

S A C G H S 12th Meeting Adelphi, MD 3/27/2007

Claire T. Driscoll
Director, Technology Transfer Office
National Human Genome Research Institute
National Institutes of Health

"We are in the age of *Homo* economicus. Human genetic material is increasingly an object of commerce."*

*Knoppers, B. M., Hirtle, M., and K. Cranley Glass, "Commercialization of Genetic Research and Public Policy," Science pgs. 2277-2278, Vol. 286 1999.

National Institutes of Health

- One of the world's premier biomedical research centers//engine for biomedical research & innovation
- 27 Institutes, Centers and Divisions (ICDs)
- FY2006 budget of ~\$28B; intramural budget ~\$3B
- Extramural (univ., hospitals, etc.) = 60,000 awards to 3,000 organiz./year)
 - ➤ Grants can be thought of as 0% interest gov. loans /analogous to early stage seed capital
- Intramural (on campus) = 18,000 employees; 5,000 MDs and PhDs; 2000+ intramural R&D projects
 - Collaborate w/ public and private sector scientists
 - > Technologies & inventions available for licensing

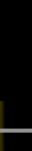
NIH Intramural Patent Principles

Generally, NIH will NOT Patent if:

- No further R&D is needed (ex. Research Tools)
- Low Public Health Priority and/or lack of commercial interest
- Patenting will hinder technology transfer/access to inventions

Generally, NIH will Patent if:

- High Public Health Priority
- Patenting will Facilitate access to technology
- Necessary for Investments in R&D

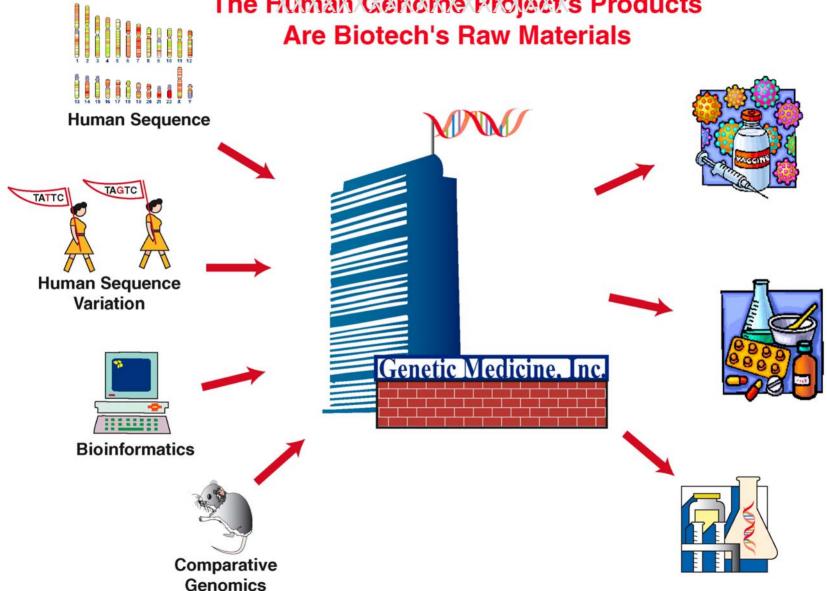

NIH Intramural Licensing Principles

- Public Health Benefits
- Expeditious Development & Granting of Only the Appropriate Scope of Rights (e.g. use of specified fields of use and enforceable benchmarks)
- Optimize number of New Products (= nonexclusive licensing is preferred especially for broadly enabling technologies and diagnostic applications)
- Availability of Technology for Research/Licensees must permit research uses by others
- Fair Financial Return (...the bottom line isn't so important. Really!!)

