# Trends in 21<sup>st</sup> Century Epidemiology: From Scientific Discoveries to Population Health Impact

Session 4: Use of epidemiologic research to advance clinical and public health practice: bridging the evidence gap with observational studies and randomized clinical trials

Moderator: Sheri D. Schully, Ph.D., Division of Cancer Control and Population Sciences, NCI

# Epidemiology and evidence-based research along the cancer care continuum

David F. Ransohoff, M.D. *University of North Carolina at Chapel Hill* 

#### **Panel and Audience Discussion**

- What are new ways in which epidemiology can be used to fill evidence gaps between discoveries and population health impact in the cancer care continuum?
- How can observational epidemiology make the greatest scientific contributions in understanding cancer-related risk factors that cannot be studied through randomized clinical trials?

### **Cultivate Observational Cohorts**

- 1. Definition, Importance
- 2. Past
  - -examples, lessons
- 3. Future
  - -opportunities, challenges, recommendations

**Definition** (of cohort): defined group followed over time **Importance**:

### Can cohort be used to answer question(s)?

- Cohort can have "strong design" for questions of diagnosis, prognosis, response to rx (molecular markers) [RCT better, but may be not appropriate or impossible.]
- Strength of design to answer question is related to features:
  - -fair 'comparison' (avoid bias) for quest.: internal validity
  - -relevant question: external validity
  - -details: ascertain baseline state, exposure, outcome, etc.

Devils in design/detail. One 'wrong' feature can be fatal.

"Observational" does *not* mean:

- "passive" (e.g., PI is passive; or 'no design')
- "annotated specimens" + "technology/data" + "bioinformatics"

Concept: "Specimens and data=product of a study.

With cohort data, you have to fashion a "study" (regarding comparison, bias, relevance, etc.) and describe it in Methods.

It's not "data+analysis."

It's a "study," whether thought about/not.

Ransohoff. JCO 2010;28:698

In cohorts that already exist, can strong design be arranged?

- 1. PI imagines ideal *design*: specify question, data source, comparison, anticipate/avoid bias, etc.
- 2. PI asks "In existing cohort, is *inherent design* close to ideal?" Could *added design* make it, overall, satisfactory, to answer that question?"

### Concepts

- Design (inherent, added) determines study strength.
- If don't think about design early (re kinds of data, comparison, relevance), may limit kinds and strength of questions that can be addressed later.

# Examples of Observational Cohort: Mostly T1, Lessons for Other Ts

(From Khoury et al., *Am J Epidemiol*. 2010 September 1; 172(5): 517–524 with permission of Oxford University Press.)

Table 1. Epidemiology and the Phases of Translation and Knowledge Synthesis—From Discovery to Population Health Impact

| Phase                  | Details                                                                            | Role of Epidemiology                                                                                                                                   | Examples From Genomics                                                                                                                                                                                     |
|------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ТО                     | Description and discovery                                                          | Describing patterns of health<br>outcomes by place, time, and<br>person; finding determinants of<br>health outcomes by use of<br>observational studies | Describing patterns of health outcomes in relation to inbreeding, migration, and family history to generate hypotheses about genetic factors; genome-wide association studies as a tool for gene discovery |
| T1                     | From discovery to health applications (tests, interventions)                       | Characterizing discovery and<br>assessing potential health<br>applications by using clinical<br>and population studies                                 | Assessing prevalence, associations,<br>interactions, sensitivity, specificity, and<br>predictive value of testing for genetic risk<br>factors                                                              |
| T2                     | From health application to evidence guidelines                                     | Assessing the efficacy of<br>interventions to improve health<br>and prevent disease by using<br>observational and experimental<br>studies              | Assessing the clinical utility of genetic risk factors in improving health outcomes                                                                                                                        |
| Т3                     | From guidelines to health practice                                                 | Assessing the implementation and<br>dissemination of guidelines into<br>practice                                                                       | Assessing the factors associated with implementation of <i>BRCA</i> testing in practice                                                                                                                    |
| T4                     | From health practice to population<br>health outcomes                              | Assessing the effectiveness of<br>interventions on health outcomes                                                                                     | Assessing the effectiveness of newborn<br>screening programs                                                                                                                                               |
| Knowledge<br>synthesis | Systematic review of what we know<br>and what we do not know and how<br>we know it | Knowledge synthesis applies to all phases of translation by use of evidence synthesis and systematic reviews.                                          | T1—evaluating the credibility of genetic<br>associations and assessing the genetic<br>effects and interactions (through HuGENet)                                                                           |
|                        |                                                                                    |                                                                                                                                                        | T2—systematic reviews on the clinical validity<br>and utility of genomic applications for<br>specific intended uses (through EGAPP<br>appraisal)                                                           |

