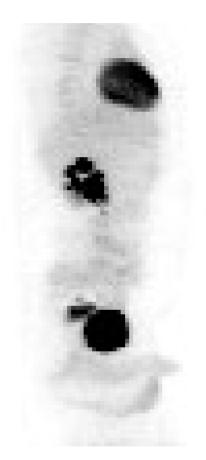
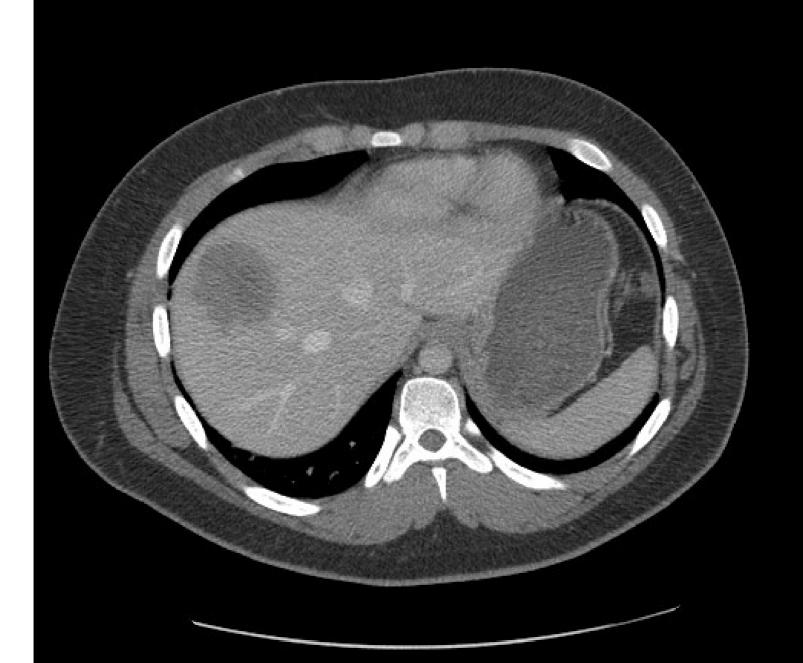


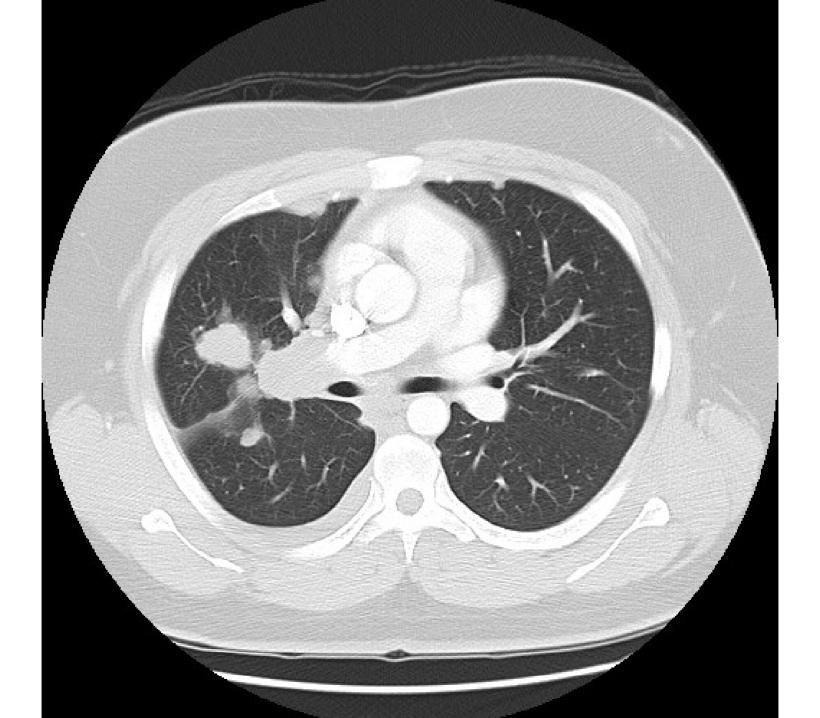

②A Retrospective Analysis of Colorectal Cancer in Adolescents and Young Adults

A report from the Surgical Committee of the Children's Oncology Group


Michael P. La Quaglia M.D., Melinda Morris Ph.D., Jinru Shia M.D., Kamran Idrees M.D., Shoshana Rosenberg B.A., Nicole Ishill M.S., Robert Shamberger M.D., John Doski M.D., Glenn Heller Ph.D., Philip Paty M.D.

