
Secure Software Engineering

Samuel T. Redwine, Jr.
James Madison University

701 Carrier Drive
Harrisonburg, VA 22807 USA

Abstract – In the fall of 2004, James Madison University
began offering a two years Masters degree in Secure
Software Engineering. Among its required courses are
four secure software engineering courses, an introduction
to security, two network courses one emphasizing security,
and several traditional computer science courses. The four
software engineering courses include an initial project
course that covers the entire lifecycle and a three semester
sequence that more expansively repeats the lifecycle. This
article describes the experience and some of what has been
learned from the offerings emphasizing the initial course.

I. INTRODUCTION
In 2003 motivated by the desire to increase enrollments and
use faculty expertise, the Computer Science Department at
James Madison University decided to offer a Masters degree
in Secure Software Engineering.1 While the goal of increasing
enrollments has not been fully met, interesting and valuable
experience and lessons have been gained in teaching (and
learning) secure software engineering that are worth sharing.

Required courses include four secure software engineering
courses, an introduction to security, two network courses with
one emphasizing security, and several traditional computer
science courses. The four software engineering courses begin
with an initial project course that covers the entire lifecycle,
and this is followed by a three semester sequence that more
slowly and with more detail repeats the lifecycle.

After brief coverage on the program as a whole, the projects
used in several courses are enumerated. This is followed by a
discussion of the syllabus for the initial course, CS555 Secure
Software Engineering.

II. GENERAL
When the program was launched the department had several
professors with expertise in information security from its
online masters in InfoSec and likewise several with software
engineering expertise. However, only one existed (the author)
whose expertise spanned the two areas. As a result, the first
year of the program (2004-2005) contains only one course, the
initial one (CS555), that fully integrated security and software
engineering.

Only partially addressed during the programs first year, the
full remedying of this problem began with a summer faculty
seminar the author gave for six software engineering

1 Also during the same period two undergraduate seminars on
secure software engineering have been given using readings
mainly from [32] and [31].

professors in the early summer of 2005. Readings included
significant portions of Bishop’s Computer Security [4] as well
as a number of articles and reports including [35]. During that
summer the author was also finishing the initial version of
Software Assurance: A Guide to the Common Body of
Knowledge to Produce, Acquire, and Sustain Secure Software
[32] versions of which have subsequently underlain much of
the instruction.

While the first two sets of graduates exited with a good
understanding of secure software engineering and interest
from employers was strong, the third set graduating in May
2008 are the first set to have a consistently strong integration
of security and software engineering throughout their two
years. This shows the time – two years – needed for professors
to become fully familiar with material and courses to mature.

The second networking course includes an extensive,
competitive attack and defend exercise in which each student
has a computer to configure and defend and attacks other
students’ systems. Plans exist to include the software that
students produce in the secure software engineering sequence
into what they need defend on their machines.

III. PROJECTS
Both the initial software engineering course and the following
three semester sequence are project based. The topics for first
course’s projects have included:

• System to supply parents photos of current, ongoing
activity in their children’s’ daycare center over the Web

• Secure single person, single machine file system
• Game that avoids the problems described in Exploiting

Online Games: Cheating Massively Distributed Systems
by Greg Hoglund and Gary McGraw

The three semester sequence’s projects include ones to
produce

• Secure on-site storage
• Secure distributed Internet messaging (IM) for the

financial community
• Secure off-site storage service
One notable feature involved in some was the allowing of
students to assume the secure operation of the operating
system and related services – except for those known to be
ones to avoid. The alternative was for the students to use one
of a few limited and unfamiliar OSs or to try (and presumably
fail) to show the security of a familiar one.

These projects covered the development lifecycle and included
a somewhat novel artifact/deliverable, the assurance case. An
assurance case includes its top-level claim such as a safety or

security-related claim, the arguments for this claim, and the
evidence that supports these arguments.2) It is the central
enabling mechanism for showing adequately low uncertainty,
supporting relevant technical risk management, achieving
grounds for appropriate confidence, and aiding in making
related decisions.

IV. INITIAL COURSE CS555
The syllabus and related reading for the initial one semester
course doing a first pass through the lifecycle are shown in
Table 1. Generally, the students already have an
undergraduate course in software engineering or relevant work
experience, but almost never knowledge of software
engineering security. Each row is a class in the course with
1.25 hours of classroom instruction. The level of participation
of the instructor in project team meetings has varied from
approximately 3 to 10 hours per team.

The readings are divided into two groups. While all have been
used in one or more offerings in the course, they do not
include a few used but found to be unsuitable. The groups
reflect the requirements on the students, required (unlabelled)
or “Optional”. These also may reflect a degree of advice to
those creating courses.