Technology Transfer Mechanisms

CRADAs

- ➤ CRADA collaborator gets option to exclusively license subject inventions (scope of license must match scope of research plan)
- Patent Commercialization Licenses (in order of lowest to highest "cost")
 - ➤ Non-exclusive
 - ➤ Co-exclusive
 - Exclusive
 - Narrow (by field of use, ex. by disease(s), technology platform, specific application, etc.
 - Broad (NIH rarely does this type)
- Non-Patent Licenses (used for unpatented biological materials)


NIH Intramural Licensing Statistics

- >300 Employee Invention Reports/Year (*not terribly impressive given \$3B annual intramural budget; quality is high; mostly early-stage inventions)
- >80% of Licenses are Non-Exclusive (note: this is exactly the opposite of what happens in academia)
- >85% of Licenses are with U.S. companies
- 52% of Licenses are with small firms

Genes, Patents, NIH Intramural & NIH Grantees

- Since its founding in 1990 the NHGRI has had a policy of free and open access to genetic data
- NHGRI and the NIH as a whole supports the filing of patents when inventions are associated with potential products
- Our grantees are mostly free to patent & license as they wish
 - "Acceptable" IP sharing plans sometimes required
 - Voluntarily adherence to guidance document "NIH [Intramural] Best Practices for the Licensing of Genomic Inventions"
 - DECs sometimes used (removal of Bavh-Dole rights)

Academic Research Enterprise's The Human Genome Project's Products

athena diagnostics Technology Spotlight

List of Patents

Test Code	Test Name	U.S. Patent No.
815	ABCD1 (Adrenoleukodystrophy) DNA Sequencing Test	5,644,045
871	BBS1 (BBS) DNA Sequencing Test	6,962,788
872	BBS2 (BBS) DNA Sequencing Test	7,008,782
827	ABCC8 (CH) DNA Sequencing Test	6,054,313
178	ADmark® Alzheimer's Evaluation	4,666,829, 5,593,846, 5,508,167, 5,861,257, 6,027,896, 5,843,779, 6,114,133, & 6,121,003
109	ADmark® ApoE Genotype Analysis & Interpretation (Symptomatic)	5,508,167, 6,027,896, & 5,716,828
174A	ADmark® Asymptomatic PS-1 Analysis & Interpretation	5,840,540, 6,194,153
177	ADmark® Phospho-Tau/Total-Tau/Ab42 CSF Analysis & Interpretation (Symptomatic)	4,666,829, 5,593,846, 5,861,257, 5,843,779, 6,114,133, & 6,121,003
1748	ADmark® Symptomatic PS-1 Analysis & Interpretation	5,840,540, 6,194,153
493	Aprataxin DNA Sequencing Test	7,119,186
531	Atlastin (SPG3A) DNA Sequencing Test	7,108,975

Technology Spotlight

Patent

List of Patents Licensed by Athena				
Compiled by David Ledbetter, Ph.D. Emory Univ.				

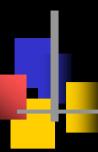
Compile	ed by David Ledbetter, Ph.D. Em	ory Univ.	<u>Assignee</u>
Test Code	Test Name	U.S. Patent No.	
815	ABCD1 (Adrenoleukodystrophy) DNA Sequencing Test	5,644,045	INSRM, Paris
871	BBS1 (BBS) DNA Sequencing Test	6,962,788	U. Iowa
872	BBS2 (BBS) DNA Sequencing Test	7,008,782	U. Iowa
827	ABCC8 (CH) DNA Sequencing Test	6,054,313	Baylor
178	ADmark® Alzheimer's Evaluation	4,666,829, 5,593,846, 5,508,167, 5,861,257, 6,027,896, 5,843,779, 6,114,133, & 6,121,003	U. California
109	ADmark® ApoE Genotype Analysis & Interpretation (Symptomatic)	5,508,167, 6,027,896, & 5,716,828	Duke
174A	ADmark® Asymptomatic PS-1 Analysis & Interpretation	5,840,540, 6,194,153	Lever Bros. Co
177	ADmark® Phospho-Tau/Total-Tau/Ab42 CSF Analysi & Interpretation (Symptomatic)	4,666,829, 5,593,846, 5,861,257, 5,843,779, 6,114,133, & 6,121,003	U. California
1748	ADmark® Symptomatic PS-1 Analysis & Interpretatio	n5,840,540, 6,194,153	Lever Bros. Co.
493	Aprataxin DNA Sequencing Test	7,119,186	Athena
531	Atlastin (SPG3A) DNA Sequencing Test	7,108,975	U. Michigan

