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Abstract 
 
The earth’s fossil fuels are being continuously depleted, and as surface transportation is 
one of the prime consumers of petroleum, it is important to reduce petroleum 
consumption and make transportation more efficient and sustainable. Researchers have 
endeavored to reduce energy consumption by vehicles and their associated carbon 
footprints for more than half a century. Innovations in engines, infrastructure, and 
roadway design and signal timing have played roles in enhancing fuel efficiency of 
vehicles by more than 83 percent over the past 30 years. Along with fuel efficiency, 
transportation researchers aimed at enhancing the safety of the public have discovered 
that connecting vehicles with infrastructure has a great potential in making roads safer for 
everyone. This began an era in advancements focusing on Vehicle Infrastructure 
Integration. The current Connected Vehicles Technology program by the Federal 
Highway Administration aims to establish connectivity between vehicles, infrastructure 
and mobile devices. Apart from traffic safety, connectivity between elements in 
transportation can yield fuel saving benefits, which is the focus of this report. 
 
This report concentrates on a velocity advisory tool, or decision support system, for 
vehicles approaching an intersection using communication capabilities between the 
infrastructure and vehicles. The system uses available signal change information, vehicle 
characteristics, lead vehicle characteristics, and intersection features to compute the fuel-
optimal vehicle trajectory. The proposed system involves a complex optimization logic 
incorporating roadway characteristics, lead vehicle(s) information, vehicle acceleration 
capabilities and microscopic fuel consumption models to generate a fuel-optimal speed 
profile. The research also develops a MATLAB application named eco-vehicle speed 
control in order to demonstrate the potential of an in-vehicle application of such a 
technology. 
 

1 Introduction 
 
The United States is one of the prime consumers of petroleum in the world, burning more 
than 22 percent of the total petroleum refined on the planet [1]. The transportation sector 
consumes nearly three-quarters of this and is the second largest carbon emitter in the 
country [1,2]. Idling vehicles waste more than 2.8 billion gallons of gasoline each year 
[3]. Efforts to reduce the environmental impacts of driving and improve fuel efficiency of 
vehicles started during the late 1960s. Mechanical improvements such as enhanced 
aerodynamics, engine design, and transmission enhancements have improved average 
passenger car fuel efficiency from 18.4 l/100 km in 1975 to 10.1 l/100 km in 2005 [4]. 
However, the number of vehicles on the nation’s roadways continues to increase, as is the 
total vehicle miles traveled.  
 
As fossil fuel estimates decreased and atmospheric pollution due to greenhouse gases 
increased, the environmental policy makers pushed for lower and lower fuel consumption 
and emissions in vehicles, and researchers looked towards sustainable transportation. 
Eco-driving, fuel-optimal routing, operational enhancements in vehicles and alternative 
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fuel engines are some examples of innovations highlighting sustainable transportation. 
On the infrastructure side, improved pavement surfacing, introduction of advanced traffic 
signals that function in an adaptive way and improvements in roadway design are helping 
this cause. 
 
In the United States and other developed countries worldwide, communication systems 
and information technology penetrated the surface transportation sector. As a part of the 
Federal Highway Administration (FHWA) Intelligent Transportation Systems (ITS) 
Program, the roadway infrastructure in the United States was retrofitted with sensors 
designed to collect traffic data and provide users an overview of congestion so that they 
can make informed route-choice decisions. In addition, the USDOT connected vehicle 
program, formerly called Vehicle Infrastructure Integration (VII) program, promises 
communication between vehicles, infrastructure and mobile devices [5]. 
 
The research reported here focuses on reducing fuel consumption by controlling speed 
trajectories of vehicles approaching an intersection using Signal Phasing and Timing 
(SPaT) data obtained via Vehicle-to-Infrastructure (V2I) communication. The system 
discussed here analyzes possible velocity trajectories for a vehicle approaching an 
intersection and draws conclusions regarding the most fuel-optimal strategy under the 
given conditions. It assumes that signal controllers at intersections could communicate to 
the approaching vehicles and provide them with vital intersection characteristics, queued 
vehicle information and upcoming signal change information. 
  

2 Literature Review  
 
The U.S. Department of Transportation (USDOT) FHWA and other transportation 
agencies in developed nations have made significant advancements in various 
transportation technologies. In the mid-1990s, the FHWA's ITS Program emerged to 
increase the use of technology in the surface transportation sector  [6]. Initial ITS 
applications were limited to Advanced Traffic Management Systems (ATMSs) and 
Advanced Traveler Information Systems (ATISs), but technology soon gained 
momentum in areas of communication and surveillance. In 2003, the VII Program was 
established by the FHWA to combine the benefits of technology to enhance roadway 
safety, reduce traffic congestion, and reduce vehicle emissions [7]. This was the first 
initiative to use information transfer and communication technologies on a large scale in 
the surface transportation sector. In 2011, VII was rebranded as the Connected Vehicle 
Research program [5,8].  
 
Many research efforts have attempted to develop autonomous and self-driving vehicles. 
The major challenge, however, is handling the complexity of driving behavior. 
Researchers in this area have been modeling various driving maneuvers and decision 
making abilities so that an autonomous vehicle may drive in heavy traffic in the future. 
Car following, lane changing, and intelligent cruising have all played their roles in this 
domain. Products such as automated parallel parking, adaptive cruise control, and lane-
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change warning systems are some examples of such individual products. However, 
modeling a driver is computationally extensive and complex.  
Modeling efforts have been able to predict fuel consumption and emissions of greenhouse 
gas emissions such as carbon dioxide, carbon monoxide, nitrogen oxides and 
hydrocarbons precisely for various driving scenarios. The Comprehensive Modal 
Emissions Model (CMEM), the VT-Micro model, the Virginia Tech Comprehensive 
Power-based Fuel Model (VT-CPFM), and the Vehicle Driveline model are some 
examples of state-of-the-art fuel consumption and emission models [9–11]. A number of 
vehicle dynamics models have also been developed to accurately predict the physics of a 
vehicle [12]. Since these models can collectively predict the vehicle motion and fuel 
consumption and emission levels, it should be possible to optimize the vehicle trajectory 
to minimize its fuel consumption. This is the basic principle used in most research efforts 
pertaining to reducing vehicle emission and fuel consumption levels. 
 
Research efforts attempting to reduce the carbon footprint and fuel consumption 
associated with driving a vehicle have advanced significantly. On the vehicular side, non-
propulsion system improvements such as improved vehicle aerodynamics, tire-rolling 
friction, vehicle weight reduction and propulsion system improvements such as 
transmission and drive train have enhanced the average fuel efficiency of passenger cars 
from 18.4 l/100 km in 1975 to 10.1 l/100 km in 2005 [4]. Innovations to improve the fuel 
efficiency and reduce the carbon footprint of gasoline-powered vehicles have and 
continue to be made. This section reviews the research work conducted on the non-
vehicular side to improve energy and emissions of vehicles. The efforts are broadly 
categorized into two categories: improvements in infrastructure and improvements in the 
system (Figure 1).

 
Figure 1.  Classification of the literature review 

 

2.1 Infrastructure Improvements 

Intelligent traffic signals have been utilized in an attempt to enhance arterial throughput, 
intersection safety, and energy/emission levels. Conventional systems of obtaining traffic 
signal timings used objective functions that minimized vehicle delays and stops. Some 
studies suggested using explicit fuel spent at intersections as objective functions in 
intersection timings. Use of such objective functions that incorporate fuel consumption is 
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predicted to achieve reductions in fuel and carbon emissions in the range of 1.5 percent 
[13], [14]. Some traffic control improvements suggest the use of genetic algorithms to 
account for the dynamic routing of vehicles that have typically been neglected [15], while 
other field tests with genetic algorithms based on green-wave optimization revealed 
potential energy and emissions improvements [16].   