While the articles and reports are referenced by their author,
year, and sometimes title, to aid brevity the author’s last initial
is used for the following books:

• B: High-Assurance Design, Clifford Berg, Addison
Wesley, 2006

• G: Building a Secure Computer System, Morrie Gasser,
Van Nostrand Reinhold, 1988

• R: Software Assurance, Samuel T. Redwine, Jr. (Editor),
US Department of Homeland Security 2006

• S: Software Engineering,8th Edition, Ian Summerville,
Addison Wesley, 2006

Table 1: CS555
Class Topic Read before Class (in

order listed)
1 Introduction to Course,

Software Engineering,
Quality, Security

2 Software Systems
Engineering

S: Chapter 1.2, 2.1-2.2.2
R: 1-2
G: Chapters 1-2
Optional: S: Remainder of
Chapters 1-2

3 Dependability,
Security, Assurance
and Assurance Case

G: 3
R: 3.0-3.3
Avizienis, Basic Concepts
and Taxonomy of
Dependable and Secure
Computing
Optional: Landwehr, 2001

2) Or where appropriate in lieu of evidence, explicit assumptions

Optional: B: Chapter 1
CAA CAP670: Part B,
Section 33 Preliminary
Part

4 Security Principles,
Critical Systems,
Management Roles,
Project Problem

R: 3.4-3.7
Redwine 2008 Sections 0
and 2
S: 3, 30.1

5 Projects and processes S: Chapters 4, 20
NSA, IATF v3.1 Chapter
3, 2002
Redwine and Davis, 2004
Section 4
McGraw, Attacking
Malicious Code, 2000

6 Requirements,
Introduction to Security
Functionality

S: Chapters 7, 9
G: Chapter 5
R: 4-5
Clark and Wilson 1987
Goodenough 2007
Presentation
Optional: S: Chapters 6
Optional: B: Chapter 2

7 Project Management S: Chapters 5
R: 11
S: 8.0-8.2
Redwine and Davis,
Processes for Producing
Secure Software 2004
Section 7

8 Introduction to Formal
Methods

S: Section 10.1-2
R: 10-10.1
Hall and Chapman,
Correctness by
Construction 2002
Optional: S: 8.3-5

9 Configuration
Management

S: Sections 29.0-29.3.1
S: Chapters 11

10 Architecture S: Chapters 12
R: 6
S: 30.2-30.3, 32.0-32.1
B: Chapter 3
Redwine 2008 Section 2

11 Architecture, Planning S: 12, 13
G: Chapters 4, 6, 9, 10,
11, and 13
Karger, VAX VMM 1990
Whitmore, Security
Architecture 2001
B: Chapter 4
CAA CAP670: Part B,
Section 3

12 Design, Team building G: 12.0-12.5
S: Chapters 16 and 14

3 Systems Engineering, SW 01 Regulatory Objectives for
Software Safety Assurance in ATS Equipment

Fernandez 2007
Optional: Irvine,
Exemplar Project 2004
Optional: OpenGroup,
Security Design Patterns
S: 25

13 Assurance Case,
Software Quality
Assurance,

Optional: S: Chapters 26
S: Chapters 22 and 27
Redwine 2007

 Secure Software
Assurance revisited,
Software Construction

S: Chapters 24 and 20.2
Viega, Scanning Java
2000
SUN Java Coding
Standards (Security)
Look at: CWE and
CAPEC websites
Optional: Alexander,
Coping with Java Stress,
2000

14 Software Construction R: Section 7
S: Chapter 19

15 Project Assurance
Cases: Presentations
and Discussion

S: Chapter 22
Optional: Bishop,
Software Lifecycle
Security Checklist

16 Static Analysis,
Inspections, Inspection
Exercise; Due at end of
class: Inspection report

S: Chapter 23
Look at: NIST SAMATE
website

17 Student Status
Presentations

18 Testing R: 8
19 VV& E R: 9
20 Tools S: 10.3
21 Z S: Chapter 18.3-18.5, 19

Optional: S: Chapter 21
22 Evolution, Reuse
22 Assurance Case, Using

Cryptography
S: Chapter 2.4, 18.1-18.2,
30.4, 31.0-31.1, 17.0-17.2

23 Other Development
Approaches ,
Professionalism, How
to become world class

S: 1.2
Bratus 2007

24 Party, Demo, Present
Lessons Learned

25 Review

In particular, the Sommerville textbook chapters on critical
systems have been quite useful, and the eight edition’s chapter
on security also lends some help. One needs to keep alert for
new literature appropriate for courses, and undoubtedly some
will change for fall 2008. The readings listed here, however,
have proven their worth – although readers should also make
their own judgments particularly regarding optional material.

