Seabrook Station Safety Performance in 2011 & Seabrook Station Safety in light of the Alkali-Silica Reaction Occurring in Plant Structures

2011 Reactor Oversight Process Nuclear Regulatory Commission – Region I

NRC Representatives

- Chris Miller Director of Reactor Safety
- Arthur Burritt Branch Chief
- William Raymond Senior Resident Inspector
- Joe DeBoer– Acting Resident Inspector
- Meena Khanna Branch Chief

Meena Chris

Agenda

- Introduction
- Discussion of safety performance at Seabrook in 2011
- Discussion of Seabrook plant safety in light of ASR occurring in site structures
- Closing remarks
- NRC to address public questions

NRC Assessment Summary U.S.NRC United States Nuclear Regulatory Commission Protecting People and the Environment Seabrook for 2011

- NextEra operated the plant safely
- Seabrook remained in the Licensee Response Column
- No substantive cross-cutting issues were identified
- The NRC plans to perform baseline inspections in 2012

NRC Inspection Activities Seabrook for 2011

- 8111 hours of inspection and related activities
- Two resident inspectors on site residents perform inspections daily and can respond to plant events at any time
- Three team inspections
 - License Renewal Inspection
 - Triennial Fire Protection
 - Operational Safety And Review Team



Seabrook Pls and Findings U.S.NRC United States Nuclear Regulatory Commission Protecting People and the Environment

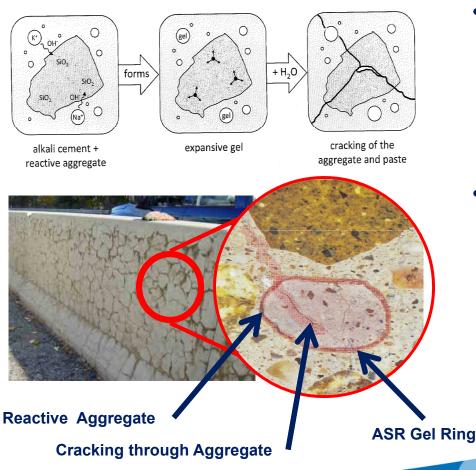
January 1 through December 31, 2011

- All Green Performance Indicators
- Seven Green findings related to:
 - Maintenance Rule structure, systems and component monitoring
 - Operability determinations
 - Control of transient combustibles
 - Reactor trip

2011 Seabrook Assessment Summary

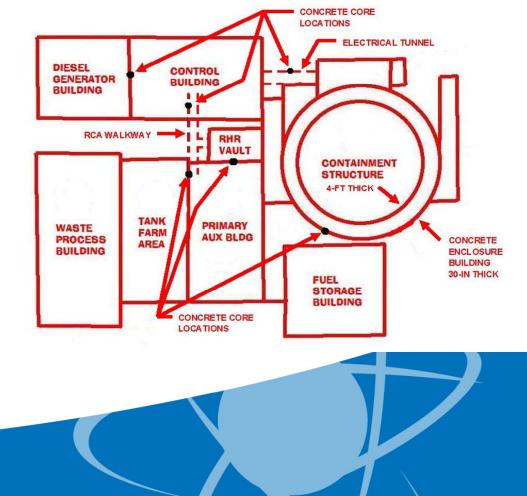
Licensee Response	Regulatory Response	Degraded Cornerstone	Multiple Repetitive Degraded Cornerstone	Unacceptable Performance
All Inputs are Green; Cornerstone Objectives Fully Met	1 or 2 White Inputs; Cornerstone Objectives Fully Met	2 White or 1 Yellow Input; Cornerstone Objectives Met w/ Moderate Degradation in Safety Performance	Multiple Yellow Inputs or 1 Red Input; Cornerstone Objectives Met w/ Significant Degradation in Safety Performance	Overall Unacceptable Performance; Plants not permitted to Operate w/in this Column; Unacceptable Margin to Safety

- Seabrook was operated safely
- Licensee Response column of the Action Matrix
- Baseline inspections planned for 2011


Seabrook Station Safety in light of the Alkali-Silica Reaction Occurring in Plant Structures

2011 Reactor Oversight Process Nuclear Regulatory Commission – Region I

Alkali-Silica Reaction (ASR) What is ASR?


- ASR is a slow chemical reaction in concrete, which occurs in the presence of water, between the alkaline cement and reactive silica found in some aggregates.
- ASR forms a gel that expands causing micro-cracks that affects concrete properties

Alkali-Silica Reaction (ASR)

Where is ASR Confirmed to be Occurring at Seabrook?

- Affected Structures
 include:
 - B Electrical tunnel
 - Containment enclosure building
 - RHR vault
 - EDG building
 - EFW building

Alkali-Silica Reaction (ASR) Why is Seabrook Still Safe?

- Conservative safety factors and assumptions used for plant design
- No significant visible deformation, distortion, or displacement was identified in the affected structures
- No indications of rebar corrosion
- ASR limited to localized areas of the affected structures
- ASR and the degradation it causes occurs slowly

Alkali-Silica Reaction (ASR)

What are the Next Steps?

- NRC continually reviews the Structural assessments to verify safety as more information becomes available
- NRC ongoing inspections continue to covering all aspects of the issue under the current license (short term), and long term aging management
- Coordinated effort by multiple NRC offices
- Future public meeting close to site

Meeting Ground Rules

- Please be respectful to the speaker – only one speaker at a time
- 2. See NRC staff if you have procedural questions/concerns or still want to sign up.
- NRC staff members will be available after the meeting to talk to those interested

Contacting the NRC

- Report a safety concern
 - 1-800-695-7403
 - <u>allegation@nrc.gov</u>

General questions

- <u>www.nrc.gov</u>
- Region I Public Affairs
 - Diane Screnci, 610-332-5330
 <u>diane.screnci@nrc.gov</u>
 - Neil Sheehan, 610-332-5331 or <u>neil.sheehan@nrc.gov</u>