Measures of Health Disparity

This section reviews most of the statistics that are
available to measure health disparities. The goal is
to provide a brief overview of each measure,
followed by the method of calculation and
statistical interpretation and, often, an example of
its actual or potential use for measuring disparities
in cancer-related health objectives.

Note that there are methods to calculate
indicators of precision (e.g., 95% confidence
interval) for all of the measures reviewed here.
These can be found in the source publications
detailed in the references. Although issues of
variability and precision are important, they are
not germane to the choice of disparity measure
because they ultimately derive from the precision
of the underlying rates, prevalence, and
proportions that are used to generate a particular
disparity measure.

Measures of Total Disparity

A measure of “total disparity” in health is a
summary index of health differences across a
population of individuals. Generally, measures of
total disparity do not account for social grouping
and have been used chiefly by health economists
(see, for example, 25,49). They are an important
first step in understanding the scope of health
variation in a population and have advantageous
properties for monitoring trends, particularly for
cross-country comparisons. They do not, however,
inform about systematic variation in health
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among population subgroups, which is inherent
in the Healthy People 2010 health disparity
initiatives. The measurement of health disparity
as total disparity is associated most closely with
and endorsed by the WHO as a component of its
general framework for routinely assessing the
performance of health systems in different
countries. The WHO, however, is not the only
advocate of measuring total disparity. Some
health economists also advocate for the
measurement of total health disparity (25,63,64)
as the primary form of assessing health
inequalities.

A number of criticisms have been levied at
this kind of measure, primarily because it does not
distinguish among individuals from different
social groups (51,53,54,65). In addition, empirical
investigations using measures of total disparity
appear difficult to interpret (54,66,67). Those who
endorse this measure often cite as their primary
justification the weighty normative choices that
must be made to measure health differences
between social groups and note that the absence
of such a priori choices makes disparity between
individuals a more “objective” measure of health
disparity. We recognize that Healthy People 2010
specifically calls for social-group monitoring and
not total variation, but we include measures of
total group disparity because they are prominent
in the overall framework of efforts to monitor
global health disparity and because they provide
an essential context for understanding the



“decomposition” of health disparity measures, as
described below.

Individual-Mean Differences

Individual-mean difference (IMD) measures of
health disparity calculate the difference between
the health of every individual in the population
and the population average. The general formula
for the class of individual/mean difference
measures is given by Gakidou and colleagues (49)
as:
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where an individual 7's health is y, u is the mean
health of the population, and nis the number of
individuals in the population. The parameters a
and p specify, respectively, the significance
attached to health differences at the ends of the
distribution relative to the mean and whether the
individual-mean difference is absolute or relative
to the mean health of the population. For
instance, large values of a emphasize greater
deviations from the mean, and larger values of
emphasize relative disparity because of heavier
weighting of the mean. Those familiar with basic
statistics will note that, when o =2 and =0, the
IMD simply is the variance; and when a = 2 and

p =1, the IMD is the coefficient of variation (49).
Similar to many other disparity measures, the IMD
is a “dimensionless” index that is not measured in
units because it always is relative to the mean in
the population.

(1]
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Inter-Individual Differences (IID)

The IID measures health differences between all
individuals in the population and is consistent
with the Gini coefficient but may be weighted in
accordance with differential aversion to disparity
(i.e., the value chosen for a). These measures are
different from the IMD class because they
compare every individual in the population with
every other individual in the population, whereas
the IMD measures disparity relative to the
population average. It should be clear that
different measures of disparity implicitly express
different perspectives on which aspects of
disparity should be emphasized in the measure.
The class of inter-individual difference measures is
(49):

Y04 ﬁ

where y is individual /s health, y; is individual /s
health, u is the mean health of the population,
and nis the number of individuals in the
population. The parameters o and f are defined as
for the IMD above, and it is worth noting that,
when a =2 and p = 1, the IID is equal to the more
well-known Gini coefficient. Gakidou and King
have used this disparity measure (with o = 3 and
p = 1) to compare total disparity in child survival
among 50 countries (68). Weighting a = 3 implies
that the measure should be more sensitive to
larger than smaller pairwise deviations between
individuals and thus reflects additional concern
about larger health differences between
individuals. To our knowledge, there is only one
study of total disparity that uses data from the
United States (69).
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Measures of Social-Group Disparity

The measures of total variation described above
have a number of merits, including their ability to
make unambiguous health disparity comparisons
between populations and over time. In defining
health disparity as disparity between individuals
instead of between social groups, such measures
avoid the difficulty of comparability of groups
between populations or over time (50). This
makes them particularly attractive for cross-
country comparisons, in which defining
comparable social groups is challenging because
of differences in how social groups are classified
in different countries (70).

The disparity goals of Healthy People 2010,
however, explicitly are goals that relate to social-
group differences in health. It is an open question
as to whether measures of total disparity and
social-group disparity are “better” or “worse”
disparity measures, but the concern among health
policy makers in the United States specifically is
expressed in terms of social-group differences in
health. Measures of total disparity therefore are
insufficient for monitoring progress toward
eliminating cancer-related health differences
among social groups in the United States.

Pairwise Comparisons

Simple comparisons of some health indicator
between two groups in a population (so-called
pairwise comparisons) clearly are one of the most
straightforward ways to measure progress toward
eliminating disparities between groups. For
example, age-adjusted incidence rates of lung
cancer for black and white females in 1973 were,
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respectively, 23.6 and 20.4 per 100,000. By 1999,
rates for both groups had increased, to 57.0 for
blacks and 52.3 for whites (71). It would seem
easy enough to answer the question: Did black-
white disparity grow from 1973 to 1999?
Unfortunately, however, the answer depends on
the measure of disparity. If the disparity measure
is the absolute difference between the black and
white rates, then we would conclude that the
black-white disparity increased from 3.2 to 4.7.
If the disparity measure is the relative difference
between the black and white rates (i.e., black
rate + white rate), however, we would conclude
the opposite because the relative disparity
decreased from 1.16 to 1.09. Both answers are
correct. This has been a source of continuing
confusion and sometimes unresolved debate in
the health disparities literature (72,73) and,
although most of the empirical work in health
disparities has been in terms of “relative
disparity,” it should always be kept in mind that
large relative differences can mask very small
differences in absolute terms, which can be
misleading with respect to the disparity’s
population-health impact. Conversely, there may
be situations where large relative disparities may
be viewed as grossly unjust, despite the fact that
they reflect small absolute differences.