680	Autosomal Dominant Ataxia Evaluation	5,741,645, 6,251,589, 5,834,183, 5,840,491, 5,853,995, 6,303,307, 6,280,938, 6,514,755, 7,118,893, and 7,119,186	U. Minnesota
870	Bardet-Biedl Syndrome Evaluation	6,962,788; 7,008,782	U. Iowa
244	Carpal Tunnel Syndrome Evaluation	5,306,616, 5,780,223, & 5,645,993	Baylor
326	Chronic Demyelinative Neuropathy Profile	5,306,616, 5,691,144, 5,645,993, 5,780,223, 6,001,576 & 6,599,756	Baylor
270	Co-GM1 Triad™ Antibody Test	5,989,829, 5,985,578, 6,824,999	Wash. U
690	Complete Ataxia Evaluation	5,741,645, 6,251,589, 5,834,183, 5,840,491, 5,853,995, 6,303,307, 6,280,938, 6,514,755, 7,118,893, and 7,119,186	U. Minnesota
421	Complete CADASIL Evaluation	6,537,775, 6,995,257, 7,138,234	INSERM, France
399	Complete CMT Evaluation	5,306,616, 5,691,144, 5,780,223, 5,645,993, 6,001,576, 5,876,927	Baylor
390	Complete CMT Evaluation (Old)	5,306,616, 5,691,144, 5,780,223, 5,645,993, 6,001,576, 5,876,927	Baylor
286	Complete Dejerine-Sottas Neuropathy Evaluation	5,876,927	U. California
182	Complete DMD Evaluation - Females	5,621,091	Boston Children's

528	Complete Hereditary Spastic Paraplegia Evaluation	6,924,126, 7,108,975	CNRS, France
243	Complete HNPP Evaluation	5,306,616, 5,780,223, & 5,645,993	Baylor
129	Complete Myotonia Evaluation	5,955,265; 5,977,333; 6,902,896	MIT/U. Wales
126	Complete Myotonic Dystrophy Evaluation	5,955,265 & 5,977,333	MIT/U. Wales
525	Complete Tuberous Sclerosis Evaluation	6,207,374	MRC, UK
819	Congenital Hyperinsulinism Evaluation	6,054,313	Baylor
245	Congenital Hypomyelination Evaluation	5,876,927	U. California
321	Connexin 26 DNA Sequencing Test	5,998,147, 6,485,908	Institut Pasteur
329	Connexin Related Deafness Evaluation	5,998,147, 6,485,908	Institut Pasteur
133	Connexin32 DNA Sequencing Test	5,691,144 & 6,001,576	Athena
108	DM1 DNA Test	5,955,265 & 5,977,333	MIT/U. Wales
110	DM2 DNA Test	6,902,896	U. Minnesota
297	Dominant CMT Evaluation	5,306,616, 5,691,144, 5,780,223, 5,645,993, 6,001,576, & 5,876,927	Baylor
561	Dysferlin Blood Test	7,172,858	Mass. General Hosp
626	Dystonia (DYT1) DNA Test	6,387,616	Mass. General Hosp
100	Dystrophin Test	5,541,074, 5,621,091, 5,239,060	Boston Childrens
640	Early Onset Obesity (MC4R) Evaluation	5,622,860, 5,703,220	U. Michigan
881	Endocrine Hypertension (HSD11B2) Evaluation	5,883,240	Baker Med Res Inst
296	Entrapment Neuropathy Evaluation	5,306,616, 5,780,223, & 5,645,993	Baylor
410	EPM1 DNA Test	6,432,635	Helsinki U.