2.2 System Improvements 
 
Researchers at the Laboratory of Energy and the Environment at the Massachusetts 
Institute of Technology (MIT) reported that approximately 7 percent energy of a vehicle 
is lost due to braking [4]. Hence, reducing braking was assumed a direct fuel savings 
strategy that gave result in driving practices (and driver assistive devices) known as eco-
driving that assist drivers in achieving smoother speed variations. Intelligent Speed 
Adaptation (ISA) was an initiative in the UK aimed at developing driver assistive devices 
that advise drivers about desired speeds so as to avoid hard braking [17]. However, the 
initiative had its primary objective as traffic safety. As technology advanced, newer types 
of ISA devices were developed using Global Positioning System (GPS) technology to 
advise drivers about the speed limits set for the particular roadways [18], [19]. The third 
generation of ISA devices included use of telematics to communicate real-time traffic 
information for speed advisories to drivers [20].  

Even though the primary objective of ISA was reducing speed-limit violations from a 
traffic safety perspective, its inherent benefit was reducing fuel-consumption and 
emission levels due to smoother driver behavior [21]. The idea of having a smoother 
speed variation during driving is transformed into a variety of research topics pertaining 
to energy/emissions savings. Eco-driving and eco-routing were the sub-classification of 
driving system improvements found in a literature search. Eco-driving involves driving in 
an eco-friendly fashion, and eco-routing involves making a route choice that will 
consume minimum energy and produce minimum emissions. 

Advancements in eco-driving led to the use of telematics in making driving more 
intelligent and eco-friendly. This is termed advanced eco-driving and involves the use of 
some system to detect traffic, signals, or congestion and provide eco-advisory to drivers, 
including route advisory, speed advisory, etc. 

2.2.1 Eco-driving 
 
One of the most extensive research efforts conducted in the area of fuel consumption and 
emission reduction is eco-driving, which refers to driving in an eco-friendly and 
economical fashion. Preventing sudden speed changes in driving and maintaining a 
constant velocity around the fuel-optimal velocity of a vehicle have been associated with 
fuel consumption and emission reductions by various fuel consumption models [9], [10]. 
However, a comparison of eco-driving and typical driver behavior showed no major 
differences in fuel consumption and emission levels when smaller vehicles were driven 
[22]. Studies conducted using vehicles equipped with resistive devices to prevent sudden 
velocity changes also showed no differences [23]. Some studies showed that eco-driving 
not only prevented sudden variations in speed but entailed predicting the optimum speed 
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[24], [25]. Studies about the freeway-based dynamic eco-driving systems showed fuel 
savings in the range of 10 to 20 percent and provided real-time traffic information to 
drivers [26]. Widodo et al. compared fuel consumed by vehicles during an Environment-
Adaptive Driving (EAD) practice when inter-vehicle communication (IVC) was used and 
was not used. It was found that EAD had the potential to reduce the fuel consumed [27]. 
This study used the VT Micro-emissions model for comparison. However, EAD does not 
provide any speed advisories to drivers nor does it use communication of future signal 
changes to drivers.  
 
Evaluation of Greek bus drivers trained to eco-drive showed nearly a 10.2 percent 
reduction in fuel consumption levels [28]. Smart driver advisory tools were used to aid 
non-trained drivers on eco-driving. These tools used a fuel-efficiency driver support tool 
that back calculated the instantaneous fuel consumed and compared it with optimal fuel 
consumption. The system was evaluated and found to enhance gas mileage by 7 to 14 
percent [29]. However, improper design of advisory/support tools posed a challenge to its 
use. Participant surveys about the eco-driving system used in the Kia Soul showed that 
eco-driving increased the cognitive load on the driver [30]. Other research involving the 
use of a device that calculated optimum vehicle trajectory showed the computational time 
of such complex models as great as half the total trip time [31]. 

2.2.2 Eco-routing 
 
The advent of GPS-enabled navigation devices led to drivers adapting their driving route 
to goal-oriented route choice selection. Studies have shown that route choice does affect 
energy consumption and emissions and that a slower arterial route may produce better 
fuel efficiency and emission levels compared to a faster highway route [32]. Earlier 
navigation devices were programmable with shortest-path or shortest travel-time 
algorithms. As the buzzword “eco” flooded the research industry, eco-routing emerged. 
Earlier algorithms employed simple eco-routing techniques such as using weights for 
links based on fuel consumption/emission factors [33]. Link-weights also depended on 
grades of road segments [34]. As cloud computing and smart handheld devices became 
common terms, algorithms that modified on-the-fly with user-fed fuel consumption data 
for road segments were developed. The GreenGPS initiative is an example of this [35]. 

2.2.3 Advanced Eco-driving 
 
The VII initiative proposed by the U.S. Department of Transportation has at its core 
wireless communications connecting vehicles with the infrastructure and with other 
vehicles [5]. This system allows vehicles to receive advanced notifications from 
intersection controllers that could potentially avoid idling. Idling has been identified to 
consume 2.8 billion gallons of fuel each year in the United States alone [3]. A few 
research efforts have been conducted to develop algorithms that would utilize traffic 
signal information to reduce vehicle energy consumption and emissions. These research 
efforts highlight the fact that if a road user is notified of the upcoming signal status, the 
vehicle speed can be adjusted accordingly to avoid hard-braking or hard-acceleration 
maneuvers, thereby improving energy consumption and emission levels. The project 
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focus of this report uses advanced notification of signal status to adjust the speed of 
vehicle to produce fuel savings. Some similar studies are summarized below. 
 
Wu et al. studied the energy/emission benefits of communicating Traffic Signal Status 
(TSS) to the road user via Changeable Message Signs (CMS) or an in-vehicle Advanced 
Driving Alert System (ADAS) and found benefits of up to 40 percent under hypothetical 
conditions [36]. This research, however, only aimed at alerting the driver of changing 
signal status from green to red. CMS or in-vehicle ADAS was used to alert the driver of 
Time to Red (TTR) so that the drivers could choose to decelerate slowly to a stop if they 
had little or no chance of passing the intersection prior to a red light. Authors identified 
potential benefits of preventing road users from maintaining a higher speed until the stop-
bar if they knew they had to stop at the intersection and promoted decelerating gradually 
to a stop. However, they did not consider change of signal status to green using Time to 
Green (TTG) information to advise drivers to reach an intersection when the signal 
turned green. This paper also did not consider potential benefits of utilizing a better 
acceleration maneuver after passing the intersection. 
 
In 2010, Asadi and Vahidi developed a predictive cruise control system that used 
constrained optimum control to adjust cruising speeds to minimize the probability of 
stopping at intersections [37]. Optimum control was used to adjust the time of arrival of 
the vehicle to lie within green intervals at each intersection, and the adjusted speed was 
tracked to actual speed using a vehicle dynamics model. However, the system did not 
compare fuel consumed for alternate speed profiles, nor did the system provide a speed 
advisory to the drivers. Up to 47 percent savings in fuel and 5 percent savings in travel 
time were reported. 
 
Tielert et al. endeavored to document the factors governing the impact of Traffic-Light-
to-Vehicle-Communication (TLVC) on fuel consumption and emissions of individual 
vehicles [38]. This study used effective red-phase duration, which is the time difference 
between end of red-phase and time of arrival of vehicle if it did not reduce speed. The 
simulation used vehicles to follow various speeds within a certain interval to compare the 
effect of speed adaptation. The Passenger car and Heavy duty Emission Model (PHEM) 
was used to compare the effect on energy and emissions. Major factors identified to 
govern the impact of TLVC on energy and emissions were gear ratios and 
communication distance. Savings of up to 22 percent and 8 percent were identified in 
single-vehicle cases and multi-vehicle cases, respectively. 
 
Sanchez et al. developed the logic to be used by a driver approaching a stoplight if he/she 
was notified of the upcoming change of signal status [39]. The authors assumed 
Intelligent-Driver Model Prediction (IDMP) for the simulation studies, which used the 
available information about the green interval to adjust the vehicle speed. The Akcelik 
and Biggs fuel consumption model [40] was used to compare results of various driver-
modeling predictions but not when developing the logic. Results indicated a 30 percent 
reduction in fuel consumption and an increase in the average speed of the car platoon.  
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Malakorn and Park assessed the energy and emissions of a connected vehicle-based 
Cooperative Adaptive Cruise Control (CACC), which used Vehicle-to-Vehicle (V2V) 
and V2I communications over Adaptive Cruise Control (ACC) to further  reduce 
headway and improve safety [41]. This system used constrained optimum control with 
the objective of minimizing acceleration and deceleration distances and idling time using 
TSS information. The system communicated favored trajectory information to vehicles 
equipped with CACC. However, it used fixed deceleration distance during simulation 
studies and entirely neglected speed profiling past the intersection. The VT Micro-
emissions model was used only in evaluating the strategy but not in the actual 
optimization algorithm.  
 