Absolute Disparity

The absolute disparity between two health-status
indicators is the simple arithmetic difference. It is
calculated as:

AD=r1 -1, (3]
where r, and r, are indicators of health status in

two social groups. In this case, r, serves as the
reference population, and the AD is expressed in



the same units as r, and r,. A typical disparity
measure that uses the absolute difference between
two rates for an entire population is the range,
where case r, above corresponds to the least-
healthy group and r, to the most-healthy group.

Relative Disparity

For the same pairwise group comparison in
equation [3], we also can divide r, into r, to
calculate the relative disparity as:

RD =r]r, [4]
where, again, 1, is the reference population. This
rate ratio can be transformed easily into a

percentage difference by multiplying the ratio by
100. Figure 10 shows the absolute and relative

black-white disparity for prostate and stomach
cancer incidence from 1992-1999. Clearly, there is
a much larger absolute disparity in prostate cancer
incidence because the rates for both groups are
relatively high compared to the stomach cancer
rates; however, the relative disparity is larger for
stomach cancer.

Regression-Based Measures

One drawback of the pairwise comparison
measures of disparity is that, when a social group
has more than two subgroups (as most do),
information on the other groups is ignored.
Normally it is desirable to use as much of the
information present in the data as possible. If we

Figure 10. Absolute and Relative Black-White Disparities in Prostate and Stomach Cancer Incidence,
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compare the “best” group to the “worst” group,
we effectively ignore the information on the
health status of all the groups in between, aside
from knowing that they fall somewhere between
the best and worst groups. One possible solution
would be to calculate a series of (1) pairwise
comparisons for j groups using one group as the
reference point, or j pairwise comparisons using
an external reference point. Although feasible, as
the number of groups, time periods, or both
increases, attempting to evaluate the disparity
trend may become complicated in terms of
summarizing the many pairwise comparisons. To
overcome this limitation and make use of the
information for all groups, one might consider
calculating a summary measure of disparity. This
choice, however, undoubtedly involves additional
complexity and assumptions that must be traded
off against the insights about disparity gleaned
from the use of a summary measure (74).

Simple Linear Regression

If one is willing to assume that the relationship
between social group and health status is linear
(i.e., that each step up the social-group scale
results in an equivalent health gain/loss), then a
potential way to include information on all of the
groups is to calculate a summary measure of
disparity using regression. One way of writing this
is:

Vi= I‘?'I' l?Xz

where y. is a measure of health status for
individual j, B, is the value of the health variable
when X is O (e.g., if X_ is a continuous measure of
income, then f; is the health status of an
individual with zero income), X. indexes social
group, and f, is the summary measure of
disparity. In general terms, 8, is equal to the

[5]
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covariation of X and y expressed in terms of the
variance of X. The specific interpretation of f,
depends on the particular health status measure
used and the specification of the model. If y, is an
untransformed health status measure—for
example, BMI—then g, is the absolute increase in
BMI associated with a one-unit change in social
group and is referred to as a Regression-Based
Absolute Effect or RAE (70). It is an absolute
measure because it is expressed in the same units
as the quantity of health measured in y,.
Continuous types of health outcomes, however,
are relatively less common in the area of cancer-
related data. More likely are noncontinuous types
of health data (e.g., the presence or absence of
cancer, receipt or nonreceipt of screening), where
the linear relationship in equation [5] applies to
some transformation of the dependent variable y.
For transformations of the dependent variable y;,
(e.g., the logarithmic or logit transformation),

f, then becomes a relative-risk (logarithmic
transformation) or odds-ratio (logit
transformation) and is interpreted as the
proportional increase in health status for a one-unit
change in social group and referred to as a
Regression-Based Relative Effect or RRE (70).
Figure 11 (page 38) graphically shows a simple
regression-based disparity measure, applied in this
case by Steenland et al. to the risk of lung cancer
among men of different education groups
(grammar, some high school, high-school
graduate, some college, college graduate) in the
1982-1996 Cancer Prevention Study II (36). The
y-axis is the risk of mortality relative to those
completing graduate school (whose relative risk is
by definition equal to 1.0), the x-axis is the
approximate number of years of education for
each education group (X. in equation [5]), and the
fitted line indicates the linear decrease in relative



risk—which Steenland and colleagues reported as
about 10%—for each 1-year increase in the
number of years of education. (It is important to
note that, for ease of presentation, the plotted
points in Figure 11 show only the average relative
risk for each education group. The actual
regression equation is performed on all 500,000 or
so individuals in the CPS-II.) Relative-effect
measures also may be transformed into absolute
effect measures by applying them to the rates of
health in the referent social group. An additional
drawback to the RAE and RRE is that the
assumption of linearity between health and social
group may be problematic. For example, while
Kunst and colleagues find linear associations

between education and self-rated health (75),
Manor et al. report nonlinearity between
education and a number of chronic conditions
(76), and Backlund and colleagues report a
nonlinear association between income and
mortality (77).

Slope Index of Inequality

The regression-based methods outlined above,
subject to the assumptions of the model, work
well for calculating a summary measure of health
disparity at a single point in time. As noted above,
however, over time the distribution of the
population in various social groups may change

Figure 11. Example of a Simple Regression-Based Disparity Measure
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drastically, and it would be advantageous for a
measure of health disparity to be sensitive to such
changes. One measure that does so is the Slope
Index of Inequality (SII). To calculate the SII, the
social groups first are ordered from lowest to
highest. The population of each social-group
category covers a range in the cumulative
distribution of the population and is given a score
based on the midpoint of its range in the
cumulative distribution in the population. For
example, in the 2001 NHIS those with an income-
to-poverty ratio of less than 0.5 (approximately
<$9,000 for a family of four) were 3.45% of the
population, and those in the next highest income
group—with an income-to-poverty ratio of 0.5 to
0.74—comprised 3.02%, in which case the lowest
group is assigned a score of [0 + (.0345 - 0)/2] =
0173, and the next lowest group is assigned a
score of [.0345 + (.0647 —.0345)/2] = .0496.