829	Familial Hypocalciuric Hypercalcemia (CASR) Evaluation	5,688,938	Brigham & Womens
119	Friedreich Ataxia DNA Test	6,150,091	Baylor/INSERM
261	GALOP™ Antibody Test	6,121,004	Wash. U.
832	GCK (MODY2) DNA Sequencing Test	5,541,060	U. Chicago
831	HNF4A (MODY1) DNA Sequencing Test	6,187,533	U. Chicago
834	IPF1 (MODY4) DNA Sequencing Test	6,274,310	Mass. General
841	IPF1 (NDM) DNA Sequencing Test	6,274,310	Mass. General
545	KCNQ2 DNA Sequencing Test	6,413,719	U. Utah
145	MAG 'Dual Antigen® Antibody Test	6,599,756, 6,951,763	Athena
817	Male Precocious Puberty (LHCGR) Evaluation	6,635,445	Takeda Chem. Ind.
839	Monogenic Diabetes (MODY) Evaluation	6,187,533, 5,541,060, 6,274,310	U. Chicago
274	Motor Neuropathy Profile-Complete	5,989,829, 5,985,578, 6,077,681 & 6,599,756	Wash. U.
259	Motor Neuropathy Profile-Standard	5,645,993, 5,780,223 5,989,829, 5,985,578, 6,077,681 & 6,599,756	U. Utah
276	Multifocal Neuropathy Evaluation	5,989,829 & 5,985,578	Wash. U.
134	Myelin Protein Zero (MPZ) DNA Sequencing Test	5,876,927	U. California
363	NeoCerebellar Degeneration Paraneoplastic Profile with Recombx™	5,603,934, 5,807,705, 5,668,013, 5,925,526 & 6,387,639	Sloan-Kettering
369	NeoComplete Paraneoplastic Profile with Recombx™	5,603,934, 5,614,371, 5,668,013, 5,786,451, 5,807,705 5,925,526 & 6,387,639	Sloan-Kettering

359	NeoEncephalitis Paraneoplastic Profile with Recombx™	5,603,934, 5,807,705 & 6,387,639	Sloan-Kettering
844	Neonatal Diabetes Mellitus Evaluation	6,274,310	Mass. General
365	NeoPLAST® Basic Paraneoplastic Profile	5,603,934, 5,614,371, 5,668,013, 5,786,451, 5,807,705 & 5,925,526	Sloan-Kettering
360	NeoSeM® Basic Paraneoplastic Profile	5,603,934, 5,807,705, 5,668,013, 5,925,526, & 6,193,948	Sloan-Kettering
478	NeoSensory Neuropathy Paraneoplastic Profile with Recombx™	5,603,934, 5,807,705, & 6,193,948	Sloan-Kettering
720	Nephrotic Syndrome Evaluation	6,207,811, 6,924,110	
730	NPHS1 (Nephrin) Sequencing Analysis	6,207,811	
710	NPHS2 (Podocin) Sequencing Analysis	6,924,110	INSERM, France
300	OPMD DNA Test	6,828,430	McGill U.
860	Osteogenesis Imperfecta Evaluation	6,265,157	Allegheny/T. Jeff
327	OtoDx™ Aminoglycoside Hypersensitivity Test	5,506,101	Cedars-Sinai
398	Partial CMT Evaluation - Demyelinating Only	5,306,616, 5,691,144, 5,780,223, 5,645,993, & 6,001,576	Baylor
392	Partial CMT- Axonal Only	5,645,993, 5,691,144, 6,001,576, & 5,876,927	U. Utah
391	Partial CMT- Demyelinating Only	5,306,616, 5,691,144, 5,780,223, 5,645,993, & 6,001,576	Baylor
103	Partial DMD - del/dup only - Females	5,621,091	Boston Childrens
101	Partial DMD - del/dup only - Males	5,621,091	Boston Childrens
183	Partial DMD - Sequencing only	5.621.091	Boston Childrens