As discussed in the last section, the project constitutes a
significant portion of student effort in addition to readings and

class. Thus, the student load varies among students and totals
11-15 hours per week including class time.

Student reviews have tended to emphasize that they learned a
lot in return for their, obviously, hard work. This initial course
has been successful in providing a substantive initial
background upon which students (and instructors) can build
during the next three semesters.

V. CONCLUSION
This is the fourth year of the JMU graduate secure software
engineering program. A considerable amount of experience
has been acquired and lessons learned. Among these is a
refinement of the initial course and its readings.

ACKNOWLEDGEMENTS
I want to mention a few of the key sources of help and ask
forgiveness from those not listed. Professors Chris Fox and
Ralph Grove have been instrumental in shaping the program.
We have also been aided by Professors Steve Wang and Brett
Tjaden. My colleagues on the DHS/DoD Software Assurance
Working Groups and the somewhat related efforts in the
IEEE, Object Management Group SIG on Software
Assurance., National Defense Industry Association (US)
Systems Assurance Committee, revision of ISO/IEC 15026,
and elsewhere have contributing to my understanding
including those involved in the 2006 IEEE Workshop on
Secure Software Engineering Education and Training.

REFERENCES
[1] Alexander, Roger T., James M. Bieman, John Viega. Coping with Java

Programming Stress. IEEE Computer, April 2000
[2] Anderson, Ross J. Security Engineering: A Guide to Building

Dependable Distributed Systems. John Wiley and Sons, 2001.
[3] Avizienis, Algirdas, Jean-Claude Laprie, Brian Randell, and Carl

Landwehr, “Basic Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 1, pp. 11-33, Jan.-Mar. 2004.

[4] Bishop, Matt. Computer Security: Art and Practice, Addison-Wesley,
2003

[5] Bratus, Sergey, "What Hackers Learn that the Rest of Us Don't: Notes
on Hacker Curriculum," IEEE Security and Privacy, vol. 5, no. 4, pp.
72-75, Jul/Aug, 2007

[6] CAA. CAP670 Air Traffic Services Safety Requirements. Civil Aviation
Authority, UK, 2003

[7] CAPEC. Common Attack Pattern Enumeration and Classification at
http://capec.mitre.org/

[8] Clark David D., and David R. Wilson. A Comparison of Commercial
and Military Computer Security Policies. 1987 IEEE Symposium on
Security and Privacy, IEEE, 1987

[9] CWE. Common Weaknesses Enumeration at http://cwe.mitre.org/:
[10] Dobbing, Brian, and Alan Burns. The Ravenscar Tasking Profile for

High Integrity Real-Time Programs. SlGAda ’98, 1 l/98 Washington,
D.C., USA, ACM, 1998

[11] Fernandez, E. B., M. M. Larrondo-Petrie, T. Sorgente, and M. Vanhilst.
A Methodology to Develop Secure Systems Using Patterns. 2007

[12] Gilliam, David P., Thomas L. Wolfe, Josef S. Sherif, Matt Bishop.
Software Security Checklist for the Software Life Cycle. Twelfth IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE’03), 2003

[13] Goodenough, John. Assurance Case, Presentation to DHS Software
Assurance Working Group on Process and Practices, May 14, 2007

[14] Hall, Anthony, and Rodrick Chapman, Correctness by Construction:
Developing a Commercial Secure System, IEEE Software,
January/February 2002

[15] Irvine, Cynthia E., Timothy E. Levin, Thuy D. Nguyen, David Shi.ett,
Jean Khosalim, Paul C. Clark, Albert Wong, Francis A.nidad, David

Bibighaus, Joseph Sears. Overview of a High Assurance Architecture for
Distributed Multilevel Security, Proceedings of the 2004 IEEE
Workshop on Information Assurance and Security, United States
Military Academy, West Point, NY, 10–11 June 2004

[16] Irvine, Cynthia E., Timothy E. Levin, Thuy D. Nguyen, George W.
Dinolt. The Trusted Computing Exemplar Project. Proceedings of the
2004 IEEE Workshop on Information Assurance and Security. United
States Military Academy, West Point, NY, IEEE, 10–11 June 2004

[17] Irvine, Cynthia E., Timothy Levin, Jeffery D. Wilson, David Shifflett,
Barbara Pereira, An Approach to Security Requirements Engineering for
a High Assurance System. Naval Postgraduate School, 2002

[18] Karger, Paul A., Mary Ellen Zurko, Douglas W. Benin, Andrew H.
Mason, and Clifford E. Kahn. A VMM Security Kernel for the VAX
Architecture. 1990 IEEE Symposium on Security and Privacy, IEEE,
1990

[19] Kelly, T. “Tutorial: Software Safety Case Management,” First OMG
Software Assurance Workshop, March 2007.