Health status then is plotted against this
midpoint socioeconomic category variable, and a
regression line is fitted to the data. The SII thus is
similar to the regression-based methods above,
but differs because it uses the midpoint of the
cumulative social group distribution and because
it (usually) is based on grouped data and is a
weighted index, where the weights are based on
the size of the social groups. By weighting social
groups by their population share, the SII is able to
incorporate changes in the distribution of social
groups over time that affect the population health
burden of health disparities. Figure 12 (page 40)
shows the predicted slope for the income disparity
(based on income-to-poverty ratio) in current
smoking for the United States in 2001. Note that,
in Figure 11, the location of the data points on
the x-axis is based on the estimated number of

years of education, whereas in Figure 12, the
location is based on the group’s share of the
population. This reflects the fact that the
education groups actually comprise different
proportions of the population distribution.
Formally, the SII, which was introduced by
Preston, Haines, and Pamuk (78), may be ob-
tained via regression of the mean health variable
on the mean relative rank variable:

V= l‘?"' le 16}
where j indexes social group, y, is the average
health status, R, is the average relative ranking of
social group j, 3, is the estimated health status of a
hypothetical person at the bottom of the social
group hierarchy (i.e., a person whose relative rank
R;in the social group distribution is zero), and ,
is the difference in average health status between
the hypothetical person at the bottom of the
social group distribution and the hypothetical
person at the top (i.e, R = 0vs. R =1). Because
the relative rank variable is based on the
cumulative proportions of the population (from

0 to 1), a “one-unit” change in relative rank is
equivalent to moving from the bottom to the top
of the social group distribution. Because this
regression is run on grouped data (as opposed to
individual data as in equation [3]), it is estimated
via weighted least squares, with the weights equal
to the population size n, of group j (60). The
coefficient 8, in equation [6] is the SII, which is
interpreted as the absolute difference in health
status between the bottom and top of the social-
group distribution. Thus, the regression equation
in Figure 12 shows that the absolute difference in
the prevalence of smoking across the entire



distribution of income is -18.1 percentage points.

The same regression also may be run on
individual data (as in equation [5]), but replacing
X with R, with R being an individual’s relative
rank in the social-group distribution. In this case,
the data would be self-weighting and could be
estimated by ordinary least squares.

Relative Index of Inequality

The SII discussed above is a measure of absolute
disparity. Dividing this estimated slope by the
mean population health, however, provides a

relative disparity measure, the Relative Index of
Inequality or RII (79):

RI=SII/p= [ p [7]

where pis mean population health and the SII is
the estimate of B, from equation [6]. Its
interpretation is similar to the SII, but it now
measures the proportionate (in regard to the
average population level) rather than the absolute
increase or decrease in health between the highest
and lowest socioeconomic groups. In the income
and smoking example seen in Figure 12, the RIl is
calculated as -18.1/24.6 = -0.74, indicating that a

Figure 12. Income-Based Slope Index of Inequality for Current Smoking, NHIS, 2002
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move from the bottom to the top of the income
distribution is associated with a 74% decline in
the prevalence of smoking. Kunst and
Mackenbach (70) modified this definition of the
RIT slightly by dividing the estimated health of the
hypothetical person at the bottom of the social-
group distribution by the estimated health of the
hypothetical person at the top of the social-group
distribution:

gl P

where f, and f, are defined as in equation [6].
From Figure 12, this is calculated as 33.7/(33.7 -
18.1) = 2.16, indicating that the rate of smoking is
2.16 times higher at the bottom of the income
distribution than at the top. Thus, the Kunst-
Mackenbach RII is more like a traditional relative
risk measure in that it compares the health of the
extremes of the social distribution, but it is
estimated using the data on all social groups and
is weighted to account for social-group sizes. As
noted above, the use of the SII and RII indices (as
well as the Health Concentration Index discussed
below) depends on having a social-group
classification scheme that is hierarchical. This
seems straightforward with respect to education
and income, but social-group classifications based
on occupation may be somewhat more
challenging because there inherently is more
ambiguity in the ranking of occupations (80). In
their international study of occupational
mortality differences, Kunst and Mackenbach (81)
note this difficulty as a possible explanation for
the lack of consistency of their results with those
of Wagstaff for the size of disparity in Finland
versus England and Wales (60).

[8]
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Population Impact Measures
Population Attributable Risk

The Population Attributable Risk (PAR) and its
relative analogue, the PAR%, are longstanding
epidemiologic measures of the population burden
that is associated with differential health between
groups. Although typically applied to groups
defined by their exposure status (e.g., comparing
smokers with nonsmokers), it also may be applied
in the context of health differences between social
groups (poor vs. nonpoor). It is a summary of
differences between each social group’s health and
the health of the “best” group. For example, it
indicates the absolute (or relative, in the case of
the PAR%) aggregate health improvement that
would be obtained if all education groups had the
health of the healthiest education group. The
basic formulas for PAR and PAR% as health

disparity indicators (70) are:
9]

[10]

PAR=r1,, -7,
rref

r _
PAR% = L0

pop

where 1, is the rate in the total population and
r_.is the rate of health or disease in the reference
group, typically the best-off social group. While
not immediately clear from the above formula,
the PAR% in fact is a population-weighted (by
social-group size) sum of the relative risks (RRs) for
each group (13) and also may be written as:

Z p j (RR, - 1)
Y p,(RR-1)+1
where p is the group’s population share and RR is

the relative rate of group j compared to the
reference group. To see this, note that we could

PAR% = [11]




substitute r/r . for RR and 1, /1, for 1 in equation
[11] and multiply through by r . to get:

-1,
20 -r,)+r,

Because Y p,r;=r,, and Y p;r, =T, equation
[12] reduces to equation [10]. The PAR% varies
from 0 to 100 and is interpreted as the percent
improvement in the health of the total
population that would be achieved if all social
groups had the rates of health in the best-off
social group, a commonly used metric for

PARY% = [12]

describing the impact of health disparities. For
example, Navarro argues that “the intervention
that would add the most years of life to the
populations of Spain or the USA (or, for that
matter, any other country) would be one that
would lead to all social classes having the same
mortality rates as those at the top” (65, page
1701). In the example in Figure 13, the
population average rate of cervical cancer would
be improved by 28% if all social groups had the
rate experienced by American Indians and Alaska
Natives.