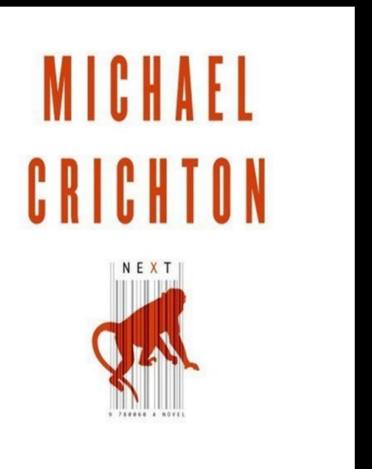

728	PKDx™ Familial Mutation Evaluation	5,654,170, 6,031,088, 6,228,591, 6,485,960, 6,656,681, 6,916,619	Johns Hopkins/ Genzyme
725	PKDx™ Sequencing Analysis	5,654,170, 6,031,088, 6,228,591, 6,485,960, 6,656,681, 6,916,619	Johns Hopkins/ Genzyme
131	PMP22 Duplication/Deletion DNA Test	5,306,616, 5,780,223, 5,645,993, & 5,599,920	Baylor
416	Progressive Myoclonus Epilepsy Evaluation	6,432,635	Helsinki U.
118	Recombx™ CAR (Anti-Recoverin) Antibody Test	5,786,451	U. California
122	Recombx™ MaTa Antibody Test	6,387,639; 7,026,450	Sloan-Kettering
120	Recombx™ Hu Antibody Test	5,603,934 & 5,807,705	Sloan-Kettering
115	Recombx™ Ri Antibody Test	5,614,371	Sloan-Kettering
125	Recombx™ Yo Antibody Test	5,668,013 & 5,925,526	Sloan-Kettering
371	SCA1 DNA Test	5,741,645, & 5,834,183	U. Minnesota
372	SCA2 DNA Test	6,251,589	SRL, Inc. (Japan)
105	SCA3 (Machado-Joseph Disease) DNA Test	5,840,491	
373	SCA6 DNA Test	5,853,995, 6,303,307	Res. Dev. Found
374	SCA7 DNA Test	6,280,938, 6,514,755, 7,118,893	U. Minnesota
384	SCA8 DNA Test	6,524,791	U. Minnesota
535	SCN1A DNA Sequencing Test	7,078, 515	Bionomics Ltd.
264	SensoriMotor Neuropathy Profile	5,443,952, 6,020,140, 5,603,934, 5,807,705 & 6,599,756	Wash. U

262	SensoriMotor Neuropathy Profile-xp	5,443,952, 5,603,934, 5,807,705, 6,020,140, 6,121,004 & 6,599,756	Wash. U.
265	Sensory Neuropathy Profile	5,603,934, 5,807,705, 5,443,952, 6,020,140, 6,193,948 & 6,599,756	Sloan-Kettering
263	Sensory Neuropathy Profile-xp	5,603,934, 5,807,705, 5,443,952, 6,020,140, 6,121,004, 6,193,948 & 6,599,756	Sloan-Kettering
234	Small Fiber Painful Axonal Neuropathy Profile	5,443,952, 5,807,705, 5,603,934 & 6,020,140	Wash. U.
530	Spastin (SPG4) DNA Sequencing Test	6,924,126	CNRS, France
111	Spinal Muscular Atrophy Test	6,080,577; 7,033,752	INSERM, France
210	Sulfatide Antibody Test	5,443,952, 6,020,140	Wash. U.
833	TCF1 (MODY) DNA Sequencing Test	6,187,533	U. Chicago
836	TCF2 (MODY5) DNA Sequencing Test	6,187,533	U. Chicago
523	TSC Familial Mutation Evaluation	6,207,374	MRC, UK
524	TSC2 DNA Deletion Test	6,207,374	MRC, UK
522	TSC2 DNA Sequencing Test	6,207,374	MRC, UK

The Top 30 Holders of U.S. DNA Patents: US Gov is #2

Pressman (2006) *Nature Biotech* **24**: 31-39 (*this study was funded by NHGRI)

Gene Patents Go Mainstream


Intelligence Report®

"How Gene Patents Are Putting Your Health at Risk"

By Lyric Wallwork Winik

November 26, 2006

Crichton's Recommendations

1 Stop patenting of human genes

#5 Rescind the Bayh-Dole Act

A Timeline: Significant Events in the Short History of Gene Patenting in the U.S.