Mandava et al. introduced a modified intelligent speed adaptation logic called arterial 
velocity planning during which the speed profile for a vehicle approaching a signalized 
intersection was calculated to reduce fuel consumption and provide dynamic advice to the 
driver [42]. The system used an optimization algorithm to minimize the 
acceleration/deceleration rates when the signal status information was available in 
advance to increase the probability of encountering a green light. The algorithm used a 
vehicle-dynamics model for acceleration computations; however, it did not use any fuel 
consumption models. The CMEM model was used for evaluation of benefits. Benefits of 
12 to 13 percent in fuel consumption and 13 to 14 percent for CO2 emissions were 
identified.  
 
While these research efforts aimed at assisting drivers with how to approach an 
intersection so as to avoid idling, some work about artificial intelligence revealed the 
feasibility of using intelligent traffic signal agents that will self-evolve to changing traffic 
conditions in order to maximize intersection capacities [43]. During an effort named 
TRAVOLUTION, the German carmaker Audi and the GEVAS software firm tested the 
idea of green-wave optimization with genetic algorithms using car-to-infrastructure 
communication [16]. The test cars were equipped with car-to-infrastructure 
communication devices to receive signal information. The entire set of driver advisories 
and green-wave optimization could reduce fuel consumed by 21 percent on average. 
However, no information about the parameters/models used in computing speed 
advisories is publicly available.  
 
In most of the aforementioned literature, drivers were provided optimized speed 
advisories about the ideal speed profile to be followed in order to minimize fuel 
consumption. However, no research used an explicit optimization objective of reducing 
fuel consumption. The goal of reducing fuel consumption in all these cases is transformed 
to simpler functions of acceleration/deceleration rates, or duration or even the time of 
arrival at the intersection. During this research, the objective function of reducing fuel 
consumption will be retained, which will potentially provide better intersection fuel 
efficiency for any given scenario by comparing alternate speed profiles. 
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3 Model Description  
From the previous section, it is clear that the models developed in previous research 
efforts focusing on optimizing vehicle fuel consumption levels near signalized 
intersections using signal information lacks clarity. All of these models used a simplified 
objective function for optimization such as minimizing the deceleration level or 
minimizing the cruising distance. None of these models had an explicit fuel consumption 
model in its objective function and that is one of the advancements addressed here. The 
project highlighted during this report retains the original objective function of minimizing 
fuel consumed in the entire maneuver near a signalized intersection while optimizing 
speed profiles of vehicles approaching the intersection. The term “entire maneuver” in 
this context sums the vehicle fuel consumption from the point where it receives advanced 
signal information until a fixed distance downstream of the intersection to enable it to 
revert to its original state (speed).  
 
The system leverages dedicated short-range communication (DSRC) capabilities between 
the roadway infrastructure and vehicles. The optimization is conducted in two steps: (1) 
Computation of a proposed time to intersection based on available intersection data 
(queued vehicle information), lead-vehicle information (if any) and signal change 
information (TTR or TTG); and (2) Computation of a fuel-optimal speed profile using the 
computed time to intersection, vehicle acceleration model, roadway characteristics and 
microscopic fuel consumption models. 
 
Figure 2 shows a logical diagram of events that will lead to eco-vehicle speed control 
near an equipped signalized intersection [44]. As the vehicle enters the DSRC range of an 
intersection, it receives information about upcoming signal changes, lead-vehicle 
information and roadway information. It is at this point, when the eco-vehicle speed 
control system starts its optimization algorithm and provides an instantaneous speed 
advisory to the driver. At the point of this report, the authors have not considered human-
vehicle interaction on how the speed advisory is handled by the driver and is assumed 
autonomous driving by the eco-vehicle. It should be noted, however, that the algorithm is 
re-calculated every time-step and thus would be able to respond to driver errors in 
responding to system recommendations.  

3.1 Scenarios  
 
Depending on the upcoming signal change, namely Time to Red (TTR) or Time to Green 
(TTG) information, Distance to Intersection (DTI) and its current speed (va), there are 
different scenarios, the eco-vehicle can be in. These are summarized as follows: 
 

3.1.1 Scenario 1 
 
As the vehicle receives upcoming signal change information from the intersection using 
Infrastructure-to-Vehicle (I2V) communication, it computes whether the vehicle will 
receive a green light at the stop line if it proceeded at its current speed; if it does, the 
system provides an advisory to proceed cautiously at the current speed. 
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3.1.2 Scenario 2 
 
If the TTR is not sufficient for the vehicle to pass the intersection at green at its current 
speed but is sufficient if the vehicle accelerates to the maximum allowed speed on the 
roadway, then the vehicle is advised to accelerate and pass cautiously through the 
intersection. 
 

 
Figure 2.  Eco-Vehicle Speed Control Logic 

 

No 
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3.1.3 Scenario 3 
 
If the TTR is not sufficient for the vehicle to pass the intersection, then the vehicle is 
advised to come to a slow stop and wait for the next green light. 
 

3.1.4 Scenario 4 
 
This is when TTG is longer than the vehicle’s TTI at the current speed. Hence, by 
reducing the average speed of the vehicle across the distance to the stop-line, a delay can 
be incurred in the vehicle trajectory so that the time to intersection is sufficient to receive 
a green light and to clear any available queues. This reduction in average speed can be 
achieved using an infinite number of vehicle trajectories; the focus of this research is to 
compute the most fuel-optimal way of accomplishing this. 
 
The last scenario discussed above is a complex optimization function with the objective 
of minimizing fuel consumed. In order to make the system more accurate, the 
acceleration of the vehicle to a target speed past the stopline is also considered. This 
optimization function is solved under the constraints of a given travel distance upstream 
(which is DTI), fixed time to reach the intersection (which is the TTG plus any clearance 
time needed for queues), and fixed roadway and vehicle characteristics (such as grade, 
engine power, frictional coefficients, etc.). The eco-vehicle does check for these 
scenarios and runs the optimization algorithm every time-step.  
 
This section deals with the speed-profile optimization and its components, deriving 
equations and constraints for the optimization and explanation of physical models and 
fuel consumption models used in the system. 

3.2 Speed-profile Optimization Logic 
 
The speed-profile optimization is conducted to find the fuel-optimum speed profile of a 
vehicle that is informed of TTG. This logic applies when the time to intersection needs to 
be increased to some extent to incorporate signal change from red to green and 
dissipation of any queued vehicles. The vehicle movement is physically divided into 
three parts: deceleration part, cruising part and acceleration part. The constant 
deceleration model and the Rakha and Lucic acceleration model are used here [12]. The 
cruising part is optional and is conducted upstream to maintain the constraints and 
downstream to fix the optimization across a constant distance. Figure 3 shows the 
trajectory optimization of an eco-vehicle near a signalized intersection. 
 
The speed profile of a vehicle approaching an intersection will have two components: (a) 
upstream of the traffic signal and (b) downstream of the traffic signal. The upstream 
portion introduces the desired delay to the vehicle in order to ensure that it arrives at the 
correct time. This is accomplished by advising the driver to decelerate to some cruising 
speed and cruise for the remainder of the distance. This cruising distance is zero when the 
initial deceleration is a minimum value. The deceleration-cruising pair is determined by 
the effective Time to Intersection (TTI) needed and the DTI at the point the SPaT 
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information is received. The downstream portion comprises accelerating back to the 
original speed. A lower speed at the intersection will cause the vehicle to have a larger 
acceleration maneuver, which adds to the total fuel consumed. This forms a trade-off 
between initial deceleration and speed at intersection. A higher initial deceleration level 
will result in a lower final speed at the intersection and hence a higher fuel consumption 
associated with acceleration back to the original speed. 
 

 

Figure 3.  Extent of trajectory optimization near a signalized intersection 

 

3.2.1 Upstream Trajectory of the Vehicle 
 
As mentioned before, the eco-speed control model uses TTG information of an upcoming 
signal to alter an approaching vehicle's TTI to ensure that the vehicle traverses the 
intersection in a fuel-efficient manner. In this section, the equations governing motion of 
the vehicle upstream of the intersection are derived. 
 
