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Abstract – In the fall of 2004, James Madison University 
began offering a two years Masters degree in Secure 
Software Engineering. Among its required courses are 
four secure software engineering courses, an introduction 
to security, two network courses one emphasizing security, 
and several traditional computer science courses. The four 
software engineering courses include an initial project 
course that covers the entire lifecycle and a three semester 
sequence that more expansively repeats the lifecycle. This 
article describes the experience and some of what has been 
learned from the offerings emphasizing the initial course. 

I. INTRODUCTION 
In 2003 motivated by the desire to increase enrollments and 
use faculty expertise, the Computer Science Department at 
James Madison University decided to offer a Masters degree 
in Secure Software Engineering.1 While the goal of increasing 
enrollments has not been fully met, interesting and valuable 
experience and lessons have been gained in teaching (and 
learning) secure software engineering that are worth sharing.  

Required courses include four secure software engineering 
courses, an introduction to security, two network courses with 
one emphasizing security, and several traditional computer 
science courses. The four software engineering courses begin 
with an initial project course that covers the entire lifecycle, 
and this is followed by a three semester sequence that more 
slowly and with more detail repeats the lifecycle.  

After brief coverage on the program as a whole, the projects 
used in several courses are enumerated. This is followed by a 
discussion of the syllabus for the initial course, CS555 Secure 
Software Engineering. 

II. GENERAL 
When the program was launched the department had several 
professors with expertise in information security from its 
online masters in InfoSec and likewise several with software 
engineering expertise. However, only one existed (the author) 
whose expertise spanned the two areas. As a result, the first 
year of the program (2004-2005) contains only one course, the 
initial one (CS555), that fully integrated security and software 
engineering. 

Only partially addressed during the programs first year, the 
full remedying of this problem began with a summer faculty 
seminar the author gave for six software engineering 

                                                           
1 Also during the same period two undergraduate seminars on 
secure software engineering have been given using readings 
mainly from [32] and [31]. 

professors in the early summer of 2005. Readings included 
significant portions of Bishop’s Computer Security [4] as well 
as a number of articles and reports including [35]. During that 
summer the author was also finishing the initial version of 
Software Assurance: A Guide to the Common Body of 
Knowledge to Produce, Acquire, and Sustain Secure Software 
[32] versions of which have subsequently underlain much of 
the instruction. 

While the first two sets of graduates exited with a good 
understanding of secure software engineering and interest 
from employers was strong, the third set graduating in May 
2008 are the first set to have a consistently strong integration 
of security and software engineering throughout their two 
years. This shows the time – two years – needed for professors 
to become fully familiar with material and courses to mature. 

The second networking course includes an extensive, 
competitive attack and defend exercise in which each student 
has a computer to configure and defend and attacks other 
students’ systems. Plans exist to include the software that 
students produce in the secure software engineering sequence 
into what they need defend on their machines. 

III. PROJECTS 
Both the initial software engineering course and the following 
three semester sequence are project based. The topics for first 
course’s projects have included: 

• System to supply parents photos of current, ongoing 
activity in their children’s’ daycare center over the Web 

• Secure single person, single machine file system 
• Game that avoids the problems described in Exploiting 

Online Games: Cheating Massively Distributed Systems 
by Greg Hoglund and Gary McGraw  

The three semester sequence’s projects include ones to 
produce 

• Secure on-site storage 
• Secure distributed Internet messaging (IM) for the 

financial community 
• Secure off-site storage service 
One notable feature involved in some was the allowing of 
students to assume the secure operation of the operating 
system and related services – except for those known to be 
ones to avoid. The alternative was for the students to use one 
of a few limited and unfamiliar OSs or to try (and presumably 
fail) to show the security of a familiar one.  

These projects covered the development lifecycle and included 
a somewhat novel artifact/deliverable, the assurance case. An 
assurance case includes its top-level claim such as a safety or 



security-related claim, the arguments for this claim, and the 
evidence that supports these arguments.2) It is the central 
enabling mechanism for showing adequately low uncertainty, 
supporting relevant technical risk management, achieving 
grounds for appropriate confidence, and aiding in making 
related decisions. 

IV. INITIAL COURSE CS555 
The syllabus and related reading for the initial one semester 
course doing a first pass through the lifecycle are shown in 
Table 1. Generally, the students already have an 
undergraduate course in software engineering or relevant work 
experience, but almost never knowledge of software 
engineering security. Each row is a class in the course with 
1.25 hours of classroom instruction. The level of participation 
of the instructor in project team meetings has varied from 
approximately 3 to 10 hours per team. 

The readings are divided into two groups. While all have been 
used in one or more offerings in the course, they do not 
include a few used but found to be unsuitable. The groups 
reflect the requirements on the students, required (unlabelled) 
or “Optional”. These also may reflect a degree of advice to 
those creating courses.  