- Late 1970's-80s: mol bio revolution/start of U.S. biotech industry
- 1980;1984 Cohen-Boyer patents issue
- 1980 Diamond vs. Chakrabarty Supreme court decision
- 1990 Human Genome Project begins
- 1991 NIH files a patent application on ESTs (inventor: J. Craig Venter; later abandoned)
- 1996 USPTO holds hearing on gene patents & limits # of seq. to 10/patent applic.
- 1997 PTO says "EST patents are OK" [utility as "probe" acceptable]

Timeline continued

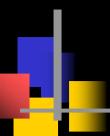
- 1998 controversial Incyte EST patent (human protein kinase homologs) issues
- 1999 PTO issues interim revised Utility Guidelines for biotech patents
- 2000 "Working draft" of human genome completed; Clinton-Blair statement sends NASDAQ/biotech stock values plummeting
- 2001 PTO issues final Utility Guidelines for biotech patents
- 2001-2002 Weldon-Rivers proposed legislation to allow clinical labs the unfettered use of DNA/gene patents
- 2002 Nuffield Council on Bioethics report on "The Ethics of Patenting DNA"
- 2003 Human Genome Project completed

Timeline continued: 2005 to Today

- Murray *Science* paper—18% of known human genes are patented (2005)
- NAS Study "Reaping the benefits of genomic and proteomic research: intellectual property rights, innovation and public health" (2005)
- NIH Best Practices for the Licensing of Genomic Inventions published (2005)
- OECD draft & final guidelines on the Licensing of Genetic Inventions (2004; 2006)
- Crichton book *Next* (11/06) & NYT editorial piece (2/07) published
- Thomas Nature Biotech paper "DNA Patenting: The End of an Era?" (2/2007)
- Weldon/Becerra "Genomic Research and Accessibility Act" bill introduced (2/07)
- AUTM white paper (3/07) "In the Public Interest"

Gene Patents, the PTO & Congress

- PTO determines patentability of inventions
 - LEGAL DETERMINATION ONLY
 - As long as satisfy legal and technical requirements PTO will issue a patent
 - <u>U.S. patent law does NOT to take into account ethical, social or policy considerations/ implications</u>
- PTO has finally developed fairly reasonable policies regarding patentability of genes, ESTs and SNPs it took years and years
- Weldon-Becerra 2007 bill—proposes banning all patenting of human genes
- My take: STOP WORRYING ABOUT GENE PATENTS; FOCUS ON ACCESS. IT IS THE LICENSING OF KEY PATENTS THAT REALLY MATTERS.

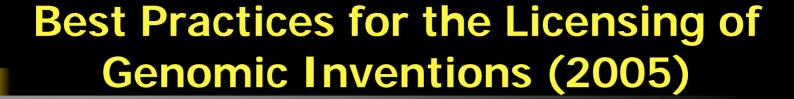

Genomic Research and Diagnostic Accessibility Act of 2002 (HR3967) * A Valiant Attempt...

- Introduced by Lynn Rivers (D-Michigan) and Dave Weldon, MD (R-Florida)
- Proposed to "exempt from patent infringement [those] individuals who use patented genetic sequence information for non-commercial research purposes."
- Proposed to exempt "medical practitioners" who use gene/DNA-based diagnostic or prognostic tests
- Supported by patient advocacy groups, medical societies, public health specialists and regional diagnostic labs

*Abate, T., "Do Gene Patents Wrap Research in Red Tape?" San Francisco Chronicle, March 25, 2002

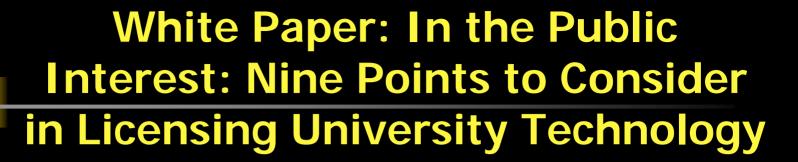
Genomic Research and Accessibility Act Bill (HR977) A Bad Idea.....

- Co-sponsors Weldon (R-FL) and Becerra (D-CA); Feb '07
- "..prohibit the patenting of human genetic material" (not retroactively)
- Silly—are there really any unknown human genes left to find?
- Doesn't address the key public health concern of access, choice/quality and affordability of DNA-based diagnostic tests


ACMG Statement on Gene Patents and Accessibility of Gene Testing*

- Genes and their mutations are naturally occurring substances that should not be patented (IRRELEVANT—they are patentable)
- Patents on genes with clinical implications must be very broadly licensed
- Licensing agreements should not limit access (through excessive royalties and other unreasonable terms

*American College of Medical Genetics (Aug. 2, 1999) www.faseb.org/genetics/acmg/pol-34.htm