Let va be the approach speed when the traffic signal information is received and x be the 
distance to the intersection. Also, denote the TTI be t and TTG be t+∆t. The eco-speed 
control model alters the average speed from va = x/t to a new average speed v = x/(t+∆t). 
The change in speed profile should maintain x and t+∆t. Infinite pairs of parameters of 
deceleration level, d and speed at the stop line, vs can satisfy this condition. The 
minimum value of d, dmin allows the vehicle to decelerate until the stop-line when it can 
safely accelerate and pass through the intersection. Any value of deceleration greater than 
dmin has an associated cruising phase at speed vs in order to maintain the x and t+∆t 
parameters. 
 
The speed profile shown by the solid line in Figure 4 represents the speed profile of the 
vehicle if it travels at a constant minimum deceleration level in order to ensure that the 
vehicle traverses the distance x in time t+∆t. Let this value of deceleration be dmin. The 
speed profile shown by the dash-dotted line in Figure 4 represents the vehicle speed 
profile if the objective is to minimize the time spent decelerating. The vehicle decelerates 
at a maximum feasible rate of dmax m/s2 to a speed vs m/s initially and then cruises at that 
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this speed across a distance xr. Within these two solutions is an infinite number of 
solutions for d ranging between dmin and dmax (i.e. d = [dmin, dmax]). 
 

 

Figure 4.  Vehicle trajectory upstream 

 
Using equations for conservation of x and t+∆t, the value of dmin can be derived as  

min
a sv v

d
t t

-
=

+ D
  (1) 

where 2
s a

xv v
t t

= -
+ D

 (2) 

For any greater value of d, the following equation provides the positive solution of vs: 

( )( ) ( ) ( )( ) ( )2
2 2s a av v d Gg t t d Gg d Gg t t v t t xæ ö÷ç= - ± + D + ± ± + D - + D + ÷ç ÷è ø.(3) 

Here G is the roadway grade and g is the gravitational acceleration (9.81 m/s2). The 
following equation computes xr (upstream cruising distance) corresponding to any given 
d as 

( )
2 2

2
a s

r

v v
x x

d Gg
-

= -
±

. (4) 

It should be noted that when d = dmin, xr = 0. These equations can derive various speed 
profiles between the two bounding deceleration levels. The instantaneous speed vector 
and a microscopic fuel consumption model are used to estimate fuel consumed for 
different vehicle trajectories. 
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3.2.2 Downstream Trajectory of the Vehicle 
 
Once the vehicle clears the intersection, its task is to accelerate back to its original speed. 
Unlike deceleration, the acceleration speed profile is non-linear and vehicle dependent. 
This project used a vehicle dynamics model for light-duty acceleration to compute the 
downstream speed profiles of vehicles [12]. In order to optimize the fuel consumed for 
the downstream portion, it is necessary to consider alternate throttle levels when 
accelerating from vs to va. Speed profiles corresponding to throttle levels of 20 to 100 
percent are considered. A final comparison of the total fuel consumed is made for a 
constant distance that is computed as the distance required in accelerating at the 
minimum throttle level. In the case of greater throttle levels, this will entail accelerating 
and cruising at va for the remainder of the distance (Figure 5).  
 
Hence, the equation for total fuel consumed downstream of the traffic signal is computed 
as 

[ ]max( ) ( ) ( )i i s a cruise a i accFC ds FC v v FC v x x −= → + × − . (5) 

where FCi(ds) is the fuel consumed downstream of the traffic signal for case i, 
FCi(vs→va) is the fuel consumed while accelerating from vs to va for case i, FCcruise(va) is 
the fuel consumed per meter cruising at speed va, xmax is the maximum distance covered 
during acceleration from vs to va in any case, and xi-acc is the distance covered during 
acceleration in the case i.  

 

Figure 5.  Downstream trajectory of the vehicle  

 

3.3 Underlying Models 
 
The speed control module defined in this report uses state-of-the-art microscopic traffic 
models to define instantaneous vehicle velocities and to predict future fuel consumed. 
The three primary models used here are: 
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a) Constant deceleration model 
b) Vehicle dynamics acceleration model [12] 
c) VT-CPFM [9] 

At this stage, the project mainly covers the speed control of the first vehicle arriving at an 
intersection and hence does not use any car-following logic. However, it should be noted 
that proper implementation of this system involves use of car-following models to 
analyze car-to-car interaction on the signalized arterial. This section expands on the 
microscopic models used during the project. 

3.3.1 Vehicle Deceleration Model 
 
The vehicle is assumed to undergo an initial deceleration upstream of the intersection to 
incorporate the required delay, and this deceleration is assumed constant and optionally 
followed by a cruising portion for the remainder of the DTI. The system does not 
consider a case involving acceleration upstream of the intersection. All acceleration 
occurs downstream of the traffic signal stop line. 

3.3.2 Vehicle Acceleration Model 
 
Once past the intersection, the vehicle accelerates to its original speed, and the time and 
distance at which it accelerates depends on the accelerator pedal level or simply the 
throttle level. In order to compare cases of any throttle level, a constant distance upstream 
is considered, which is defined by the distance covered during the application of 
minimum throttle. For any throttle level more than the minimum, some cruising is 
required at the final speed for the remainder of the fixed distance. This deals with the 
acceleration model used during this project and is a non-linear model unlike the 
deceleration model. The modeling of vehicle accelerations involved the use of a vehicle 
dynamics model. Vehicle dynamics models compute the maximum vehicle acceleration 
levels from the resultant forces acting on a vehicle (mainly vehicle tractive force that is a 
function of the driver throttle input and the various resistance forces). 
 
Equation 6 computes the vehicle tractive effort F. Rakha and Lucic introduced the β 
factor into Equation 6 in order to account for the gearshift impacts at low traveling speeds 
when trucks are accelerating [1]. This factor is set to 1.0 for light-duty vehicles. The fp 
factor models the driver throttle input level and ranges from 0.0 to 1.0. The sum of the 
aerodynamic, rolling, and grade resistance forces acting on the vehicle, as demonstrated 
in Equation 7, forms the vehicle resistance force. 
 

min 3600 ,p d ta

PF f m g
v

bh m
æ ö÷ç ÷= ç ÷ç ÷çè ø

  (6) 

( )2 0
1 225.92 1000

r
d h f r r

c
R C C A v mg c v c mgGr= + + +

 
(7) 

 
where fp is the driver throttle input [0,1] (unitless; field studies have shown that it is 
typically 0.60); β is the gear reduction factor (unitless); ηd is the driveline efficiency 
(unitless); P is the vehicle power (kW); mta is the mass of the vehicle on the tractive axle 
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(kg); g is the gravitational acceleration (9.8067 m/s2); μ is the coefficient of road 
adhesion or the coefficient of friction (unitless); ρ is the air density at sea level and a 
temperature of 15◦C (1.2256 kg/m3); Cd is the vehicle drag coefficient (unitless), typically 
0.30; Ch is the altitude correction factor (unitless); Af is the vehicle frontal area (m2); cr0 is 
rolling resistance constant (unitless); cr1 is the rolling resistance constant (h/km); cr2 is the 
rolling resistance constant (unitless); m is the total vehicle mass (kg); and G is the 
roadway grade at instant t (unitless). 
 
The vehicle acceleration is calculated as a ratio of the difference between the tractive 
forces and resistance forces and the vehicle mass (i.e., a = (F − R)/m). The vehicle speed 
at t + ᇞt is then computed using Euler’s first-order approximation as 

( ) ( )( ) ( ) 3.6 F t R tv t t v t t
m
-+ D = + D   (8) 

3.3.3 Fuel Consumption Model 
 
This section describes the fuel consumption model used in computing the fuel-optimal 
vehicle trajectory. Fuel consumption models generally fall into one of the following two 
categories: macro and micro models. Macro models estimate vehicle total fuel 
consumption based on aggregate characteristics such as average speed, total distance 
traveled, and average traffic volume. However, microscopic fuel consumption models 
calculate instantaneous fuel consumption levels based on instantaneous operational 
characteristics. This study uses a microscopic model since optimizing speed trajectories 
requires estimating vehicle fuel consumption based on instantaneous vehicle operational 
data.  
 