[20] Kelly, T. and Weaver, R. “The Goal Structuring Notation – A Safety
Argument Notation.” Workshop on Assurance Cases: Best Practices,
Possible Obstacles, and Future Opportunities, Florence, Italy. July 2004.

[21] Keqin Li, Laurent Mounier, Roland Groz, "Test Generation from
Security Policies Specified in Or-BAC," compsac, pp. 255-260, 31st
Annual International Computer Software and Applications Conference -
Vol. 2- (COMPSAC 2007), 2007

[22] Landwehr, Carl, Computer Security, IJIS 1:3-13, 2001
[23] Lautieri, S., Cooper, D., and Jackson, D. “SafSec: Commonalities

Between Safety and Security Assurance.” Proceedings of the Thirteenth
Safety Critical Systems Symposium - Southampton, 2005.

[24] Lesk, Michael, "The New Front Line: Estonia under Cyberassault,"
IEEE Security and Privacy, vol. 5, no. 4, pp. 76-79, Jul/Aug, 2007

[25] Leveson, Nancy. “A Systems-Theoretic Approach to Safety in Software-
Intensive Systems,” IEEE Transactions on Dependable and Secure
Computing 1, 1 (January-March 2004): 66-86, 2004.

[26] Lockheed Martin. Resource Ordering and Status System (ROSS)
Security Function Specifications. August 23, 1999

[27] McGraw, Gary, and Greg Morrisett. Attacking Malicious Code: A
Report to the Infosec Research Council. IEEE Software,
September/October 2000

[28] Ministry of Defence. Interim Defence Standard 00-56, Safety
Management Requirements for Defence Systems, 17 December 2004.

[29] National Security Agency, The Information Systems Security
Engineering Process (IATF) v3.1. 2002

[30] Open Group. Security Design Patterns (SDP) Technical Guide v.1, April
2004

[31] Payne, Charles N., Judith N. Froscher and Carl E. Landwehr. Toward A
Comprehensive Infosec Certification Methodology. 16th National
Computer Security Conference, Baltimore MD, Sept. 20 – 23, 1993,
NCSC/NIST, pp. 165–172.

[32] Redwine, Samuel T,. Jr. Towards an Organization for Software System
Security Principles and Guidelines, IIIA JMU, IIIA Pub. 0801, 2008

[33] Redwine, Samuel T., Jr. (Editor). Software Assurance: A Guide to the
Common Body of Knowledge to Produce, Acquire, and Sustain Secure
Software Version 1.1. US Department of Homeland Security, September
2006.

[34] Redwine, Samuel T., Jr. Dependability Properties, Technical Report,
Commonwealth Information Security Center, James Madison
University, 2004

[35] Redwine, Samuel T., Jr. The Quality of Assurance Cases, DNS
Workshop on Assurance Cases for Security, 2007

[36] Redwine, Samuel T., Jr., and Noopur Davis (Eds.). Processes for
Producing Secure Software. National Cyber Security Partnership, 2004

[37] SafSec Project. SafSec Methodology: Guidance Material: Integration of
Safety and Security. Available at: http://www.praxis-
his.com/safsec/safSecStandards.asp.

[38] SafSec Project. SafSec Methodology: Standard: Integration of Safety
and Security. Available at: http://www.praxis-
his.com/safsec/safSecStandards.asp.

[39] SAMATE. US NIST
[40] Salter, Chris, O. Sami Saydjari, Bruce Sehneier, Jim Wallner. Toward A

Secure System Engineering Methodology. 1998 NSPW, Charlottesville,
VA, USA, 1998

[41] Viega, John, and Gary McGraw, Tom Mutdosch, Edward W. Felten.
Statically Scanning Java Code: Finding Security Vulnerabilities. IEEE
SOFTWARE, September/October 2000

[42] Weaver, R. “The Safety of Software – Constructing and Assuring
Arguments.” Doctorial Thesis – University of York: Department of
Computer Science. 2003.

[43] Weaver, R., Fenn, J., and Kelly, T. “A Pragmatic Approach to
Reasoning about the Assurance of Safety Arguments.” 8th Australian
Workshop on Safety Critical Systems and Software (SCS’03), Canberra.
2003.

[44] Whitmore, J. J. A Method for Designing Secure Solutions. IBM Systems
Journal, VOL 40, NO 3, 2001

[45] Williams, J. and Schaefer, M. “Pretty Good Assurance.” Proceedings of
the New Security Paradigms Workshop. IEEE Computer Society Press.
1995.

	I. INTRODUCTION
	II. GENERAL
	III. PROJECTS
	IV. INITIAL COURSE CS555
	V. CONCLUSION