- Accessibility and Affordability of Gene/DNA-based Diagnostics
- Publish (place in public domain)
- Execute 10 non-exclusive licenses for human disease gene/diagnostic-type inventions
- Give limited field(s) of use and include mandatory sub-licensing provisions in exclusive licenses
- Developed "Best Practices" guidance document for use by Grantees

- This isn't new—we just put down in writing what NIH intramural has been doing for years
- Grantees are not required to follow these recommendations
- Negotiate non-exclusive or co-exclusive licenses whenever possible
- Include provisions to ensure continuing availability of invention for further research (for all not just the inventor's institution)

- Include provisions for mandatory sublicensing by exclusive licensees
- Avoid direct licensing to virtual developers
- Negotiate and execute "narrow" exclusive licenses for specific indications, technology platforms or fields of use and/or territories if exclusivity is needed
- Include developmental milestones/benchmarks & performancebased royalty payments
- Monitor & enforce terms

- A sensible, thoughtful & balanced approach that might just work! Some overlap with NIH Best Practices
- Technology-neutral (however diagnostic tests are specifically mentioned)
- Signed by big name universities (big in research, big in reputation and big in royalty income)
- Endorsed by AUTM and AAMC (so far)
- Just released 3/6/2007—partially a response to recent negative press ("The Kept University," "The Trouble with Tech Transfer" and criticism of Bayh-Dole Act)

- Reserve the right to practice licensed inventions for research and education use for non-profits and gov orgs
 - Licenses should NOT hinder clinical research, professional education and training, use by public authorities or independent validation of test results
 - Licensing of a single gene for a diagnostic may be counterproductive
- Avoid broad exclusive licenses; only give those rights necessary to encourage commercial development
- Ensure broad access to research tools

Some Possible Remedies*?

- Compulsory licensing of DNA/gene-based inventions for all diagnostic uses
- Create true "research exemption" for noncommercial uses of gene patent inventions (Madey vs. Duke) in U.S. patent law
- Create patent pools (voluntary sharing by patent owners of their key IP with members of a consortia in exchange for access to those other members' IP)
- Encourage cross-licensing OR set up clearing houses for genetic inventions
- Adopt an "open source" approach to biological licenses

^{*}See also "The Ethics of Patenting DNA" Nuffield Council Report (2002)

Possible Remedies contin.

- For Gov Grantees: put in place new guidelines governing the appropriate licensing policies for these types of inventions (NIH has a guidance on "Best Practices for the licensing of genomic inventions")
 - http://ott.od.nih.gov/NewPages/LicGenInv. pdf
 - Academia doesn't like NIH telling them how to manage their IP/inventions (a threat to their Bayh-Dole rights and autonomy)
 - ➤ Are NIH grantees or are companies the source of the perceived problem? Is there any data?

Options for Other Government Agencies & Universities to Consider

- Adopt NIH best practices for licensing of genomic inventions such as:
 - ► Non-exclusive licensing for diagnostics
 - Limit exclusive licensing to therapeutics and vaccines
- Adhere to University-AAMC White Paper recommendations from "In the Public Interest: Nine Points to Consider in Licensing University Technology"
 - ➤ 11 major research universities and AAMC have signed on as of March 2007
 - Doesn't focus on particular technologies

Patent, Licensing & Technology Transfer Information:

- Office of Technology Transfer, NIH
 - www.nih.gov/od/ott/
- Association of University Technology Managers (AUTM)
 - >www.autm.net
- Licensing Executives Society (LES)
 - >www.les.org
- United States Patent and Trademark Office (USPTO)
 - >www.uspto.gov

For more NIH information

- Technology Transfer Office, NHGRI
 - Building 12A Room 1033
 - ► tel: (301) 402-2537/ (301) 594-2235
 - Fax: (301) 402-9722
 - ► e-mail: cdriscol@mail.nih.gov
- http://www.genome.gov
 - **► NHGRI technologies**
 - > technology transfer information sources
 - > electronic mail links to staff
- http://ott.od.nih.gov
 - ➤ All NIH technologies
 - ➤ On-line technology transfer training module