Abbreviations: EGAPP, Evaluation of Genomic Applications in Practice and Prevention; HuGENet, Human Genome Epidemiology Network; T0–T4, designated phases of translational research.

# Examples of Observational Cohort: Mostly T1, Lessons for Other Ts

(From Khoury et al., *Am J Epidemiol*. 2010 September 1; 172(5): 517–524 with permission of Oxford University Press.)

Table 1. Epidemiology and the Phases of Translation and Knowledge Synthesis—From Discovery to Population Health Impact

| Phase                  | Caralla de la Calada                                         | Role of Epidemiology                                                                                                                       | Examples From Genomics                                                                                                                                                                                     |
|------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TO                     | includes etiology                                            | Describing patterns of health outcomes by place, time, and person; finding determinants of health outcomes by use of observational studies | Describing patterns of health outcomes in relation to inbreeding, migration, and family history to generate hypotheses about genetic factors; genome-wide association studies as a tool for gene discovery |
| t1 ← di                | iagnosis, prognosis, et                                      | C tracterizing discovery and ssessing po applications to and population studies                                                            | Assessing prevalence, associations, interactions, sensitivity, specificity, and predictive value of testing for genetic risk factors                                                                       |
| <b>T2 ←</b>            | From health application to evidence guidelines  RCTs/outcome | Assessing the efficacy of interventions to improve health and prevent disease by using observational and experimental studies              | Assessing the clinical utility of genetic risk factors in improving health outcomes                                                                                                                        |
| Т3                     | Fro TS/OutCOITIE                                             | Assessing the implementation and<br>dissemination of guidelines into<br>practice                                                           | Assessing the factors associated with implementation of <i>BRCA</i> testing in practice                                                                                                                    |
| T4                     | From health practice to population<br>health outcomes        | Assessing the effectiveness of<br>interventions on health outcomes                                                                         | Assessing the effectiveness of newborn<br>screening programs                                                                                                                                               |
| Knowledge<br>synthesis |                                                              | Knowledge synthesis applies to all<br>phases of translation by use of<br>evidence synthesis and systematic                                 | T1—evaluating the credibility of genetic<br>associations and assessing the genetic<br>effects and interactions (through HuGENet)                                                                           |
|                        |                                                              | reviews.                                                                                                                                   | T2—systematic reviews on the clinical validity<br>and utility of genomic applications for<br>specific intended uses (through EGAPP<br>appraisal)                                                           |

Abbreviations: EGAPP, Evaluation of Genomic Applications in Practice and Prevention; HuGENet, Human Genome Epidemiology Network; T0–T4, designated phases of translational research.

- 1. Definition, Importance
- 2. Past
  - -examples, lessons
- 3. Future
  - -opportunities, challenges, recommendations

# In examples, consider design, lessons

### Design

- -What is *inherent*; what is *added*?
- -How much effort to add?
- -Did overall design have strength to answer question?

#### Lessons

-How, in future, to cultivate observational cohorts that are strong?

# Prognosis BrCa

Paik S et al. A multigene assay to predict recurrence of tamoxifentreated, node-negative breast cancer. *NEJM*. 2004; 351: 2817.