Memorial Sloan-Kettering Cancer Center, New York, NY 10021


Comparison Of PET scans before and after Neoadjuvant Therapy



Pre-chemotherapy

Post-chemotherapy

Age-Specific Incidence of CRC in USA (SEER/Census)

Age Range (years)	Incidence (per 100,000)	Estimated Cases Per Year
10-14	0.0683	
15-19	0.2192	525
20-24	0.6603	323
25-29	1.6190	
30-34	3.4004	2.000
35-39	6.9042	2,000
40-44	13.0117	9.600
45-49	25.2359	8,600
50-54	48.6546	
55-59	80.0381	
60-64	127.2594	145,000
65-69	189.7135	145,000
70-74	255.3637	
75-79	327.2912	

The Society of Surgical Oncology 62nd Annual Cancer Symposium March 7, 2009

Colorectal Cancer in the Very Young: A Comparative Study of Tumor Markers, Pathology and Survival in Early Onset and Adult Onset Patients

Sajid A. Khan, MD
Paty Laboratory
Memorial Sloan-Kettering Cancer Center

Early Onset CRC A Unique Disease?

- Clinical study: 29 Patients age ≤ 21 years
 - Sporadic cancer = 76%
 - 3-year survival = 28%
 - Advanced stage upon presentation = 82%
 - High grade tumors = 69%
- Molecular analysis: 13 patients age ≤ 21 years
 - Microsatellite instability (MSI+) cancers = 46%
 - Microsatellite stability (MSS+) cancers = 54%

LaQuaglia MP et al. J Pediatr Surg,1992 Datta RV, Paty PB, et al. NEJM 2000

Molecular Features of Adult CRC

	Hereditary MSI	Sporadic MSI	Sporadic MSS
% of All CRCs	4%	12%	84%
Genomic Instability	Slippage mutation	Deregulated methylation	Chromosomal instability
Mismatch Repair (MMR) Genes	MLH1 MSH2 MLH6 PMS2	MLH1	-
K-ras Mutations	40%	15%	40%
B-raf Mutations	Absent	35%	4%

Clinical and Histological Features of Adult CRC

	Hereditary MSI	Sporadic MSI	Sporadic MSS
Age Onset (yrs)	30 - 60	55 - 90	55 - 90
Family History of Cancer	Amsterdam II	Not major	Not major
Histology	Poorly diff Lymph infilt	Poorly diff Lymph infilt	Variable

Study Questions

 Is the genetic spectrum of <u>early onset</u>
 CRC similar or different compared to <u>adult onset</u> CRC?

 Can a distinct class of CRC be defined within the early onset group?

Study Design

Study Group

Children Oncology Group (COG) and MSKCC:

•CRC Diagnosed ≤30 years old

167 cases: Clinical Information Available

96 Cases: Tumor Blocks Available

And DNA successfully extracted

94 Cases: ≤30 Years Old

Control Group

MSKCC: Operated by CR Service between

1991-2005

Frozen Tissue Prepared from OR

345 Cases: DNA Successfully Extracted

275 Cases: ≥50 Years Old

1. MSI status: (PCR-electrophoresis)

2. K-ras codon 12/13 mutation: (PCR-LDR)

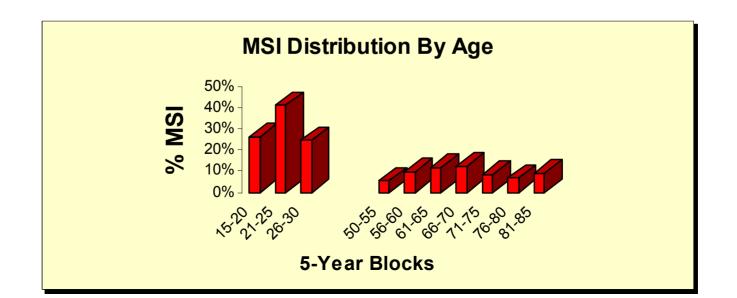
3. B-raf V600E mutation: (PCR-LDR)