Figure 13. Example of the Population-Attributable Risk Percent

Cervical Cancer Incidence by Race and Hispanic Origin, 1996—2000
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Index of Dissimilarity

The Index of Dissimilarity (ID) originally was
developed as a measure of residential segregation
of population groups (82). For example, in the
context of black-white segregation among
neighborhoods within a city, the ID measures the
proportion (using the relative version) or number
(using the absolute version) of blacks (or whites)
that would have to move to a different
neighborhood to achieve a racial distribution in
each neighborhood that was similar to that of the
city as a whole. As such, the ID is a summary
measure of the disparity between each
neighborhood’s racial composition and the racial
composition of the city as a whole. Similarly, in
the context of health disparity measurement, we
can think of the ID as a summary measure of the
disparity between, for example, each racial group’s
cancer rate and the cancer rate of the whole
population. In this case, the ID would be
interpreted as the number or proportion of cancer
cases that would have to be redistributed across
racial groups for each group’s cancer rate to be the
same as the rate in the whole population. The
formula for the relative ID with respect to health
is given in Wagstaff and colleagues (60) as:

)
Relative ID = % ;|sﬂ1 =s,| [13]
where j indexes social groups, s,, is the jth group’s
share of health (e.g., share of all cancer cases), and
s, is the jth group’s share of the total population.
According to Kunst and Mackenbach (70),
equation [13] is the relative version of the ID. The
relative ID compares how each social group’s
share of the population’s health compares with its
share of the total population and represents the

proportion of all cases (e.g., the proportion of all
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cancer cases) that would have to be redistributed
across social groups so that each group has the
same rate as the total population. The absolute
version of the ID is calculated as:

1 ]
52j=1|d,—P,-Tpop|

where d and p are, respectively, the observed
number of cancer cases and the population of the
jth social group, 1, is the cancer rate in the total
population, so that pr, is the expected number
of cancer cases that would be observed if group j
had the same cancer rate as the total population.
One could also derive the absolute version of the
ID by multiplying the relative ID by the total
number of cases to determine the absolute
number of cases that need to be redistributed
across groups.

Absolute ID = [14]

Table 1 on page 44 shows how one might
calculate the absolute and relative ID for
esophageal cancer incidence among working-age
(ages 25-64) racial groups during 1992-2000. A
comparison of columns (3) and (5) shows that the
share of cancer cases is lower than the share of
the SEER population for all groups except blacks,
who represent 13.5% of all esophageal cancer
cases but only 10.5% of the population. Similarly
for the absolute ID, a comparison of columns (2)
and (6) shows that if all groups experienced the
population rate of esophageal cancer, more cases
would be observed for all groups except for blacks.
The relative ID in this case is 3.4, which means
that 3.4% of the 17,186 cases of esophageal
cancer need to be redistributed across racial
groups to eliminate the racial disparity. In
absolute terms, this means redistributing 592
cases of esophageal cancer.



Table 1. Incidence of Esophageal Cancer, Ages 25-64 by Race, 12 SEER Registries, 1992-2000

Yo ot

% of Cases if

T otal T otal No ID ID
Race Rate Cases Cases Population Population Disparity Relative Absolute
) @ @ @ ® lo= ol lo=@l
American Indian/Alaska Native 5.7 133 0.8 2,316,609 1.3 226 0.5 93
Asian/Pacific Islander 8.7 1,648 9.6 18,850,492 10.7 1,835 11 187
Black 12.9 2,395 13.9 18,518,113 10.5 1,803 385 592
White 9.5 13,010 7.5 136,864,686 77.5 13,323 1.8 313
T otal 9.7 17,186 100.0 176,549,900 100.0 17,186 3.4% 592
Index of Disparity by its population size, so that the disparity index

The Index of Disparity, which we will abbreviate
as ID,  to distinguish it from the Index of
Dissimilarity (ID), summarizes the difference
between several group rates and a reference rate
and expresses the summed differences as a
proportion of the reference rate. This measure was
formally introduced by Pearcy and Keppel (30)
and is calculated as:
J-1

eri_rref|/]

j=1

Jr..x100 [15]

IDisp = ref

where 1, indicates the measure of health status in
the jth group, r . is the health status indicator in
the reference population, and Jis the number of
groups compared. Although in principle any
reference group may be chosen, the authors
recommend using the best group rate as the
comparison because that represents the rate
desirable for all groups to achieve. In this case, it
is not necessary to take the absolute value of the
rate differences because they all will be positive.
Other potential reference rates include the total
population rate, the average of group rates, or
some external target rate. A similar disparity
measure was developed by Gaswirth (83), but it
weights each group’s deviation from the best rate

(U) becomes:

U=3p -1, [16]

where p is each group’s population size. In this
case, Uis calculated as the weighted sum of the
health difference between each group and the
reference group. Similar to the Index of Disparity,
above, this value also can be expressed relative to
the health status of the total population, which
Gaswirth defines as G= U+ . For example,
Gaswirth applied this disparity measure to rates of
mammography screening among non-Hispanic
white, non-Hispanic black, Hispanic, and Other
women ages 50-65 in the 2000 NHIS (83). The
overall screening rate was 78.6%, and Figure 14
(page 45) shows that white women had the
highest rates of screening (81%). The fraction of
the entire population that is “underserved” (U,
the shaded area in Figure 14) in this case is 2.04%,
and if the population screening rate were
increased by G = 2.6% and targeted to minority
women, the screening disparity would have been
eliminated. This measure has the additional
desirable feature of intuitive graphical
representation. Although not immediately clear
from equation [16], however, it should be noted



that, in practice, when the reference group is the
group with the best rate, Gaswirth’s measure Uis
equivalent to the PAR described above, and G is
equivalent to the PAR% because their calculations
are identical to the PAR and PAR%.

The Between-Group Variance

The variance is a commonly used statistic that
summarizes all squared deviations from a
population average. In the case of grouped data,
this is the Between-Group Variance (BGYV), and it
is calculated according to the following formula

that squares the differences in group rates from
the population average and weights by their
population sizes:

BGV =3 p, (-1 17

where p, is group f's population size, y; is group /s
average health status, and pis the average health
status of the population. The Between-Group
Variance may be a useful indicator of absolute
disparity for unordered group data because it
weights by population group size and is sensitive
to the magnitude of larger deviations from the

Figure 14. Disparity in Mammography Screening Among Racial/Ethnic Groups, NHIS, 2000
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population average. As an example, Figure 15
shows trends in age-adjusted lung cancer
mortality among U.S. Census divisions.