This study uses the VT-CPFM-1 due to its simplicity, accuracy, and ease of calibration 
[9]. The fuel consumption model utilizes instantaneous power as an input variable and 
can be calibrated using publicly available fuel economy data (e.g., Environmental 
Protection Agency [EPA]-published city and highway mileage). Thus, the calibration of 
model parameters does not require gathering any vehicle-specific data.  
 
The fuel consumption model is formulated as Equation (9), where α0 is the fuel 
consumption rate (g/s or l/s) for idling conditions and P(t) is the instantaneous total 
power in kilowatts (kW). The idling fuel consumption rate is estimated using Equation 
(10), where Pmfo is idling fuel mean pressure (400,000 Pa), ωidle is idling engine speed 
(rpm), d is engine displacement (liters), Q is fuel lower heating value (43,000,000 J/kg 
for gasoline fuel), and N is the number of engine cylinders. Estimation of the model 
coefficients (α1, α2) uses the fuel consumption rates of the standard fuel economy cycles 
(e.g., EPA-published city and highway mileage).  
 
Here Fcity and Fhwy are the total fuel consumed for the EPA city and highway driving 
cycles, respectively. The value of Fcity is adjusted to represent the engine transient 
operation since the EPA city cycle includes the cold start operation in the Bag 1 of 
Federal Test Procedure (FTP). Tcity and Thwy are the durations of the city and highway 
cycles (1875s and 766s). In addition, Pcity and Pcity

2 represent the total power used and 
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total sum of the squared power during the city driving cycle, expressed as 
0

( )cityT

t
P t

=∑ and 
2

0
( )cityT

t
P t

=∑ respectively. Similarly, Phwy and Phwy
2 are estimated for the highway cycle.  

2
0 1 2

0

( ) 0( ) ( )
( )

( ) 0
P tP t P t

FC t
P t

a a a
a

" ³+ +
=

" <   (9) 
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4 Example Illustration  
To demonstrate the eco-vehicle speed control algorithm, an example is provided in this 
section. Consider a single vehicle approaching a signalized intersection with DSRC 
capability and assume that the current phase is red. The vehicle approach speed is 20 m/s 
on a roadway with a zero percent grade (level road) at standard air temperature and 
pressure. At a distance of 200 m from the intersection stop-line, it receives information 
regarding the next green indication, which will start in 14 seconds and has no queued 
vehicles. If the vehicle continues at its current speed it will reach the stop-line in 10 
seconds suggesting that a delay of 4 seconds is needed in order to travel through the 
green indication.  
 
This delay can be introduced in different ways as explained in the previous chapter. 
Various speed profiles can be generated that satisfy the following input: va = 20 m/s, x = 
200 m, t = 14 s, and Δt = 4 s. The minimum deceleration level dmin is computed to be 
0.82m/s2. The corresponding speed at the stop-line vs is computed to be 8.57 m/s. Table 1 
shows possible scenarios where d > dmin up to a deceleration level of 0.6 g, along with 
associated fuel consumed. Note that for any value of d greater than dmin there is an 
associated cruising phase. Vehicle characteristics of a Chevrolet Malibu were used for the 
example demonstration. 
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Table 1.  Fuel consumed by Chevy Malibu during deceleration 
 

d (m/s2)  vs (m/s)  tdecel(s)  tcruise(s)  Fdecel(l) 
0.82 8.57 14.00 0.00 7.119  
0.83 9.87 12.20 1.80 7.27  
0.89 11.12 9.97 4.03 7.861  
1.00 12.00 8.00 6.00 8.394  
1.21 12.72 6.01 7.99 8.987  
2.13 13.60 3.01 10.99 10.062  
5.90 14.07 1.00 13.00 10.817  

 
Table 1 shows seven of the infinite possible scenarios with columns denoting 
deceleration in m/s2, speed at the intersection in m/s, time spent decelerating upstream of 
the traffic signal in seconds, time spent cruising prior to the stop-line in seconds, and fuel 
consumed during the deceleration phase. Table 1 shows that gradual deceleration to the 
stop-line as denoted by Case 1 is the most fuel-efficient deceleration maneuver. However, 
it results in a lower speed at the stop-line (vs) compared to the other cases and would 
require greater fuel, F2, to accelerate back to va.  

The fuel consumption for the entire maneuver, including decelerating, cruising, and 
accelerating, is then computed, as shown in Table 2. The acceleration fuel includes a 
small cruising section at the speed of va to make the total downstream distance covered 
the same during all the throttle cases. The vehicle dynamics model is used to compute the 
instantaneous speeds when accelerating to the original speed for different throttles, and 
the throttle level corresponding to minimum fuel was used to build cases. 
 
Table 1 shows that the case with a gradual deceleration of 0.82 m/s2 over the entire travel 
to the stopline was the most fuel optimal when we consider upstream movement only. 
However, Table 2 shows that the case involving an initial deceleration of 2.13 m/s2 for 3 
seconds, cruising at 13.60 m/s for 11 seconds to reach the stopline, and then accelerating 
at 30% throttle to 20 m/s is the most fuel optimal when we consider the entire maneuver. 
Figure 6 shows a 3-dimensional plot comparing the fuel consumed for each of the cases 
in a matrix of deceleration and acceleration cases. 
 

Table 2.  Fuel consumed in downstream movement of a Chevy Malibu 
d 
(m/s2)  

vs 
(m/s)  30 %  40 %  50 %  60 %  70 %  80 %  90 %  100 % 

0.82 8.57 42.16  45.82  49.12  52.02  53.53  56.08  57.75  59.72 
0.83  9.87  40.74  44.37  46.38  49.66  51.20  53.55  55.50  57.52 
0.89  11.13  40.13  42.28  44.81  47.49  49.90  51.17  53.13  53.30 
1.00 12.00  38.40  40.69  43.61  45.30  48.19  49.45  51.45  52.75 
1.21  12.72  38.57  40.77  42.78  45.17  46.53  47.53  50.56  52.57 
2.13  13.60  37.00  39.20  41.04  43.54  44.25  46.99  48.94  49.12 
5.9  14.07  37.72  39.99  40.39  42.50  43.87  46.38  48.25  48.48 
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Figure 6.  Fuel consumption plot for Chevy Malibu in three dimensions 

 

5 Case Studies  
In the example illustrated in the previous section, it was shown that the most fuel-optimal 
path is a complex function and is not necessarily the vehicle trajectory that involves 
minimum deceleration, maximum deceleration or some constant function of TTI or DTI. 
The example simulated one simple case of a vehicle approaching a red light and was 
optimized for minimum fuel consumption assuming the characteristics of a Chevrolet 
Malibu. However, more simulations were needed to prove the importance of a well-
defined optimization function using vehicle dynamics and fuel consumption models. 
Additional simulations were also aimed at evaluating the proposed system.  
 
Hence, simulations in MATLAB were conducted for the proposed eco-vehicle speed 
control application considering different vehicle models, different approach speeds, and 
different desired delay estimates. The following assumptions are made: (a) only the lead 
vehicle approaching the signalized intersection is considered (and no inter-vehicle 
interaction) and (b) SPaT information is available from the intersection controller via I2V 
communication. The analysis includes 80 cases (Figure 7) comprising four different 
vehicle types, four different approach speeds and five different TTGs. Table 3 provides 
the characteristics of the four vehicles used during the simulation analysis. The DTI in all 
cases was fixed on 200 m (which was assumed to be the range of DSRC dedicated to 
Connected Vehicles Technology), and the TTG was such that the vehicles should incur a 
delay of 2, 4, 6, 8 and 10 seconds from their normal trajectories in order to receive a clear 
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intersection. For each case, a matrix of speed profiles was built according to the 
procedures described earlier.  
 