### Question

 In node-neg BrCa, is prognosis (i.e., low recurrence rate) discriminated by RNA signature?

### Inherent design

• In banked RCT, control group followed: dx to outcome.

### Added design

measure RNA in FFPE specimen at diagnosis

### Results

RNA signature prognostic: low recurrence rate

# Prognosis BrCa

Paik S et al. A multigene assay to predict recurrence of tamoxifentreated, node-negative breast cancer. *NEJM*. 2004; 351: 2817.

#### Lessons

- Inherent design has RCT strength: ascertain l.t. outcome, blinded, etc; clear relevant question
- Piggybacking (adding) to strong inherent design: useful, if possible
- This example:
  - NIH-funded, already banked
  - "Old" study can assess new molecules (validation or discovery)

Future: add 'specimens' to selected studies?

# 2. DiagnosisOvCa (blood)

### Question

Zhu CS et al. A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer. *Can Prev Res.* 2011; 4: 375.

Can blood proteomics screen for OvCa?

### Background

• Strong claims (2002), disappointment (2002-8) b/o weak design (bias in comparison etc.)

### Inherent design

 RCT (PLCO) ~1990; biorepository added mid-1990s, included serial bloods.

### Added design ~2008

- elect a blood just <dx for proteomics assay</li>
- blinded hypothesis testing'

### Result

• 5 groups' assay panels: no better than CA125.

# 2. DiagnosisOvCa (blood)

Zhu CS et al. A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer. *Can Prev Res.* 2011; 4: 375.

#### Lessons

- Diagnosis question addressed by serial specimens (blood), by selecting blood near time of diagnosis.
- Expensive, difficult (big N subjects, specimens; small N cancer and of "relevant specimens")
- NIH-funded; NIH arranges strong comparisons
- "Old" study can assess new molecules
- "If only bigger"... (what lessons from 'mega-cohort')

# 3. Diagnosis CRC (stool DNA)

Imperiale TF et al. Fecal DNA versus occult blood for colorectal-cancer screening in an average-risk population. *NEJM*. 2004; 351: 2704.

### Question

- Can stool DNA screen for early CRC?
   Inherent design
- prospective cohort; industry (EXACT) DNA assay
- expensive: specimen<colonoscopy;</li>
   >5000 persons, 31Ca

Added design: (none)

### Result

- bad news: better than gFOBT, but expensive; biologically promising, clinically disappointing
- good news: answer strong (reliable) because of design

# 3. Diagnosis CRC (stool DNA)

Imperiale TF et al. Fecal DNA versus occult blood for colorectal-cancer screening in an average-risk population. *NEJM*. 2004; 351: 2704.

#### Lessons

- If was greater amount of stool or blood, others could study new molecules (validation or discovery).
- Industry resource is not 'shared.'

# 4. Outcome CRC screening

Selby JV et al. A case-control study of screening sigmoidoscopy and mortality from colorectal cancer. *NEJM*. 1992; 326 (10): 653.

### Question

Can sigmoidoscopy reduce CRC mortality in L colon?

Inherent design (1970s+)

HMO cohort, some sig screening was done

Added design (years later)

- nested case-control study
- learn cause of death
- learn whether exposure occurred (sig for screening)
- create internal control group

# 4. Outcome CRC screening

Selby JV et al. A case-control study of screening sigmoidoscopy and mortality from colorectal cancer. *NEJM.* 1992; 326 (10): 653.

### Result

L-sided CRC mortality reduced ~60%.

#### Lesson

- Assess RCT question in case-control (observ.) study.
- Strength: nested c-c; exposure reason known.
- Could one add bloods, other specimens, and answer other questions.

# 5. PrCaPrognosis



### Question

- Can markers identify lethal vs non-lethal PrCa?
   Inherent design (PASS)
- Prospective cohort, N>1000, active surveillance.