The between-region variance in lung cancer
mortality in 1968 was 7.1 deaths per 100,000, but
in 1998 the BGV was 22.8 deaths per 100,000.
This larger absolute disparity in regional mortality
indicates divergent regional trends in lung cancer
over time (see Figure 15). The use of the variance
as a measure of disparity in economics sometimes
is discouraged because it is not “scale invariant.”
In other words, it is sensitive to absolute changes,
such as when everyone’s income doubles over
time. In this case, economists sometimes feel that

it is not desirable for the disparity measure also to
double, because relative inequality is maintained.
Although this may be an undesirable property
when dealing with income disparity, however, we
believe it is not necessarily a limitation for
discussing health disparity, in which we are
interested in absolute disparity burdens (84). From
a population health perspective, in which we may
be concerned with the health care implications of
increasing absolute disparity, we may care about
situations in which the absolute disparity
increases, and it is appropriate that the disparity
indicator reflect this increased concern. In this
case, then, using the variance (which squares the
absolute deviations from the population average)

Figure 15. Age-Adjusted Lung Cancer Mortality by U.S. Census Division, 1968-1998
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is consistent with a population health perspective.
In the example above of changes in regional lung
cancer disparity, the overall rates increase by 70%,
the coefficient of variation (the variance divided
by the mean) increases by 89% (indicating that
relative disparity increases as well), but the
variance increases by 320%. Thus, choosing this
as the measure of disparity reflects our concerns
with widening absolute differences among the
regions.

Measures of Average
Disproportionality

When describing health inequalities, public
health researchers and policy makers often use
what might be called the “language of
disproportionality.” For example, in the context of
arguing for the importance of measuring health
inequalities between socially meaningful
population groups, Braveman and colleagues
stated that “a disproportionate share of ill-health
and premature mortality is borne by the socially
disadvantaged” (51, page 233). Similarly, in
discussing health disparity trends, the Secretary of
Health and Human Services recently noted that
various racial/ethnic groups in the United States
“suffer an unequal burden of death and disease,
despite improvements in the overall health of the
general population over the past decade” (85).
The terms “disproportionate share” and “unequal
burden” are important descriptors because they
communicate the ethical notions inherent in the
collective concerns over health disparities. That is,
they capture the notion that it is unfair that some
groups experience more ill health than others; a
just distribution of health implies that ill health

47

should be experienced proportionately by
different social groups. A more explicit example
can be found in the Guidance for the U.S. National
Healthcare Disparities Report in which, in discussing
the disparity in cardiac catheterization rates
between blacks and whites, LaVeist states that the
“degree to which the predicted percentage of
catheterization deviates from the observed
percentage indicates the degree of disparity,” and
concludes that “African Americans received 67%
of the catheterizations that they should have
received, and whites received 14% more than
their share” (86, page 90).

The quotations above make clear that health
disparity often is equated with the concept of
disproportionality. What is perhaps less clear is
that, in the context of the commonly used
“language of disproportionality,” there usually is
an implied reference group, which is the general
population. In fact, in the catheterization
example, LaVeist was arguing explicitly against
measuring health disparity using a relative
measure such as a risk ratio or odds ratio, because
doing so means using a particular social group (in
this case, whites) as the reference group, which
necessarily assumes that the rate in the reference
group is “most desirable.” Thus, he argued that
disparity measures that use whites as the reference
group would not be able to identify their “over-
utilization” of cardiac catheterization. The
intuitive ethical notion expressed in the
quotations above is that the amount of ill health
in social group jis far greater than would be
expected if ill health were evenly distributed with
respect to all J social groups. An even distribution
of ill health across J social groups implies that the



number of individuals of social group j with
condition yis proportionate to group j's share of
the total population, so that the rate of ill health,
Y, in each of the j groups is exactly the same,
which would necessarily equal the rate in the
total population. Thus, the proportional
distribution of yamong J groups implies that

Y, =Y (the mean of y) for all groups.

This is an important point because many
commonly used measures of income disparity
(e.g., the Gini coefficient) and residential
segregation (e.g., the Index of Dissimilarity), some
of which currently are employed to measure
health disparities, may be expressed conveniently
as measures of average disproportionality (87-89).
For each social group j, we can define a health (or
ill health) ratio as the ratio of measure yin the jth
group to that of the mean of y for the whole
population, so that r, =Y,/ Y for each group. Note
that this makes such measures relative rather than
absolute disparity indicators. In this framework,
measures of disparity take the general form

1=¥ (1) [18)

where p, is group f's proportion of the total
population and f{r) is some disproportionality
function of the ratio r, =Y,/ Y. It should be clear
that equation [18] is a weighted disparity measure
because each group'’s disproportionality function
f(r) is multiplied by its population share p.
Measures of this type of disparity indicator differ
because they implement different disproportion-
ality functions. Perhaps one of the appealing
features of such measures is that they provide a
rather direct correspondence between the

commonly used languages of health disparity in
terms of “disproportionality” with the
operationalization of the measurement.

Figure 16 (page 49) depicts the concept of
“disproportionality” using data on all deaths in
the United States, by gender and education, for
the year 2000. Among males, those with less than
12 years of education bear a disproportionate
burden of all deaths, as they account for 24% of
all male deaths but account for only 12% of the
male population. Conversely, males with greater
than 12 years of education account for 55% of the
total population but only 32% of all deaths. The
level of disproportionality for females with less
than 12 years of education is slightly smaller.

Table 2 (page 49) shows some commonly
used statistical measures and their
disproportionality functions. Readers should note
that the measures differ only in how they express
the difference between shares of health and shares
of population.

Entropy Indices

One class of disproportionality measures that
often is favored by economists are measures of
general entropy, developed by Henri Theil (90).
The example described below is for measuring the
disparity in BMI, which is a risk factor for a
number of cancer sites (91,92). Theil’s index gives
relatively more weight to the concentration in the
upper end of the health distribution and is
calculated (with grouped data) by summing the
product of each group’s BMI share of the
population’s total BMI and the natural log of each



Figure 16. Example of the “Disproportionality” of Deaths and Population, by Gender and Education,
2000

Shares of All Deaths and Population, by Gender and Education, 2000

Males Females

Deaths Population Deaths Population

Source: NCHS. Deaths: Final Data for 2000, Natl Vit Stat Rep 2002;50(15).

