14 / 0.12	1.06	1.17	4
2q35	0.50 / 0.15 / 0.69	1.20	1.40	19

*minor allele frequencies

Pharoah P. N Engl J Med 2008;358:2796-803.

Cigarette Smoking, NAT2 Phenotype, and Breast Cancer Risk in Two Large Consortial Analyses

	<u>NAT</u>	Smoking (pack years)		
		Never	≤ 20	> 20
Ambrosone, et al.	Rapid*	1	1.07	1.04 (0.9 - 1.3)
	Slow	1	1.21	1.44 (1.2 - 1.9)
	Rapid**	1	1.13	1.24 (1.1 - 1.4)
Cox, et al.	Slow	1	1.08	1.25 (1.1 - 1.4)

* p(interaction) = 0.03
** p(interaction) = 0.87

Ambrosone, et al. *Cancer Epidemiol Biomarkers Prev* 2008; 17(1) Cox, et al. *Am J Epidemiol* 2011; 174(11)

Genomics History as Lesson for Future

Two major caveats:

> Importance of High Quality Epidemiologic Methods

> Assay Development

Lessons for the Future - #1

> We are not as smart as we wish we were

 Less a-priori, more listening to data
 Mandatory Corollary: Replication, Replication, Replication

Lessons for the Future - #2

- Remarkable opportunities from new science and technologies
 - Classical Epidemiology: Internet, environment, and lifestyle monitoring tools, linked datasets
 - Molecular Epidemiology: All of the "omics"
 - Mandatory Corollaries:
 - -Work with lab to bring to "primetime"
 - Best epidemiologic methods

Lessons for the Future - #3

> Bigger, Better, Sooner

 Many of the important, contemporary questions in biology and public health can only be addressed by aggregating large amounts of high quality epidemiologic data.

Lessons for the Future

1. Listen to the Data

2. Remarkable opportunities from new science and technologies

3. Bigger, Better, Sooner

4. <u>Much</u> faster and better at adapting methods to meet scientific needs and opportunities as they emerge

Formidable, but surmountable, obstacles to implementing "Lessons for the Future"

- Appropriate "credit" for participating in team science and consortial efforts
- Role for junior investigators
- Relative value and timing of individual vs. pooled analyses
- Cultural differences between disciplines
- Rapid changes in state-of-the-art technologies
- Study subject participation, cooperation, and consent
- Rapid and broad data-sharing
- Funding for necessary infrastructure
- Inadequacy of traditional grant mechanisms for funding broad "discovery" efforts
- ETC, ETC, ETC...

General Trends Over Time, NOT Dogma

<u>Then</u>

 "Big Science" studies did exist
 CPS1, Dorn, British physician cohorts
 International Breast Cancer and National Bladder Cancer Case-control Studies

> Interdisciplinary studies did exist

Hepatitis B and liver cancer

General Trends Over Time, NOT Dogma

<u>Now</u>

Still an important role for relatively small, innovative studies

> Still will be high-risk risk factors

Many things will not be well-assessed by biomarkers

Ever Use of Artificial Sweeteners and Bladder Cancer Risk in 632 Cases and 632 Controls

Howe GR et al., Lancet 1977 Sept; 17(8038): 578

Bladder Cancer and Ever Use of Artificial Sweeteners in 3,000 Cases and 5,766 Controls

	<u>RR</u>	<u>95% CI</u>
Men	0.99	(0.89-1.10)
Women	1.07	(0.89-1.29)
Both Sexes	1.01	(0.92-1.11)

Hoover RN, et al. *Lancet* 1980;1:837-40

"As a general rule of thumb, we are looking for a relative risk of three or more [before accepting a paper for publication]."

> Marcia Angell Editor, *New Engl J Med* 1995

Advances will be accelerated by "Collective Intelligence"

"I not only use all of the brains I have, but all I can borrow"

Woodrow Wilson

Breast Cancer and Candidate Genes

Search Study:

170 SNPs in 120 Candidate Genes in 4400 cases and 4400 controls

None significant after control for population stratification and multiple testing.

Pharoah PDP et al. PLOS Genet 2007; 3:401-406

Cigarette Smoking, Genotype, and Breast Cancer

- Since 1995, 50 studies have examined this relationship in relation to a total of 11 susceptibility genes
- "literature is complicated by methodologic limitations, ... which likely contributed to the inconsistent findings. These methodologic issues should be addressed in future studies."

Terry PD et al. Cancer Epidemiol Biomarkers Prev 2006.