Table 3.  Details of the vehicles simulated in case study 
Characteristics Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 

Make SAAB Mercedes Chevrolet Chevrolet 

Model 95 R350 Tahoe Malibu 

Year 2001 2006 2008 2007 

Engine Size (L) 2.3 3.5 5.3 2.2 

EPA Mileage (City/Highway) 21/30 16/21 14/20 24/34 

 
 

 
Figure 7.  Variables analyzed for case-study simulations of speed control algorithm 

 
The amount of fuel consumed for 140 vehicle trajectories was compared to determine the 
fuel-optimal trajectory for each of the 80 cases. A combination of 20 upstream cases and 
7 downstream cases, totaling 140 cases were compared for the most fuel-efficient speed 
profile in each of these cases. The fuel consumption was computed as the summation of 
the fuel consumed by the vehicle to decelerate from va to vs, cruise at vs, accelerate back 
from vs to va, and cruise at va across a distance that makes total distance constant for all 
the cases. Figure 8 provides a sample application to one of the test vehicles. Each value in 
the matrix displays the fuel consumed for that specific vehicle trajectory, which is 
defined by the deceleration level (y-axis) and acceleration level (x-axis). Using the 
deceleration level, one can estimate the corresponding vs and xr. Figure 8 indicates that 
for a vehicle approaching an intersection at 72 km/h (45 mph) that must incur a delay of 4 
seconds, the optimal vehicle trajectory entails decelerating at the maximum deceleration 
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level dmax and accelerating at the minimum throttle level. This conclusion was consistent 
for all four vehicles tested.  
 
The same analysis was conducted for the various approach speeds of 25, 35, 45 and 55 
mph and required delays (2, 4, 6, 8 and 10 seconds) in order to establish whether the fuel-
optimal action is vehicle, speed or delay dependent. It was seen that the optimal action 
downstream always included minimal throttle (0.3 in this case). However, the optimal 
course of action upstream differed. Table 4 shows the optimum deceleration values for all 
the cases. Clearly, the optimum course of action is not only vehicle dependent but 
depends on the approach speed and the delay required in the vehicle trajectory. In order 
to measure the effectiveness of the proposed system, fuel savings were measured against 
the optimized scenario and the average of all scenarios. This measure provides an 
estimate of the potential fuel savings near the intersection when the proposed eco-speed 
control algorithm is used. The values on Table 5 are derived using the following relation: 
 

௜ܵ,௝ ൌ ୟ୴୥ ሺி೏,೟ሻି୫୧୬ ሺி೏,೟ሻ
ୟ୴୥ ሺி೏,೟ሻ

ൈ 100 %  (13) 

where  

Si,j = % Savings for induced delay i and approach speed j 

Fd,t = Fuel consumed (for the case i,j) when deceleration upstream is d and throttle 

downstream is t. 

Avg ሺܨௗ௧ሻ ൌ  
∑ ∑ ி೏,೟

భ
೟సబ.య

೏೘ೌೣ
೏స ೏೘೔೙

௡೔,ೕ
                                                                                     (14) 

Savings up to 30% over the average fuel consumption were identified. Even though these 
values hold true only near intersections, they project to a significant value for signalized 
arterials where closely spaced intersections are present. Table 5 presents the percentage 
deviation in fuel consumption between the selected fuel-optimum trajectory and the 
average of all possible scenarios tested. These values indicate the maximum potential fuel 
savings that can be achieved by such a system. 
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Figure 8.  Sample fuel consumption matrix (in litres) used to find optimum speed 

profile (when va = 45mph and delay = 10s) 
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Table 4.  Fuel optimum deceleration for 80 cases (in m/s/s) 
(a) SAAB 95 

Approach Speed (mph) 
25 35 45 55

D
el

ay
 (s

) 2 0.25 0.75 3.25 4.75
4 0.25 3.50 5.75 5.75
6 0.50 5.00 5.75 5.50
8 0.75 5.75 5.75 5.75
10 2.00 5.75 5.25 5.75

 

 (b) Mercedes R350 
Approach Speed (mph) 
25 35 45 55

D
el

ay
 (s

) 2 0.25 0.75 3.25 2.25
4 0.25 3.50 2.00 3.00
6 0.50 1.75 2.50 5.50
8 0.75 5.75 5.75 5.75
10 2.00 5.75 5.00 4.50

 (c) Chevrolet Tahoe 
Approach Speed (mph) 
25 35 45 55

D
el

ay
 (s

) 2 1.00 2.00 1.00 4.75
4 5.75 3.50 5.75 5.00
6 2.75 5.00 5.75 5.50
8 3.25 5.75 4.50 5.75
10 3.75 5.75 5.25 5.75

 

 (d) Chevrolet Malibu 
Approach Speed (mph) 
25 35 45 55

D
el

ay
 (s

) 2 0.25 0.50 1.75 2.50
4 5.75 1.25 5.75 3.00
6 0.25 1.00 5.75 5.50
8 0.75 5.75 5.75 5.50
10 1.00 5.75 4.75 4.25

 
 

Table 5.  Percentage deviation of the fuel consumed during optimized trajectory 
over average of all tested trajectories 

(a) SAAB 95 
Approach Speed (mph)
25 35 45 55

D
el

ay
 (s

) 

2 
13.12

% 
14.86

% 
17.84

% 
20.63

% 

4 
10.54

% 
15.99

% 
20.24

% 
22.48

% 

6 9.31% 
15.67

% 
19.89

% 
22.81

% 

8 9.33% 
15.15

% 
19.97

% 
21.17

% 
1
0 7.84% 

15.12
% 7.85% 8.57% 

 

 (b) Mercedes R350 
  Approach Speed (mph) 
  25 35 45 55

D
el

ay
 (s

) 

2 12.58
% 

17.66
% 

21.10
% 

24.24
% 

4 11.64
% 

18.39
% 

23.41
% 

25.90
% 

6 12.22
% 

18.53
% 

23.36
% 

25.57
% 

8 11.68
% 

17.77
% 

22.90
% 

24.30
% 

10
9.63% 

17.52
% 

10.24
% 

10.58
% 

 

 (c) Chevrolet Tahoe 
Approach Speed (mph)
25 35 45 55

D
el

ay
 (s

) 

2 7.70% 
19.28

% 
27.90

% 
32.16

% 

4 
11.22

% 
21.98

% 
29.54

% 
33.36

% 

6 
10.08

% 
20.60

% 
29.42

% 
33.54

% 

8 
10.57

% 
20.79

% 
28.02

% 
31.77

% 
1
0 9.62% 

20.19
% 

15.44
% 

16.41
% 

 

 (d) Chevrolet Malibu 
Approach Speed (mph) 
25 35 45 55

D
el

ay
 (s

) 

2
11.42

% 
11.61

% 
15.39

% 
16.87

% 

4
10.99

% 
14.95

% 
16.97

% 
19.73

% 

6 9.48% 
14.76

% 
18.14

% 
20.53

% 

8 8.22% 
14.90

% 
18.49

% 
19.69

% 

10 7.85% 
15.11

% 7.88% 8.64% 
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Given that the optimization only entails computing the optimal deceleration level, the 
mathematical program can be cast as 

( )
( ) ( )2

0 0 1 2 0.3
2

min ( )
ps s

r r
f s av v v v

a s s

x x x
F P P FC v v

v v v
a a a a == =

-
= + + + + ®

+
. (15) 

Here the first term in the equation is the fuel consumed while decelerating, the second 
term is the fuel consumed while cruising, and the third term is the fuel consumption while 
accelerating at the minimum throttle level (fp=0.3). This equation is a function of a single 
control variable (d) given that vs and xr can be computed once d is known using 
Equations 3 and 4, respectively, and va, x, t, and ∆t are known. The constraints of this 
mathematical problem are d = [dmin, dmax] and vs ≥ 0. 
 

6 Application Development  
In the previous sections, it was shown that by using a well-defined optimization function 
a fuel-optimal speed profile could be generated for a given scenario. The speed profile is 
case-dependent, and cannot be computed by minimizing the acceleration and deceleration 
levels or by minimizing the time the vehicle spends accelerating. Instead, the speed 
profile and possible fuel savings depend on the approach speed, TTI, and DSRC range 
(Tables 4 and 5). The simulations were programmed in MATLAB environment and 
evaluated. The measure of effectiveness used was fuel savings. However, the possibility 
of implementation in an in-vehicle environment needed to be studied, so a MATLAB 
application was developed to operate as an optimization tool for fuel consumption 
modeling using speed adjustments. The MATLAB application uses a Graphical User 
Interface (GUI) to interact with users and receive "scenario information" and computes 
the fuel-optimum vehicle trajectory. 
 