Table 2. Commonly Used Disproportionality Functions

Index Name Disproportionality Function

Squared coefficient of variation (CV?) (r=1y
Gini index (G) Individual-level data: | r.— /f /2

Grouped data: r(g,— Q), where g;is the proportion of the total population in groups less healthy than group j, and
Q s the proporﬁon of t11e total populahon in groups healthier than group j (i.e., p,+ g+ Q =1)

Relative concentration index (RCI) Same as for G, but groups are ranked by social group position instead of by health, so that is the proportion of
the total population in groups less advantaged than group j, and Q;is the proportion of the to{al population in
groups more advantaged than group j (i.e., p;+ g+ Q =1)

Theil index (T) r/ln( /)
Mean logarithmic deviation (MLD) In(1/r)) = —In(r)
Variance of log-health (VarLog) Inr.— X(nr)?

Note: Adapted from Firebaugh, 2003 (88).
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group’s BMI share. For individual-level data, total
disparity in BMI measured by Theil’s index can be
written as

T=Y . pnin()

where p is an individual’s population share
(which in the case of individual data will be 1/n,
SO thatz p=1) and r, is the ratio of the
individual’s BMI to the population average BMI
(i.e., .=,/ Y). When the population of
individuals is arranged into J groups, Theil
showed that equation [19] is the exact sum of two
parts: between-group disparity and a weighted
average of within-group disparity:

T=Y  prin@)+Y prT,

where T is the disparity in BMI within group j.
The within-group component (the second term
on the right side of equation [20] is weighted by,
in this case, group f's share of the total BMI,
because p,xr, = s, (where s, is the share of total
BMI) when the denominator for 1, is the mean
BMI for the total population. More importantly,
the above decomposition also makes it clear that
it is possible to calculate between-group disparity
in BMI—the primary quantity of interest with
respect to social disparities in health—in the
absence of data on each individual. The only data
needed are the group proportions and the ratio of
the group’s BMI to the population average BML.
Between-group disparity, however, may increase
because total disparity is increasing (i.e., both
between-group and within-group disparity are
increasing simultaneously). The primary
advantage of using additively decomposable
inequality measures is that they allow us to
determine not just whether between-group

[19]

20]
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disparity is increasing, but whether the share of
total disparity that is due to disparity between
groups is increasing or decreasing. Although this
measure has attractive qualities, the between-
group/within-group decomposition requires
continuous outcome data measurable in
individuals, so it is not clear whether this can be
applied to many relevant cancer outcomes that
are based on events (e.g., incidence, mortality, or
screening). Even for noncontinuous outcomes,
however, entropy indices easily can be used to
calculate between-group disparities in the absence
of individual-level data. For example, suppose that
instead of BMI we wanted to measure the
between-group disparity in obesity rates. We could
do this by calculating the first term on the right
side of equation [20] using only the data on each
group’s proportion in the population (p) and the
group’s rate of obesity relative to the overall
population rate (r)—data that are more likely to
be readily available.

Measuring between-group inequality in BMI
in the above manner makes clear that changes in
the value of disparity over time are a function of
two quantities: changing group proportions and
changing social group BMI ratios. This is
important— in the case of obesity, for example—
because differentiating between these two
components of change has different implications
for obesity as a public health problem and may be
the result of very different social policies. If we
find that disparity is increasing but that the main
reason for the observed change is that the share of
the population among social groups at the tails of
the BMI distribution has increased, it simply
demonstrates that the inequality increase is due
primarily to the movement into and out of



different social groups—not to differentially
increasing rates of BMI within subgroups of a
social group. However, if we find that population
shares have remained relatively constant over
time but BMI disparity has increased because BMI
ratios are increasing, this implicates differential
sources of BMI change among particular groups—
which may then become the target of public
health intervention.

Atkinson’s Measure

Atkinson'’s index actually is not a single index of
disparity but depends on specifying the relative
sensitivity of the index to different parts of the
distribution. One way of writing Atkinson'’s index
is:

A=1-[3 pr 178 &o

where p and r; are again, respectively, the share of
population and the health ratio (relative to the
total population rate), as defined above. Clearly
with this index, the extent of disparity hinges on
specifying the parameter ¢, which indicates the
degree of “aversion to disparity.” Larger values of ¢
indicate stronger aversion to disparity, which also
may be interpreted as placing increased weight on
the least healthy groups. For example, if we are
particularly concerned about improving the
health of least-healthy individuals, we could make
the measure of disparity more sensitive to changes
in the bottom of the health distribution.

21]

Gini Coefficient

The Gini coefficient summarizes social group
differences in, for example, BMI for the entire
population and can be thought of as a measure of
association between each social group’s share of
population, ranked by the group’s health and its
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share of health. Its formula for individual data is
given above for the IID in equation [2], when

a =2 and f = 1. Formally, the Gini coefficient is
the ratio of the area between the line of equality
in Figure 17 (page 52) and the Lorenz curve to the
total area of the triangle beneath the line of
equality (40). Because the Gini coefficient is a
function of the disproportionality between shares
of population and shares of health, one can see
from Figure 17 that health disparity increases as
the Lorenz curve moves further away from the
line of equality (i.e., as the disproportionality
between shares of population and shares of health
increases).

Concentration Index

The Concentration Index (CI) is calculated
similarly to the Gini index, but it results from a
bivariate distribution of health and social-group
ranking. In the same way that the Gini coefficient
is derived from the Lorenz curve, the CI is derived
from a concentration curve, where the population
is ordered first by social-group status (rather than
by health status, as for the Gini), and the
cumulative percent of the population then is
plotted against the group’s share of total ill
health. When the y-axis is the share of ill health,
this results in the Relative Concentration Index
(RCI); however, an Absolute Concentration Index
(AC]) also may be derived by plotting the
cumulative share of the population against the
cumulative amount of ill health (i.e., the
cumulative contribution of each subgroup to the
mean level of health in the population). Figure 18
(page 53) gives a graphical representation of a
relative concentration curve. Note the similarity
with the Lorenz curve drawn in Figure 17 to
illustrate the Gini coefficient. The two curves and