4. MMR presence: (IHC)

Clinical Characteristics

		Age ≤30 (N=94)	Age ≥50 (N=275)	<u>P</u>
Median Age (y)		27	67	-
Sov	M	48%	53%	NS
Sex	F	52%	47%	INS
Location	Proximal	34%	35%	NS
Location	Distal	66%	65%	INO
Stage	III/IV	76%	51%	<0.0001
Histology	Poorly differentiated	37%	8%	<0.0001
Histology	Signet Ring	13%	<1%	<0.0001

Clinical Characteristics


		Age ≤30 (N=94)	Age ≥50 (N=275)	<u>P</u>
Median Age (y)		27	67	-
Sov	M	48%	53%	NS
Sex	F	52%	47%	INS
Location	Proximal	34%	35%	NS
Location	Distal	66%	65%	INS
Stage	III/IV	76%	51%	<0.0001
Histology	Poorly differentiated	37%	8%	<0.0001
Histology	Signet Ring	13%	<1%	<0.0001

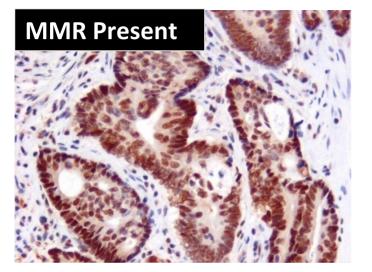
Clinical Characteristics

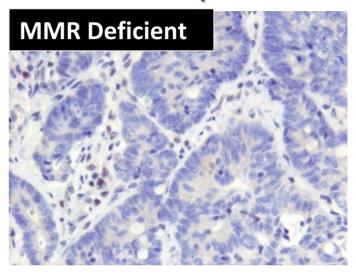
		Age ≤30 (N=94)	Age ≥50 (N=275)	<u>P</u>
Median Age (y)		27	67	-
Sov	M	48%	53%	NS
Sex	F	52%	47%	INS
Location	Proximal	34%	35%	NC
Location	Distal	66%	65%	NS
Stage	III/IV	76%	51%	<0.0001
Histology	Poorly differentiated	37%	8%	<0.0001
Histology	Signet Ring	13%	<1%	<0.0001

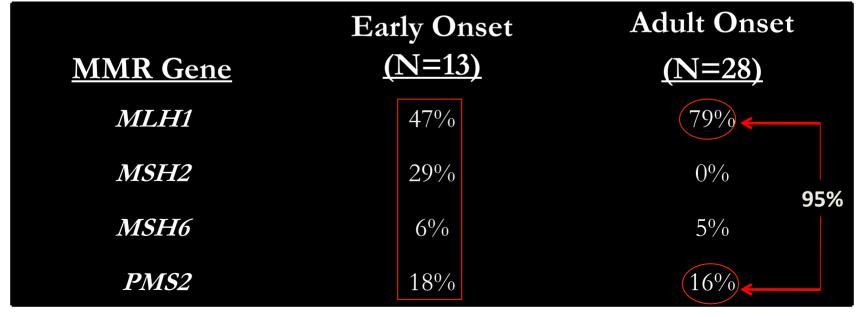
Frequency of Genetic Markers

	Age ≤30 (N=94)	Age ≥50 <u>N=275</u>	<u>P</u>
B-raf V600E Mutation	9%	8%	NS
K-ras Codon 12/13 Mutation	28%	36%	NS
MSI	27%	13%	<0.01

Clinical Features of MSI/MSS tumors


	Early Onset (N=94)	<u>P</u>	Adult Onset (N=275)	<u>P</u>
Right-sided Tumor	39% / 32%	0.78	65% / 30%	<0.0001
Tumor Grade	29% / 40%	0.33	23% / 5%	<0.0001
Early Stage (I +II)	29% / 22%	0.59	78% / 45%	<0.0001
5-year Survival	65% / 39%	0.048	94% / 75%	0.006
Amsterdam II	7% / 5%	0.80	0% / 1%	0.73