The MATLAB application is programmed as a GUI with multiple pages using the 
algorithm illustrated in Figure 2. The sections of the GUI are described below: 
 
Page 1: 
Figure 9 shows the first page of the MATLAB application and comprises a general 
introduction to the application and the credits to the developing laboratory. 
 
Page 2: 
As shown in Figure 10, a physical modeling of the vehicle under consideration is 
detailed. Four vehicles are standardized in the application, or the users can define a 
vehicle using its physical and mechanical characteristics. The application also requires 
users to input calibrated model variables for VT-CPFM-1 in this page if they are defining 
an unsaved vehicle. 
 
Page 3: 
Figure 11 illustrates an input page where users set the intersection and arterial 
characteristics. Intersection characteristics include DTI, approach speed, TTG and 
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minimum permitted speed. Arterial characteristics such as jam density, queue length, etc. 
aid in the computation of the time required for queue discharge. 
 
Page 4: 
Shown in Figure 12 is an output page where users can run optimization of the scenario 
and receive verbal advisory about the fuel-optimum action. It also generates a table of 
fuel consumed in milliliters corresponding to a set of deceleration rates and acceleration 
throttles. 
 
Page 5: 
Figure 13 illustrates a summarization of the optimal action with the optimum vehicle 
speed profile plotted against time.  
 
 

 
 

Figure 9.  MATLAB Application, Page 1 
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Figure 10.  MATLAB Application, Page 2 
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Figure 5.  MATLAB Application, Page 3 

 
 

Figure 6.  MATLAB Application, Page 4 
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Figure 7.  MATLAB Application, Page 5 

 

7 Conclusions and Recommendations  
This report focused on developing an eco-vehicle speed control system, which uses 
upcoming signal change information to alter a vehicle's velocity profile to minimize its 
fuel consumption. The report also evaluated the system using case-study simulations. 
While similar studies have been conducted as was demonstrated in the literature review, 
the robust objective function used in optimization and the accounting of the vehicle 
acceleration downstream of the traffic signal makes this application unique. The objective 
function used here employs an explicit fuel consumption model without making the 
system computationally complex. Previous work has used some simplified version of the 
objective function that did not have a fuel consumption variable in it. This section lists 
notable findings made during this research. 

7.1 General Findings 
 

1. The objective function should be robust and needs to include a fuel consumption 
model. 

2. The objective function should incorporate both upstream and downstream 
maneuvers as fuel consumed downstream depends on the upstream maneuver and 
speed at intersection. 

3. Use of advanced signal information has the potential to save fuel on signalized 
corridors by preventing sudden stopping and acceleration. 
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4. Fuel-optimal trajectory depends on approach speeds, delays required before 
reaching stop-lines, vehicle characteristics, etc. and cannot be generalized. 

5. The possibility of an in-vehicle module/system/device for eco-vehicle speed 
control is shown by the developed MATLAB application. 

While these are the general findings from this project, some case-specific findings were 
also drawn from the multitude of simulation runs using different scenarios and different 
vehicle types.  

7.2 Findings from Case Studies 
 

1. Acceleration upstream depends on speed at intersection, which relies on the 
chosen deceleration level. Therefore, for each deceleration level, the acceleration 
scenario has to be considered before making a conclusion about the fuel-optimal 
trajectory. 

2. The lowest throttle level was found to be fuel efficient when the VT-CPFM model 
was used. However, it should be noted that lower acceleration at an intersection 
would affect the discharge rate and thus could reduce the approach capacity. 

3. Initial deceleration depends on vehicle type, approach speed and delay to be 
induced in the trajectory due to late green and/or queue clearance. 

4. Greater initial deceleration, cruising and slow acceleration is the fuel-optimal case 
when an approach speed is higher. 

5. Lower initial deceleration, optional cruising and slow acceleration is the fuel-
optimal case when an approach speed is lower. 

6. In most cases where the delay to be induced was lower, the optimum case was 
that with lower initial deceleration upstream. 

7. In cases where the delay to be induced was greater, the optimum case comprised 
sudden initial deceleration followed by cruising for the remainder of the upstream 
distance. 

8. Even though the four vehicles simulated showed similar results, possible savings 
in fuel was greater for the ones with larger engines and lower for the ones with 
smaller engines. 
 

These findings and conclusions warrant future research in this area. The eco-vehicle 
speed control is a very complex system if the assumptions that were made in the study 
were relieved. Considering the human-vehicle interaction to follow speed advisories, 
V2V interaction using car-following models, adaptive traffic systems, etc., can make the 
system closer to implementation as well as complex. The findings also reinforce the fact 
that the complexity of the objective function should be maintained to receive meaningful 
results rather than simplifying the approach. However, with today's computational 
advancements there exists the potential to implement even the most complex system in 
new vehicles and infrastructure. 
 
Among the environmental effects of driving, Green House Gas (GHG) emissions play an 
important part and accumulated research attention around the world. GHG such as 
hydrocarbons, carbon dioxide, carbon monoxide, and nitrogen oxides are produced by 
internal combustion engines that run on gasoline. The research highlighted in this report 
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could be extended to address these emissions. For example, carbon dioxide emissions are 
linearly correlated with fuel consumption levels [9].  
 

8 References  
[1] S. C. Davis, S. W. Diegel, and R. G. Boundy, “Transportation Energy Data Book,” 

Oak Ridge, TN, 2010. 
[2] EPA, “2010 U.S. Greenhouse Gas Inventory Report,” Washington D.C., 2010. 
[3] D. Schrank, T. Lomax, and S. Turner, “Urban Mobility Report 2010,” Mar. 2010. 
[4] A. Bandivadekar et al., “On the road in 2035: Reducing transportation’s petroleum 

consumption and GHG emissions,” 2008. 
[5] USDOT, “ITS Strategic Research Plan, 2010-2014,” Washington D.C., 2010. 
[6] USDOT, “Achieving the Vision: From VII to IntelliDrive,” Research and 

Innovative Technology Administration, 2010. 
[7] USDOT, “IntelliDrive(SM) Governance Needs Summary,” Washington D.C., 

2009. 
[8] USDOT, “Connected Vehicle,” 2011. [Online]. Available: 

http://www.ops.fhwa.dot.gov/travelinfo/infostructure/aboutinfo.htm. [Accessed: 
2011]. 

[9] H. A. Rakha, K. Ahn, K. Moran, B. Saerens, and E. V. D. Bulck, “Virginia Tech 
Comprehensive Power-Based Fuel Consumption Model: Model development and 
testing,” Transportation Research Part D: Transport and Environment, Jun. 2011. 

[10] K. Ahn, H. Rakha, A. Trani, and M. Van Aerde, “Estimating vehicle fuel 
consumption and emissions based on instantaneous speed and acceleration levels,” 
Journal of Transportation Engineering, 2002. 

[11] H. Rakha, K. Ahn, and A. Trani, “Comparison of MOBILE5a, MOBILE6, VT-
MICRO, and CMEM models for estimating hot-stabilized light-duty gasoline 
vehicle emissions,” Canadian Journal of Civil Engineering, vol. 30, no. 6, pp. 
1010–1021, 2003. 

[12] H. Rakha, M. Snare, and F. Dion, “Vehicle dynamics model for estimating 
maximum light-duty vehicle acceleration levels,” Transportation Research 
Record: Journal of the Transportation Research Board, vol. 1883, no. 1, pp. 40–
49, Jan. 2004. 

[13] X. Li, G. Li, S. S. Pang, X. Yang, and J. Tian, “Signal timing of intersections using 
integrated optimization of traffic quality, emissions and fuel consumption: a note,” 
Transportation Research Part D: Transport and Environment, vol. 9, no. 5, pp. 
401–407, 2004. 

[14] A. Stevanovic, J. Stevanovic, K. Zhang, and S. Batterman, “Optimizing Traffic 
Control to Reduce Fuel Consumption and Vehicular Emissions,” Transportation 
Research Record: Journal of the Transportation Research Board, vol. 2128, no. 1, 
pp. 105-113, Dec. 2009. 

[15] F. Teklu, A. Sumalee, and D. Watling, “A Genetic Algorithm Approach for 
Optimizing Traffic Control Signals Considering Routing,” Computer-Aided Civil 
and Infrastructure Engineering, vol. 22, no. 1, pp. 31-43, Jan. 2007. 