Figure 17. Representation of the Gini Coefficient of Disparity
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thus the Gini coefficient and the RCI are
calculated similarly, the only difference being the
way in which social groups are ordered. In the
case of the Gini coefficient, social groups are
ordered by their health status (lowest to highest),
regardless of their socioeconomic group ranking;
for the RCI, social groups are ordered by their
ranking in terms of, for example, years of
education, regardless of their health status. It is
important to note that, because the
Concentration Index incorporates information
on both health and social-group status, the
concentration curve may lie either above or
below the line of equality. The general formula for
the Relative Concentration Index (RCI) for
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grouped data is given by Kakwani and colleagues
(93) as:

RCI= % [Zj:lpi‘uiRi]_l
where p is the group’s population share, 1 is the

group’s mean health, and R; is the relative rank of
the jth socioeconomic group, which is defined as:

R=X|. b 5P 23]

where p is the cumulative share of the population
up to and including group j, and p is the share of
the population in group j. R, essentially indicates
the cumulative share of the population up to the
midpoint of each group interval, similar to the
categorization of the Slope and Relative Index of

22]



Inequality above. In fact, the RCI has a specific
mathematical relationship with the RIT (60):

RCI = 2var(R)RII [24]

where R is the relative rank variable identified in
equation [23]. Thus, the SII/RIl and the ACI/RCI
will produce the same rank ordering of health
inequality over time but will differ in scale. The
absolute version of the Concentration Index (ACI)
is calculated by multiplying the RCI by the mean
rate of the health variable:

ACI = pyRCI

where p1is the mean level of health in the
population. It also is worth pointing out that,
when using continuous health outcomes, the RCI

25]

is unbounded and takes minimum and maximum
values of -1 and +1, but when using binary health
outcomes, the possible values of the RCI are
limited by the mean (e.g., the prevalence) of the
distribution (94). Adam Wagstaff shows that, for a
given nonzero mean of a binary variable (p), the
minimum of the RCIis [1 - 1 + (1/n)] and the
maximum is [1 - u + (1/n)], with nbeing the
sample size. This of course has implications for
analyses that compare the extent of
socioeconomic inequality in health between areas
or outcomes with very different levels of average
health, and one potential strategy for facilitating
comparisons is to normalize the Concentration
Index by dividing it by its bound (95).

Figure 18. Representation of the Health Concentration Curve

100

Disparities Favor,
the “Better-off”

Cumulative Percent of Il Health

No Social Disparity

Disparities Favor
the “Worse-off”

100

Cumulative Percent of Population, Ranked by Socioeconomic Position

53



Table 3. Educational Disparity in Lung Cancer Mortality, 1999

Education Rate per 100,000 Population Share widpoint (7o) cl

<12 years 49.8 0.128 0.064 0.408
12 years 41.0 0.327 0.292 3.913

>12 years 16.9 0.545 0.728 6.699

T otal 20.0

1.0

Relative Col

Absolute C

ncentration Index

oncentration Index

-

-

11.020

=0.240

=76.959

Note: Rates are for persons aged 25-64 years and exclude the following states: Georgia, Kentucky, Rhode Island, and South Dakota. Rate data are from
DATA2010...the Healthy People 2010 Database, April 2004 edition, and SEER*Stat. Population data are from NCHS, Deaths: Final Data for 1999: Table VII.

Table 3 shows a simple example of how the
RCI and ACI are calculated using equations [22]
and [25] with grouped data using lung cancer
mortality rates by educational attainment. One
can see that lung cancer mortality rates decrease
with increasing education, and the negative value
of both indices shows that the disparity in lung
cancer mortality favors the better educated.

One of the reasons the ACI and RCI (and, by
extension, the SII/RII indices) are favored by some
is that they “reflect the socioeconomic dimension
to inequalities in health” (60, page 548). That is, a
downward health gradient (such that health
worsens with increasing social-group rank) results
in a positive index, whereas an upward health
gradient results in a negative index. For example,
if the data in Table 3 were reversed so that lung
cancer mortality rates for those with <12 years of
education were 16.9 and the rates were 49.8 for
those with >12 years of education, the RCI then
would be calculated as 0.114 and the ACI as
4.873, indicating that lung cancer mortality
actually favors the less educated. This sensitivity
to the direction of the health gradient is not a
property of other disproportionality measures,
such as the Gini coefficient and the Index of

Dissimilarity, because they do not depend on the
strict ordering of social groups.

This undoubtedly is an advantage of the RCI,
but, as with all disparity measures, it also may be
seen as a disadvantage. Because of its sensitivity to
socioeconomic gradients in health, the RCI may
not register any disparity when health is not
ranked directly by social group. Thus, when a
social group ranked in the middle of a hierarchy
bears a disproportionate burden of ill health, the
RCI well may register this as zero disparity. This is
not just a theoretical limitation of the RCI. For
instance, age-adjusted rates of breast cancer deaths
(per 100,000) in the United States in 1998 were
20.0 among those with less than a high-school
education, 28.4 among those with a high-school
education, and 22.0 among those with at least
some college education (9). If the respective shares
of the population in each of the education groups
were approximately 38.8%, 20%, and 41.2%, the
RCI would be virtually zero, indicating no
educational mortality disparity; yet those with a
high-school education will contribute roughly
40.3% of breast cancer deaths. A reasonable case
could be made that a disproportionate burden of
breast cancer falls on the high-school-educated



(using this categorization of education), but the
RCI'would not reveal this pattern. This pattern of
the worst health among those in the middle social
group is not simply an artifact of breast cancer as
an unusual cause of death. This pattern also is
seen for colorectal and prostate cancers and
melanoma as well where rates across ordered
social groups are not simple gradients.

We use the breast cancer example not
necessarily to suggest that the RCI is a poor index
for measuring social-group disparities in health,
but rather to emphasize that all disparity
measures have advantages and disadvantages that
should be considered when selecting and
interpreting a disparity index; no summary
disparity measure should be used as a substitute
for detailed inspection of the health status
indicators for each social group via tables and
graphs.