MSI Cancer Favorable Disease-Specific Survival



MSI Tumors

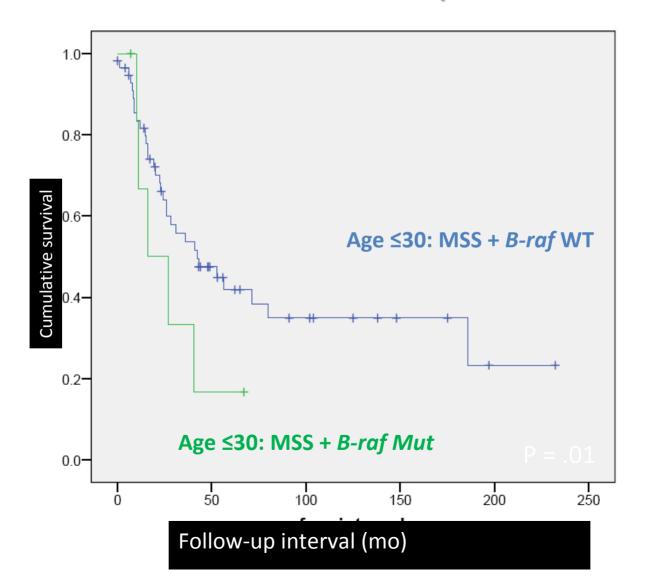
A Different Distribution of MMR Gene Expression

MSI Tumors

Absence of an Favorable Genotype

Prevalence of B-raf Mutations in MSI Tumors			
	Early Onset (N=25)	Adult Onset (N = 37)	<u>P</u>
B-raf V600E mutation	0%	38%	<0.01

	Early Onset	Adult Onset
MSI+ B-raf Mut	N = 0 (0%)	N = 14 (38%)
Stage I - II	-	93%
5-year DSS	-	100%
MSI + B-raf WT	N = 25 (27%)	N = 23 (62%)
Stage I - II	28%	65%
Median DSS	65%	90%


MSS Tumors

Enrichment Of An Aggressive Genotype

Prevalence of <i>B-raf</i> Mutations in MSS Tumors			
	<u>Early Onset</u> (N = 69)	<u>Adult Onset</u> (N = 237)	<u>P</u>
MSS + B-raf mut	9%	3%	<0.01

	Early Onset	Adult Onset
MSS + <i>B-raf</i> Mut	N = 8 (9%)	N = 8 (3%)
Stage III-IV	100%	100%
5-year DSS	16 mo	75%
MSS + B-raf WT	N = 61 (91%)	N = 230 (97%)
Stage III-IV	72%	53%
5-year DSS	56 mo	75%

MSS + *B-raf* Mutation A Marker For Poor Disease-Specific Survival

Summary – Early Onset CRC

- High grade tumors, advanced stage and poor survival compared to adult onset CRC
- Enriched for MSI tumors (27%)
- Genetic subtypes:
 - ABSENT indolent MSI/B-raf mutant group
 - ENRICHED aggressive MSS/B-raf mutant group
- Among MSI tumors, MMR gene staining pattern and absence of B-raf is similar to HNPCC

Hypothesis: Early Onset CRC

 De novo germline mutations of genes in the p53 pathway are a cause for early onset colorectal cancer

Prevalence of Early Onset Colorectal Cancer in 397 Patients With Classic Li-Fraumeni Syndrome

PATRICIA WONG,* SIGITAS J. VERSELIS,* JUDY E. GARBER,[§] KATHERINE SCHNEIDER,[§] LISA DIGIANNI,[§] DAVID H. STOCKWELL,^{II} FREDERICK P. LI,[§] and SAPNA SYNGAL^{§,II}

Cell, Vol. 119, 591-602, November 24, 2004, Copyright @2004 by Cell Press

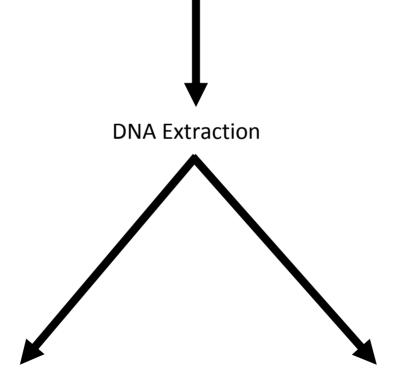
A Single Nucleotide Polymorphism in the *MDM2*Promoter Attenuates the p53 Tumor Suppressor Pathway and Accelerates Tumor Formation in Humans