Added design: (none)

Results: (none)

Comment

If 'lethal' PrCa is rare, are results limited?

Lesson

Cohorts may have limitations.

# Obervational cohorts cultivate: other examples

- a) Research studies designed as RCT, cohort
  - -Framingham
  - -Nurses Health Study; Physicians Health
  - -WHS

(used to study diagnosis, prognosis, etc)

- b) Practice settings
  - -HMOs (Kaiser-Permanente, Group Health, etc)
  - -Eli Lilly etc
  - -other

- 1. Definition, Importance
- 2. Past
  - -examples, lessons

Examples and concepts are not new to this group.

Our focus: Lessons about how to cultivate observational cohorts.

- 1. Definition, Importance
- 2. Past
  - -examples, lessons
- 3. Future
  - -opportunities, challenges, recommendations

# Future: Opportunity

# An illustrative example: Molecular markers (blood) for CRC screening

### Background

- In design to discover/validate molecular test, specimen (e.g. blood) must be obtained procedure; req. big N.
- What cohorts could be cultivated?
  - In existing cohort infrastructures, add spec. collection (RCTs of EU, VA; HMOs; practices)
- Specimens could be used for validation and/or discovery.

# Future: Opportunity

# An illustrative example: Molecular markers (blood) for CRC screening

### Background

- In design to discover/validate molecular test, specimen (e.g. blood) must be obtained cedure; req. big N.
- What cohorts could be cultivated?
  - In existing cohort infrastructures, add spec. collection (RCTs of EU, VA; HMOs; practices)
- Specimens could be used for validation and/or discovery.

-Imagine big N, big volume of blood, stool; then banked specimens useful in discovery/validation.

Approach is generalizable to many problems. Challenges: logistics, motivation.

# Future: Challenges

What available cohort sources, infrastructures

- -ongoing research studies
- -practice settings
- -e.g., CRN, HMORN, HMOs; Cohort Consortium; etc etc

What are logistics of 'cultivating'

- -How to anticipate questions and technologies; impact on "design"
- -Add what?
- -Who 'drives' research if different from who 'owns' data?
  - non-trivial: consider CRN, co-op groups

# Future: Challenges

### Other challenges:

 how to cultivate efficiently; avoid wasted effort (past examples)

# Recommendation: Cultivate observational cohorts

### But how?

- 1. Make sure we understand lessons of past; ideas not new.
- 2. Approaches
  - big effort; big N of smaller studies (let 1000 flowers bloom)
  - piggyback onto current infrastructure
  - role of nested case-control design
  - considering 'megacohort'? beware limitations
- 3. Don't just collect data/specimens/annotate; do consider role of questions, methods/design to answer, etc. .
- 4. Try different approaches, get preliminary data, scale up.

How to organize, supervise this effort...

# Trends in 21<sup>st</sup> Century Epidemiology: From Scientific Discoveries to Population Health Impact

Session 4: Use of epidemiologic research to advance clinical and public health practice: bridging the evidence gap with observational studies and randomized clinical trials

Moderator: Sheri D. Schully, Ph.D., Division of Cancer Control and Population Sciences, NCI

# Epidemiology and evidence-based research along the cancer care continuum

David F. Ransohoff, M.D. *University of North Carolina at Chapel Hill* 

#### **Panel and Audience Discussion**

- What are new ways in which epidemiology can be used to fill evidence gaps between discoveries and population health impact in the cancer care continuum?
- How can observational epidemiology make the greatest scientific contributions in understanding cancer-related risk factors that cannot be studied through randomized clinical trials?

# \*Cultivate Observational Cohorts

# Acknowledgements

#### **National Cancer Institute**

**Division of Cancer Prevention** 

- BRG- Biometry Research Group
- EDRN- Early Detection Research Network
- EDRG- Early Detection Research Group (PLCO)
   CPTAC- Clinical Proteomic Technology Assessment for Cancer