Wagstaff also derived a method for
incorporating a society’s degree of aversion to
disparity into the RCI, which he calls the
“extended” Concentration Index (96). The
aversion parameter changes the weight attached
to the health of different socioeconomic groups in
a manner similar to the Atkinson Index described
above. The formula for this extended version of
the RCI for grouped data is:

Zl‘tpiyi(l _Ri)v_l [26]

j=1

/
RCI(v) = vV} p,1-R) 'L
=1 H
where v is the “aversion parameter,” and the other
quantities are defined as in the RCI in equation
[22] above. Setting v = 1 weights every group’s
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health equally (i.e., complete indifference to
inequality), and setting v = 2 gives the standard
RCI defined above. As v increases, the weight
attached to the health of lower socioeconomic
groups increases, and the weight attached to the
health of higher socioeconomic groups decreases.
Table 4 (page 56) shows the effect of varying the
weight placed on the health of the less-educated
groups for the disparity in current smoking in the
state of Michigan in 1990 and 2002. The two
rightmost columns are the calculated RCIs, with
differing aversions to disparity. Setting v = 2 gives
the standard RCI of -0.129, indicating that the
disparity in current smoking favors the better
educated. Increasing the weight placed on the
health of the less-educated groups in 1990 results
in only a marginal increase in the measure of
disparity to -0.178, most likely because the rate of
smoking among those with <8 years of education
actually is quite low. The major effect of the
differential weighting of the RCI can be seen in
the disparity change from 1990 to 2002; in 2002,
the standard RCI(2) was -0.19, a disparity increase
of 48.5%, and the more bottom-sensitive RCI(4)
was -0.32, indicating a much larger 81% increase
in the relative education disparity in smoking.
The reason the increase in disparity is so much
larger for RCI(4) is that, although rates of smoking
decreased overall and in every other education
category, the estimated rate of current smoking
actually increased among the least-educated
group. This example shows how we can
incorporate an ethical judgment (particular
concern about the health status of the least
educated) into a measure of health disparity.



Table 4. Example of Extended Relative and Absolute Concentration Index Applied to the Change in
Educational Disparity in Current Smoking, Michigan, 1990 and 2002

Education Population (%) % Smokers Midpoint (%) RC’ (V=2 RC’ (V=9
1990
<8 years 4.5 27.2 2.3 0.006 0.011
9-11 years 12.4 39.9 10.7 -0.082 -0.131
12 years 36.9 33:3 35.4 -0.068 -0.057
13-15 years 27.3 29.6 67.5 -0.003 -0.001
16+ years 18.9 13.6 90.6 0.019 0.000
T otal 100.0 291 =0.129 =0.178
ACl=-3.75 ACl=-5.16
2002
<8 years 2.0 36.6 1.0 -0.021 —-0.041
9-11 years 7.8 36.3 5.9 -0.073 -0.130
12 years 31.4 3il:3 255 -0.137 -0.152
13-15 years 29.6 24.5 56.0 -0.003 -0.001
16+ years 29.2 12.2 85.4 0.042 0.002
T otal 100.0 242 =0.191 =0.321
ACl =-4.63 ACl=-7.77

Note: Data is for current smoking and is drawn from the 1990 and 2002 Behavioral Risk Factor Surveillance System (BRFSS).

Combining Health Disparity and Average
Health

As we emphasized in the above discussion of
relative and absolute health disparities, the goals
of Healthy People 2010 are couched specifically in
terms of both health disparities and average levels
of population health. Thus, we also may be
interested in investigating potential ways to
incorporate both average health and health
disparity into a single summary measure. One
potential measure, created by Adam Wagstaft, is
called the Health Achievement Index or HAI (96).

The Health Achievement Index

The HAI in some respects is similar to the ACI
described above, but combines disparity and
average health by essentially subtracting the
Absolute Concentration Index from the
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population’s average health, creating a “disparity-
discounted” level of average health. The formula
for the HAI is (96):

HAI(v) = ul1 - RCI(v) |
=u-ACI(v)
where pis the population’s average health and
RCI(v) is the extended Relative Concentration
Index defined above. Thus, applying equation
[27] to the data on the average rate and
educational disparity (using RCI[2]) in smoking
in Michigan, the HAI(2) for Michigan in 1990
is 0.29 x (1 - [-0.129]) = 0.33, and is 0.24 x
(1 -1[-0.191]) = 0.29 in 2002. Clearly, if RCI =0,
then the HAI is equal to the population average
rate of health, and the larger the RCI, the further
away the HAI is from the population average—a
kind of “disparity penalty” applied to the
population average rate. In this sense, the HAI is

[27]



not exactly a measure of health disparity but a
potentially useful way of capturing both
aggregative (Healthy People 2010 Goal 1) and
disparity (Healthy People 2010 Goal 2) concerns in
a single summary measure, at least with respect to
ordered social groups. For example, while both
relative and absolute education disparity in
smoking increased in Michigan over the 12-year
period (i.e., education disparity unambiguously
increased, see Table 4), health achievement
actually improved because almost all education
groups experienced a decrease in the rate of
smoking (in this case, health “achievement”
increases as the population rate of smoking
decreases).

Two populations (or time periods) therefore
might have the same value on the Achievement
Index but differ greatly on both average health
and the extent of health disparity. For example, in
Figure 19 (page 58) the relative concentration
curves for education disparity in obesity in New
York State are plotted for 1990 and 2002. Because
the 2002 curve is beneath the 1990 curve for every
education group, we can unambiguously declare
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that relative education inequality in obesity in
New York decreased from 1990 to 2002. The
standard RCIs summarizing the two curves also
reflect the decrease in disparity, going from -0.284
in 1990 to -0.125 in 2002. As was mentioned at
the outset, however, we do not believe that
disparity is all that matters. We also are concerned
with the average health of the population, and
the estimated obesity rate in New York more than
doubled over this period, from 9.8% in 1990 to
20.6% in 2002. Figure 20 (page 59) shows the
absolute concentration curves, which clearly
reflect the increase in obesity among all groups.
Inspection of the education-group-specific obesity
rates reveals that, in general, the education
disparity in obesity declined because of increasing
obesity rates, particularly among the middle- and
better-educated groups. When we incorporate the
adverse changes in overall population rates of
obesity with the changes in disparity, the change
in the Health Achievement Index (for which
larger values are worse because the health
outcome, obesity, is negative) indicates that
things became worse, having increased from 0.13
in 1990 to 0.23 in 2002.



Figure 19. Relative Concentration Curves for Educational Disparity in Obesity in New York State, BRFSS,
1990 and 2002
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Figure 20. Absolute Concentration Curves for Educational Disparity in Obesity in New York State, BRFSS,
1990 and 2002
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