Gareth L. Bond,²⁸ Wenwei Hu,²⁸ Elisabeth E. Bond,² Harlan Robins,¹ Stuart G. Lutzker,² Nicoleta C. Arva,⁷ Jill Bargonetti,⁷ Frank Bartel,⁴ Helge Taubert,⁴ Peter Wuerl,⁵ Kenan Onel,⁶ Linwah Yip,³ Shih-Jen Hwang,³ Louise C. Strong,³ Guillermina Lozano,³ and Arnold J. Levine^{1,2,*}

Introduction

The tumor suppressor protein, p53, is activated upon cellular stresses such as DNA damage and oncogene activation and initiates a transcriptional program which leads to DNA repair, cell cycle arrest, and in some cases, apoptosis (Jin and Levine, 2001). The p53 stress re-

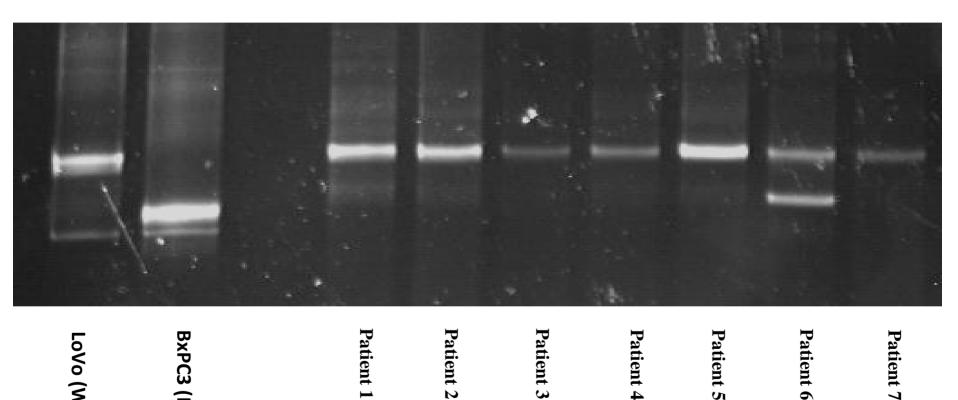
Wong, Syngal et al, Gastroenterology 2006 Bond, Levine et al, Cell 2004


^{*}Department of Internal Medicine, ^IDivision of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts; [†]Molecular Diagnostic Laboratory, [§]Population Sciences Division, Dana-Farber Cancer Institute, Boston, Massachusetts

Li-Fraumeni Syndrome A Rare Cause of CRC

- Li-Fraumeni Syndrome (LFS):
 - Classic: Sarcoma, breast, adrenal, brain cancer
 - Rare: Colon Cancer (2-3%)
 - Genetic alteration: germline p53 mutation (more common),
 Chk2 mutation
- Germline p53 Mutations:
 - Range of phenotypic expression not fully known
 - No population based studies
 - LFS versus rare phenotypes: ascertainment bias

Study Design: Molecular Characteristics of Germline Tissue in Early Onset CRC


35 Cases – Frozen Peripheral Blood Leukocytes With CRC Diagnosed ≤30 years old

p53 Screen: PCR/TTGE Exons 4 -10 (sequencing of aberrant bands)

MDM2 SNP309: PCR/LDR

TTGE Gel for TP53 Exon 6

BxPC3 (Mut control)

LoVo (WT control)

MDM2 SNP309 Genetic Analysis

	T/T	T/G	G/G	P-value
Median Age at Diagnosis	28	28	27	-
Number of Cases	11	19	3	-
Percent	33%	58%	9%	NS
Adult Prevalence*				
CRC	34%	48%	18%	NS
Population	30%	53%	17%	NS

^{*}Alhopuro, J of Med Gen 2005

Conclusion

 Genetic variants in P53 and MDM2 SNP309 in germline tissue are not associated with early onset CRC

Future Directions

- Targetted agents (ie. Inhibitors of B-raf)
- Prospective molecular profiling and clinical database
- Inclusion of cases in Cancer Genome Anatomy Project
 - Fresh frozen tissue
 - -White cells or buccal mucosal cells
 - Detailed family Hx