  
 

U.S. Department of Transportation, Research and Innovative Technology Administration 
Intelligent Transportation Systems Joint Program Office       34 

[16] “Green Wave Optimization with Genetic Algorithms and Car-to-Infrastructure 
Communication,” Ingolstadt. 

[17] O. Carsten and M. Fowkes, “External Vehicle Speed Control: Phase I Results, 
Executive Summary,” Mar. 1998. 

[18] O. Carsten and F. Tate, “External Vehicle Speed Control Final Report�: 
Integration,” 2000. 

[19] O. Carsten and M. Fowkes, “External Vehicle Speed Control: Phase II Results, 
Executive Summary,” The University of Leeds, no. January, 2000. 

[20] K. Boriboonsomsin, O. Servin, and M. Barth, “Selection of control speeds in 
dynamic intelligent speed adaptation system: A preliminary analysis,” 
EScholarship, 2008. 

[21] O. Servin, K. Boriboonsomsin, and M. Barth, “An energy and emissions impact 
evaluation of intelligent speed adaptation,” 2006 IEEE Intelligent Transportation 
Systems Conference, pp. 1257-1262, 2006. 

[22] H. Johansson, P. Gustafsson, and M. Henke, “Impact of EcoDriving on 
emissions,” Transport and Air Pollution., no. June, 2003. 

[23] E. Ericsson, H. Larsson, and K. Brundellfreij, “Optimizing route choice for lowest 
fuel consumption – Potential effects of a new driver support tool,” Transportation 
Research Part C: Emerging Technologies, vol. 14, no. 6, pp. 369-383, Dec. 2006. 

[24] Y. Saboohi and H. Farzaneh, “Model for optimizing energy efficiency through 
controlling speed and gear ratio,” Energy Efficiency, vol. 1, no. 1, pp. 65-76, Feb. 
2008. 

[25] Y. Saboohi and H. Farzaneh, “Model for developing an eco-driving strategy of a 
passenger vehicle based on the least fuel consumption,” Applied Energy, vol. 86, 
no. 10, pp. 1925-1932, Oct. 2009. 

[26] M. Barth and K. Boriboonsomsin, “Energy and emissions impacts of a freeway-
based dynamic eco-driving system,” Transportation Research Part D: Transport 
and Environment, vol. 14, no. 6, pp. 400-410, Aug. 2009. 

[27] S. Widodo, T. Hasegawa, and S. Tsugawa, “Vehicle fuel consumption and 
emission estimation in environment-adaptive driving with or without inter-vehicle 
communications,” in Proceedings of the IEEE Intelligent Vehicles Symposium 
2000 (Cat. No.00TH8511), 2002, no. Mi, pp. 382-386. 

[28] M. Zarkadoula, G. Zoidis, and E. Tritopoulou, “Training urban bus drivers to 
promote smart driving: A note on a Greek eco-driving pilot program,” 
Transportation Research Part D: Transport and Environment, vol. 12, no. 6, pp. 
449-451, Aug. 2007. 

[29] M. Van Der Voort, M. S. Dougherty, and M. Van Maarseveen, “A prototype fuel-
efficiency support tool,” Transportation Research Part C: Emerging Technologies, 
vol. 9, no. 4, pp. 279-296, Aug. 2001. 

[30] H. Lee, W. Lee, and Y. K. Lim, “The effect of eco-driving system towards 
sustainable driving behavior,” in Proceedings of the 28th of the international 
conference extended abstracts on Human factors in computing systems, 2010, pp. 
4255–4260. 

[31] L. Nouveliere, M. Braci, L. Menhour, H. Luu, and S. Mammar, “Fuel consumption 
optimization for a city bus,” in UKACC CONTROL08 Conference, Manchester, 
England, 2008. 



  
 

U.S. Department of Transportation, Research and Innovative Technology Administration 
Intelligent Transportation Systems Joint Program Office       35 

[32] K. Ahn and H. Rakha, “The effects of route choice decisions on vehicle energy 
consumption and emissions,” Transportation Research Part D: Transport and 
Environment, vol. 13, no. 3, pp. 151-167, May 2008. 

[33] M. Barth, K. Boriboonsomsin, and A. Vu, “Environmentally-Friendly 
Navigation,” 2007 IEEE Intelligent Transportation Systems Conference, pp. 684-
689, Sep. 2007. 

[34] K. Boriboonsomsin and M. Barth, “Impacts of Road Grade on Fuel Consumption 
and Carbon Dioxide Emissions Evidenced by Use of Advanced Navigation 
Systems,” Transportation Research Record: Journal of the Transportation 
Research Board, vol. 2139, no. 1, pp. 21-30, Dec. 2009. 

[35] R. Ganti, N. Pham, H. Ahmadi, S. Nangia, and TF, “GreenGPS: a participatory 
sensing fuel-efficient maps application,” in Proceedings of the 8th International 
Conference on Mobile systems, applications, and services, 2010, pp. 151-164. 

[36] G. Wu, K. Boriboonsomsin, W.-B. Zhang, M. Li, and M. Barth, “Energy and 
Emission Benefit Comparison of Stationary and In-Vehicle Advanced Driving 
Alert Systems,” Transportation Research Record: Journal of the Transportation 
Research Board, vol. 2189, no. 1, pp. 98-106, Dec. 2010. 

[37] B. Asadi and A. Vahidi, “Predictive Cruise Control: Utilizing Upcoming Traffic 
Signal Information for Improving Fuel Economy and Reducing Trip Time,” 
Control Systems Technology, IEEE Transactions, pp. 1-9, 2010. 

[38] T. Tielert, M. Killat, H. Hartenstein, R. Luz, S. Hausberger, and T. Benz, “The 
impact of traffic-light-to-vehicle communication on fuel consumption and 
emissions,” in Internet of Things (IOT), 2010, 2010, pp. 1–8. 

[39] M. Sanchez, J. C. Cano, and D. Kim, “Predicting Traffic lights to Improve Urban 
Traffic Fuel Consumption,” in ITS Telecommunications Proceedings, 2006 6th 
International Conference on, 2007, pp. 331–336. 

[40] D. C. BIGGS and R. AKCELIK, “An energy-related model of instantaneous fuel 
consumption,” Traffic engineering & control, vol. 27, no. 6, pp. 320-325. 

[41] K. J. Malakorn and B. Park, “Assessment of mobility, energy, and environment 
impacts of IntelliDrive-based Cooperative Adaptive Cruise Control and Intelligent 
Traffic Signal control,” in Sustainable Systems and Technology (ISSST), 2010 
IEEE International Symposium, 2010, pp. 1–6. 

[42] S. Mandava, K. Boriboonsomsin, and M. Barth, “Arterial velocity planning based 
on traffic signal information under light traffic conditions,” in Intelligent 
Transportation Systems, 2009. ITSC’09. 12th International IEEE Conference on 
Intelligent Transportation Systems., 2009, pp. 1–6. 

[43] D. A. Roozemond, “Using intelligent agents for pro-active, real-time urban 
intersection control,” European Journal of Operational Research, vol. 131, no. 2, 
pp. 293–301, Jun. 2001. 

[44] H. Rakha and R. K. Kamalanathsharma, “Eco-driving at Signalized Intersections 
using V2I Communication,” in 14th International IEEE Annual Conference on 
Intelligent Transportation Systems, 2011.  

 

 



  
 

U.S. Department of Transportation, Research and Innovative Technology Administration 
Intelligent Transportation Systems Joint Program Office       36 

Notice 
Unless otherwise mentioned in the Figure/Table caption, all Figures, Tables and Photos 
in this document were made, developed and produced by the Virginia Polytechnic 
Institute and State University and the Virginia Tech Transportation Institute faculty, 
staff, and students and are used here with permission.  
 
 



  
 

 
 
 
 
                   

 

 

 

 

 

 

 U.S. Department of Transportation 
ITS Joint Program Office-HOIT 
1200 New Jersey Avenue, SE 
Washington, DC 20590 
 
Toll-Free “Help Line” 866-367-7487 
www.its.dot.gov 
 
 

FHWA-JPO-12-063 
 
 
 
  