While the articles and reports are referenced by their author, 
year, and sometimes title, to aid brevity the author’s last initial 
is used for the following books: 

• B: High-Assurance Design, Clifford Berg, Addison 
Wesley, 2006 

• G: Building a Secure Computer System, Morrie Gasser, 
Van Nostrand Reinhold, 1988  

• R: Software Assurance, Samuel T. Redwine, Jr. (Editor), 
US Department of Homeland Security 2006 

• S: Software Engineering,8th Edition, Ian Summerville, 
Addison Wesley, 2006 

Table 1: CS555 
Class Topic Read before Class (in 

order listed) 
1 Introduction to Course, 

Software Engineering, 
Quality, Security 

 

2 Software Systems 
Engineering  

S: Chapter 1.2, 2.1-2.2.2 
R: 1-2 
G: Chapters 1-2 
Optional: S: Remainder of 
Chapters 1-2 

3 Dependability, 
Security, Assurance 
and Assurance Case  

G: 3 
R: 3.0-3.3  
Avizienis, Basic Concepts 
and Taxonomy of 
Dependable and Secure 
Computing  
Optional: Landwehr, 2001 

                                                           
2) Or where appropriate in lieu of evidence, explicit assumptions 

Optional: B: Chapter 1  
CAA CAP670: Part B, 
Section 33 Preliminary 
Part 

4 Security Principles, 
Critical Systems, 
Management Roles, 
Project Problem 

R: 3.4-3.7 
Redwine 2008 Sections 0 
and 2 
S: 3, 30.1 

5 Projects and processes S: Chapters 4, 20 
NSA, IATF v3.1 Chapter 
3, 2002 
Redwine and Davis, 2004 
Section 4  
McGraw, Attacking 
Malicious Code, 2000 

6 Requirements, 
Introduction to Security 
Functionality  

S: Chapters 7, 9 
G: Chapter 5 
R: 4-5 
Clark and Wilson 1987 
Goodenough 2007 
Presentation 
Optional: S: Chapters 6  
Optional: B: Chapter 2 

7 Project Management S: Chapters 5 
R: 11 
S: 8.0-8.2  
Redwine and Davis, 
Processes for Producing 
Secure Software 2004 
Section 7 

8 Introduction to Formal 
Methods 

S: Section 10.1-2 
R: 10-10.1 
Hall and Chapman, 
Correctness by 
Construction 2002 
Optional: S: 8.3-5 

9 Configuration 
Management 

S: Sections 29.0-29.3.1 
S: Chapters 11 

10 Architecture S: Chapters 12  
R: 6 
S: 30.2-30.3, 32.0-32.1 
B: Chapter 3 
Redwine 2008 Section 2 

11 Architecture, Planning S: 12, 13 
G: Chapters 4, 6, 9, 10, 
11, and 13 
Karger, VAX VMM 1990 
Whitmore, Security 
Architecture 2001 
B: Chapter 4 
CAA CAP670: Part B, 
Section 3 

12 Design, Team building G: 12.0-12.5 
S: Chapters 16 and 14 

                                                           
3 Systems Engineering, SW 01 Regulatory Objectives for 
Software Safety Assurance in ATS Equipment 



Fernandez 2007 
Optional: Irvine, 
Exemplar Project 2004 
Optional: OpenGroup, 
Security Design Patterns 
S: 25 

13 Assurance Case, 
Software Quality 
Assurance,  

Optional: S: Chapters 26  
S: Chapters 22 and 27 
Redwine 2007 

 Secure Software 
Assurance revisited, 
Software Construction 

S: Chapters 24 and 20.2 
Viega, Scanning Java 
2000 
SUN Java Coding 
Standards (Security) 
Look at: CWE and 
CAPEC websites  
Optional: Alexander, 
Coping with Java Stress, 
2000 

14 Software Construction  R: Section 7 
S: Chapter 19  

15 Project Assurance 
Cases: Presentations 
and Discussion 

S: Chapter 22  
Optional: Bishop, 
Software Lifecycle 
Security Checklist 

16 Static Analysis, 
Inspections, Inspection 
Exercise; Due at end of 
class: Inspection report 

S: Chapter 23 
Look at: NIST SAMATE 
website 

17 Student Status 
Presentations  

 

18 Testing R: 8 
19 VV& E R: 9 
20 Tools S: 10.3 
21 Z  S: Chapter 18.3-18.5, 19 

Optional: S: Chapter 21  
22 Evolution, Reuse   
22 Assurance Case, Using 

Cryptography 
S: Chapter 2.4, 18.1-18.2, 
30.4, 31.0-31.1, 17.0-17.2 

23 Other Development 
Approaches , 
Professionalism, How 
to become world class 

S: 1.2 
Bratus 2007 

24 Party, Demo, Present 
Lessons Learned  

 

25 Review  
 

In particular, the Sommerville textbook chapters on critical 
systems have been quite useful, and the eight edition’s chapter 
on security also lends some help. One needs to keep alert for 
new literature appropriate for courses, and undoubtedly some 
will change for fall 2008. The readings listed here, however, 
have proven their worth – although readers should also make 
their own judgments particularly regarding optional material. 

As discussed in the last section, the project constitutes a 
significant portion of student effort in addition to readings and 

class. Thus, the student load varies among students and totals 
11-15 hours per week including class time. 

Student reviews have tended to emphasize that they learned a 
lot in return for their, obviously, hard work. This initial course 
has been successful in providing a substantive initial 
background upon which students (and instructors) can build 
during the next three semesters.  

V. CONCLUSION 
This is the fourth year of the JMU graduate secure software 
engineering program. A considerable amount of experience 
has been acquired and lessons learned. Among these is a 
refinement of the initial course and its readings. 
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